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We develop the representation theory for reductive linear differential algebraic groups (LDAGs). In particular, we exhibit an explicit
sharp upper bound for orders of derivatives in differentialrepresentations of reductive LDAGs, extending existing results, which were
obtained forSL2 in the case of just one derivation. As an application of the above bound, we develop an algorithm that tests whether the
parameterized differential Galois group of a system of linear differential equations is reductive and, if it is, calculates it.

1 Introduction

At the most basic level, a linear differential algebraic group (LDAG) is a group of matrices whose entries are functions
satisfying a fixed set of polynomial differential equations. An algebraic study of these objects in the context of
differential algebra was initiated by Phyllis Cassidy in [8] and further developed by her in [9, 10, 13, 11, 12]. This theory
of LDAGs has been extended to a theory of general differential algebraic groups by Kolchin, Buium, Pillay and others.
Nonetheless interesting applications via the parameterized Picard-Vessiot theory to questions of integrability [21, 43]
and hypertranscendence [14, 24] support a more detailed study of the linear case.

Although there are several similarities between the theoryof LDAGs and the theory of linear algebraic groups
(LAGs), a major difference lies in the representation theory of reductive groups. IfG is a reductive LAG defined
over a field of characteristic 0, then any representation ofG is completely reducible, that is, any invariant subspace
has an invariant complement. This is no longer the case for reductive LDAGs. For example, ifk is a differential field
containing at least one element whose derivative is nonzero, the reductive LDAGSL2(k) has a representation inSL4(k)
given by

A 7→

(
A A′

0 A

)
.

One can show that this is not completely reducible (cf. Example6.1.2). Examples such as this show that the process of
taking derivatives complicates the representation theoryin a significant way. Initial steps to understand representations
of LDAGs are given in [8, 9] and a classification of semisimple LDAGs is given in [13]. A Tannakian approach to
the representation theory of LDAGs was introduced in [44, 45] (see also [29, 28]) and successfully used to further our
understanding of representations of reductive LDAGs in [39, 40]. This Tannakian approach gives a powerful tool in
which one can understand the impact of taking derivatives onthe representation theory of LDAGs.

The main results of the paper consist of bounds for orders of derivatives in differential representations of
semisimple and reductive LDAGs (Theorems4.2.1 and 4.3.4, respectively). Simplified, our results say that, for a
semisimple LDAG, the orders of derivatives are bounded by the dimension of the representation. For a reductive
LDAG containing a finitely generated group dense in the Kolchin topology (cf. §2), they are bounded by the maximum
of the bound for its semisimple part and by the order of differential equations that define the torus of the group.
This result completes and substantially extends what couldbe proven using [40], where one is restricted just toSL2,
one derivation, and to those representations that are extensions of just two irreducible representations. We expect
that the main results of the present paper will be used in the future to give a complete classification of differential
representations of semisimple LDAGs (as this was partiallydone forSL2 in [40]). Although reductive and semisimple
differential algebraic groups were studied in [13, 39], the techniques used there were not developed enough to achieve
the goals of this paper. The main technical tools that we develop and use in our paper are filtrations of modules of
reductive LDAGs, which, as we show, coincide with socle filtrations in the semisimple case (cf. [4, 31]). We expect
that this technique is general and powerful enough to have applications beyond this paper.

In this paper, we also apply these results to the Galois theory of parameterized linear differential equations.
The classical differential Galois theory studies symmetrygroups of solutions of linear differential equations, or,
equivalently, the groups of automorphisms of the corresponding extensions of differential fields. The groups that arise
are linear algebraic groups over the field of constants. Thistheory, started in 19th century by Picard and Vessiot, was
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put on a firm modern footing by Kolchin [32]. A generalized differential Galois theory that uses Kolchin’s axiomatic
approach [34] and realizes differential algebraic groups as Galois groups was initiated in [36].

The parameterized Picard–Vessiot Galois theory considered by Cassidy and Singer in [14] is a special case of the
Landesman generalized differential Galois theory and studies symmetry groups of the solutions of linear differential
equations whose coefficients contain parameters. This is done by constructing a differential field containing the
solutions and their derivatives with respect to the parameters, called a parameterized Picard–Vessiot (PPV) extension,
and studying its group of differential symmetries, called aparameterized differential Galois group. The Galois groups
that arise are LDAGs which are defined by polynomial differential equations in the parameters. Another approach to the
Galois theory of systems of linear differential equations with parameters is given in [7], where the authors study Galois
groups for generic values of the parameters. It was shown in [18, 43] that, a necessary and sufficient condition that
an LDAGG is a PPV-Galois group over the fieldC(x) is thatG contains a finitely generated Kolchin-dense subgroup
(under some further restrictions onC).

In §5 we show how our main result yields algorithms in the PPV theory. For systems of differential equations
without parameters in the usual Picard-Vessiot theory, there are many existing algorithms for computing differential
Galois groups. A complete algorithm over the fieldC(x), whereC is a computable algebraically closed field of
constants,x is transcendental overC and its derivative is equal to 1 is given in [25] (see also [15] for the case when
the group is reductive). More efficient algorithms for equations of low order appear in [35, 52, 53, 54, 57, 46]. These
latter algorithms depend on knowing a list of groups that canpossibly occur and step-by-step eliminating the choices.

For parameterized systems, the first known algorithms are given in [1, 17], which apply to systems of first and
second orders (see also [2] for the application of these techniques to the incomplete gamma function). An algorithm
for the case in which the quotient of the parameterized Galois group by its unipotent radical is constant is given in [41].
In the present paper, without any restrictions to the order of the equations, based on our main result (upper bounds
mentioned above), we present algorithms that

(i) compute the quotient of the parameterized Galois groupG by its unipotent radicalRu(G),

(ii) test whetherG is reductive (that is, whetherRu(G) = {id})

Note that these algorithms imply that we can determine if thePPV-Galois group is reductive and, if it is, compute it.
The paper is organized as follows. We start by recalling the basic definitions of differential algebra, differential

dimension, differential algebraic groups, their representatons, unipotent and reductive differential algebraic groups in
§2. The main technical tools of the paper, properties of LDAGs containing a Kolchin-dense finitely generated subgroup
and grading filtrations of differential coordinate rings, can be found in §2.2.3and §3, respectively. The main result is
in §4. The main algorithms are described in §5. Examples that show that the main upper bound is sharp and illustrate
the algorithm are in §6.

2 Basic definitions

2.1 Differential algebra

We begin by fixing notation and recalling some basic facts from differential algebra (cf. [33]). In this paper a∆-ring
will be a commutative associative ring with unit 1 and commuting derivations∆ = {∂1, . . . ,∂m}. We let

Θ :=
{

∂i1
1 · . . . ·∂im

m | i j > 0
}

and note that this semigroup acts naturally onR. For an element∂i1
1 · . . . ·∂im

m ∈ Θ, we let

ord
(
∂i1

1 · . . . ·∂im
m

)
:= i1+ . . .+ im.

Let Y = {y1, . . .,yn} be a set of variables and

ΘY :=
{

θy j

∣∣θ ∈ Θ, 16 j 6 n
}
.

The ring of differential polynomialsR{Y} in differential indeterminatesY overR is R[ΘY] with the derivations∂i that
extends the∂i-action onRas follows:

∂i (θy j) := (∂i ·θ)y j , 16 j 6 n, 16 i 6 m.

An ideal I in a ∆-ring R is called a differential ideal if∂i(a) ∈ I for all a∈ I , 16 i 6 m. For F ⊂ R, [F] denotes the
differential ideal ofR generated byF.
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Let K be a∆-field of characteristic zero. We denote the subfield of constants ofK by

K ∆ := {c∈ K | ∂i(c) = 0, 16 i 6 m}.

Let U be a differentially closed field containingK , that is, a∆- extension field ofK such that any system of polynomial
differential equations with coefficients inU having a solution in some∆-extension ofU already have a solution inUn

(see [14, Def. 3.2] and the references given there).

Definition 2.1.1. A Kolchin-closedsubsetW(U) of U
n overK is the set of common zeroes of a system of differential

algebraic equations with coefficients inK , that is, for f1, . . . , fl ∈ K{Y}, we define

W(U) = {a∈ U
n | f1(a) = . . .= fl(a) = 0} .

If W(U) is a Kolchin-closed subset ofU
n overK , we letI(W) = { f ∈ K{y1, . . . ,yn} | f (w) = 0 ∀ w∈W(U)}.

One has the usual correspondence between Kolchin-closed subsets ofKn defined overK and radical differential
ideals ofK{y1, . . . ,yn}. Given a Kolchin-closed subsetW of U

n defined overK , we let the coordinate ringK{W} be
defined as

K{W}= K{y1, . . . ,yn}
/
I(W).

A differential polynomial mapϕ : W1 → W2 between Kolchin-closed subsets ofU
n1 andU

n2, respectively, defined
over K , is given in coordinates by differential polynomials inK{W1}. Moreover, to giveϕ : W1 → W2 is equivalent
to defining a differentialK -homomorphismϕ∗ : K{W2} → K{W1}. If K{W} is an integral domain, thenW is called
irreducible. This is equivalent toI(W) being a prime differential ideal. More generally, if

I(W) = p1∩ . . .∩pq

is a minimal prime decomposition, which is unique up to permutation, [30, VII.29], then the irreducible Kolchin-closed
setsW1, . . .,Wq corresponding top1, . . . ,pq are called theirreducible componentsof W. We then have

W =W1∪ . . .∪Wq.

If W is an irreducible Kolchin-closed subsets ofU
n defined overK , we denote the quotient field ofK{W} by K 〈W〉.

In the following, we shall need the notion of a Kolchin closedset being ofdifferential type at most zero. The
general concept of differential type is defined in terms of the Kolchin polynomial ([33, §II.12]) but this more restricted
notion has a simpler definition.

Definition 2.1.2. LetW be an irreducible Kolchin-closed subsets ofU
n defined overK . We sayW to be ofdifferential

type at most zeroand denote this byτ(W)6 0 if tr. degKK 〈W〉< ∞. If W is an arbitrary Kolchin-closed subsets ofU
n

defined overK , we sayW has differential type at most zero if this is true for each of its components.

We shall use the fact that ifH E G are LDAGs thenτ(H)6 0 andτ(G/H)6 0 if and only ifτ(G)6 0 [34, §IV.4].

2.2 Linear Differential Algebraic Groups

Let K ⊂ U be as above.

Definition 2.2.1. [8, Ch. II, §1, p. 905] Alinear differential algebraic groupoverK is a Kolchin-closed subgroupG
of GLn(U) overK , that is, an intersection of a Kolchin-closed subset ofU

n2
with GLn(U) that is closed under the

group operations.

In what follows, LDAG stands for linear differential algebraic group. Note that we identifyGLn(U) with a Zariski
closed subset ofUn2+1 given by {

(A,a)
∣∣ (det(A)) ·a−1= 0

}
.

If X is an invertiblen×nmatrix, we can identify it with the pair(X,1/det(X)). Hence, we may represent the coordinate
ring of GLn(U) asK{X,1/det(X)}. As usual, letGm(U) andGa(U) denote the multiplicative and additive groups of
U, respectively. The coordinate ring of the LDAGSL2(U) is isomorphic to

K{c11,c12,c21,c22}/[c11c22−c12c21−1].

For a groupG⊂ GLn(U), we denote the Zariski closure ofG in GLn(U) by G. ThenG is a linear algebraic group
overU. If G⊂ GLn(U) is an LDAG defined overK , thenG is defined overK as well.

The irreducible component of an LDAGG containing id, the identity, is called theidentity componentof G and
denoted byG◦. An LDAG G is calledconnectedif G = G◦, which is equivalent toG being an irreducible Kolchin
closed set [8, p. 906].

The coordinate ringK{G} of an LDAG G has a structure of adifferential Hopf algebra, i.e., a Hopf algebra in
which the coproduct, antipode, and counit are homomorphisms of differential algebras [44, §3.2] and [9, §2]. One can
view G as a representable functor defined onK -algebras, represented byK{G}. For example, ifV is ann-dimensional
vector space overK , GL(V) = AutV is an LDAG represented byK{GLn}= K{GLn(U)}.



4

2.2.1 Representations of linear differential algebraic groups

Definition 2.2.2. [9],[44, Def. 6] LetG be an LDAG. A differential polynomial group homomorphism

rV : G→ GL(V)

is called adifferential representationof G, whereV is a finite dimensional vector space overK . Such space is simply
called aG-module. This is equivalent to giving acomodule structure

ρV : V →V ⊗K K{G},

see [44, Def. 7 and Thm. 1], [58, §3.2]. Moreover, ifU ⊂V is a submodule, thenρV |U = ρU .
As usual,morphismsbetweenG-modules areK -linear maps that areG-equivariant. The category of differential

representations ofG is denoted byRepG.

For an LDAGG, let A := K{G} be its differential Hopf algebra and

∆ : A→ A⊗K A

be the comultiplication inducing theright-regular G-module structureon A as follows (see also [44, §4.1]). For
g,x∈ G(U) and f ∈ A,

(rg( f ))(x) = f (x ·g) = ∆( f )(x,g) =
n

∑
i=1

fi(x)gi(g),

where∆( f ) = ∑n
i=1 fi ⊗gi. Thek-vector spaceA is anA-comodule via

ρA := ∆.

