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We develop the representation theory for reductive linééerdntial algebraic groups (LDAGS). In particular, wehéit an explicit

sharp upper bound for orders of derivatives in differerméglresentations of reductive LDAGS, extending existirayits, which were
obtained foISL; in the case of just one derivation. As an application of thevalbound, we develop an algorithm that tests whether the
parameterized differential Galois group of a system ofdimdifferential equations is reductive and, if it is, caktels it.

1 Introduction

At the most basic level, a linear differential algebraiciggdLDAG) is a group of matrices whose entries are functions
satisfying a fixed set of polynomial differential equatiods algebraic study of these objects in the context of
differential algebra was initiated by Phyllis Cassidy&ihdnd further developed by heri@,[10, 13, 11, 12]. This theory

of LDAGs has been extended to a theory of general differealgebraic groups by Kolchin, Buium, Pillay and others.
Nonetheless interesting applications via the parametéfPicard-Vessiot theory to questions of integrability, [43]

and hypertranscendence]] 24] support a more detailed study of the linear case.

Although there are several similarities between the thedlyDAGs and the theory of linear algebraic groups
(LAGSs), a major difference lies in the representation tleafr reductive groups. IS is a reductive LAG defined
over a field of characteristic 0, then any representatio® & completely reducible, that is, any invariant subspace
has an invariant complement. This is no longer the case thrateve LDAGS. For example, K is a differential field
containing at least one element whose derivative is nonteeaseductive LDAGSL,(k) has a representation 8L4(k)

given by
A A
A— (O A) .

One can show that this is not completely reducilcleExample6.1.2). Examples such as this show that the process of
taking derivatives complicates the representation theoaysignificant way. Initial steps to understand repregenta

of LDAGs are given in 8, 9] and a classification of semisimple LDAGs is given it8]. A Tannakian approach to
the representation theory of LDAGs was introduceddi 15] (see also 29, 28]) and successfully used to further our
understanding of representations of reductive LDAGs3® {i0]. This Tannakian approach gives a powerful tool in
which one can understand the impact of taking derivativethemepresentation theory of LDAGs.

The main results of the paper consist of bounds for orderseofvatives in differential representations of
semisimple and reductive LDAGs (Theorems.1 and 4.3.4 respectively). Simplified, our results say that, for a
semisimple LDAG, the orders of derivatives are bounded leydimension of the representation. For a reductive
LDAG containing a finitely generated group dense in the Kiol¢bpology €f. 82), they are bounded by the maximum
of the bound for its semisimple part and by the order of déffeial equations that define the torus of the group.
This result completes and substantially extends what coeldroven using40], where one is restricted just 6L,
one derivation, and to those representations that are &tenof just two irreducible representations. We expect
that the main results of the present paper will be used inuhad to give a complete classification of differential
representations of semisimple LDAGs (as this was partadlye forSL, in [40]). Although reductive and semisimple
differential algebraic groups were studied i8] 39, the techniques used there were not developed enoughigvach
the goals of this paper. The main technical tools that we ldpvand use in our paper are filtrations of modules of
reductive LDAGSs, which, as we show, coincide with soclediins in the semisimple casef.([4, 31]). We expect
that this technique is general and powerful enough to hapbcapions beyond this paper.

In this paper, we also apply these results to the Galois yhebparameterized linear differential equations.
The classical differential Galois theory studies symmefrgups of solutions of linear differential equations, or,
equivalently, the groups of automorphisms of the corredpanextensions of differential fields. The groups thateris
are linear algebraic groups over the field of constants. thigery, started in 19th century by Picard and Vessiot, was
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put on a firm modern footing by Kolchir8p]. A generalized differential Galois theory that uses Kahhaxiomatic
approach34] and realizes differential algebraic groups as Galois gsomas initiated in36].

The parameterized Picard—\Vessiot Galois theory congldareCassidy and Singer iif] is a special case of the
Landesman generalized differential Galois theory andistusiymmetry groups of the solutions of linear differential
equations whose coefficients contain parameters. This i dy constructing a differential field containing the
solutions and their derivatives with respect to the parametalled a parameterized Picard—\Vessiot (PPV) extensio
and studying its group of differential symmetries, callgohaameterized differential Galois group. The Galois gsoup
that arise are LDAGs which are defined by polynomial difféisdequations in the parameters. Another approach to the
Galois theory of systems of linear differential equatiorithywarameters is given irY], where the authors study Galois
groups for generic values of the parameters. It was showh8n4[3] that, a necessary and sufficient condition that
an LDAG G is a PPV-Galois group over the fie@{x) is thatG contains a finitely generated Kolchin-dense subgroup
(under some further restrictions Q).

