Algorithmic aspects of Galois theory in recent times

Michael F. Singer

Department of Mathematics
North Carolina State University
Raleigh, NC 27695-8205
singer@math.ncsu.edu

Bicentenaire de la naissance d'Évariste Galois
I'Institut Henri Poincaré, 28 Octobre 2011

Calculating Galois groups ... in theory

Calculating Galois groups ... in theory

Calculating Galois groups . . . in practice

Calculating Galois groups ... in theory

Calculating Galois groups . . . in practice
Calculating Differential Galois groups

Calculating Galois groups in theory

Calculating Galois groups in theory

Can we calculate Galois groups?

Calculating Galois groups in theory

Can we calculate Galois groups?

Yes we can, but

An Algorithm
(Kronecker, Gründzuge ..., Crelle, 92, 1882)

An Algorithm
(Kronecker, Gründzuge ..., Crelle, 92, 1882)

$$
f(x) \in \mathbb{Z}[x], \quad \operatorname{deg}(f)=n \operatorname{gcd}\left(f, f^{\prime}\right)=1
$$

An Algorithm

(Kronecker, Gründzuge . . . , Crelle, 92, 1882)

$$
\begin{aligned}
f(x) \in \mathbb{Z}[x], & \operatorname{deg}(f)=n \operatorname{gcd}\left(f, f^{\prime}\right)=1 \\
\text { 1) Let } R\left(Y, X_{1}, \ldots, X_{n}\right) & =\prod_{\sigma \in \mathcal{S}_{n}}\left(Y-\left(\alpha_{\sigma(1)} X_{1}+\ldots+\alpha_{\sigma(n)} X_{n}\right)\right) \\
& =\prod_{\sigma \in \mathcal{S}_{n}}\left(Y-\left(\alpha_{1} X_{\sigma^{-1}(1)}+\ldots+\alpha_{n} X_{\sigma^{-1}(n)}\right)\right) \\
& \in \mathbb{Q}\left[Y, X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

An Algorithm

(Kronecker, Gründzuge . . . , Crelle, 92, 1882)

$$
f(x) \in \mathbb{Z}[x], \quad \operatorname{deg}(f)=n \operatorname{gcd}\left(f, f^{\prime}\right)=1
$$

1) Let $R\left(Y, X_{1}, \ldots, X_{n}\right)=\prod_{\sigma \in \mathcal{S}_{n}}\left(Y-\left(\alpha_{\sigma(1)} X_{1}+\ldots+\alpha_{\sigma(n)} X_{n}\right)\right)$

$$
=\prod_{\sigma \in \mathcal{S}_{n}}\left(Y-\left(\alpha_{1} X_{\sigma^{-1}(1)}+\ldots+\alpha_{n} X_{\sigma^{-1}(n)}\right)\right)
$$

$$
\in \mathbb{Q}\left[Y, X_{1}, \ldots, X_{n}\right]
$$

2) Factor $R\left(Y, X_{1}, \ldots, X_{n}\right)=R_{1}\left(Y, X_{1}, \ldots, X_{n}\right) \cdots R_{t}\left(Y, X_{1}, \ldots, X_{n}\right)$

An Algorithm

(Kronecker, Gründzuge . . . , Crelle, 92, 1882)

$$
f(x) \in \mathbb{Z}[x], \quad \operatorname{deg}(f)=n \operatorname{gcd}\left(f, f^{\prime}\right)=1
$$

1) Let $R\left(Y, X_{1}, \ldots, X_{n}\right)=\prod_{\sigma \in \mathcal{S}_{n}}\left(Y-\left(\alpha_{\sigma(1)} X_{1}+\ldots+\alpha_{\sigma(n)} X_{n}\right)\right)$

$$
=\prod_{\sigma \in \mathcal{S}_{n}}\left(Y-\left(\alpha_{1} X_{\sigma^{-1}(1)}+\ldots+\alpha_{n} X_{\sigma^{-1}(n)}\right)\right)
$$

$$
\in \mathbb{Q}\left[Y, X_{1}, \ldots, X_{n}\right]
$$

2) Factor $R\left(Y, X_{1}, \ldots, X_{n}\right)=R_{1}\left(Y, X_{1}, \ldots, X_{n}\right) \cdots R_{t}\left(Y, X_{1}, \ldots, X_{n}\right)$

Galois group of $\mathrm{f}=\left\{\sigma \in \mathcal{S}_{n} \mid R_{1}\left(Y, X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)=R_{1}\left(Y, X_{1}, \ldots, X_{n}\right)\right\}$

An Algorithm

(Kronecker, Gründzuge . . . , Crelle, 92, 1882)

$$
\begin{aligned}
f(x) \in \mathbb{Z}[x], & \operatorname{deg}(f)=n \operatorname{gcd}\left(f, f^{\prime}\right)=1 \\
\text { 1) Let } R\left(Y, X_{1}, \ldots, X_{n}\right) & =\prod_{\sigma \in \mathcal{S}_{n}}\left(Y-\left(\alpha_{\sigma(1)} X_{1}+\ldots+\alpha_{\sigma(n)} X_{n}\right)\right) \\
& =\prod_{\sigma \in \mathcal{S}_{n}}\left(Y-\left(\alpha_{1} X_{\sigma-1}(1)+\ldots+\alpha_{n} X_{\sigma-1}(n)\right)\right) \\
& \in \mathbb{Q}\left[Y, X_{1}, \ldots, X_{n}\right] \\
\text { 2) Factor } R\left(Y, X_{1}, \ldots, X_{n}\right) & =R_{1}\left(Y, X_{1}, \ldots, X_{n}\right) \cdots R_{t}\left(Y, X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

Galois group of $\mathrm{f}=\left\{\sigma \in \mathcal{S}_{n} \mid R_{1}\left(Y, X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)=R_{1}\left(Y, X_{1}, \ldots, X_{n}\right)\right\}$

High Complexity!