Proposition 2.2.3. [58, Cor. 3.3, Lem. 3.5][44, Lem. 3] The coalgebraA is a countable union of its finite-dimensional
subcoalgebras. IfV ∈ RepG, then, as anA-comodule,V embeds intoAdimV .

By [8, Prop. 7],ρ(G)⊂ GL(V) is a differential algebraic subgroup. Given a representation ρ of an LDAGG, one
can define its prolongations

Pi(ρ) : G→ GL(Pi(V))

with respect to∂i as follows (see [20, §5.2], [44, Def. 4 and Thm. 1], and [39, p. 1199]). Let

Pi(V) := K ((K ⊕K∂i)K ⊗K V) (2.2.1)

as vector spaces, whereK ⊕K∂i is considered as the rightK -module:∂i ·a= ∂i(a)+a∂i for all a∈ K . Then the action
of G is given byPi(ρ) as follows:

Pi(ρ)(g)(1⊗v) := 1⊗ρ(g)(v), Pi(ρ)(g)(∂i ⊗v) := ∂i ⊗ρ(g)(v)

for all g∈ G andv ∈ V. In the language of matrices, ifAg ∈ GLn corresponds to the action ofg ∈ G onV, then the
matrix (

Ag ∂iAg

0 Ag

)

corresponds to the action ofg on Pi(V). In what follows, theqth iterate ofPi is denoted byPq
i . Moreover, the above

induces the exact sequences:

0 −−−−→ V
ιi−−−−→ Pi(V)

πi−−−−→ V −−−−→ 0, (2.2.2)

whereιi(v) = 1⊗v andπi(a⊗u+b∂i ⊗v) = bv, u, v∈V, a, b∈ K . For any integers, we will refer to

Ps
mPs

m−1 · . . . ·P
s
1(ρ) : G→ GLNs

to be thesth total prolongation ofρ (whereNs is the dimension of the underlying prolonged vector space).We denote
this representation byPs(ρ) : G→ GLNs. The underlying vector space is denoted byPs(V).

It will be convenient to considerA as aG-module. For this, let̃RepG denote the differential tensor category of all
A-comodules (not necessarily finite-dimensional), which are direct limits of finite-dimensionalA-comodules by [58,
§3.3]. ThenA∈ R̃epG by Proposition2.2.3.
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2.2.2 Unipotent radical of differential algebraic groups and reductive LDAGs

Definition 2.2.4. [10, Theorem 2] LetG be a linear differential algebraic group defined overK . We say thatG is
unipotentif one of the following conditions holds:

(i) G is conjugate to a differential algebraic subgroup of the groupUn of unipotent upper triangular matrices.

(ii) G contains no elements of finite order greater than 1.

(iii) G has a descending normal sequence of differential algebraicsubgroups

G= G0 ⊃ G1 ⊃ . . .⊃ GN = {1}.

with Gi/Gi+1 isomorphic to a differential algebraic subgroup of the additive groupGa.

One can show that a linear differential algebraic groupG defined overK admits a maximal normal unipotent
differential subgroup [39, Thm. 3.10].

Definition 2.2.5. This subgroup is called theunipotent radicalof G and denoted byRu(G). The unipotent radical of a
linear algebraic groupH is also denoted byRu(H).

Definition 2.2.6. [39, Def. 3.12] An LDAGG is calledreductiveif its unipotent radical is trivial, that is,Ru(G) = {id}.

Remark2.2.7. If G is given as a linear differential algebraic subgroup of someGL ν, we may consider its Zariski
closureG in GLν, which is an algebraic group scheme defined overK . Then, following the proof of [39, Thm. 3.10]

Ru(G) = Ru
(
G
)
∩G.

This implies that, ifG is reductive, thenG is reductive. However, in general the Zariski closure ofRu(G) may be
strictly included inRu(G) [39, Ex. 3.17].

2.2.3 Differentially finitely generated groups

As mentioned in the introduction, one motivation for studying linear differential algebraic groups is their use in the
parameterized Picard–Vessiot (PPV) theory. In §5, we will discuss PPV-extensions of certain fields whose PPV-Galois
groups satisfy the following property. In this subsection,we will assume thatK is differentially closed.

Definition 2.2.8. Let G be an LDAG defined overK . We sayG is differentially finitely generated, or simply aDFGG,
if G(K ) contains a finitely generated subgroup that is Kolchin denseoverK .

Proposition 2.2.9. If G is a DFGG, then its identity componentG◦ is a DFGG.

Proof. The Reidemeister-Schreier Theorem implies that a subgroup of finite index in a finitely generated group is
finitely generated ([38, Cor. 2.7.1]). One can use this fact to construct a proof of the above. Nonetheless, we present a
self-contained proof.

Let F := G/G◦ andt := |G/G◦|. We claim that every sequence oft elements ofF has a contiguous subsequence
whose product is the identity. To see this, leta1, . . .,at be a sequence of elements ofF. Set

b1 := a1,b2 := a1a2, . . .,bt := a1a2 · . . . ·at .

If there arei < j such thatbi = b j then
id = b−1

i b j = a j+1 · . . . ·a j .

If the b j are pairwise distinct, they exhaustF and so one of them must be the identity.
Let S= S−1 be a finite set generating a dense subgroupΓ ⊂ G. Set

Γ0 :=
{

s|s= s1 · . . . ·sm ∈ G◦, si ∈ S
}
.

ThenΓ0 is a Kolchin dense subgroup ofG◦. Applying the above observation concerningF , we see thatΓ0 is generated
by the finite set

S0 :=
{

s|s= s1 · . . . ·sm ∈ G◦, si ∈ Sandm6 |G/G◦|
}
.

Lemma 2.2.10. If H ⊂ Gm
a is a DFGG, thenτ(H)6 0.
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Proof. Letπi be the projection ofGm
a onto itsith factor. We have thatπi(H)⊂Ga is a DFGG and so, by [41, Lem. 2.10],

τ(πi(H))6 0. Since
H ⊂ π1(H)× . . .×πm(H) and τ(π1(H)× . . .×πm(H))6 0,

we haveτ(H) = 0.

Lemma 2.2.11. If H ⊂ Gr
m is a DFGG, thenτ(H)6 0.

Proof. Let ℓ∆ : Gr
m → Grm

a be the homomorphism

ℓ∆(y1, . . . ,yr) =

(
∂1y1

y1
, . . . ,

∂1yr

yr
,

∂2y1

y1
, . . . ,

∂2yr

yr
, . . . ,

∂my1

y1
, . . . ,

∂myr

yr

)
.

The image ofH under this homomorphism is a DFGG inGrm
a and so has differential type at most 0. The kernel of this

homomorphism restricted toH is
(Gm(K ∆))r ∩H,

which also has type at most 0. Therefore,τ(H)6 0.

Lemma 2.2.12.Let G be a reductive LDAG.G is a DFGG if and only ifτ
(
Z(G)◦

)
6 0.

Proof. Assume thatG is a DFGG. By Proposition2.2.9, we can assume thatG is Kolchin-connected as well as a
DFGG. From [39, Thm. 4.7], we can assume thatG = P is a reductive LAG. From the structure of reductive linear
algebraic groups, we know that

P= (P,P) ·Z(P),

whereZ(P) denotes the center,(P,P) is the commutator subgroup andZ(P)∩ (P,P) is finite. Note also thatZ(P)◦ is a
torus and thatZ(G) = Z(P)∩G. Let

π : P→ P/(P,P)≃ Z(P)/[Z(P)∩ (P,P)].

The image ofG is connected so lies in
π
(
Z(P)◦

)
≃ Gt

m

for somet. The image is a DFGG and so, by Lemma2.2.11, must have type at most 0. From the description ofπ, one
sees that

π : Z(G)→ Z(G)/[Z(P)∩ (P,P)]⊂ Z(P)/[Z(P)∩ (P,P)].

SinceZ(P)∩ (P,P) is finite, we haveτ
(
Z(G)◦

)
6 0.

Now assume thatτ
(
Z(G)◦

)
6 0. [41, Prop. 2.9] implies thatZ(G◦) is a DFGG. Therefore, it is enough to show

thatG′ = G/Z(G)◦ is a DFGG.G′ is semisimple, and we shall show that any semisimple LDAG is aDFGG. Clearly,
it is enough to to show that this is true under the further assumption thatG′ is connected.

Let D be theK -vector space spanned by∆. [13, Thm. 18] implies thatG′ = G1 · . . . ·Gℓ, where, for eachi, there
exists a simple LAGHi defined overQ and a Lie∗ K-subspaceEi of D such that

Gi = Hi
(
K Ei
)
, K Ei = {c∈ K | ∂(c) = 0 for all ∂ ∈ Ei}.

Therefore, it suffices to show that, for a simple LAGH and a LieK -subspaceE ⊂ D, the LDAGH
(
K E
)

is a DFGG.
From [34, Prop. 6 and 7],E has aK -basis of commuting derivationsΛ =

{
∂′1, . . . ,∂′r

}
, which can be extended to a

commuting basis
{

∂′1, . . . ,∂′m
}

of D. Let Π =
{

∂′r+1, . . . ,∂′m
}

. [14, Lem. 9.3] implies thatK E is differentially closed
as aΠ-differential field. We may considerH

(
K E
)

as a LAG over theΠ-differential fieldK E . The result now follows
from [51, Lem. 2.2].

3 Filtrations and gradings of the coordinate ring of an LDAG

In this section, we develop the main technique of the paper, filtrations and grading of coordinate rings of LDAGs. LetK
be a∆-field of characteristic zero, not necessarily differentially closed. Denote the underlying abstract fieldK endowed
with the trivial differential structure (∂l k= 0, 16 l 6 m) by K̃ . The set of natural numbers{0,1,2, . . .} is denoted by
N.

∗A Lie subspaceE ⊂ D is a subspace such that, for any∂,∂′ ∈ E , we have∂∂′− ∂′∂ ∈ E .
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3.1 Filtrations of G-modules

Let G be an LDAG andA := K{G} be the corresponding differential Hopf algebra (see [9, §2] and [44, §3.2]). Fix a
faithful G-moduleW. Let

ϕ : K{GL(W)}→ A (3.1.1)

be the differential epimorphism of differential Hopf algebras corresponding to the embeddingG→ GL(W). Set

H := G,

which is a linear algebraic group. Define

A0 := ϕ(K [GL(W)]) = K [H] (3.1.2)

and, forn> 1,

An := spanK
{
∏ j∈J

θ jy j ∈ A
∣∣∣J is a finite set, y j ∈ A0, θ j ∈ Θ, ∑ j∈J

ord(θ j)6 n
}
. (3.1.3)

The following shows that the subspacesAn ⊂ A form a filtration (in the sense of [56]) of the Hopf algebraA.

Proposition 3.1.1. We have

A=
⋃

n∈N
An, An ⊂ An+1, (3.1.4)

AiAj ⊂ Ai+ j , i, j ∈ N, (3.1.5)

∆(An)⊂
n

∑
i=0

Ai ⊗K An−i . (3.1.6)

Proof. Relation (3.1.5) follows immediately from (3.1.3). SinceK [GL(W)] differentially generatesK{GL(W)} andϕ
is a differential epimorphism,A0 differentially generatesA, which implies (3.1.4). Finally, let us prove (3.1.6). Consider
the differential Hopf algebra

B := A⊗K A,

where∂l , 16 l 6 m, acts onB as follows:

∂l (x⊗y) = ∂l (x)⊗y+x⊗∂l(y), x,y∈ A.

Set

Bn :=
n

∑
i=0

Ai ⊗K An−i, n∈ N.

We have
BiBj ⊂ Bi+ j and ∂l (Bn)⊂ Bn+1, i, j ∈ N, n∈ N, 16 l 6 m. (3.1.7)

SinceK [GL(W)] is a Hopf subalgebra ofK{GL(W)}, A0 is a Hopf subalgebra ofA. In particular,

∆(A0)⊂ B0. (3.1.8)

Since∆ : A→ B is a differential homomorphism, definition (3.1.3) and relations (3.1.8), (3.1.7) imply

∆(An)⊂ Bn, n∈ N.

We will call {An}n∈N theW-filtrationof A. As the definition ofAn depends onW, we will sometimes writeAn(W)
for An. By (3.1.6), An is a subcomodule ofA. If x∈ A\An, then the relation

x= (ε⊗ Id)∆(x) (3.1.9)

shows that∆(x) 6∈ A⊗An. Therefore,An is the largest subcomoduleU ⊂ A such that∆(U) ⊂U ⊗K An. This suggests
the following notation.

ForV ∈ R̃epG andn∈ N, letVn denote the largest submoduleU ⊂V such that

ρV(U)⊂U ⊗K An.

Then submodulesVn ⊂V, n∈ N, form a filtration ofV, which we also call theW-filtration.
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Proposition 3.1.2. For a morphismf : U →V of G-modules and ann∈ N, we havef (Un)⊂Vn.

Proof. Follows immediately from the definition of a morphism ofG-modules.