In 85 we show how our main result yields algorithms in the PPV theBor systems of differential equations
without parameters in the usual Picard-Vessiot theorygtlee many existing algorithms for computing differential
Galois groups. A complete algorithm over the fi€dx), whereC is a computable algebraically closed field of
constantsx is transcendental ov& and its derivative is equal to 1 is given igq (see also 5] for the case when
the group is reductive). More efficient algorithms for egoiag of low order appear in3p, 52, 53, 54, 57, 46]. These
latter algorithms depend on knowing a list of groups thatmassibly occur and step-by-step eliminating the choices.

For parameterized systems, the first known algorithms amngh [1, 17], which apply to systems of first and
second orders (see alsg for the application of these techniques to the incomplet@igna function). An algorithm
for the case in which the quotient of the parameterized Ga@mup by its unipotent radical is constant is givervify [

In the present paper, without any restrictions to the ordéh® equations, based on our main result (upper bounds
mentioned above), we present algorithms that

(i) compute the quotient of the parameterized Galois gi@lgy its unipotent radicaR,(G),
(i) test whethelG is reductive (that is, wheth&,(G) = {id})

Note that these algorithms imply that we can determine iRRR¥-Galois group is reductive and, if it is, compute it.
The paper is organized as follows. We start by recalling #@dodefinitions of differential algebra, differential

dimension, differential algebraic groups, their repréasgms, unipotent and reductive differential algebramugs in

§2. The main technical tools of the paper, properties of LDA@staining a Kolchin-dense finitely generated subgroup

and grading filtrations of differential coordinate ringande found in 8.2.3and 8, respectively. The main result is

in 84. The main algorithms are described i &xamples that show that the main upper bound is sharp arstrdte

the algorithm are in@

2 Basic definitions

2.1 Differential algebra

We begin by fixing notation and recalling some basic factmfdbfferential algebradf. [33]). In this paper a\-ring
will be a commutative associative ring with unit 1 and comimgiterivationsd = {01, ...,0m}. We let

©:={d}-...-an|i; >0}
and note that this semigroup acts naturallyRofor an eIemenrlil1 ...-0mc O, we let
ord(0f -...-dl) i=i1+... +im.
LetY = {yi,...,yn} be a set of variables and
oY :={By;|6€0O, 1< j<n}.

The ring of differential polynomialR{Y} in differential indeterminate¥ overRis R[OY] with the derivation®; that
extends th@;-action onR as follows:

0 (By;) :=(0;-0)yj, 1<j<n, 1<i<m

An ideall in aA-ring Ris called a differential ideal ifj(a) € | forallae |, 1<i<m. ForF C R, [F] denotes the
differential ideal ofR generated byr.
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Let K be aA-field of characteristic zero. We denote the subfield of cmtstofK by
KA:={ceK|di(c)=0,1<i<m}.
Let U be a differentially closed field containitg, that is, aA- extension field oK such that any system of polynomial

differential equations with coefficients iti having a solution in som&-extension oftl already have a solution ifti"
(see [L4, Def. 3.2] and the references given there).

Definition 2.1.1. A Kolchin-closedsubseWV () of U" overK is the set of common zeroes of a system of differential
algebraic equations with coefficientskn that is, forfy, ..., fi € K{Y}, we define

W(U)={aeU"|fi(a)=...= fi(a) =0}.
If W() is a Kolchin-closed subset af" overK, we letl(W) = {f € K{yy,...,yn} | f(W)=0YweW(U)}.

One has the usual correspondence between Kolchin-clobsétsuofK" defined oveK and radical differential
ideals ofK{yx,...,yn}. Given a Kolchin-closed subs¥ét of 1" defined oveK, we let the coordinate ring {W} be

defined as

A differential polynomial mapp : Wy — W, between Kolchin-closed subsets @f" and U™, respectively, defined
overK, is given in coordinates by differential polynomialskn{\W,; }. Moreover, to gived : Wy — W, is equivalent
to defining a differentiak -homomorphisnp* : K{Ws} — K{Wi}. If K{W} is an integral domain, thew is called

irreducible This is equivalent td(W) being a prime differential ideal. More generally, if

I(W) =piN...Npq

is a minimal prime decomposition, which is unique up to peatian, [30, VI1.29], then the irreducible Kolchin-closed
setsW, ..., W, corresponding t@s, . .., pq are called thérreducible componentsf W. We then have

W =W, U...UW,.

If W is an irreducible Kolchin-closed subsets@f defined oveK, we denote the quotient field 8f{W} by K (W).

In the following, we shall need the notion of a Kolchin clossst being ofdifferential type at most zerd he
general concept of differential type is defined in terms efKlolchin polynomial (B3, 811.12]) but this more restricted
notion has a simpler definition.