Polynomial Time Algorithms

Question: Is there an algorithm to compute the Galois group of $f(x) \in \mathbb{Z}[x]$ whose running time is given as a polynomial in the size of f ?

Polynomial Time Algorithms

Question: Is there an algorithm to compute the Galois group of $f(x) \in \mathbb{Z}[x]$ whose running time is given as a polynomial in the size of f ?

For $m \in \mathbb{Z}$, size $(m)=$ number of digits $\simeq \log (m)$
For $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z}[x]$, size $(f(x))=n \cdot \max _{i}\left\{\operatorname{size}\left(a_{i}\right)\right\}$.

Polynomial Time Algorithms

Question: Is there an algorithm to compute the Galois group of $f(x) \in \mathbb{Z}[x]$ whose running time is given as a polynomial in the size of f ?

For $m \in \mathbb{Z}$, size $(m)=$ number of digits $\simeq \log (m)$
For $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z}[x]$, size $(f(x))=n \cdot \max _{i}\left\{\operatorname{size}\left(a_{i}\right)\right\}$.
Running Time $=$ number of,$+ \times,-, \div$

Polynomial Time Algorithms

Question: Is there an algorithm to compute the Galois group of $f(x) \in \mathbb{Z}[x]$ whose running time is given as a polynomial in the size of f ?

For $m \in \mathbb{Z}$, size $(m)=$ number of digits $\simeq \log (m)$ For $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z}[x]$, size $(f(x))=n \cdot \max _{i}\left\{\operatorname{size}\left(a_{i}\right)\right\}$.

Running Time $=$ number of,$+ \times,-, \div$

Revised Question:Is there an algorithm to compute generators of the Galois group of $f(x) \in \mathbb{Z}[x]$ whose running time is given as a polynomial in the size of f ?

Polynomial Time Algorithms

Question: Is there an algorithm to compute the Galois group of $f(x) \in \mathbb{Z}[x]$ whose running time is given as a polynomial in the size of f ?

For $m \in \mathbb{Z}$, size $(m)=$ number of digits $\simeq \log (m)$ For $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z}[x]$, size $(f(x))=n \cdot \max _{i}\left\{\operatorname{size}\left(a_{i}\right)\right\}$.

Running Time $=$ number of,$+ \times,-, \div$

Revised Question:Is there an algorithm to compute generators of the Galois group of $f(x) \in \mathbb{Z}[x]$ whose running time is given as a polynomial in the size of f ?

We do not know!

Galois (Discours préliminaire):
"Si maintenant vous me donnez une équation que vous aurez choisie à votre gré et que vous desiriez connaître si elle est ou non soluble par radicaux, je n'aurai rien à y faire que de vous indiquer le moyen de répondre à votre question, sans vouloir charger ni moi ni personne de le faire. En un mot les calculs sont impraticables."

Galois (Discours préliminaire):
"Si maintenant vous me donnez une équation que vous aurez choisie à votre gré et que vous desiriez connaître si elle est ou non soluble par radicaux, je n'aurai rien à y faire que de vous indiquer le moyen de répondre à votre question, sans vouloir charger ni moi ni personne de le faire. En un mot les calculs sont impraticables."

Question: Is there an algorithm to decide if $f(x) \in \mathbb{Z}[x]$ is solvable by radicals whose running time is given as a polynomial in the size of f ?

Galois (Discours préliminaire):
"Si maintenant vous me donnez une équation que vous aurez choisie à votre gré et que vous desiriez connaître si elle est ou non soluble par radicaux, je n'aurai rien à y faire que de vous indiquer le moyen de répondre à votre question, sans vouloir charger ni moi ni personne de le faire. En un mot les calculs sont impraticables."

Question: Is there an algorithm to decide if $f(x) \in \mathbb{Z}[x]$ is solvable by radicals whose running time is given as a polynomial in the size of f ?

Landau and Miller (Solvability by radicals in polynomial time, J. Comp. Sys. Sci., 1985):
"If now you give us a polynomial which you have chosen at your pleasure, and if you want to know if it is or is not solvable by radicals, we have presented techniques to answer that question in polynomial time."

Ingredients of the Landau-Miller Algorithm

Ingredients of the Landau-Miller Algorithm

- Lenstra-Lenstra-Lovász (1982): Polynomial time algorithm to factor $f(x) \in \mathbb{Q}[x]$.