Note thatUn ⊂Vn andVn∩U ⊂Un for all submodulesU ⊂V ∈ R̃epG. Therefore,

Un =U ∩Vn for every subcomoduleU ⊂V ∈ R̃epG, (3.1.10)

(U ⊕V)n =Un⊕Vn for all U,V ∈ R̃epG, (3.1.11)
(⋃

i∈N
V(i)

)
n
=

⋃
i∈N

V(i)n, V(i)⊂V(i +1) ∈ R̃epG. (3.1.12)

Proposition 3.1.3. For everyV ∈ R̃epG, we have

ρV(Vn)⊂
n

∑
i=0

Vi ⊗K An−i . (3.1.13)

Proof. Let X denote the set of allV ∈ R̃epG satisfying (3.1.13). It follows from (3.1.10) and (3.1.11) that, if
U,V ∈ X, then every submodule ofU ⊕V belongs toX. If V ∈ RepG, thenV is isomorphic to a submodule of
AdimV by Proposition2.2.3. SinceA ∈ X by Proposition3.1.1, Ob(RepG) ⊂ X. For the general case, it remains to
apply (3.1.12).

Recall that a module is calledsemisimpleif it equals the sum of its simple submodules.

Proposition 3.1.4. Suppose thatW is a semisimpleG-module. Then the LAGH is reductive. IfW is not semisimple,
then it is not semisimple as anH-module.

Proof. See [39, Pf. of Thm 4.7].

Lemma 3.1.5. Let V ∈ R̃epG. If V is semisimple, thenV =V0.† If W is semisimple, the converse is true.

Proof. By (3.1.11), it suffices to prove the statement for a simpleV ∈ RepG. SupposeV is simple andV =Vn 6=Vn−1.
ThenVn−1 = {0}, and Proposition3.1.3implies

ρV(V)⊂V ⊗A0. (3.1.14)

Hence,V =V0.
Suppose thatW is semisimple andV =V0 ∈ RepG. The latter means (3.1.14), that is, the representaition ofG on

V extends to the representaition ofH onV. But H is reductive by Proposition3.1.4(sinceW is semisimple). ThenV
is semisimple as anH-module. Again, by Proposition3.1.4, theG-moduleV is semisimple.

Corollary 3.1.6. If W is semisimple, thenA0 is the sum of all simple subcomodules ofA. Therefore, ifU,V are faithful
semisimpleG-modules, then theU- andV-filtrations ofA coincide.

Proof. By Lemma3.1.5, if Z ⊂ A is simple, thenZ = Z0. Hence, by Proposition3.1.2, Z is contained inA0. Moreover,
by Lemma3.1.5, A0 is the sum of all its simple submodules.

Corollary 3.1.7. The LDAGG is connected if and only if the LAGH is connected.

Proof. If G is Kolchin connected and

A= K{G}= K{GL(W)}/p= K{Xi j ,1/det}/p,

then the differential idealp is prime [8, p. 895]. Since, by [8, p. 897],

A0 = K [H] = K [GL(W)]
/
(p∩K [GL(W)]) = K [Xi j ,1/det]

/
(p∩K [Xi j ,1/det])

and the idealp∩K [Xi j ,1/det] is prime,H is Zariski connected.

†Loosely speaking, this means that all completely reduciblerepresentations of an LDAG are polynomial. This was also proved in [39, Theorem 3.3].



3 FILTRATIONS AND GRADINGS OF THE COORDINATE RING OF AN LDAG 9

SetΓ := G/G◦, which is finite. Denote the quotient map by

π : G→ Γ.

SinceΓ is finite and charK = 0, B := K{Γ} ∈ RepΓ is semisimple. ThenB has a structure of a semisimpleG-module
via π. Therefore, by Lemma3.1.5, B= B0. Sinceπ∗ is a homomorphism ofG-modules, by Proposition3.1.2,

π∗(B) = π∗(B0)⊂ A0 = K [H].

This means thatπ is a restriction of an epimorphismH → Γ, which finishes the proof.

Proposition 3.1.8. Suppose that the LDAGG is connected. Ifx∈ Ai , y∈ Aj andxy∈ Ai+ j−1, then eitherx∈ Ai−1 or
y∈ Aj−1.

Proof. We need to show that the graded algebra

grA :=
⊕

n∈N

An/An−1

is an integral domain. Note that grA is a differential algebra via

∂l (x+An−1) := ∂l (x)+An, x∈ An.

Furthermore, to a homomorphismν : B → C of filtered algebras such thatν(Bn) ⊂ Cn, n∈ N, there corresponds the
homomorphism

grν : grB→ grC, x+Bn−1 7→ ν(x)+Cn−1, x∈ Bn.

Let us identifyGL(W) with GLd, d := dimW, and set

B :=Q{xi j ,1/det},

the coordinate ring ofGLd overQ. The algebraB is graded by

Bn := spanQ
{
∏ j∈J

θ jy j

∣∣∣J is a finite set, y j ∈Q[GLd], θ j ∈ Θ, ∑ j∈J
ord(θ j) = n

}
, n∈ N.

TheW-filtration of B is then associated with this grading:

Bn =
n⊕

i=0

Bi .

For a field extensionQ⊂ L, setLB := B⊗Q L, a Hopf algebra overL. Then the algebraLB is graded byLBn := Bn⊗L.
Let I stand for the Hopf ideal ofK B definingG⊂ GLd. Forx∈ K B, let xh denote the highest degree component of

x with respect to the grading
{

K Bn
}

. Let Ĩ denote theK -span of allxh, x∈ I . Similarly to the proof of Proposition3.1.1,
we conclude that, for alln∈ N,

∆
(
Bn
)
⊂

n

∑
i=0

Bi ⊗K Bn−i. (3.1.15)

Since∆(I)⊂ I ⊗K B+B⊗K I , inclusion (3.1.15) implies that, for alln∈N andx∈ I ∩Bn,

I ⊗K Bn+Bn⊗K I ∋ ∆(x) = ∆(x−xh)+∆(xh) ∈

(
n−1

∑
i=0

Bi ⊗K Bn−i−1

)
⊕

(
n

∑
i=0

Bi ⊗K Bn−i

)
.

Hence, by induction, one has
∆(xh) ∈ Ĩ ⊗K Bn+Bn⊗K Ĩ ⊂ Ĩ ⊗K B+B⊗K Ĩ .

We haveS(I)⊂ I , whereS: B→ B is the antipode. Moreover, sinceS(B0) = B0 andS is differential,

S
(
Bn

)
⊂ Bn, n∈ N.

Hence,
S(xh) = S(xh−x+x) = S(xh−x)+S(x) ∈ (Bn−1+ I)∩Bn,
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which implies that
S
(
Ĩ
)
⊂ Ĩ .

Therefore,Ĩ is a Hopf ideal ofK B (not necessarily differential!). Consider the algebra map

α : K B
β
≃ grK B

grϕ
−→ grA,

whereβ is defined by the sections
K Bn → K Bn/K Bn−1, n∈ N,

andϕ is given by (3.1.1). For everyx∈ I , let n∈ N be such thatxh ∈ Bn. Then

ϕ(xh) = ϕ(xh−x+x) = ϕ(xh−x)+ϕ(x) = ϕ(xh−x)+0∈ An−1.

Hence,
Ĩ ⊂ Kerα.

On the other hand, letα(x) = 0. Then there existsn∈N such that, for alli, 06 i 6 n, if xi ∈Bi satisfyβ(x)= x0+ . . .+xn,
then

ϕ(xi) ∈ Ai−1,

which implies that there existsyi ∈ I ∩Bi such that

xi −yi ∈ Bi−1.

Therefore,β−1(xi) ∈ Ĩ , implying that
Kerα ⊂ Ĩ .

Thus,α induces a Hopf algebra structure on grA.‡ Consider the identity map§

γ : K̃ B→ K B

of Hopf algebras. Since
γ(K̃ Bn) = K Bn,

J := γ−1
(
Ĩ
)

is a Hopf ideal ofK̃ B. Moreover, it is differential, since

∂l (xh) = (∂l x)h, x∈ K̃ B.

Therefore, grA has a structure of a differential Hopf algebra overK̃ . Furthermore it is differentially generated by the
Hopf algebraA0 ⊂ grA. In other words, grA is isomorphic to the coordinate algebra of an LDAGG̃ (overK̃ ) dense in
H. By Corollary3.1.7, G̃ is connected. Hence, grA has no zero divisors.

3.2 Subalgebras generated byW-filtrations

For n ∈ N, let A(n) ⊂ A denote the subalgebra generated byAn. SinceAn is a subcoalgebra ofA, it follows thatA(n)

is a Hopf subalgebra ofA. Note that
{

A(n), n∈ N
}

forms a filtration of the vector spaceA. We will prove the result
analogous to Proposition3.1.8.

Proposition 3.2.1. Suppose thatG is connected. Ifx∈ A(n), y∈ A(n+1), andxy∈ A(n), theny∈ A(n).

Proof. Let Gn, n ∈ N, stand for the LAG with the (finitely generated) Hopf algebraA(n). SinceA(n) ⊂ A andA is
an integral domain,A(n) is an integral domain. LetGn+1 → Gn be the epimorphism of LAGs that corresponds to the
embeddingA(n) ⊂ A(n+1) andK be its kernel. Then we have

A(n) = AK
(n+1).

DenoteA(n+1) by B. We have
x∈ BK, y∈ B, and xy∈ BK.

Let us consider this relation in QuotB⊃ B. We have

y∈ (QuotB)K ∩B= BK .

Thus,y∈ A(n).

‡In general, ifA is a filtered Hopf algebra, then grA can be given (in a natural way) a structure of a graded Hopf algebra; see, e. g., [56, Ch. 11].
§This map is differential if and only ifK is constant.



3 FILTRATIONS AND GRADINGS OF THE COORDINATE RING OF AN LDAG 11

Fors, t ∈ N, set
As,t := As∩A(t).

SinceAn ⊂ A(n), As,t = As if s6 t. Also, As,0 = A0 for all s∈ Z+. Therefore, one may think ofAs,t as a filtration of the
G-moduleV, where the indices are ordered by the following pattern:

(0,0) = 0< (1,1) = 1< (2,1)< (2,2) = 2< (3,1)< (3,2)< . . . .¶ (3.2.1)

We also have
As1,t1As2,t2 ⊂ As1+s2,max{t1,t2} (3.2.2)

Theorem 3.2.2.Let xi ∈ A, 16 i 6 r, andx := x1x2 · . . . ·xr ∈ As,t . Then, for alli, 16 i 6 r, there existsi , ti ∈ N such
thatxi ∈ Asi ,ti and

∑i
si 6 s and maxi{ti}6 t.

Proof. It suffices to consider only the caser = 2. Then, Propositions3.1.8and3.2.1complete the proof.

ForV ∈ R̃epG andn∈ N, let V(n) denote the largest submoduleU of V such thatρV(U) ⊂ U ⊗A(n).‖ Similarly,
we defineVs,t, s, t ∈ N.

For a reductive LDAGG and its coordinate ringA= K{G}, let {An}n∈N denote theW-filtration corresponding to
an arbitrary faithful semisimpleG-moduleW. This filtration does not depend on the choice ofW by Corollary3.1.6.

Definition 3.2.3. If φ : G→ L is a homomorphism of LDAGs andV ∈ R̃epL, thenφ induces the structure of aG-module
onV. ThisG-module will be denoted byGV.

Proposition 3.2.4. Let φ : G→ L be a homomorphism of reductive LDAGs. Then

φ∗
(
Bs,t
)
⊂ As,t , s, t ∈ N, (3.2.3)

whereA := K{G} andB := K{L}. Suppose that Kerφ is finite and the index ofφ(G) in L is finite. Then, for every
V ∈ R̃epL,

V =Vs,t ⇐⇒ GV = (GV)s,t , s, t ∈ N. (3.2.4)

Proof. Applying Lemma3.1.5toV :=B0 and Proposition3.1.2to φ∗, we obtainφ∗(B0)⊂A0. Sinceφ∗ is a differential
homomorphism, relation (3.2.3) follows.

Let us prove the second statement of the Proposition. Note that the implication⇒ of (3.2.4) follows directly
from (3.2.3). We will prove the implication⇐. It suffices to consider two cases:

(i) G is connected andφ is injective,

(ii) G is connected andφ is surjective,

which follows from the commutative diagram

G◦ φ|G◦

−−−−→ L◦

y
y

G
φ

−−−−→ L.

Moreover, by (3.1.12) and Proposition2.2.3, it suffices to consider the case of finite-dimensionalV. By the same
proposition, there is an embedding ofL-modules

η : V → Bd, d := dimV.

ThenGV is isomorphic toφ∗
dη(V), whereφ∗

d : Bd → Ad is the application ofφ∗ componentwise. IfGV = (GV)s,t , then
φ∗

dη(V)⊂Ad
s,t . Hence, settingV(i) to be the projection ofη(V) to thei th component ofBd, we concludeφ∗(V(i))⊂As,t

for all i, 16 i 6 d. If we show that this impliesV(i)⊂ Bs,t , we are done. So, we will show that, ifV ⊂ B, then

φ∗(V) = φ∗(V)s,t =⇒V =Vs,t .