Definition 2.1.2. LetW be an irreducible Kolchin-closed subsetsidf defined oveK . We sayw to be ofdifferential
type at most zerand denote this by(W) < 0 if tr. deg K (W) < . If W is an arbitrary Kolchin-closed subsets@f
defined oveK, we sayW has differential type at most zero if this is true for eacht®tiomponents.

We shall use the fact that{ < G are LDAGs thert(H) < 0 andt(G/H) < 0if and only ift(G) < 0 [34, §IV.4].

2.2 Linear Differential Algebraic Groups
LetK C U be as above.

Definition 2.2.1. [8, Ch. Il, 81, p. 905] Alinear differential algebraic groupverK is a Kolchin-closed subgroup
of GLn(U) overK, that is, an intersection of a Kolchin-closed subsetBF with GL,(U) that is closed under the
group operations.

In what follows, LDAG stands for linear differential algedic group. Note that we identif@L (1) with a Zariski
closed subset of/™ ! given by
{(Aa)|(detA))-a—1=0}.
If X'is an invertiblen x n matrix, we can identify it with the paiiX, 1/ detX)). Hence, we may represent the coordinate

ring of GL,(U) asK{X,1/de(X)}. As usual, leGn,(U) andG,(U) denote the multiplicative and additive groups of
U, respectively. The coordinate ring of the LDAEL,(U) is isomorphic to

K{C11,C12,C21,C22} /[C11Co2 — C12C21 — 1.

For a groupG C GL,(U), we denote the Zariski closure & in GL,(U) by G. ThenG is a linear algebraic group
over U. If G C GL,(U) is an LDAG defined oveK, thenG is defined oveK as well.

The irreducible component of an LDAG containing id, the identity, is called thdentity componenf G and
denoted byG°. An LDAG G is calledconnectedf G = G°, which is equivalent t&5 being an irreducible Kolchin
closed set§, p. 906].

The coordinate rind {G} of an LDAG G has a structure of differential Hopf algebrai.e., a Hopf algebra in
which the coproduct, antipode, and counit are homomorphadifferential algebrasig, 83.2] and §, §2]. One can
view G as a representable functor definedoralgebras, represented Ky{G}. For example, iV is ann-dimensional
vector space ovef, GL (V) = AutV is an LDAG represented by {GL,} = K{GL(U)}.



2.2.1 Representations of linear differential algebraic groups
Definition 2.2.2. [9],[44, Def. 6] LetG be an LDAG. A differential polynomial group homomorphism

rv:G— GL(V)

is called adifferential representationf G, whereV is a finite dimensional vector space o¥erSuch space is simply
called aG-module This is equivalent to giving aomodule structure

pv:V =V ek K{G},

see fi4, Def. 7 and Thm. 1],48, §3.2]. Moreover, ilU C V is a submodule, thepy |, = pu.
As usual morphismsetweenG-modules ar -linear maps that ar€-equivariant. The category of differential
representations @ is denoted byRepG.

For an LDAGG, letA:= K{G} be its differential Hopf algebra and
A:A— ARk A

be the comultiplication inducing thaght-regular G-module structuren A as follows (see also4f, 84.1]). For
g,xe G(U) andf € A,

n

(rg(f)) () = f(x-9) = A(f)(x,9) = Zl fi(x)gi(9),

whereA(f) = S{L, fi® gi. Thek-vector spacé\ is anA-comodule via

Pa = A.

Proposition 2.2.3.[58, Cor. 3.3, Lem. 3.5}{4, Lem. 3] The coalgebra is a countable union of its finite-dimensional
subcoalgebras. W € RepG, then, as ad-comoduleV embeds intaAd™V

By [8, Prop. 7],0(G) € GL (V) is a differential algebraic subgroup. Given a represeuatiof an LDAG G, one
can define its prolongations
R(p):G—GL(R(V))

with respect t@; as follows (seed0, §85.2], @4, Def. 4 and Thm. 1], and3p, p. 1199]). Let
R(V) = (K®Ka)k @k V) (2.2.1)

as vector spaces, wheed K 0; is considered as the right-module:d; - a = 0;(a) + ag; for all a € K. Then the action
of G is given byR(p) as follows:

R(P)(9)(1eV):=12p(9)(v), R(P)(9)(d®V):=0 xp(g)(V)

for all g € G andv € V. In the language of matrices, Ay € GL,, corresponds to the action gfe G onV, then the

matrix
5 %)

corresponds to the action gfon P (V). In what follows, theq" iterate ofP is denoted byP”. Moreover, the above
induces the exact sequences:

0 V —— R(V) ——V 0, (2.2.2)

wherel;(v) = 1@ vandri(a® u+bd; ®v) =byv,u,ve V, a b € K. For any integes, we will refer to
PoPo 1. Pi(p) : G— GLy,

to be thes" total prolongation ofp (whereN; is the dimension of the underlying prolonged vector spaak)denote
this representation biyS(p) : G — GLy.. The underlying vector space is denotedd5V ).