Ingredients of the Landau-Miller Algorithm

- Lenstra-Lenstra-Lovász (1982): Polynomial time algorithm to factor $f(x) \in \mathbb{Q}[x]$.
\Rightarrow Landau (1985): Construct splitting field and Galois group G in time polynomial in $|G|$ and size (f)

Ingredients of the Landau-Miller Algorithm

- Lenstra-Lenstra-Lovász (1982): Polynomial time algorithm to factor $f(x) \in \mathbb{Q}[x]$.
\Rightarrow Landau (1985): Construct splitting field and Galois group G in time polynomial in $|G|$ and size (f)
\diamond Adjoin root of $f \Rightarrow \mathbb{Q}\left(\alpha_{1}\right)$, factor f over $\mathbb{Q}\left(\alpha_{1}\right) \Rightarrow f=f_{1} f_{2} \cdots f_{t}$
\diamond Adjoin root of $f_{1} \Rightarrow \mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$, factor f over $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$
\diamond Stop when f factors completely over $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$
$\diamond K=\mathbb{Q}(\beta), \beta=r_{1} \alpha_{1}+\ldots+r_{n} \alpha_{n}, g(x)=$ min. poly β over \mathbb{Q}
\diamond Galois group $=\left\{\sigma \in \mathcal{S}_{n} \mid g\left(r_{1} \alpha_{\sigma(1)}+\ldots+r_{n} \alpha_{\sigma(n)}\right)=0\right\}$

Ingredients of the Landau-Miller Algorithm

- Lenstra-Lenstra-Lovász (1982): Polynomial time algorithm to factor $f(x) \in \mathbb{Q}[x]$.
\Rightarrow Landau (1985): Construct splitting field and Galois group G in time polynomial in $|G|$ and $\operatorname{size}(f)$

Ingredients of the Landau-Miller Algorithm

- Lenstra-Lenstra-Lovász (1982): Polynomial time algorithm to factor $f(x) \in \mathbb{Q}[x]$.
\Rightarrow Landau (1985): Construct splitting field and Galois group G in time polynomial in $|G|$ and size (f)
- Sims (1970): Given a group G can determine if it solvable in time polynomial in $|G|$.
\Rightarrow Can determine if Galois group is solvable in time polynomial in $|G|$ and size (f)

Ingredients of the Landau-Miller Algorithm

- Lenstra-Lenstra-Lovász (1982): Polynomial time algorithm to factor $f(x) \in \mathbb{Q}[x]$.
\Rightarrow Landau (1985): Construct splitting field and Galois group G in time polynomial in $|G|$ and $\operatorname{size}(f)$
- Sims (1970): Given a group G can determine if it solvable in time polynomial in $|G|$.
\Rightarrow Can determine if Galois group is solvable in time polynomial in $|G|$ and size (f)
- P'alfy (1982): $G \subset \mathcal{S}_{n}$ solvable, transitive and primitive implies $|G|<n^{3.25}$

Ingredients of the Landau-Miller Algorithm

- Lenstra-Lenstra-Lovász (1982): Polynomial time algorithm to factor $f(x) \in \mathbb{Q}[x]$.
\Rightarrow Landau (1985): Construct splitting field and Galois group G in time polynomial in $|G|$ and size (f)
- Sims (1970): Given a group G can determine if it solvable in time polynomial in |G|.
\Rightarrow Can determine if Galois group is solvable in time polynomial in $|G|$ and size (f)
- P'alfy (1982): $G \subset \mathcal{S}_{n}$ solvable, transitive and primitive implies $|G|<n^{3.25}$
- Landau-Miller (1985): Showed how to reduce to the case of equations with transitive, primitive Galois groups.

Calculating Galois groups in practice

Things that work

Mod p techniques

$$
f(x) \in \mathbb{Z}[x], \text { monic, } \operatorname{deg} f=n \quad \Delta(f)=\prod\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}
$$

Mod p techniques

$$
f(x) \in \mathbb{Z}[x], \text { monic, } \operatorname{deg} f=n \quad \Delta(f)=\prod\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}
$$

Fact: For $p \nmid \Delta(f), \quad \operatorname{Gal}(f(\bmod p)) \hookrightarrow \operatorname{Gal}(f)$

Mod p techniques

$$
f(x) \in \mathbb{Z}[x] \text {, monic, } \operatorname{deg} f=n \quad \Delta(f)=\prod\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}
$$

Fact: For $p \nmid \Delta(f), \quad \operatorname{Gal}(f(\bmod p)) \hookrightarrow \operatorname{Gal}(f)$

$$
\begin{aligned}
R\left(Y, X_{1}, \ldots, X_{n}\right) & =\prod_{\sigma \in \mathcal{S}_{n}}\left(Y-\left(\alpha_{\sigma(1)} X_{1}+\ldots+\alpha_{\sigma(n)} X_{n}\right)\right) \\
& =R_{1}
\end{aligned} \ldots \quad R_{t} \quad \text { over } \mathbb{Q} \text {. } \quad . \quad \begin{aligned}
& \text { or }
\end{aligned}
$$

Mod p techniques

$$
f(x) \in \mathbb{Z}[x] \text {, monic, } \operatorname{deg} f=n \quad \Delta(f)=\prod\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}
$$

Fact: For $p \nmid \Delta(f), \quad \operatorname{Gal}(f(\bmod p)) \hookrightarrow \operatorname{Gal}(f)$

$$
\begin{aligned}
R\left(Y, X_{1}, \ldots, X_{n}\right) & =\prod_{\sigma \in \mathcal{S}_{n}}\left(Y-\left(\alpha_{\sigma(1)} X_{1}+\ldots+\alpha_{\sigma(n)} X_{n}\right)\right) \\
& =R_{1} \quad \cdots \quad R_{t} \quad \operatorname{over} \mathbb{Q} \\
& =\left(R_{1,1} \cdots R_{1, m_{1}}\right) \cdots\left(R_{t, 1} \cdots R_{t, m_{t}}\right) \bmod p
\end{aligned}
$$

Mod p techniques

$$
f(x) \in \mathbb{Z}[x] \text {, monic, } \operatorname{deg} f=n \quad \Delta(f)=\prod\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}
$$

Fact: For $p \nmid \Delta(f), \operatorname{Gal}(f(\bmod p)) \hookrightarrow \operatorname{Gal}(f)$