¶Note thatt = 0 impliess= 0.
‖If V = A, thenV(n) = A(n), which follows from (3.1.9).
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Case (i). Let us identifyG with L◦ via φ. SupposeL ⊂ GL(U), U is a semisimpleL-module. Letg1 = 1, . . . ,gr ∈ L
be representatives of the cosetsL/L◦. Let I( j) ⊂ B, 16 j 6 r, be the differential ideal of functions vanishing on all
connected components ofL butg jL◦. We have

B=
r⊕

j=1

I( j) and I( j) = g j I(1).

TheG-modulesI := I(1) andA are isomorphic, and the projectionB → I corresponds to the restirction mapφ∗. The
G-module structure onI( j) is obtained by the twist by conjugationG→ G, g 7→ g−1

j ggj . Since a conjugation preserves
theU-filtration of B, we conclude

g j(In) = (g j I)n.

By Corollary 3.1.7, Zariski closures of connected components ofL ⊂ GL(U) are connected components ofL.
Therefore,

B0 =
r⊕

j=1

g j(I0).

ThenB0∩ I = I0. SinceI is a differential ideal,Bn∩ I = In for all n∈ N. Let

v∈Vn\Vn−1. (3.2.5)

Then, for eachj, 16 i 6 r, there existsv( j) ∈ I( j) such that

v=
r

∑
j=1

v( j).

By (3.2.5), there existsj, 16 j 6 r, such thatv( j) ∈Vn\Vn−1. Set

w := g−1
j v∈Vn\Vn−1.

Then, by the above,
φ∗(w) ∈ An \An−1.

We conclude that, for alln∈ N,
φ∗(V) = φ∗(V)n =⇒ V =Vn.

Similarly, one can show that
φ∗(V) = φ∗(V)(n) =⇒ V =V(n).

SinceVs,t =Vs∩V(t), this finishes the proof of Case (i).
Case (ii). ConsiderB as a subalgebra ofA via φ∗. It suffices to show

As,t ∩B⊂ Bs,t . (3.2.6)

We haveB⊂ AΓ, whereΓ := Kerφ.
Let us show thatB0 =AΓ

0 . For this, considerG andL as differential algebraic Zariski dense subgroups of reductive
LAGs. SinceB0 ⊂ A0, the mapφ extends to an epimorphism

φ : G→ L.

SinceΓ = Γ, Γ is normal inG. Hence,φ factors through the epimorphism

µ : G/Γ → L.

If K is the image ofG in the quotientG/Γ, thenµ(K) = L andµ is an isomorphism onK. This means thatµ∗ extends
to an isomorphism ofB= K{L} ontoK{K}. SinceK is reductive, the isomorphism preseves the grading by the first
part of the proposition. In particular,µ∗(B0) = K{K}0. As K is dence inG/Γ, we obtain:

B0 = K
[
L
]
= K

[
G/Γ

]
= K

[
G
]Γ

= AΓ
0 .

Let us consider the following sets

Ãs,t :=
{

x∈ (As,t)
Γ ∣∣∃0 6= b∈ B0 : bx∈ Bs,t

}
, s, t ∈ N.
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These areB0-submodules ofA (via multiplication) satisfying (3.2.2), as one can check. Moreover, for everyl , 16 l 6m,

∂l
(
Ãs,t
)
⊂ Ãs+1,t+1. (3.2.7)

Indeed, letx∈ Ãs,t , b∈ B0, andbx∈ Bs,t . Then

b2∂l (x) = b(∂l (bx)−x∂l (b)) = b∂l (bx)− (bx)∂l (b) ∈ Bs+1,t+1.

Hence,
∂l (x) ∈ Ãs+1,t+1.

We have
Bs,t ⊂ Ãs,t ⊂ (As,t)

Γ.

We will show that
Ãs,t = (As,t)

Γ. (3.2.8)

This will finish the proof as follows. Suppose that

x∈ B∩As,t ⊂ (As,t)
Γ.

By (3.2.8), there existsb∈ B0 such thatbx∈ Bs,t . Then, Theorem3.2.2impliesx∈ Bs,t . We conclude (3.2.6).
Now, let us prove (3.2.8) by induction ons, the cases= 0 being already considered above. Suppose,s> 1. Since

Γ is a finite normal subgroup of the connected groupG, it is commutative [5, Lem. V.22.1]. Therefore, everyΓ-module
has a basis consisting of semi-invariant vectors, that is, spanningΓ-invariantK -lines. Therefore, since a finite subset
of the algebraA0 belongs to a finite-dimensional subcomodule andA0 is finitely generated, one can chooseΓ-semi-
invariant generatorsX := {x1, . . . ,xr} ⊂ A0 of A. Note thatX differentially generatesA. SinceΓ is finite, its scalar
action is given by algebraic numbers, which are constant with respect to the derivations ofK . Hence, the actions ofΓ
andΘ onA commute, and an arbitrary product of elements of the formθxi, θ ∈ Θ, is Γ-semi-invariant.

Let 0 6= x∈ (As,t)
Γ. We will show thatx∈ Ãs,t . Since a sum ofΓ-semi-invariant elements is invariant if and only

if each of them is invariant, it suffices to consider the case

x= ∏ j∈J
θ jy j , θ j ∈ Θ, (3.2.9)

whereJ is a finite set andy j ∈ X ⊂ A0. Moreover, by Theorem3.2.2, (3.2.9) can be rewritten to satisfy

∑ j∈J
ordθ j 6 s and maxj∈J

{
ordθ j

}
6 t.

Sincey j andθ jy j have the sameΓ-weights,

y := ∏ j∈J
y j ∈ (A0)

Γ = B0.

Setg := |Γ|. We have
yg−1x= ∏ j∈J

yg−1
j θ j(y j) ∈ (As,t)

Γ

and, for everyj ∈ J,
yg−1

j θ j(y j) ∈
(
Aordθ j

)Γ
.

If ordθ j < s for all j ∈ J, then, by induction,

yg−1
j θ j(y j) ∈ Ãordθ j ,ordθ j

for all j ∈ J. This implies
yg−1x∈ Ãs,t .

Hence,x∈ Ãs,t .
Suppose that there is aj ∈ J such that ordθ j = s. Let us setθ := θ j . Then, there existi, 16 i 6 r, anda∈ A0 such

that
x= aθ(xi) ∈ AΓ

s .

It follows that
axi ∈ AΓ

0 = B0.



14

We will show thatx∈ Ãs,s =: Ãs. There existl , 16 l 6 m, andθ̃ ∈ Θ, ordθ̃ = s−1, such that

θ = ∂l θ̃.

If s= 1, thenθ = ∂l and
xg

i x= (axi)
(
xg−1

i ∂l xi
)
= (axi)∂l

(
xg

i

)
/g∈ B1 ⊂ Ã1,

sincexg
i ∈ B0. Therefore,x∈ Ã1. Suppose thats> 2. We have

x= ∂l
(
aθ̃(xi)

)
−∂l(a)θ̃(xi).

Sinceu := aθ̃(xi) ∈ (As−1)
Γ, by induction,u∈ Ãs−1. Hence,

∂l (u) ∈ Ãs.

Sinces> 2, we have
1= ord∂l < s and ord̃θ < s.

Since
v := ∂l (a)θ̃(xi) = x−∂l (u) ∈ AΓ

s ,

by the above argument (for dealing with the case ordθ j < s for all j ∈ J), v∈ Ãs. Therefore,

x= ∂l (u)−v∈ Ãs.

4 Filtrations of G-modules in reductive case

In this section, we show our main result, the bounds for differential representations of semisimple LDAGs
(Theorem4.2.1) and reductive LDAGs withτ(Z(G◦)) 6 0 (Theorem4.3.4; note that Lemma2.2.12implies that if
K is differentially closed then a reductive DFGG has this property). In particular, we show that, ifG is a semisimple
LDAG, W a faithful semisimpleG-module andV ∈ RepG, then theW-filtration ofV coincides with its socle filtration.

4.1 Socle of aG-module

Let G be a LDAG. Given aG-moduleV, its soclesocV is the sum of all simple submodules ofV. The ascending
filtration {socnV}n∈N onV is defined by

socnV/socn−1V = soc
(
V/socn−1V

)
, where soc0V := {0} and soc1V := socV.

Proposition 4.1.1. Let n∈ N.

(i) If ϕ : V →W is a homomorphism ofG-modules, then

ϕ(socnV)⊂ socnW. (4.1.1)

(ii) If U,V ⊂W areG-modules andW =U +V, then

socnW = socnU +socnV. (4.1.2)

(iii) If V ∈ RepG, then
socn

(
Pi1

1 · . . . ·Pim
m (V)

)
⊂ Pi1

1 · . . . ·Pim
m (socnV). (4.1.3)

Proof. Let ϕ : V →W be a homomorphism ofG-modules. Since the image of a simple module is simple,

ϕ(socV)⊂ socW.

Suppose by induction that
ϕ
(

socn−1V
)
⊂ socn−1W.
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SetV̄ :=V/socn−1V, W̄ :=W/socn−1W. We have the commutative diagram:

V
ϕ

−−−−→ W
yπV

yπW

V̄
ϕ̄

−−−−→ W̄,

whereπV andπW are the quotient maps. Hence,

ϕ(socnV)⊂ π−1
W ϕ̄πV(socnV) = π−1

W ϕ̄(socV̄)⊂ π−1
W socW̄ = socnW,

where we used̄ϕ
(

socV̄
)
⊂ socW̄. Let us prove (4.1.2). LetU,V ⊂W beG-modules. It follows immediately from the

definition of the socle that
soc(U +V) = socU +socV.

Note that, by (4.1.1), V ∩socnW = socnV. We have

W/socnW = (U/socnW)+ (V/socnW) = (U/socnU)+ (V/socnV).

Applying soc, we obtain statement (4.1.2).
In order to prove (4.1.3), it suffices to do it only forPi(V), since the other cases would follow by induction. Let

πi : Pi(V)→V

be the natural epimorphism from (2.2.2). We haveπ−1
i (U) = Pi(U)+V for all submodulesU ⊂V. Hence, by (4.1.1),

socn Pi(V)⊂ π−1
i (socnV) = Pi(socnV)+V.

Since socnsocn M = socnM for an arbitrary moduleM,

socn Pi(V) = socn socnPi(V)⊂ socn(Pi(socnV)+V)⊂ Pi(socnV)+socnV = Pi(socnV).

Proposition 4.1.2. Suppose that
soc(U ⊗V) = (socU)⊗ (socV)

for all U,V ∈ RepG. Then

socn(U ⊗V) =
n

∑
i=1

(
soci U

)
⊗
(

socn+1−i V
)

(4.1.4)

for all U,V ∈ RepG andn∈ N.

Proof. For aG-moduleV, denote socnV by Vn, n ∈ N. Suppose by induction that (4.1.4) holds for alln 6 p and
U,V ∈ RepG. Set

Sp = Sp(U,V) :=
p

∑
i=1

U i ⊗Vp+1−i .

For all 16 i 6 p, we have

Fi :=
(
U i ⊗Vp+2−i

)
/
(
Sp∩

(
U i ⊗Vp+2−i

))
=
(
U i ⊗Vp+2−i

)
/
(
U i−1⊗Vp+2−i +U i ⊗Vp+1−i

)
.

Hence,
Fi ≃

(
U i/U i−1

)
⊗
(
Vp+2−i/Vp+1−i

)
.

By the hypothesis,Fi is semisimple. Hence, so is

Sp+1/Sp =
p

∑
i=1

Fi ⊂ (U ⊗V)/Sp.

By the inductive hypothesis, we conclude
socp+1(U ⊗V)⊃ Sp+1.

Now, we prove the other inclusion. Let
ψ : U → Ū :=U/U1
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be the quotient map. Note the commutative diagram

U ⊗V
π

−−−−→ X := (U ⊗V)/Spyψ⊗Id

y

Ū ⊗V
π̄

−−−−→ X̄ :=
(
Ū ⊗V

)
/Sp−1

(
Ū ,V

)
,

whereπ andπ̄ are the quotient maps. By the inductive hypothesis, we have

socp+1(U ⊗V) = π−1
(
X1
)
⊂ (ψ̄⊗ Id)−1

(
π̄−1
)(

socX̄
)
= (ψ̄⊗ Id)−1

(
socp

(
Ū ⊗V

))
⊂ Sp+1,

sinceψ−1
(

soci Ū
)
= soci+1U .

It is convenient sometimes to consider the Zariski closureH of G ⊂ GL(W) as an LDAG. To distinguish the
structures, let us denote the latter byHdiff . ThenRepHdiff is identified with a subcategory ofRepG.

Lemma 4.1.3. If H is reductive, then (4.1.4) holds for allU,V ∈ RepHdiff andn∈ N.

Proof. By Proposition4.1.2, we only need to prove the formula forn= 1. SinceA2
0 = A0, we have by Lemma3.1.5:

(socU)⊗ (socV) =U0⊗V0 ⊂ (U ⊗V)0 = soc(U ⊗V).