It will be convenient to considek as aG-module. For this, Ieﬁ\e/pG denote the differential tensor category of all
A-comodules (not necessarily finite-dimensional), whiah direct limits of finite-dimensionak-comodules by $8,
83.3]. ThenA e Ii?a/pG by Propositior?2.2.3
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2.2.2 Unipotent radical of differential algebraic groups and rextive LDAGs

Definition 2.2.4. [10, Theorem 2] LetG be a linear differential algebraic group defined oikerWe say thaG is
unipotentif one of the following conditions holds:

(i) Gis conjugate to a differential algebraic subgroup of theugid,, of unipotent upper triangular matrices.
(i) G contains no elements of finite order greater than 1.

(i) G has a descending normal sequence of differential algebuhigroups
G=GyDG1D...0CGy={1}.

with G;j/G; 1 isomorphic to a differential algebraic subgroup of the &ideligroupG,.

One can show that a linear differential algebraic gréugdefined ovelK admits a maximal normal unipotent
differential subgroupd9, Thm. 3.10].

Definition 2.2.5. This subgroup is called thenipotent radicabf G and denoted bR, (G). The unipotent radical of a
linear algebraic groupl is also denoted bR,(H).

Definition 2.2.6. [39, Def. 3.12] An LDAGG is calledreductivef its unipotent radical is trivial, that ifR,(G) = {id}.

Remark2.2.7. If G is given as a linear differential algebraic subgroup of sdBhs,, we may consider its Zariski
closureG in GL,, which is an algebraic group scheme defined &vefhen, following the proof 0f39, Thm. 3.10]

Ry(G) =Ry (G)NG.

This implies that, ifG is reductive, therG is reductive. However, in general the Zariski closureRafG) may be
strictly included inR,(G) [39, Ex. 3.17].

2.2.3 Differentially finitely generated groups

As mentioned in the introduction, one motivation for studylinear differential algebraic groups is their use in the
parameterized Picard—Vessiot (PPV) theory. Invge will discuss PPV-extensions of certain fields whose ER\6is
groups satisfy the following property. In this subsectioe,will assume thaK is differentially closed.

Definition 2.2.8. Let G be an LDAG defined ovek. We sayG is differentially finitely generatedr simply aDFGG,
if G(K) contains a finitely generated subgroup that is Kolchin demnseK .

Proposition 2.2.9. If Gis a DFGG, then its identity compone@t is a DFGG.

Proof. The Reidemeister-Schreier Theorem implies that a sulpgoddinite index in a finitely generated group is
finitely generated @8, Cor. 2.7.1]). One can use this fact to construct a proof efahove. Nonetheless, we present a
self-contained proof.

LetF := G/G° andt := |G/G°|. We claim that every sequencetoflements of has a contiguous subsequence
whose product is the identity. To see this,det. . ., a; be a sequence of elementsrafSet

by :=a,bpi=aa,....bi=aa- ... &.

If there arel < j such thaty = b; then
idei_lbj =ajy1°... 8.
If the b; are pairwise distinct, they exhalstand so one of them must be the identity.
Let S= S be a finite set generating a dense subgfoupG. Set
Foi={s|s=s;-...-.5n€ G, 5 €S}.

Thenl o is a Kolchin dense subgroup GF. Applying the above observation concerniagwe see thalt g is generated
by the finite set
Si={s|s=s-...-sn€G°, 5 € Sandm< |G/G°|}. O

Lemma 2.2.10.If H C G]'is a DFGG, thert(H) < 0.



Proof. Letrg be the projection 0B} onto itsith factor. We have that(H) C G, is a DFGG and so, bylfl, Lem. 2.10],
1(T5(H)) < 0. Since
Hcm(H)x...xTp(H) and t(m(H) x...xTHm(H)) <0,

we havet(H) = 0. d
Lemma 2.2.11.1f H C G, is a DFGG, thert(H) < 0.

Proof. Let/A: Gj,— GI" be the homomorphism

01y1 O1yr 02y1 02Yr Omy1 amyr)
Ay, ..y = [ =2, .., 22 UL E IS AR I
O,-%0) ( y1 VT Vi y1 Vi

The image oH under this homomorphism is a DFGG®{" and so has differential type at most 0. The kernel of this
homomorphism restricted td is
(Gm(K®) NH,

which also has type at most 0. Therefarél) < 0. O
Lemma 2.2.12.Let G be a reductive LDAGG is a DFGG if and only ift (Z(G)°) < 0.