Mod p techniques

$$
f(x) \in \mathbb{Z}[x], \text { monic, } \operatorname{deg} f=n \quad \Delta(f)=\Pi\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}
$$

Fact: For $p \nmid \Delta(f), \quad \operatorname{Gal}(f(\bmod p)) \hookrightarrow \operatorname{Gal}(f)$
Theorem of Frobenius Let $n=n_{1}+\ldots+n_{t}, \quad n_{1} \geq n_{2} \ldots \geq n_{t}$
Density of $\left\{p \mid p \nmid \Delta(f), \quad f=f_{1} \cdots f_{t}(\bmod p), \operatorname{deg}\left(f_{i}\right)=n_{i}\right\}$
$\left.\left.\frac{1}{|G|} \cdot \right\rvert\,\left\{\sigma \in G \mid \sigma=\tau_{1} \cdots \tau_{t}, \tau_{i}\right.$ a cycle of length $\left.n_{i}\right\} \right\rvert\,$

Mod p techniques

$$
f(x) \in \mathbb{Z}[x], \text { monic, } \operatorname{deg} f=n \quad \Delta(f)=\prod\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}
$$

Fact: For $p \nmid \Delta(f), \operatorname{Gal}(f(\bmod p)) \hookrightarrow \operatorname{Gal}(f)$
Theorem of Frobenius Let $n=n_{1}+\ldots+n_{t}, \quad n_{1} \geq n_{2} \ldots \geq n_{t}$
Density of $\left\{p \mid p \nmid \Delta(f), \quad f=f_{1} \cdots f_{t}(\bmod p), \operatorname{deg}\left(f_{i}\right)=n_{i}\right\}$
\|
$\left.\left.\frac{1}{|G|} \cdot \right\rvert\,\left\{\sigma \in G \mid \sigma=\tau_{1} \cdots \tau_{t}, \tau_{i}\right.$ a cycle of length $\left.n_{i}\right\} \right\rvert\,$
Advantages:

- Easy to factor mod p (Berlekamp, 1967)
- Gives a good probabilistic test for $\mathcal{S}_{n}, \mathcal{A}_{n} ;$ good evidence for other groups.

Mod p techniques

$$
f(x) \in \mathbb{Z}[x], \text { monic, } \operatorname{deg} f=n \quad \Delta(f)=\prod\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}
$$

Fact: For $p \nmid \Delta(f), \quad \operatorname{Gal}(f(\bmod p)) \hookrightarrow \operatorname{Gal}(f)$
Theorem of Frobenius Let $n=n_{1}+\ldots+n_{t}, \quad n_{1} \geq n_{2} \ldots \geq n_{t}$
Density of $\left\{p \mid p \nmid \Delta(f), \quad f=f_{1} \cdots f_{t}(\bmod p), \operatorname{deg}\left(f_{i}\right)=n_{i}\right\}$

$$
\frac{\|}{\left.\left.\frac{1}{|G|} \cdot \right\rvert\,\left\{\sigma \in G \mid \sigma=\tau_{1} \cdots \tau_{t}, \tau_{i} \text { a cycle of length } n_{i}\right\} \right\rvert\,}
$$

Advantages:

- Easy to factor mod p (Berlekamp, 1967)
- Gives a good probabilistic test for $\mathcal{S}_{n}, \mathcal{A}_{n}$; good evidence for other groups.

Disadvantages:

- Asymptotic result
- Groups not determined by distribution of cycle patterns - already in deg. 8

Invariant Theoretic Techniques

Invariant Theoretic Techniques

$$
\text { Example: } \quad f(x)=x^{3}+b x+c \in \mathbb{Q}[x] \quad \operatorname{Gal}(f) \subset \mathcal{S}_{3}
$$

Invariant Theoretic Techniques

$$
\text { Example: } \quad f(x)=x^{3}+b x+c \in \mathbb{Q}[x] \quad \operatorname{Gal}(f) \subset \mathcal{S}_{3}
$$

$$
f(x)=(x+\alpha)(x+\beta x+\gamma), \quad \alpha, \beta, \gamma \in \mathbb{Q} \Longrightarrow \operatorname{Gal}(f)=\mathcal{S}_{2} \text { or }\{i d\}
$$

Invariant Theoretic Techniques

Example: $\quad f(x)=x^{3}+b x+c \in \mathbb{Q}[x] \quad \operatorname{Gal}(f) \subset \mathcal{S}_{3}$
$f(x)=(x+\alpha)(x+\beta x+\gamma), \alpha, \beta, \gamma \in \mathbb{Q} \Longrightarrow \operatorname{Gal}(f)=\mathcal{S}_{2}$ or $\{i d\}$
$f(x)$ irreducible $\Longrightarrow \operatorname{Gal}(f)$ acts transitively on the roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$ Group Theory $\Longrightarrow \operatorname{Gal}(f)=\mathcal{S}_{3}$ or \mathcal{A}_{3}

Invariant Theoretic Techniques

Example:

$$
f(x)=x^{3}+b x+c \in \mathbb{Q}[x] \quad \operatorname{Gal}(f) \subset \mathcal{S}_{3}
$$

$f(x)=(x+\alpha)(x+\beta x+\gamma), \alpha, \beta, \gamma \in \mathbb{Q} \Longrightarrow \operatorname{Gal}(f)=\mathcal{S}_{2}$ or $\{$ id $\}$
$f(x)$ irreducible $\Longrightarrow \operatorname{Gal}(f)$ acts transitively on the roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$
Group Theory $\Longrightarrow \operatorname{Gal}(f)=\mathcal{S}_{3}$ or \mathcal{A}_{3}