Let us prove the other inclusion. Since charK = 0,

soc(U ⊗K L) = (socU)⊗K L

for all differential field extensionsL ⊃ K by [6, §7]. Therefore, without loss of generality, we will assumethatK is
algebraically closed. Moreover, by Lemma3.1.5and Proposition3.2.4, anHdiff -module is semisimple if and only if it
is semisimple as an

(
Hdiff

)◦
-module. Therefore, it suffices to consider only the case of connectedH. Since a connected

reductive group over an algebraically closed field is definedoverQ and the defining equations ofHdiff are of order
zero, theW-filtration of B := K

{
Hdiff

}
is associated with a grading (see proof of Proposition3.1.8). In particular, the

sumI of all grading components butB0 = K [H] is an ideal ofB. We have

B= B0⊕ I .

SinceB is an integral domain, it follows that, ifx,y∈ B andxy∈ B0, thenx,y∈ B0. Hence,

(U ⊗V)0 ⊂U0⊗V0,

which finishes the proof.

Proposition 4.1.4. For allV ∈ R̃epG,
Vn ⊂ socn+1V.

Proof. We will use induction onn∈N, with the casen= 0 being done by Lemma3.1.5. Supposen> 1 and

Vn−1 ⊂ socnV.

We need to show that theG-module

W := (Vn+socnV)/socnV ≃Vn/(Vn∩socnV)

is semisimple. But the latter is isomorphic to a quotient ofU :=Vn/Vn−1, since

Vn−1 ⊂Vn∩socnV.

By Proposition3.1.3, U =U0. Finally, Lemma3.1.5implies thatU , hence,W, is semisimple.



4 FILTRATIONS OFG-MODULES IN REDUCTIVE CASE 17

4.2 Main result for semisimple LDAGs

Theorem 4.2.1. If G◦ is semisimple, then, for allV ∈ R̃epG andn∈ N,

Vn = socn+1V.

Proof. By Proposition4.1.4, it suffices to prove that, for allV ∈ RepG andn∈ N,

socn+1V ⊂Vn. (4.2.1)

Let X ⊂ Ob(RepG) denote the family of allV satisfying (4.2.1) for all n∈N. We have, by Lemma3.1.5, V ∈ X for all
semisimpleV. Suppose thatV,W ∈ RepHdiff ⊂ RepG belong toX. ThenV ⊕W andV ⊗W belong toX. Indeed, by
Propositions3.1.3and4.1.1and Lemma4.1.3,

socn+1(V ⊕W) = socn+1V ⊕socn+1W ⊂Vn⊕Wn = (V ⊕W)n

and

socn+1(V ⊗W) =
n

∑
i=0

(
soci+1V

)
⊗
(

socn+1−i W
)
⊂

n

∑
i=0

Vi ⊗Wn−i ⊂ (V ⊗W)n.

Similarly, Proposition4.1.1 and (3.1.10) imply that, if V ∈ X, then all possible submodules and differential
prolongations ofV belong toX. SinceRepG is differentially generated by a semisimpleV ∈ RepH, it remains only
to check the following. IfV ∈ RepG satisfies (4.2.1), then so do the dualV∨ and a quotientV/U , whereU ∈ RepG.
SinceG◦ is semisimple, [13, Thm. 18] implies thatG◦(U), U a differentially closed field containingK , is differentially
isomorphic to a group of the formG1 ·G2 · . . . ·Gt where, for eachi, there is an algebraically closed fieldU i such
that Gi is differentially isomorphic to theU i points of a simple algebraic groupHi. SinceHi = [Hi,Hi], we have
G◦ = [G◦,G◦] and so we must haveG◦ ⊂ SL(V). The groupSL(V) acts onV⊗dimV and has a nontrivial invariant
element corresponding to the determinant. We conclude that, for

r := |G/G◦|dimV,

theSL(V)-moduleV⊗r has a nontrivialG-invariant element. LetE ⊂ GL(V) be the group generated bySL(V) andG.
Then the space

HomE

(
V∨,V⊗r−1

)
≃
(
V⊗r

)E
(4.2.2)

is nontrivial. SinceV∨ is a simpleE-module, this means that there exists an embeddingV∨ → V⊗r−1 of E-modules,
hence, ofG-modules. ThenV∨ ∈ X. Finally, since(V/U)∨ embeds intoV∨, it belongs toX. Then its dualV/U ∈ X.
Hence,X = Ob(RepG).

4.3 Reductive case

Proposition 4.3.1.LetSandT be reductive LDAGs andG :=S×T. ForV ∈RepG, if SV =(SV)s1,t1
andTV =(TV)s2,t2

,
thenV =Vs1+s2,max{t1,t2} (see Definition3.2.3).

Proof. We need to show thatV =Vs1+s2 andV =V(max{t1,t2}). By Proposition2.2.3, V embeds into theG-module

U :=
dimV⊕

i=1

A(i),

whereA(i) := A= B⊗K C, whereB := K{S} andC := K{T}. We will identify V with its image inU . Let B̄j , j ∈ N,
be subspaces ofB such that

Bj = Bj−1⊕ B̄j .

Similarly, we define subspaces̄Cr ⊂C, r ∈ N. We have

A=
⊕

j,r
B̄j ⊗K C̄r ,

as vector spaces. Let
πi

jr : U → A(i) = A→ B̄j ⊗K C̄r
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denote the composition of the projections. Then, the conditionsSV = (SV)s1 andSV = (SV)s2 mean thatπi
jr (V) = {0}

if j > s1 or r > s2. In particular,V belongs to
dimV⊕

i=1

A(i)s1+s2.

Hence,V =Vs1+s2. Similarly, using
(B⊗C)(n) = B(n)⊗C(n),

one showsV =V(max{t1,t2}).

Proposition 4.3.2. [39, Pf. of Lem. 4.5] LetG be a reductive LDAG,S the differential commutator subgroup ofG◦

(that is, the Kolchin-closure of the commutator subgroup ofG◦) andT the identity component of the center ofG◦. The
LDAG S is semisimple and the multiplication map

µ : S×T → G◦, (s, t) 7→ st,

is an epimorphism of LDAGs with a finite kernel.

Let Rep(n) G denote the tensor subcategory ofRepG generated byPn(W) (the nth total prolongation). The
following Proposition shows thatRep(n) G does not depend on the choice ofW.

Proposition 4.3.3. For allV ∈ RepG, V ∈ Rep(n) G if and only if V =V(n).

Proof. SupposeV ∈Rep(n) G. Since the matrix entries ofPn(W) belong toA(n), we haveV =V(n). Conversely, suppose
V =V(n). ThenV is a representation of the LAGG(n) whose Hopf algebra isA(n). SincePn(W) is a faithfulA-comodule,
it is a faithfulA(n)-comodule. Hence,RepG(n) is generated byPn(W).

If τ(G)6 0, then, by [41, §3.2.1], there existsn∈N such that

RepG=
〈

Rep(n) G
〉
⊗
.

The smallest suchn will be denoted by ord(G). For aG-moduleV, let ℓℓ(V) denote the length of the socle filtration of
V. In particular, we have

ℓℓ(V)6 dimV.

For aG-moduleV, let ℓℓ(V) denote the length of the socle filtration ofV. In particular, we have

ℓℓ(V)6 dimV.

Theorem 4.3.4. Let G be a reductive LDAG withτ
(
Z(G)◦

)
6 0 andT := Z(G◦)◦. For all V ∈ RepG, we have

V ∈ Rep(n) G, where
n= max{ℓℓ(V)−1,ord(T)}. (4.3.1)

Proof. LetV ∈RepG. By Proposition4.3.3, we need to show thatV =V(n), wheren is given by (4.3.1). SetG̃ :=S×T,
whereS⊂ G is the differential commutator subgroup ofG◦. The multiplication mapµ : G̃→ G (see Proposition4.3.2)
induces the structure of ãG-module on the spaceV, which we will denoteṼ. By Theorem4.2.1,

SṼ = SṼr = SṼ(r),

where
r = ℓℓ

(
SṼ
)
−1= ℓℓ(SV)−1.

It follows from Propostion3.2.4(formula (3.2.3)) and Lemma3.1.5that, ifW ∈ RepG is semisimple, thenSW ∈RepS
is semisimple. Hence,

ℓℓ(SV)6 ℓℓ(V).

Therefore,
SṼ =S Ṽ(s), s := ℓℓ(V)−1.

Next, sinceτ(T)6 0, we have
RepT = Rep(t)T, t := ord(T).

By Proposition4.3.3, TṼ = TṼ(t). Proposition4.3.1implies

Ṽ = Ṽ(max{s,t}) = Ṽ(n).

Now, applying Proposition3.2.4to φ := µ, we obtainV =V(n).
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The following Proposition suggests an algorithm to find ord(T).

Proposition 4.3.5. Let G⊂ GL(W) be a reductive LDAG withτ
(
Z(G)◦

)
6 0, where theG-moduleW is semisimple.

SetT := Z(G◦)◦ andH := G⊂ GL(W). Let
ρ : H → GL(U)

be an algebraic representation with Kerρ = [H◦,H◦]. Then ord(T) is the minimal numbert such that the differential
tensor category generated byGU ∈ RepG coincides with the tensor category generated byPt(GU) ∈ RepG.

Proof. We haveρ(G) = ρ(T) and Kerρ∩T is finite. Propositions3.2.4and4.3.3finish the proof.

5 Computing parameterized differential Galois group

In this section, we show how the main results of the paper can be applied to constructing algorithms that compute
the maximal reductive quotient of a parameterized differential Galois group and decide if a parameterized Galois is
reductive.

5.1 Linear differential equations with parameters and their Galois theory

In this section, we will briefly recall the parameterized differential Galois theory of linear differential equations,also
known as the parameterized Picard–Vessiot (PPV) theory [14]. Let K be a∆′ = {∂,∂1, . . . ,∂m}-field and

∂Y = AY, A∈ Mn(K) (5.1.1)

a linear differential equation (with respect to∂) overK. A parameterized Picard-Vessiot extension (PPV-extension)F
of K associated with (5.1.1) is a∆′-field F ⊃ K such that there exists aZ ∈ GLn(F) satisfying∂Z = AZ, F∂ = K∂, and
F is generated overK as a∆′-field by the entries ofZ (i.e.,F = K〈Z〉).

The fieldK∂ is a∆ = {∂1, . . . ,∂n}-field and, if it is differentially closed, a PPV-extension associated with (5.1.1)
always exists and is unique up to a∆′-K-isomorphism [14, Prop. 9.6]. Moreover, ifK∂ is relatively differentially closed
in K, thenF exists as well [20, Thm 2.5] (although it may not be unique). Some other situations concerning the
existence ofK have been also treated in [59].

If F = K〈Z〉 is a PPV-extension ofK, one defines theparameterized Picard-Vessiot Galois group (PPV-Galois
group)of F overK to be

G := {σ : F → F |σ is a field automorphism,σδ = δσ for all δ ∈ ∆′, andσ(a) = a, a∈ K}.

For anyσ ∈ G, one can show that there exists a matrix[σ]Z ∈ GLn

(
K∂) such thatσ(Z) = Z[σ]Z and the mapσ 7→ [σ]Z

is an isomorphism ofG onto a differential algebraic subgroup (with respect to∆) of GLn

(
K∂
)
.

One can also develop the PPV-theory in the language of modules. A finite-dimensional vector spaceM over the
∆′-field K together with a map∂ : M → M is called aparameterized differential moduleif

∂(m1+m2) = ∂(m1)+∂(m2) and ∂(am1) = ∂(a)m1+a∂(m1), m1,m2 ∈ M, a∈ K.

Let {e1, . . . ,en} be aK-basis ofM and ai j ∈ K be such that∂(ei) = −∑ j a jiej , 1 6 i 6 n. As in [46, §1.2], for
v= v1e1+ . . .+vnen,

∂(v) = 0 ⇐⇒ ∂




v1
...

vn


= A




v1
...

vn


 , A := (ai j )

n
i, j=1.

Therefore, once we have selected a basis, we can associate a linear differential equation of the form (5.1.1) with M.
Conversely, given such an equation, we define a map

∂ : Kn → Kn, ∂(ei) =−∑ j
a jiej , A= (ai j )

n
i, j=1.

This makesKn a parameterized differential module. The collection of parameterized differential modules overK forms
an abelian tensor category. In this category, one can define the notion of prolongationM 7→ Pi(M) similar to the notion
of prolongation of a group action as in (2.2.1). For example, if∂Y = AY is the differential equation associated with the
moduleM, then (with respect to a suitable basis) the equation associated withPi(M) is

∂Y =

(
A ∂iA
0 A

)
Y.
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Furthermore, ifZ is a solution matrix of∂Y = AY, then
(

Z ∂iZ
0 Z

)

satisfies this latter equation. Similar to thesth total prolongation of a representation, we define thesth total prolongation
Ps(M) of a module Mas

Ps(M) = Ps
1Ps

2 · . . . ·P
s
m(M).

If F is a PPV-extension for (5.1.1), one can define aK∂-vector space

ω(M) := Ker(∂ : M⊗K F → M⊗K F).

The correspondenceM 7→ω(M) induces a functorω (called a differential fiber functor) from the category of differential
modules to the category of finite-dimensional vector spacesoverK∂ carryingPi ’s into thePi ’s (see [20, Defs. 4.9, 4.22],
[45, Def. 2], [29, Def. 4.2.7], [28, Def. 4.12] for more formal definitions). Moreover,

(RepG, forget) ∼=
(〈

Pi1
1 · . . .Pim

m (M)
∣∣ i1, . . . , im > 0

〉
⊗
,ω
)

(5.1.2)

as differential tensor categories [20, Thms. 4.27, 5.1]. This equivalence will be further used in the rest of the paper to
help explain the algorithms.