Proof. Assume that is a DFGG. By Propositio2.2.9 we can assume th& is Kolchin-connected as well as a
DFGG. From B9, Thm. 4.7], we can assume that= P is a reductive LAG. From the structure of reductive linear
algebraic groups, we know that

P=(PP)-Z(P),

whereZ(P) denotes the centeiP, P) is the commutator subgroup a@dP) N (P, P) is finite. Note also thaZ (P)° is a
torus and thaZ (G) = Z(P) N G. Let

m:P—P/(PP)~Z(P)/[Z(P)N(P.P)].

The image ofG is connected so lies in
n(Z(P)°) ~ G},
for somet. The image is a DFGG and so, by Lemia&.11, must have type at most 0. From the descriptiomaine

sees that
n:Z(G) — Z(G)/[Z(P)n(P.P)] C Z(P)/[Z(P)N (PP)].

SinceZ(P) N (P, P) is finite, we have (Z(G)") < 0.

Now assume that(Z(G)") < 0. [41, Prop. 2.9] implies thaZ(G°) is a DFGG. Therefore, it is enough to show
thatG' = G/Z(G)° is a DFGG.G' is semisimple, and we shall show that any semisimple LDAGO$-&G. Clearly,
it is enough to to show that this is true under the further mggtion thatG' is connected.

Let D be theK-vector space spanned By [13, Thm. 18] implies thaG' = G; -...- G,, where, for each, there
exists a simple LAGH; defined ovefQ and a Lie K-subspaceE; of D such that

Gi=H(K%), K%={ceK|d(c)=0foralldec %}.

Therefore, it suffices to show that, for a simple LAGand a LieK -subspaceE C D, the LDAGH (Kf) is a DFGG.
From [34, Prop. 6 and 7] has aK-basis of commuting derivations = {9}, ...,d; }, which can be extended to a
commuting basigd;,...,d;,} of D. LetN = {0;,,...,0;,}. [14, Lem. 9.3] implies thakK * is differentially closed
as all-differential field. We may considéd (K*) as a LAG over thél-differential fieldK “. The result now follows
from [51, Lem. 2.2]. O

3 Filtrations and gradings of the coordinate ring of an LDAG

In this section, we develop the main technique of the papeations and grading of coordinate rings of LDAGS. ket
be aA-field of characteristic zero, not necessarily differelitielosed. Denote the underlying abstract figléndowed
with the trivial differential structured(k = 0, 1< | < m) by K. The set of natural numbef$,1,2, ...} is denoted by
N.

*A Lie subspaceE C D is a subspace such that, for ahy’ € £, we havedd’ — 0’0 € E.
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3.1 Filtrations of G-modules

Let G be an LDAG andA := K{G} be the corresponding differential Hopf algebra (s&eSR] and §4, §3.2]). Fix a
faithful G-moduleW. Let
¢:K{GLW)} — A (3.1.1)

be the differential epimorphism of differential Hopf algab corresponding to the embeddi®g- GL (W). Set

H:=G,
which is a linear algebraic group. Define
Ao 1= (K[GL(W))) =K [H] (3.1.2)
and, forn > 1,
A, = span {l_ljeJ Bjy; € A‘ Jis afinite sety; € Ay, 8j € O, Zj@ord(ej) < n} ) (3.1.3)

The following shows that the subspadgscC A form a filtration (in the sense 0bp]) of the Hopf algebraA.
Proposition 3.1.1. We have

A:UHGNAH’ An CA!’H—].) (314)
AiAj CA@H, i,j €N, (3.1.5)
A(An) € 3 A KA (3.1.6)

Proof. Relation 8.1.5 follows immediately from§.1.3. SinceK [GL (W)] differentially generateK {GL (W)} and¢
is a differential epimorphisn#y differentially generate8, which implies 8.1.4). Finally, let us prove{.1.9. Consider
the differential Hopf algebra

B:=A®k A,

whered;, 1 < | <m, acts orB as follows:
0 (X®Yy) =0 (X)@y+x@0(y), XYy€eA.
Set .
B, = Ai®KAn—i> nGN
P2

We have
BiBj C Bi4;j and 0/(Bn) CBnhy1, 1L,jeN, neN 1<I<m (3.1.7)

SinceK [GL (W)] is a Hopf subalgebra d€ {GL (W)}, Ay is a Hopf subalgebra d&. In particular,
A(Ao) C Bo. (3.1.8)
SinceA : A— Bis a differential homomorphism, definitiof.(.3 and relations.1.9, (3.1.7) imply
A(A,) C Bp, neN. O

We will call {An}nen theW filtration of A. As the definition ofA,, depends oliV, we will sometimes writed, (W)
for An. By (3.1.6, Ay is a subcomodule dA. If x € A\ Ay, then the relation

X= (e®1d)A(x) (3.1.9)

shows tha\(X) € A® A,. Therefore A, is the largest subcomodule C A such thath\(U) C U @k An. This suggests
the following notation.
ForV € RepG andn € N, letV, denote the largest submodlec V such that

pv(U) c U @ A

Then submoduleg, C V, ne N, form a filtration ofV, which we also call th&V-filtration.