Let
$F(z)=z^{2}+4 b^{3}+27 c^{2}=(z+\delta)(z-\delta) \quad \delta=\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)$
δ is an invariant of \mathcal{A}_{3} but not of \mathcal{S}_{3} so

$$
\operatorname{Gal}(f)=\mathcal{A}_{3} \Leftrightarrow F(z) \text { factors over } \mathbb{Q} .
$$

Invariant Theoretic Techniques

Example: $\quad f(x)=x^{3}+b x+c \in \mathbb{Q}[x] \quad \operatorname{Gal}(f) \subset \mathcal{S}_{3}$
$f(x)=(x+\alpha)(x+\beta x+\gamma), \quad \alpha, \beta, \gamma \in \mathbb{Q} \Longrightarrow \operatorname{Gal}(f)=\mathcal{S}_{2}$ or $\{i d\}$
$f(x)$ irreducible $\Longrightarrow \operatorname{Gal}(f)$ acts transitively on the roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$
Group Theory $\Longrightarrow \operatorname{Gal}(f)=\mathcal{S}_{3}$ or \mathcal{A}_{3}

Let
$F(z)=z^{2}+4 b^{3}+27 c^{2}=(z+\delta)(z-\delta) \quad \delta=\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)$
δ is an invariant of \mathcal{A}_{3} but not of \mathcal{S}_{3} so

$$
\operatorname{Gal}(f)=\mathcal{A}_{3} \Leftrightarrow F(z) \text { factors over } \mathbb{Q} .
$$

Reduce calculation of Galois groups to factorization of associated polynomials

Why does this work?

Why does this work?

I. A finite group is determined by its permutation representations.

Why does this work?

I. A finite group is determined by its permutation representations.

Given $H \subsetneq G, \exists \rho: G \rightarrow \mathcal{S}_{N}$ such that G acts transitively but H does not.

Why does this work?

I. A finite group is determined by its permutation representations.

Given $H \subsetneq G, \exists \rho: G \rightarrow \mathcal{S}_{N}$ such that G acts transitively but H does not.
II. One can find permutation representations of $G=\operatorname{Gal}(K / k)$ in K.

$$
\text { Let } \rho: G \rightarrow \mathcal{S}_{N} \text {, then } \exists \beta_{1}, \ldots, \beta_{N} \in K \text { such that }
$$

$$
\sigma\left(\alpha_{i}\right)=\alpha_{\rho(\sigma)(i)}, \quad \text { for all } \sigma \in G
$$

Why does this work?

I. A finite group is determined by its permutation representations.

Given $H \subsetneq G, \exists \rho: G \rightarrow \mathcal{S}_{N}$ such that G acts transitively but H does not.
II. One can find permutation representations of $G=\operatorname{Gal}(K / K)$ in K.

Let $\rho: G \rightarrow \mathcal{S}_{N}$, then $\exists \beta_{1}, \ldots, \beta_{N} \in K$ such that

$$
\sigma\left(\alpha_{i}\right)=\alpha_{\rho(\sigma)(i)}, \quad \text { for all } \sigma \in G
$$

Given $\operatorname{Gal}(K / k) \subset G$, to show $\operatorname{Gal}(K / k)=G$:

- For each maximal subgroup $H \subsetneq G$, find a representation as in I.
- Find $\beta_{1}, \ldots, \beta_{N} \in K$ as in II.
- Form $F_{H}(z)=\Pi\left(z-\beta_{i}\right) \in k[z]$.
- If $F_{H}(z)$ is irreducible for each H, then $\operatorname{Gal}(K / k)=G$.

Differential Galois Groups

Differential Galois Groups

What are Differential Galois Groups and what do they measure?

Differential Galois Groups

What are Differential Galois Groups and what do they measure?
Calculating Differential Galois Groups ... in theory

Differential Galois Groups

What are Differential Galois Groups and what do they measure?
Calculating Differential Galois Groups ... in theory
Calculating Differential Galois Groups . . . in practice

Picard-Vessiot Theory

Picard-Vessiot Theory

Consider a linear differential equation

$$
L(y)=\frac{d^{n} y}{d z^{n}}+a_{n-1}(z) \frac{d^{n-1} y}{d z^{n-1}}+\ldots+a_{0} y=0, \quad a_{i}(z) \in \mathbb{C}(z)
$$

Picard-Vessiot Theory

Consider a linear differential equation

$$
L(y)=\frac{d^{n} y}{d z^{n}}+a_{n-1}(z) \frac{d^{n-1} y}{d z^{n-1}}+\ldots+a_{0} y=0, \quad a_{i}(z) \in \mathbb{C}(z)
$$

z_{0} a nonsingular point $\Rightarrow \exists$ solutions y_{1}, \ldots, y_{n} anal. near z_{0}, lin. indep. $/ \mathbb{C}$.

Picard-Vessiot Theory

Consider a linear differential equation

$$
L(y)=\frac{d^{n} y}{d z^{n}}+a_{n-1}(z) \frac{d^{n-1} y}{d z^{n-1}}+\ldots+a_{0} y=0, \quad a_{i}(z) \in \mathbb{C}(z)
$$

z_{0} a nonsingular point $\Rightarrow \exists$ solutions y_{1}, \ldots, y_{n} anal. near z_{0}, lin. indep. $/ \mathbb{C}$.