In §5.3, we shall restrict ourselves to PPV-extensions of certain special fields. We now describe these fields and
give some further properties of the PPV-theory over these fields. LetK (x) be the∆′ = {∂,∂1, . . . ,∂m}-differential field
defined as follows:

(i) K is a differentially closed field with derivations∆ = {∂1, . . . ,∂m},

(ii) x is transcendental overK , and (5.1.3)

(iii ) ∂i(x) = 0, i = 1, . . . ,m, ∂(x) = 1 and∂(a) = 0 for all a∈ K .

When one further restrictsK , Proposition5.1.1characterizes the LDAGs that appear as PPV-Galois groups over such
fields. We say thatK is auniversal differential fieldif, for any differential fieldk0 ⊂ K differentially finitely generated
overQ and any differential fieldk1 ⊃ k0 differentially finitely generated overk0, there is a differentialk0-isomorphism
of k1 into K ([33, Ch.III,§7]). Note that a universal differential field is differentially closed.

Proposition 5.1.1(cf. [42], [18]). Let K be a universal∆-field andK (x) satisfy conditions (5.1.3). An LDAG G is a
parameterized differential Galois group overK (x) if and only if G is a DFGG.

Assuming thatK is only differentially closed, one still has

Corollary 5.1.2. Let K (x) satisfy conditions (5.1.3). If G is reductive and is a parameterized differential Galois group
overK (x), thenτ(Z(G◦))6 0.

Proof. Let L be a PPV-extension ofK (x) with parameterized differential Galois groupG and letU be a universal
differential field containingK (such a field exists [33, Ch.III,§7]). SinceK is a fortiori algebraically closed,U⊗K L
is a domain whose quotient field we denote byU L. One sees that the∆-constantsC of U L are U. We may
identify the quotient fieldU(x) of U⊗K K (x) with a subfield ofU L, and one sees thatLU is a PPV-extension
of U(x). Furthermore, the parameterized differential Galois group of U L over U(x) is G(U) (see also [20, §8]).
Proposition5.1.1implies thatG(U) is a DFGG. Lemma2.2.12implies that

tr. deg.U U〈Z(G◦)◦〉< ∞.

SinceG◦ is defined overK andK is algebraically closed, tr. deg.K K 〈Z(G◦)◦〉< ∞. Therefore,τ(Z(G◦))6 0.

5.2 Equivalent statements of reductivity

In this section, we give a characterization of parameterized differential modules whose PPV-Galois groups are reductive
LDAGs which will be used in §5.3to construct the main algorithms. Given a parameterized differential moduleM and
its PPV-extension, letG be its PPV-Galois group. Recall a construction of the “diagonal part” ofM, denoted byMdiag,
which induces [45] a differential representation

ρdiag : G→ GL(ω(Mdiag)),
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whereω is the functor of solutions. IfM is irreducible, we setMdiag = M. Otherwise, ifN is a maximal differential
submodule ofM, we set

Mdiag= Ndiag⊕M/N.

SinceM is finite dimensional and dimN < dimM, Mdiag is well-defined above. Another description ofMdiag is: let

M = M0 ⊃ M1 ⊃ . . .⊃ Mr = {0} (5.2.1)

be a complete flag of differential submodules, that is,Mi−1/Mi are irreducible. We then let

Mdiag=
r⊕

i=i

Mi−1/Mi .

A version of the Jordan-Hölder Theorem implies thatMdiag is unique up to isomorphism. Note thatMdiag is a completely
reducible differential module. The complete flag (5.2.1) corresponds to a differential equation in block upper triangular
form

∂Y =




Ar . . . . . . . . . . . .
0 Ar−1 . . . . . . . . .
...

...
...

...
...

0 . . . 0 A2 . . .
0 . . . 0 0 A1




Y, (5.2.2)

where, for each matrixAi , the differential module corresponding to∂Y = AiY is irreducible. The differential module
Mdiag corresponds to the block diagonal equation

∂Y =




Ar 0 . . . . . . 0
0 Ar−1 0 . . . 0
...

...
...

...
...

0 . . . 0 A2 0
0 . . . 0 0 A1




Y. (5.2.3)

Furthermore, given a complete flag (5.2.1), we can identify the solution space ofM in the following way. LetV
be the solution space ofM and

V =V0 ⊃V1 ⊃ . . .⊃Vr = {0} (5.2.4)

be a complete flag of spaces ofV where eachVi is the solution space ofMi . Note that eachVi is aG-submodule ofV
and that allVi/Vi+1 are simpleG-modules. One then sees that

Vdiag=
r⊕

i=1

Vi−1/Vi.

Proposition 5.2.1. Let
µ : G→ G

/
Ru
(
G
)
→ G⊂ GL(ω(M))

be the morphisms (of LDAGs) corresponding to a Levi decomposition of G. Thenρdiag
∼= µ.

Proof. Sinceρdiag is completely reducible,ω(Mdiag) is a completely reducibleρdiag
(
G
)
-module. Therefore,ρdiag

(
G
)

is a reductive linear algebraic group [55, Ch. 2]. Hence,

Ru
(
G
)
⊂ Kerρdiag,

whereρdiag is considered as a map fromG. On the other hand, by definition, Kerρdiag consists of unipotent elements
only. Therefore, since Kerρdiag is a normal subgroup ofGM and connected by [58, Cor. 8.5],

Kerρdiag= Ru
(
G
)
. (5.2.5)

Since all Levi subgroups ofG are conjugate (by an element ofRu
(
GM
)
), (5.2.5) implies thatρdiag is equivalent to

µ.
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Corollary 5.2.2. In the notation of Proposition5.2.1, ρdiag is faithful if and only if

G→ G/Ru
(
G
)

(5.2.6)

is injective.

Proof. Sinceρdiag
∼= µ by Proposition5.2.1, faithfulness ofρdiag is equivalent to that ofµ, which is precisely the

injectivity of (5.2.6).

Proposition 5.2.3. The following statements are equivalent:

(i) ρdiag is faithful,

(ii) G is a reductive LDAG,

(iii) there existsq> 0 such that
M ∈

〈
Pq(Mdiag)

〉
⊗
. (5.2.7)

Proof. (i) implies (iii ) by [44, Prop. 2] and [45, Cor. 3 and 4]. If a differential representationµ of the LDAG G is
not faithful, so are the objects in the category〈Pq(µ)〉⊗ for all q > 0. Using the equivalence of neutral differential
Tannakian categories from [45, Thm. 2], this shows that (iii ) implies (i).

If ρdiag is faithful, thenG is reductive by the first part of the proof of [39, Thm. 4.7], showing that (i) implies (ii ).
Suppose now thatG is a reductive LDAG. SinceRu

(
G
)
∩G is a connected normal unipotent differential algebraic

subgroup ofG, it is equal to{id}. Thus, (5.2.6) is injective and, by Corollary5.2.2, (ii ) implies (i).

5.3 Algorithm

In this section, we will assume thatK (x) satisfies conditions (5.1.3) and furthermore thatK is computable, that is, one
can effectively carry out the field operations and effectively apply the derivations. We will describe an algorithm for
calculating the maximal reductive quotientG/Ru(G) of the PPV- Galois groupG of any ∂Y = AY, A ∈ GLn(K (x))
and an algorithm to decide ifG is reductive, that is, ifG equals this maximal reductive quotient.

5.3.1 Ancillary Algorithms.

We begin by describing algorithms to solve the following problems which arise in our two main algorithms.

(A). Let K be a computable algebraically closed field, H⊂GLn(K) a reductive LAG defined over K. Given the defining
equations for H, find defining equations for H◦ and Z(H◦) as well as defining equations for normal simple algebraic
groups H1, . . .,Hℓ of H◦ such that the homomorphism

π : H1× . . .×Hℓ×Z(H◦)→ H◦

is surjective with a finite kernel.[19] gives algorithms for finding Gröbner bases of the radical of a polynomial ideal and
of the prime ideals appearing in a minimal decomposition of this ideal. Therefore, one can find the defining equations
of H◦. Elimination properties of Gröbner bases allow one to compute

Z(H◦) = {h∈ H◦ | ghg−1 = h for all g∈ H◦}.

We may writeH◦ = S·Z(H◦) whereS= [H◦,H◦] is semisimple. A theorem of Ree [47] states that every element of a
connected semisimple algebraic group is a commutator, so

S= {[h1,h2] |h1,h2 ∈ H◦}.

Using the elimination property of Gröbner bases, we see that one can compute defining equations forS. We know that
S= H1 · . . . ·Hℓ for some simple algebraic groupsHi. We now will find theHi. Given the defining idealJ of S, the Lie
algebras of S is

{s∈ Mn(K) | f (In+ εs) = 0 modε2 for all f ∈ J},

whereε is a new variable. ThisK-linear space is also computable via Gröbner bases techniques. In [22, §1.15], one finds
algorithms to decide ifs is simple and, if not, how to decomposes into a direct sum of simple idealss= s1⊕ . . .⊕ sℓ.
Note that eachsi is the tangent space of a normal simple algebraic subgroupHi of SandS= H1 · . . . ·Hℓ. Furthermore,
H1 is the identity component of

{h∈ S | Ad(h)(s2⊕ . . .⊕ sℓ) = 0},
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and this can be computed via Gröbner bases methods. LetS1 be the identity component of

{h∈ S | Ad(h)(s1) = 0}.

We haveS= H1 ·S1, and we can proceed by induction to determineH2, . . . ,Hℓ such thatS1 = H2 · . . . ·Hℓ. The groups
Z(H◦) andH1, . . . ,Hℓ are what we desire.

(B). Given A∈ Mn(K (x)), find defining equations for the Picard-Vessiot (PV)-Galoisgroup H ⊂ GLn(K ) of the
differential equation∂Y = AY. When H is finite, construct the PV-extension associated with this equation.A general
algorithm to compute PV-Galois groups is given by Hrushovski in [26]. When H is assumed to be reductive, an
algorithm is given in [15]. An algorithm to find all algebraic solutions of a differential equation is classical (due to
Painlevé and Boulanger) and is described in [48, 49].

(C). Given A∈ Mn(K (x)) and the fact that the PPV-Galois group G of the differential equation∂Y = AY satisfies
τ(G)6 0, find the defining equations of G.An algorithm to compute this is given in [41, Alg. 1].

(D). Assume we are given an algebraic extension F ofK (x), a matrix A∈ Mn(F), the defining equations for the PV-
Galois group G of the equation∂Y = AY over F and the defining equations for a normal algebraic subgroup H of
G. Find an integerℓ, a faithful representationρ : G/H → GL ℓ(K ) and a matrix B∈ M ℓ(F) such that the equation
∂Y = BY has PV-Galois groupρ(G/H).

The usual proof ([27, §11.5]) that there exists anℓ and a faithful rational representationρ : G/H → GL ℓ(K ) is
constructive, that is ifV ≃ Kn is a faithful G-module and we are given the defining equations forG and H, then,
using direct sums, subquotients, duals, and tensor products, one can construct aG-moduleW ≃ K ℓ such that the
mapρ : G → GL ℓ(K ) has kernelH. Let M be the differential module associated with∂Y = AY. Applying the same
constructions toM yields a differential moduleN. The Tannakian correspondence implies that the action ofG on the
associated solution space is (conjugate to)ρ(G).

(E). Assume we are given F, an algebraic extension ofK (x), and A∈ Mn(F), and B1, . . .,Bℓ ∈ Fn. Let

W = {(Z,c1, . . .,cℓ) | Z ∈ Fn,c1, . . .,cℓ ∈ K and ∂Z+AZ= c1B1+ . . .+cℓBℓ}.

Find a K -basis of W.Let F[∂] be the ring or differential operators with coefficients inF . Let C= In∂+A∈ Mn(F [∂]).
We may write∂Z+AZ= c1B1+ . . .+cℓBℓ as

CZ= c1B1+ . . .+cℓBℓ.

SinceF[∂] has a left and right division algorithm ([46, §2.1]), one can row and column reduce the matrixC, that is,
find a left invertible matrixU and a right invertible matrixV such thatUCV = D is a diagonal matrix. We then have
that(Z,c1, . . . ,cℓ) ∈W if and only if X = (V−1Z,c1, . . . ,cℓ) satisfies

DX = c1UB1+ . . .+cℓUBℓ.

SinceD is diagonal, this is equivalent to finding bases of scalar parameterized equations

Ly= c1b1+ . . .+cℓbℓ, L ∈ F[∂], bi ∈ K.

[50, Prop. 3.1 and Lem. 3.2] give a method to solve this latter problem. We note that, ifA ∈ K (x) and ℓ = 1, an
algorithm for finding solutions with entries inK (x) directly without having to diagonalize is given in [3].