Proposition 3.1.2. For a morphisnf : U — V of G-modules and an € N, we havef (Up) C V,,.

Proof. Follows immediately from the definition of a morphism@&fmodules. O

Note thatJ, c V, andV,NnU c U, for all submodulet) C V € Ifeje/pG. Therefore,

Un=U NV, for every subcomodul&) C V € RepG, (3.1.10)
(UaV),=UpaV, forallU,V € RepG, (3.1.11)
(U, V@) =U V() V(i) CV(i+1) € RepG. (3.1.12)

Proposition 3.1.3. For everyV € Ii?e/pG, we have

pv(Vn) C iv @k Ansi- (3.1.13)

Proof. Let X denote the set of aV € RepG satisfying ¢.1.13. It follows from (3.1.10 and @.1.1) that, if
U,V € X, then every submodule &f ©V belongs toX. If V € RepG, thenV is isomorphic to a submodule of
AdMV by Proposition2.2.3 SinceA € X by Proposition3.1.1, Ob(RepG) C X. For the general case, it remains to

apply 3.1.19. O
Recall that a module is callegbmisimpléf it equals the sum of its simple submodules.

Proposition 3.1.4. Suppose thatV is a semisimplé&-module. Then the LAGH is reductive. IfW is not semisimple,
then it is not semisimple as armodule.

Proof. See B9, Pf. of Thm 4.7]. O

Lemma3.1.5.LetV € Ii?e/pG. If V is semisimple, theW = \,." If W is semisimple, the converse is true.

Proof. By (3.1.1)), it suffices to prove the statement for a simygle RepG. Supposé&/ is simple and/ =V, # V,,_1.
ThenV,,_1 = {0}, and Propositior.1.3implies

pv(V) CV®A. (3.1.14)
HenceV = \V,.
Suppose that/ is semisimple anl¥ =V, € RepG. The latter means3(1.19), that is, the representaition Gfon

V extends to the representaitiontéfonV. But H is reductive by Propositiof.1.4(sinceW is semisimple). Thel
is semisimple as aH-module. Again, by Propositiod.1.4 theG-moduleV is semisimple. O

Corollary 3.1.6. If W is semisimple, theAy is the sum of all simple subcomodulesffTherefore, iU,V are faithful
semisimpleG-modules, then the - andV -filtrations of A coincide.

Proof. By Lemma3.1.5 if Z C Ais simple, therZ = Z,. Hence, by Propositiof.1.2 Z is contained irAy. Moreover,
by Lemma3.1.5 Ag is the sum of all its simple submodules. O

Corollary 3.1.7. The LDAG G is connected if and only if the LAG is connected.

Proof. If Gis Kolchin connected and
A=K{G} =K{GL(W)}/p =K{X;,1/det}/p,
then the differential idea is prime B, p. 895]. Since, by, p. 897],
Ao =K[H] =K[GL(W)]/(pNK[GL(W)]) = K[X;j,1/def/(p NK[X;j, 1/ det)

and the ideap NK[X;j,1/def is prime,H is Zariski connected.

TLoosely speaking, this means that all completely reducigeesentations of an LDAG are polynomial. This was alseguian [39, Theorem 3.3].
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Setl := G/G°, which is finite. Denote the quotient map by
m:G—T.

Sincer is finite and chaK = 0,B:=K{I'} € Repl is semisimple. TheB has a structure of a semisimpgemodule
via Tt Therefore, by Lemma.1.5 B = By. Sincert' is a homomorphism oB-modules, by Propositio.1.2

' (B) = 10'(Bg) C Ag = K[H].
This means that is a restriction of an epimorphiskh — I, which finishes the proof. O

Proposition 3.1.8. Suppose that the LDAG is connected. Ik € A, y € Aj andxy € A, j_1, then eithex € A_; or
ye Aj,l.

Proof. We need to show that the graded algebra

grA =P A /A1

neN

is an integral domain. Note thatAyis a differential algebra via

0 (X+An1) :=01(X) +An, XEA,

Furthermore, to a homomorphisit B — C of filtered algebras such thatB,,) C C,, n € N, there corresponds the
homomorphism
gv:grB—grC, x+Bp1—Vv(X)+Ch1, XEB.