PV-extension $K=\mathbb{C}(z)\left(y_{1}, \ldots, y_{n}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}, \ldots, y_{1}^{(n-1)}, \ldots, y_{n}^{(n-1)}\right)$.

Picard-Vessiot Theory

Consider a linear differential equation

$$
L(y)=\frac{d^{n} y}{d z^{n}}+a_{n-1}(z) \frac{d^{n-1} y}{d z^{n-1}}+\ldots+a_{0} y=0, \quad a_{i}(z) \in \mathbb{C}(z)
$$

z_{0} a nonsingular point $\Rightarrow \exists$ solutions y_{1}, \ldots, y_{n} anal. near z_{0}, lin. indep. $/ \mathbb{C}$.

PV-extension $K=\mathbb{C}(z)\left(y_{1}, \ldots, y_{n}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}, \ldots, y_{1}^{(n-1)}, \ldots, y_{n}^{(n-1)}\right)$.

PV-group $\operatorname{DGal}(K / k)=\{\sigma: K \rightarrow K \mid \sigma$ is a $\mathbb{C}(z)$ - diff. autom. of $K\}$
$\diamond \operatorname{DGal}(K / k)$ leaves $\operatorname{Soln}(L)$ invariant $\Rightarrow \operatorname{DGal}(K / k) \subset \operatorname{GL}_{n}(\mathbb{C})$.
$\diamond \operatorname{DGal}(K / k)$ is Zariski-closed.

Picard-Vessiot Theory

Consider a linear differential equation

$$
L(y)=\frac{d^{n} y}{d z^{n}}+a_{n-1}(z) \frac{d^{n-1} y}{d z^{n-1}}+\ldots+a_{0} y=0, \quad a_{i}(z) \in \mathbb{C}(z)
$$

z_{0} a nonsingular point $\Rightarrow \exists$ solutions y_{1}, \ldots, y_{n} anal. near z_{0}, lin. indep. $/ \mathbb{C}$.

PV-extension $K=\mathbb{C}(z)\left(y_{1}, \ldots, y_{n}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}, \ldots, y_{1}^{(n-1)}, \ldots, y_{n}^{(n-1)}\right)$.

PV-group $\operatorname{DGal}(K / K)=\{\sigma: K \rightarrow K \mid \sigma$ is a $\mathbb{C}(z)$ - diff. autom. of $K\}$
$\diamond \operatorname{DGal}(K / k)$ leaves $\operatorname{Soln}(L)$ invariant $\Rightarrow \operatorname{DGal}(K / k) \subset \operatorname{GL}_{n}(\mathbb{C})$.
$\diamond \operatorname{DGal}(K / k)$ is Zariski-closed.

Galois Correspondence: $H^{\text {Zariski closed } \subset \operatorname{DGal(}(K / \mathbb{C}(z))} \Leftrightarrow F^{\text {Diff. field, } \mathbb{C}(z) \subset F \subset K}$

What do Differential Galois Groups Measure?

What do Differential Galois Groups Measure?

- Algebraic Dependence: K - a PV-extension of $\mathbb{C}(z)$ with PV-group G
tr. $\operatorname{deg}_{\cdot \mathbb{C}(z)} K=\operatorname{dim}_{\mathbb{C}} G$

What do Differential Galois Groups Measure?

- Algebraic Dependence: K - a PV-extension of $\mathbb{C}(z)$ with PV-group G tr. $\operatorname{deg}_{\cdot \mathbb{C}(z)} K=\operatorname{dim}_{\mathbb{C}} G$

Example:

$$
\begin{aligned}
& L(y)=y^{\prime \prime}+\frac{1}{z}+\left(1-\frac{\lambda^{2}}{z^{2}}\right) y=0, \quad \lambda-\frac{1}{2} \notin \mathbb{Z} \\
& \Rightarrow \text { DGal }=\operatorname{SL}(\mathbb{C}) \\
& \Rightarrow \text { tr. deg. } \\
& \mathbb{C}_{(z)} \\
& \mathbb{C}(z)\left(J_{\lambda}, Y_{\lambda}, J_{\lambda}^{\prime}, Y_{\lambda}^{\prime}\right)=3
\end{aligned}
$$

- Solvability
- Solvability
$L(y)=0$ is solvable in terms of liouvillian functions if there exists a tower of fields $\mathbb{C}(z)=K_{0} \subset \ldots \subset K_{n}$ such that $K_{i+1}=K_{i}\left(t_{i}\right)$ with
$\diamond t_{i}$ algebraic over K_{i}, or
$\diamond t_{i}^{\prime} \in K_{i}$, i.e., $t_{i}=\int u_{i}, u_{i} \in K_{i}$, or
$\diamond t_{i}^{\prime} / t_{i} \in K_{i}$, i.e., $t_{i}=e^{\int u_{i}}, u_{i} \in K_{i}$.
with $K \subset K_{n}$, where K is the PV-extension associated with $L(y)=0$.
- Solvability
$L(y)=0$ is solvable in terms of liouvillian functions if there exists a tower of fields $\mathbb{C}(z)=K_{0} \subset \ldots \subset K_{n}$ such that $K_{i+1}=K_{i}\left(t_{i}\right)$ with
$\diamond t_{i}$ algebraic over K_{i}, or
$\diamond t_{i}^{\prime} \in K_{i}$, i.e., $t_{i}=\int u_{i}, u_{i} \in K_{i}$, or
$\diamond t_{i}^{\prime} / t_{i} \in K_{i}$, i.e., $t_{i}=e^{\int u_{i}}, u_{i} \in K_{i}$.
with $K \subset K_{n}$, where K is the PV-extension associated with $L(y)=0$.
Example:

$$
\begin{gathered}
L(y)=\frac{d^{2} y}{d x^{2}}-\frac{1}{2 x} \frac{d y}{d x}-x y \\
K_{0}=\mathbb{C}(x) \subset K_{1}=K_{0}(\sqrt{x}) \subset K_{2}=K_{1}\left(e^{\int \sqrt{x}}\right) \\
\left\{e^{\int \sqrt{x}}, e^{-\int \sqrt{x}}\right\} \text { is a basis for } \operatorname{Soln}(L=0)
\end{gathered}
$$