(F). Let A∈ Mn(K (x)) and let M be the differential module associated with∂Y = AY. Find a basis of M so that the
associated differential equation∂Y = BY, B∈ Mn(K (x)) is as in(5.2.2), that is, in block upper triangular form with
the blocks on the diagonal corresponding to irreducible modules.We are asking to “factor” the system∂Y =AY. Using
cyclic vectors, one can reduce this problem to factoring linear operators of ordern, for which there are many algorithms
(cf. [46, §4.2]). A direct method is also given in [23].

(G). Suppose we are given F, an algebraic extension ofK (x), A∈ Mn(F), and the defining equations of the PV-Galois
group H of∂Y =AY. Assuming that H is a simple LAG, find the PPV-Galois G groupof ∂Y =AY. Let D be theK -span
of ∆. A Lie K -subspaceE of D is aK -subspace such that, ifD,D′ ∈ E , then

[D,D′] = DD′−D′D ∈ E .

We know that the groupG is a Zariski-dense subgroup ofH. The Corollary to [13, Thm. 17] states that there is a Lie
K -subspaceE ⊂ D such thatG is conjugate toH

(
K E
)
. Therefore, to describeG, it suffices to findE . Let

W =
{
(Z,c1, . . . ,cm) | Z ∈ Mn(F) = Fn2

, c1, . . . ,cm ∈ K and ∂Z+[Z,A] = c1∂1A+ . . .+cm∂mA
}
.
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The algorithm described in(E) allows us to calculateW. We claim that we can take

E = {c1∂1+ . . .+cm∂m | there existsZ ∈ GLn(F) such that(Z,c1, . . . ,cm) ∈W}. (5.3.1)

Note that thisE is a LieK -subspace ofD. To see this, it suffices to show that, ifD1,D2 ∈ E , then[D1,D2] ∈ E . If

∂B1+[B1,A] = D1A and ∂B2+[B2,A] = D2A for some B1,B2 ∈ GLn(F),

then a calculation shows that

∂B+[B,A] = [D1,D2]A, where B= D1B2−D2B1− [B1,B2].

In particular, [34, §0.5, Prop. 6 and 7] imply thatE has aK -basis ofcommutingderivations
{

∂1, . . .,∂t

}
that extends

to a basis of commuting derivations
{

∂1, . . . ,∂m

}
of D.

To show thatG is conjugate toH
(
K E
)

we shall need the following concepts and results. Let∆′
=
{

∂,∂1, . . . ,∂m
}

andk a ∆′
-field. Let∆ =

{
∂1, . . . ,∂m

}
andΣ ⊂ ∆. Assume thatC= k∂ is differentially closed.

Definition 5.3.1. Let A∈M(k). We say∂Y=AY is integrable with respect toΣ if, for all ∂i ∈Σ, there existsAi ∈Mn(k)
such that

∂Aj −∂ jA = [A,Aj ] for all ∂ j ∈ Σ and, (5.3.2)

∂iAj −∂ jAi = [Ai ,Aj ] for all ∂i ,∂ j ∈ Σ (5.3.3)

The following characterizes integrability in terms of the behavior of the PPV-Galois group.

Proposition 5.3.2. Let K be the PPV-extension ofk for ∂Y = AY and letG⊂ GLn(C) be the PPV-Galois group. The
groupG is conjugate to a subgroup ofGLn

(
CΣ
)

if and only if ∂Y = AY is integrable with respect toΣ.

Proof. AssumeG is conjugate to a subgroup ofGLn
(
CΣ) and letB ∈ GLn(C) satisfy BGB−1 ⊂ GLn

(
CΣ). Let

Z ∈ GLn(K) satisfy∂Z = AZ andW = ZB−1. For anyV ∈ GLn(K) such that∂V = AV andσ ∈ G, we will denote
by [σ]V the matrix inGLn(C) such thatσ(V) =V[σ]V . We have

σ(W) = Z[σ]ZB−1 = ZB−1B[σ]ZB−1 =W[σ]W,

so [σ]W = B[σ]ZB−1 ∈ GLn
(
CΣ). A calculation shows thatAi := ∂iW ·W−1 is left fixed by allσ ∈ G and so lies in

Mn(k). Since the∂i commute with∂ and each other, we have that theAi satisfy (5.3.2) and (5.3.3).
Now assume that∂Y = AY is integrable with respect toΣ and, for convenience of notation, letΣ =

{
∂1, . . .,∂t

}
.

We first note that sinceC is differentially closed with respect to∆, the fieldCΣ is differentially closed with respect
to Π =

{
∂t+1, . . .,∂m

}
(in fact, CΣ is also differentially closed with respect to∆, [37]). Note thatCΣ = k{∂}∪Σ. Let

R= k{Z,1/(detZ)}∆′ be the PPV-extension ring ofk for the integrable system

∂Y = AY (5.3.4)

∂iY = AiY, i = 1, . . .t. (5.3.5)

The ringR is a∆′
-simple ring generated both as aΠ-differential ring and as a∆-differential ring by the entries ofZ and

1/detZ. Therefore,R is also the PPV-ring for the single equation (5.3.4), ([24, Definition 6.10]). LetL be the quotient
field of R. The groupG of ∆′

-automorphisms ofL overk is both the PPV-group of the system (5.3.4) (5.3.5) and of
the single equation (5.3.4). In the first case, we see that the matrix representation of this group with respect toZ lies
in GLn

(
CΣ
)

and therefore the same is true in the second case. SinceCΣ is differentially closed, the PPV-extension

K = k〈U〉 is k-isomorphic toL as∆′
-fields. This isomorphism will takeU to ZD for someD ∈ GLn(C) and so the

matrix representation of the PPV-group ofK overk will be conjugate to a subgroup ofGLn

(
CΣ
)
.

One can also argue as follows. First note thatC is alsoΣ-differentialy closed by [37]. For every∆-LDAG G′ ⊂
GLn(C) with defining idealI ⊂C{Xi j ,1/det}∆, let G′

Σ denote theΣ-LDAG with defining idealJ := I ∩C{Xi j ,1/det}Σ.
ThenG′ is conjugate toΣ-constants if and only ifG′

Σ is. Indeed, the former is equivalent to the existence ofD∈GLn(C)
such that, for alli, j, 16 i, j 6 n and∂ ∈ Σ, we have∂

(
DXi j D−1

)
i j
∈ I , which holds if and only if∂

(
DXD−1

)
i j
∈ J.

Let K = k〈Z〉∆′ . TheΣ-field KΣ := k〈Z〉{∂}∪Σ is aΣ-PPV extension for∂Y =AY by definition. As in [14, Prop. 3.6],

one sees thatGΣ is itsΣ-PPV Galois group. Finally,GΣ is conjugate toΣ-constants if and only if∂Y = AY is integrable
with respect toΣ by [14, Prop. 3.9].
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Corollary 5.3.3. Let K be the PPV-extension ofk for ∂Y = AY andG ⊂ GLn(C) be the PPV-Galois group. Then
G is conjugate to a subgroup ofGLn

(
CΣ
)

if and only if, for every ∂i ∈ Σ, there existsAi ∈ Mn(k) such that
∂Aj +[Aj ,A] = ∂ jA.

Proof. In [21], the authors show (Theorem 4.4) that aG is conjugate to a subgroup ofGLn
(
CΣ) if and only if for each

∂i ∈ Σ, G is conjugate to a subgroup ofGLn

(
C∂i
)
. Two applications of Proposition5.3.2yields the conclusion.

Applying Corollary5.3.3to ∂ = ∂ and the commuting basisΣ =
{

∂1, . . . ,∂t
}

of E , implies thatG is conjugate to
H
(
K E
)
.

§§5.3.2, 5.3.2now present the two algorithms described in the introduction.

5.3.2 An algorithm to compute the maximal reductive quotient G/Ru(G) of a PPV-Galois group G.

Assume we are given a matrixA ∈ Mn(K ). Let H be the PV-Galois group of this equation. We proceed as follows
taking into account the following general principle. For every normal algebraic subgroupH ′ of H andB∈ M ℓ(K ), if
H/H ′ is the PV-Galois group of∂Y = BY, thenG/(G∩H ′) is its PPV-Galois group, which follows from(D).

Step 1. Reduce to the case where H is reductive.Using(F), we find an equivalent differential equation as in (5.2.2)
whose matrix is in block upper triangular form where the modules corresponding to the diagonal blocks are irreducible.
We now consider the block diagonal equation (5.2.3). This latter equation has PPV-Galois groupG/Ru(G).

Step 2. Reduce to the case where G is connected and semisimple.We shall show that it is sufficient to be able to
compute the PPV-Galois group of an equation∂Y = AYassumingA has entries in an algebraic extension ofK (x),
assuming we have the defining equations of the PV-Galois group of ∂Y = AY and assuming this PV-Galois group is
connected and semisimple.

Using (B), we compute the defining equations of the PV-Galois groupH of ∂Y = AY overK (x). Using(A), we
calculate the defining equations forH◦ andZ(H◦) as well as defining equations for normal simple algebraic groups
H1, . . . ,Hℓ of H◦ as in(A). Note that

H◦ = SH ·Z(H◦),

whereSH = H1 · . . . ·Hℓ is the commutator subgroup ofH◦. Note thatSG = [G◦,G◦] is Zariski-dense inSH . Using(D),
we construct a differential equation∂Y = BY whose PV-Galois group isH/H◦. This latter group is finite, so this
equation has only algebraic solutions, and, again using(B), we can construct a finite extensionF of K (x) that is the
PV-extension corresponding to∂Y = BY. The PV-Galois group of∂Y = AY overF is H◦.

Since we have the defining equations ofZ(H◦), (D) allows us to construct a representationρ : H◦ → H◦/Z(H◦)
and a differential equation∂Y = BY, B having entries inF, whose PV-Galois group isρ(H◦). Note thatρ(G◦) is the
PPV-Galois group of∂Y = BY and is Kolchin dense inρ(H◦). Therefore,ρ(G◦) is connected and semisimple. Let us
assume that we can find defining equations ofρ(G◦). We can therefore compute defining equations ofρ−1(ρ(G◦)). The
groupρ−1(ρ(G◦))∩SH normalizes[G◦,G◦] in SH . By Lemma5.3.4below, we have

ρ−1(ρ(G◦))∩SH = SG.

Therefore, we can compute the defining equations ofSG.
To compute the defining equations ofG, we proceed as follows. Using(D), we compute a differential equation

∂Y = B̃Y, B̃ having entries inK (x), whose PV-group isH/SH . The PPV-Galois group of this equation isL = G/SG. By
Lemma2.2.12, this group has differential type at most 0, so(C) implies that we can find the defining equations ofL.
Let ρ̃ : H → H/SH. We claim that

G= ρ̃−1(L)∩NH(SG).

Clearly,
G⊂ ρ̃−1(L)∩NH(SG).

Now let
h∈ ρ̃−1(L)∩NH(SG).

We can writeh = h0g whereg ∈ G andh0 ∈ SH . Furthermore,h0 normalizesSG. Lemma5.3.4implies thath0 ∈ SG

and soh∈ G. Since we can compute the defining equations ofSG, we can compute the defining equations ofNH(SG).
Since we can computẽρ and the defining equations ofL, we can compute the defining equations ofρ̃−1(L), and so we
get the defining equations ofG. All that remains is to prove

Lemma 5.3.4. Let G be a Zariski-dense differential subgroup of a semisimple linear algebraic groupH. Then
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(i) Z(H)⊂ G, and

(ii) NH(G) = G.

Proof. [13, Thm. 15] implies thatH = H1 · . . . ·Hℓ andG= G1 · . . . ·Gℓ, where eachHi is a normal simple algebraic
subgroup ofH with [Hi,H j ] = 1 for i 6= j and eachGi is Zariski-dense inHi and normal inG. Therefore, it is enough
to the prove the claims whenH itself is a simple algebraic group. In this case, let us assume thatH ⊂ GL(V), where
H acts irreducibly onV. Schur’s Lemma implies that the center ofH consists of scalar matrices and, sinceH = (H,H)
these matrices have determinant 1. Therefore, the matricesare of the formζI whereζ is a root of unity. [13, Thm. 19]
states that there is a LieK-subspaceE of D, theK -span of∆, such thatG is conjugate toH

(
K E
)
. Since the roots of

unity are constant for any derivation, we have that the center of H lies inG.
To proveNH(G) = G, assumeG= H

(
K E
)

and letg∈ G andh∈ NH(G). For any∂ ∈ E , we have

0= ∂
(
h−1gh

)
=−h−1∂(h)h−1gh+h−1g∂(h).

Therefore,∂(h)h−1 commutes with the elements ofG and so must commute with the elements ofH. Again by Schur’s
Lemma,∂(h)h−1 is a scalar matrix. On the other hand,∂(h)h−1 lies in the Lie algebra ofH ([33, §V.22, Prop. 28]) and
so the trace of∂(h)h−1 is zero. Therefore,∂(h)h−1 = 0. Since∂(h) = 0 for all ∂ ∈ E , we haveh∈ G.