Let us identifyGL (W) with GL 4, d := dimW, and set
B:= Q{Xij ) 1/ det}7

the coordinate ring o6EL 4 overQ. The algebrd is graded by

Bn:i= spar@{ﬂj@ejyj ’J is a finite sety; € Q[GLg4], 6; € O, ziejord(e,—) = n}, neN.

TheW-filtration of B is then associated with this grading:
n —
B, = PB.
i=0

For a field extensiof C L, set B := B®g L, a Hopf algebra ovel. Then the algebrgB is graded by B, := B, ® L.
Let| stand for the Hopf ideal gfB definingG C GL 4. Forx € B, letx, denote the highest degree component of

X with respect to the gradin{kEn}. Leti denote th& -span of allx,, x € I. Similarly to the proof of Propositiofi. 1.1,

we conclude that, for alt € N,

A(By) iEi 9 B, (3.1.15)

SinceA(l) C 1 ®« B+ B®k |, inclusion ¢.1.19 implies that, for alln € N andx € | N By,

n-1 n
| @k Bn+Bn @k | 2 A(X) = A(X—xp) +A(Xp) € ( Bi ®« Bnil) &> ( Bi @« Eni) .

Hence, by induction, one has 3 o 3
A(Xh) cl®kBy+Bh®k! Cl®kB+B®kl.

We haveS(l) C |, whereS: B — B is the antipode. Moreover, sin&By) = By andSis differential,
S(Bn) C By, neN.

Hence,
S(%n) = S(Xh — X+ X) = S(Xn — X) + S(X) € (Bn_1+1)N By,
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which implies that .
S(i) c .

Therefore| is a Hopf ideal of B (not necessarily differential!). Consider the algebra map

a: KB& ngBg—rq)> grA,
wheref is defined by the sections B
kBn— kBn/kBn-1, NeN,
and¢ is given by 8.1.1). For everyx € |, letn € N be such that, € B,. Then

O(X) =0 (X —X+X) =0 (X —X) +O(X) = d(Xn —X) +0€ Ay 1.

Hence,
| C Kera.

On the other hand, let(x) = 0. Then there exists< N such that, for all, 0< i < n, if X, € Bj satisfyB(X) =X+ .. +Xn,
then

d(xi) € A1,
which implies that there exisig € | N B; such that
X —VYi € Bi_1.
Therefore31(x) € I, implying that )
Kera CI.

Thus,a induces a Hopf algebra structure omgrConsider the identity map
V:kB—kB
of Hopf algebras. Since B _
V(R Bﬂ) =K Bn)
J:= \rl(D is a Hopf ideal of; B. Moreover, it is differential, since
0 (Xh) = (a|X)h7 Xe KB.

Therefore, gh has a structure of a differential Hopf algebra olerFurthermore it is differentially generated by the
Hopf algebraA, C grA. In other words, gk is isomorphic to the coordinate algebra of an LD&XoverK) dense in
H. By Corollary3.1.7, G is connected. Hence, &has no zero divisors. O

3.2 Subalgebras generated by-filtrations

Fornc N, let A, C A denote the subalgebra generatedfgy SinceA, is a subcoalgebra @, it follows thatA,
is a Hopf subalgebra 4. Note that{A<n>, ne N} forms a filtration of the vector spade We will prove the result
analogous to Propositidgh 1.8

Proposition 3.2.1. Suppose thab is connected. Ik € A, Yy € Apny1), andxy € Ay, theny € Ay,
Proof. Let Gy, n € N, stand for the LAG with the (finitely generated) Hopf algelg . SinceA, C A andAis

an integral domaini, is an integral domain. LeB,,1 — G be the epimorphism of LAGs that corresponds to the
embedding\,) C A1) andK be its kernel. Then we have

An) = Al(<n+1)'

DenoteA,, 1) by B. We have
xeBX, yeB, andxye BX.

Let us consider this relation in QUBt B. We have
y € (QuotB)* NB = BX.
ThUS,y € A(n) |

*In general, ifA is a filtered Hopf algebra, thenAycan be given (in a natural way) a structure of a graded Hoftaly see, e. g.5p, Ch. 11].
$This map is differential if and only iK is constant.
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Forst e N, set
Ast i=AsNAy).