- Solvability
$L(y)=0$ is solvable in terms of liouvillian functions if there exists a tower of fields $\mathbb{C}(z)=K_{0} \subset \ldots \subset K_{n}$ such that $K_{i+1}=K_{i}\left(t_{i}\right)$ with
$\diamond t_{i}$ algebraic over K_{i}, or
$\diamond t_{i}^{\prime} \in K_{i}$, i.e., $t_{i}=\int u_{i}, u_{i} \in K_{i}$, or
$\diamond t_{i}^{\prime} / t_{i} \in K_{i}$, i.e., $t_{i}=e^{\int u_{i}}, u_{i} \in K_{i}$.
with $K \subset K_{n}$, where K is the PV-extension associated with $L(y)=0$.
Example:

$$
\begin{gathered}
L(y)=\frac{d^{2} y}{d x^{2}}-\frac{1}{2 x} \frac{d y}{d x}-x y \\
K_{0}=\mathbb{C}(x) \subset K_{1}=K_{0}(\sqrt{x}) \subset K_{2}=K_{1}\left(e^{\int \sqrt{x}}\right) \\
\left\{e^{\int \sqrt{x}}, e^{-\int \sqrt{x}}\right\} \text { is a basis for } \operatorname{Soln}(L=0)
\end{gathered}
$$

Thm: $L(y)=0$ solvable in terms of liouvillian functions \Leftrightarrow DGal contains a solvable subgroup of finite index.

Calculating Differential Galois Groups . . . in theory

$$
L(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y \quad a_{i} \in \overline{\mathbb{Q}}(x)
$$

Calculating Differential Galois Groups . . . in theory

$$
L(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y \quad a_{i} \in \overline{\mathbb{Q}}(x)
$$

- One can decide if $L(y)=0$ has algebraic solutions $n=2$: Schwarz, Klein :: Baldassari-Dwork, van Hoeij-Weil, ... $n \geq 2$: Jordan, Boulanger, Painlevé :: Risch, S.

$$
L(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y \quad a_{i} \in \overline{\mathbb{Q}}(x)
$$

- One can decide if $L(y)=0$ has algebraic solutions $n=2$: Schwarz, Klein :: Baldassari-Dwork, van Hoeij-Weil, ... $n \geq 2$: Jordan, Boulanger, Painlevé :: Risch, S.
- One can decide if $L(y)=0$ is solvable in terms of liouvillian functions. $n=2$: Pepin :: Kovacic.
$n \geq 2$: Marotte :: S., Ulmer, ... ($n=3$ van Hoeij, Weil, Ulmer, ..)

$$
L(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y \quad a_{i} \in \overline{\mathbb{Q}}(x)
$$

- One can decide if $L(y)=0$ has algebraic solutions $n=$ 2: Schwarz, Klein :: Baldassari-Dwork, van Hoeij-Weil, ... $n \geq 2$: Jordan, Boulanger, Painlevé :: Risch, S.
- One can decide if $L(y)=0$ is solvable in terms of liouvillian functions. $n=2$: Pepin :: Kovacic.
$n \geq 2$: Marotte :: S., Ulmer, ... ($n=3$ van Hoeij, Weil, Ulmer, ..)
- Can characterize when $L(y)=0$ is solvable in terms of linear DE of lower order and decide for $n=3$.

Can decide if $L(y)=0$ solvable in terms of Airy, Bessel, Cylinder, Kummer, Laguerre, Whittaker ... (van Hoeij et al)

$$
L(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y \quad a_{i} \in \overline{\mathbb{Q}}(x)
$$

- One can decide if $L(y)=0$ has algebraic solutions $n=2$: Schwarz, Klein :: Baldassari-Dwork, van Hoeij-Weil, ... $n \geq 2$: Jordan, Boulanger, Painlevé :: Risch, S.
- One can decide if $L(y)=0$ is solvable in terms of liouvillian functions. $n=2$: Pepin :: Kovacic.
$n \geq 2$: Marotte :: S., Ulmer, ... ($n=3$ van Hoeij, Weil, Ulmer, ..)
- Can characterize when $L(y)=0$ is solvable in terms of linear DE of lower order and decide for $n=3$.

Can decide if $L(y)=0$ solvable in terms of Airy, Bessel, Cylinder, Kummer, Laguerre, Whittaker ... (van Hoeij et al)

- One can compute the Galois group. (Hrushovsky)

Calculating Differential Galois Groups . . . in practice

Calculating Differential Galois Groups . . . in practice

Ideas based on Tannakian philosophy:

Calculating Differential Galois Groups . . . in practice

Ideas based on Tannakian philosophy:

- A linear algebraic group G is determined by its linear representations.

Calculating Differential Galois Groups . . . in practice

Ideas based on Tannakian philosophy:

- A linear algebraic group G is determined by its linear representations.
\diamond Can recover G from its category of fin. dim. G-modules
\diamond Can construct all fin. dim. G-modules from a single faithful G-module via sums, submodules, quotients and duals.