Step 3. Computing G when G is connected and semisimple.We have reduced the problem to calculating the PPV-
Galois groupG of an equation∂Y = AY where the entries ofA lie in an algebraic extensionF of K (x) and where we
know the equations of the PV-GaloisH group of this equation overF. Let

H = H1 · . . . ·Hℓ and G= G1 · . . . ·Gℓ,

where theHi are simple normal subgroups ofH andGi is Zariski-dense inHi. Using(D), we construct, for eachi, an
equation∂Y = BiY with Bi ∈ Mn(F) whose PV-Galois group isH/H̄i, where

H̄i = H1 · . . . ·Hi−1 ·Hi+1 · . . . ·Hℓ

and a surjective homomorphismπi : H → H/H̄i. Note thatH/H̄i is a connected simple linear algebraic group.
Therefore,(G) allows us to calculate the PPV-Galois groupḠi of ∂Y = BiY. We claim that

Gi = π−1
i

(
Ḡi
)
∩Hi.

To see this, note that̄Hi ∩Hi lies in the center ofHi and, therefore, must lie inGi by Lemma5.3.4. Therefore, we have
defining equations for eachGi and so can construct defining equations forG.

5.3.3 An algorithm to decide if the PPV-Galois group of a parameterized linear differential equation is reductive.

Let K (x) be as in (5.1.3). Assume we are given a differential equation∂Y =AY with A∈ Mn(K (x)). Using the solution
to (F) above, we may assume thatA is in block upper triangular form as in (5.2.2) with the blocks on the diagonal
corresponding to irreducible differential modules. LetAdiag be the corresponding diagonal matrix as in (5.2.3), let
M,G andMdiag,Gdiag be the differential modules and PPV-Galois groups associated with ∂Y = AY and∂Y = AdiagY,
respectively. Of course,Gdiag≃ G/Ru(G), soG is reductive if and only ifGdiag≃ G.

This implies via the Tannakian equivalence that the differential tensor category generated byMdiag is a subcategory
of the differential tensor category generated byM and thatG is reductive if and only if these categories are the
same. The differential tensor category generated by a moduleM is the usual tensor category generated by all the total
prolongationsPs(M) of that module. From this, we see thatG is a reductive LDAG if and only ifM belongs to the
tensor category generated by some total prolongationPs(Mdiag). Therefore, to decide ifG is reductive, it suffices to
find algorithms to solve problems(H) and(I) below.

(H). Given differential modules M and N, decide if M belongs to thetensor category generated by N.Since we are
considering the tensor category and not thedifferentialtensor category, this is a question concerning non-parameterized
differential equations. LetKN,KM,KM⊕N be PV-extensions associated with the corresponding differential modules
and letGM,GN,GN⊕M be the corresponding PV-Galois groups. The following four conditions are easily seen to be
equivalent:

(a) N belongs to the tensor category generated byM.

(b) KN ⊂ KM considered as subfields ofKM⊕N.
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(c) KM⊕N = KM.

(d) The canonical projectionπ : GM⊕N ⊂ GM ⊕GN → GM is injective (it is always surjective).

Therefore, to solve(H), we apply the algorithmic solution of(B) to calculateGM⊕N andGM and, using Gröbner bases,
decide ifπ is injective.

(I). Given M and Mdiag as above, calculate an integer s such that, if M belongs to thedifferential tensor category
generated by Mdiag, then M belongs to the tensor category generated by Ps(Mdiag). We will apply Theorem4.3.4and
Proposition4.3.5. Note that, since the PPV-Galois groupGdiag associated toMdiag is reductive, Lemma2.2.12implies
that we may apply these results toGdiag. Theorem4.3.4implies that such a bound is given by the integer

max{ℓℓ(V)−1,ord(T)}

where V is a solutions space associated withMdiag and T = Z
(
G◦

diag

)◦
. As noted in the discussion preceding

Theorem4.3.4, ℓℓ(V) 6 dimK (V) = dimK (x)Mdiag. Proposition4.3.5 implies that ord(T) can be bounded in the
following way. Using the algorithm to solve(B), we calculate the defining equations of the PV-Galois groupHdiag

associated withMdiag and then calculate the defining equations ofH◦
diag and

[
H◦

diag,H
◦
diag

]
(as in(A)). Using the solution

to (D), one calculates a differential equation∂Y = BY whose PV-Galois group is

H/
[
H◦

diag,H
◦
diag

]
.

Denote the associated differential module byN. Proposition4.3.5implies that ord(T) is the smallest value oft so that
the differential tensor category generated byN coincides with the tensor category generated byPt(N). The following
conditions are easily seen to be equivalent

(a) The differential tensor category generated byN coincides with the tensor category generated byPt(N).

(b) The tensor category generated byPt(N) coincides with the tensor category generated byPt+1(N).

(c) Pt+1(N) belongs to the tensor category generated byPt(N).

Therefore, to bound ord(T), one uses the algorithm of(H) to check fort = 0,1,2, . . . if Pt+1(N) belongs to the tensor
category generated byPt(N) until this event happens (see also [41, §3.2.1, Alg. 1]). As noted in the discussion
preceding Theorem4.3.4, this procedure eventually halts. Taking the maximum of this t and dimK (x)M − 1 yields
the desireds.

6 Examples

In this section, we will illustrate both Theorem4.2.1and our main algorithm. In Example6.1.2, we will show that the
bound in Theorem4.2.1is sharp. Example6.1.3is an illustration of the algorithm.

Example 6.1.1.Following [40, Ex. 4.18], let

V = spanK {1,x′11x21−x11x
′
21,x

′
11x22−x′21x12,x

′
12x22−x12x

′
22,x

′
11x22−x′12x21} ⊂ A,

where
A := K{x11,x12,x21,x22}

/
[x11x22−x12x21−1], (6.1.6)

which induces the following differential representation of SL2:

SL2(U) ∋

(
a b
c d

)
7→




1 a′c−ac′ a′d−bc′ b′d−bd′ a′d′−b′c′

0 a2 ab b2 ab′−a′b
0 2ac ad+bc 2bd 2(ad′−bc′)
0 c2 cd d2 cd′−c′d
0 0 0 0 1




under the right action ofSL2 on A. Since the length of the socle filtration forV is 3, letn= 2. Theorem4.2.1claims
thatV ∈

〈
P2(Vdiag)

〉
⊗

. We will show that, in fact,

V ∈
〈
P(Vdiag)

〉
⊗
. (6.1.7)
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Indeed, by the Clebsch-Gordon formula for tensor products of irreducible representations ofSL2, the usual irreducible
representationU = spanK{u,v} of SL2 is a direct summand ofVdiag⊗Vdiag. Moreover,

V ⊂ (P(U)⊕P(U))⊗ (P(U)⊕P(U))

under the embedding
U ⊕U → A, (au+bv,cu+dv) 7→ ax11+bx12+cx21+dx22,

which implies (6.1.7).

Example 6.1.2. Consider the first prolongationsP(V) of the usual (irreducible) representationr : SL2 → GL(V) of
dimension 2:

P(r) : SL2 ∋ A 7→

(
A A′

0 A

)
.

The length of the socle filtration is 2, and we tautologicallyhave

P(V) ∈
〈
P2−1(P(V)diag)

〉
⊗
.

Notice that
P(V) /∈ 〈P(V)diag〉⊗

as every object of〈P(V)diag〉⊗ = 〈V〉⊗ is completely reducible [39, Thm 4.7] butP(V) is not completely reducible [44,
Prop. 3], [21, Thm. 4.6]. By Proposition4.1.4, for all n> 0,

Pn(V)n ⊂ socn+1Pn(V). (6.1.8)

Sincer∨ =: ρ : V →V ⊗K A0, whereA is defined in (6.1.6), for all n> 0,

Pn(ρ) : Pn(V)→ Pn(V)⊗K An

(see (3.1.3)). Therefore,Pn(V)n = Pn(V). SincePn(V)⊃ socn+1Pn(V), (6.1.8) implies that

Pn(V) = socn+1Pn(V).

Therefore, the length of the socle filtration ofPn(V) does not exceedn+1. If

Pn+1(V) ∈
〈
Pn(V)

〉
⊗
, (6.1.9)

then, for allq> n, Pq(V) ∈
〈
Pn(V)

〉
⊗

, which implies that

〈
Pi(V) | i > 0

〉
⊗
=
〈
Pn(V)

〉
⊗
. (6.1.10)

By [16, Prop. 2.20], (6.1.10) implies thatA is a finitely generatedK -algebra, which is not the case. Therefore, (6.1.9)
does not hold. Thus, the bound in Theorem4.2.1is sharp.

We will now illustrate how the algorithm works. LetC denote the differential closure ofQ with respect to a
singe derivation∂t . In the following examples, we consider the differential equations over the fieldK (x) = C (x) with
derivations∆′ = {∂x,∂t} and∆ = {∂t}.

Example 6.1.3.As in [41, Ex. 3.4], consider the equation∂xY = AY where

A=

(
1 t

x +
1

x+1
0 1

)
,

whose PV-group is {(
a b
0 a

) ∣∣∣a, b∈ U,a 6= 0

}
≃ Gm×Ga, (6.1.11)

which is not reductive. LetM be the corresponding differential module. Using our algorithm, we will test whether the
PPV-Galois groupG of ∂xY = AY is reductive. We have

Adiag=

(
1 0
0 1

)
,
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and the PV and PPV-Galois groups of∂xY = AdiagY areGm andGm(C ), respectively [14, Prop. 3.9(2)]. Therefore,

ord(G/Ru(G)) = ord(Gm(C )) = 1.

The matrix ofM⊕P1(Mdiag) with respect to the appropriate basis is




1 t
x +

1
x+1 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



,

which is not completely reducible by (6.1.11). Therefore, its PV group is not isomorphic toGm, the PV group ofMdiag.
Thus,G is not reductive. In fact,G is calculated in [41, Ex. 3.4] yielding

G=

{(
e f
0 e

)
∈ Gm(C )×Ga(C )

∣∣∣∣ ∂te= 0, ∂2
t f = 0

}
.

Example 6.1.4.Consider the equation
∂2

x(y)+2xt∂x(y)+ ty= 0. (6.1.12)

The PPV-Galois group of this equation lies inGL2. One can make a standard substitution ([46, Exc. 1.35.5]) resulting
in a new equation having PPV-Galois group inSL2. Once we know the PPV-Galois group of this new equation, results
of [1] allow us to construct the PPV-group of the original equation. In our example, the appropriate substitution is
y= ze−

∫
xt. We find thatzsatisfies the equation

∂2
x(y)−

(
1/4(2xt)2+(2xt)′/2− t

)
y= 0 ⇐⇒ ∂2

x(y)− (xt)2y= 0, (6.1.13)

which now has PPV-Galois group inSL2, ande−
∫

xt satisfies the equation

∂x(y)+ ((2xt)/2)y= 0 ⇐⇒ ∂x(y)+ (xt)y= 0, (6.1.14)

which has PPV-Galois group inGL1 = Gm. We shall refer to equatons (6.1.13) and (6.1.14) as the auxillary equations.
A calculation on MAPLE using thekovacicsols procedure of theDEtools package shows that the PV Galois group
H of (6.1.13) is SL2. Since, for all 06= n∈Z, U(x) has no solutions of

∂x(y)+ (nxt)y= 0,

the PV Galois group of (6.1.14) is Gm. Therefore, by [1, §3.4], the PV Galois group of (6.1.12) is

GL2
∼= (SL2×Gm)

/
{1,−1}.

Hence, the PPV-Galois groupG of (6.1.12) is of the form

G= (G1×G2)
/
{1,−1}⊂ H,

whereG2 is Zariski dense inGm andG1 is conjugate inGL2 either toSL2 or SL2(C ). We will now calculateG1 and
G2. For the former, note the matrix form of (6.1.13) is

∂xY =

(
0 1

(xt)2 0

)
Y.

Since, for the matrix

B :=

(
0 x

2t
tx3

2
1
2t

)
,

which can be found using thedsolve procedure of MAPLE, one has∂x(B)− ∂t(A) = [A,B], (6.1.13) is completely
integrable and, therefore,G1 is conjugate toSL2(C ). To findG2, compute the first prolongation of (6.1.14):

A1 :=

(
−xt −x
0 −xt

)
.
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Setting

C :=

(
1 1
−2
x2

−2
x2+t

)
,

we see that

C−1A1C−C−1∂x(C) =

(
2−x2t

x 0

0 x(2−x2t−t2)
x2+t

)
.

Hence, the differential equation corresponding toA1 is completely reducible. Therefore,G2 = Gm(C ), that is,

G∼= GL2(C ).

Note thatC can be found using thedsolve procedure of MAPLE.

Example 6.1.5.Starting with

∂2
x(y)−

2t
x

∂x(y) = 0, (6.1.15)

the auxiliary equations will be

∂2
x(y)−

t(t +1)
x2

y= 0 and ∂x(y) =
t
x

y.

The PPV-Galois group of the latter equation is

G2 :=
{

g∈ Gm

∣∣ (∂2
t g)g− (∂tg)

2 = 0
}
.

For the former equation, a calculation usingdsolve from MAPLE shows that there is noB ∈ M2(U(x)) such that
∂x(B)−∂t(A) = [A,B], where

A :=

(
0 1

t(t+1)
x2 0

)
,

which implies that this equation is not completely integrable. Therefore,G1 = SL2. Thus, the PPV-Galois group
of (6.1.15) is {

g∈ GL2

∣∣ (∂2
t det(g)

)
deg(g)− (∂t det(g))2 = 0

}
.
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