Calculating Differential Galois Groups . . . in practice

Ideas based on Tannakian philosophy:

- A linear algebraic group G is determined by its linear representations.
\diamond Can recover G from its category of fin. dim. G-modules
\diamond Can construct all fin. dim. G-modules from a single faithful G-module via sums, submodules, quotients and duals.
- A linear differential equation is an avatar for the representation theory of its PV-group.

Calculating Differential Galois Groups . . . in practice

Ideas based on Tannakian philosophy:

- A linear algebraic group G is determined by its linear representations.
\diamond Can recover G from its category of fin. dim. G-modules
\diamond Can construct all fin. dim. G-modules from a single faithful G-module via sums, submodules, quotients and duals.
- A linear differential equation is an avatar for the representation theory of its PV -group.
\diamond Given $L(y)$ with $V=\operatorname{Soln}(L(y))$, for any fin. dim. G-module W, can construct an $\bar{L}(y)$ with $\operatorname{Soln}(\bar{L}(y))=W$.

Calculating Differential Galois Groups . . . in practice

Ideas based on Tannakian philosophy:

- A linear algebraic group G is determined by its linear representations.
\diamond Can recover G from its category of fin. dim. G-modules
\diamond Can construct all fin. dim. G-modules from a single faithful G-module via sums, submodules, quotients and duals.
- A linear differential equation is an avatar for the representation theory of its PV-group.
\diamond Given $L(y)$ with $V=\operatorname{Soln}(L(y))$, for any fin. dim. G-module W, can construct an $\bar{L}(y)$ with $\operatorname{Soln}(\bar{L}(y))=W$.
(i) $W \subset V \rightsquigarrow L=\tilde{L} \circ \bar{L}, \quad \operatorname{Soln}(\bar{L})=W$

Calculating Differential Galois Groups . . . in practice

Ideas based on Tannakian philosophy:

- A linear algebraic group G is determined by its linear representations.
\diamond Can recover G from its category of fin. dim. G-modules
\diamond Can construct all fin. dim. G-modules from a single faithful G-module via sums, submodules, quotients and duals.
- A linear differential equation is an avatar for the representation theory of its PV-group.
\diamond Given $L(y)$ with $V=\operatorname{Soln}(L(y))$, for any fin. dim. G-module W, can construct an $\bar{L}(y)$ with $\operatorname{Soln}(\bar{L}(y))=W$.
(i) $W \subset V \rightsquigarrow L=\tilde{L} \circ \bar{L}, \quad \operatorname{Soln}(\bar{L})=W$
(ii) $V=\operatorname{Soln}(L(y)), W=\operatorname{Soln}(\bar{L}(y)), V \cap W=(0)$
$\rightsquigarrow V \oplus W=\operatorname{Soln}(\operatorname{LCLM}(L, \bar{L})(y))$

Calculating Differential Galois Groups . . . in practice

Ideas based on Tannakian philosophy:

- A linear algebraic group G is determined by its linear representations.
\diamond Can recover G from its category of fin. dim. G-modules
\diamond Can construct all fin. dim. G-modules from a single faithful G-module via sums, submodules, quotients and duals.
- A linear differential equation is an avatar for the representation theory of its PV-group.
\diamond Given $L(y)$ with $V=\operatorname{Soln}(L(y))$, for any fin. dim. G-module W, can construct an $\bar{L}(y)$ with $\operatorname{Soln}(\bar{L}(y))=W$.
(i) $W \subset V \rightsquigarrow L=\tilde{L} \circ \bar{L}, \quad \operatorname{Soln}(\bar{L})=W$
(ii) $V=\operatorname{Soln}(L(y)), W=\operatorname{Soln}(\bar{L}(y)), V \cap W=(0)$
$\rightsquigarrow V \oplus W=\operatorname{Soln}(\operatorname{LCLM}(L, \bar{L})(y))$
(iii) $\operatorname{Sym}^{m}(V)=\left\{y_{1} \cdots y_{m} \mid y_{i} \in V\right\}=\operatorname{Soln}\left(L^{(9}(y)\right)$

Thm. Assume $L(y)=y^{\prime \prime}+r(x) y$.
$L(y)=0$ is solvable in terms of liouvillian functions

Thm. Assume $L(y)=y^{\prime \prime}+r(x) y$.
$L(y)=0$ is solvable in terms of liouvillian functions介
$L^{(® 6}$ factors.

Thm. Assume $L(y)=y^{\prime \prime}+r(x) y$.
$L(y)=0$ is solvable in terms of liouvillian functions I $L^{(8) 6}$ factors.

Thm. Assume $L(y)=y^{\prime \prime \prime}+r(x) y$.
DGal $=$ Valentiner Group $A_{6}^{\text {SL }_{3}}$ of order 1080

Thm. Assume $L(y)=y^{\prime \prime}+r(x) y$.
$L(y)=0$ is solvable in terms of liouvillian functions

Thm. Assume $L(y)=y^{\prime \prime \prime}+r(x) y$.

$$
\text { DGal }=\text { Valentiner Group } A_{6}^{\mathrm{SL}_{3}} \text { of order } 1080
$$

$$
\begin{gathered}
L^{(® 2} \text { and } L^{(® 3} 3 \text { are irreducible } \\
L^{(44}=L_{9} \circ L_{6}, \quad L_{9}, L_{6} \text { irreducible. }
\end{gathered}
$$