SinceA, C A, Ast = Asif s<t. Also, Asp = Ao for all s€ Z .. Therefore, one may think &; as a filtration of the
G-moduleV, where the indices are ordered by the following pattern:

(0,00=0<(1,1)=1<(2,1)<(2,2)=2<(3,1)<(3,2) <....T (3.2.1)

We also have

Ag tAst, C A5l+92,max{t1,tz} (3.2.2)
Theorem 3.2.2.Letx € A, 1 <i <r,andx:= XX -...-% € Ast. Then, foralli, 1< i <r, there exiss, t; € N such
thatx € Asy, and
zis <s and maxt} <t.

Proof. It suffices to consider only the case- 2. Then, Proposition3.1.8and3.2.1complete the proof. O

ForV e Ifeje/pG andn € N, letV,, denote the largest submodweof V such thapy (U) C U ®A(n).” Similarly,
we definévgy, st € N,

For a reductive LDAGG and its coordinate ring = K{G}, let { A, }, .y denote thé&V-filtration corresponding to
an arbitrary faithful semisimpl&-moduleW. This filtration does not depend on the choic&\bby Corollary3.1.6

Definition 3.2.3. If ¢: G — L is a homomorphism of LDAGs and € RepL, thenginduces the structure of@module
onV. ThisG-module will be denoted byV.

Proposition 3.2.4. Let ¢: G — L be a homomorphism of reductive LDAGs. Then
¢ (Bst) CAst, steN, (3.2.3)

whereA := K{G} andB := K{L}. Suppose that Kegis finite and the index of(G) in L is finite. Then, for every

V € RepL,
V=Vs & oV =(cV)y, SteN. (3.2.4)

Proof. Applying Lemma3.1.5toV := By and Propositior3.1.2to ¢, we obtaing*(By) C Ag. Sincey" is a differential
homomorphism, relatior3(2.3 follows.

Let us prove the second statement of the Proposition. Netetlie implication=- of (3.2.4) follows directly
from (3.2.3. We will prove the implication=. It suffices to consider two cases:

(i) Gisconnected angis injective,
(i) Gisconnected angis surjective,

which follows from the commutative diagram

G° Plee L°

Lo

G — %L

Moreover, by 8.1.129 and Propositior?.2.3 it suffices to consider the case of finite-dimensioviaBy the same
proposition, there is an embeddinglemodules

n:Vv—B d:=dmv.

ThengV is isomorphic tog;n(V), whereg; : BY — A? is the application ofp componentwise. IV = (GV)ss» then
@n(V) C Ad,. Hence, settiny (i) to be the projection afi(V) to thei component 0BY, we concludep* (V (i) C At
foralli, 1< i < d. If we show that this implie¥ (i) C B, we are done. So, we will show thatMfC B, then

¢ V)= (V)gy =V =Vsr.

Note thatt = 0 impliess= 0.
lif v = A, thenVn) = A, which follows from @.1.9.
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Case (i) Let us identifyG with L° via @. Supposd. € GL(U), U is a semisimplé.-module. Letg; = 1,...,g: € L
be representatives of the coskfd °. Letl(j) € B, 1< j <, be the differential ideal of functions vanishing on alll
connected components bfbutg;L°. We have

B=EPI() and 1(j))=gl(1).
j=1

The G-modulesl :=1(1) andA are isomorphic, and the projecti@+— | corresponds to the restirction map The
G-module structure oh(j) is obtained by the twist by conjugati@®— G, g+— gj‘lggj. Since a conjugation preserves
theU -filtration of B, we conclude

gj(In) = (gjD)n.

By Corollary 3.1.7, Zariski closures of connected componentsLof: GL(U) are connected components bf
Therefore,

r
Bo = (P (o).
j=1
ThenBgyN I = lp. Sincel is a differential idealB, Nl = |, foralln € N. Let
veVn\ Vot (3.2.5)

Then, for each, 1 <i <r, there exists(j) € I(]) such that

v:;v(j).

By (3.2.9, there existg, 1< j <r, such thaw(j) € V;,\ V,_1. Set
= gj‘lvevn\vn_l.

Then, by the above,
@' (W) € An\Ana.

We conclude that, for alh € N,
eNV)=¢V)y, = V=V,

Similarly, one can show that
PNV)=0V)n = V=Vp.

SinceVsy = VsNVy), this finishes the proof of Case (i).
Case (ii) ConsideB as a subalgebra éfvia ¢*. It suffices to show

AgiNB C Bs;. (3.2.6)

We haveB C A", wherel := Ker@.
Let us show thaB, = Aj). For this, conside@ andL as differential algebraic Zariski dense subgroups of régeic
LAGs. SinceBy C Ag, the mapp extends to an epimorphism

¢0:G— L.
Sincell =T, I is normal inG. Hence g factors through the epimorphism
u:G/Ir —L.

If K is the image of5 in the quotientG/T, thenp(K) = L andp is an isomorphism oK. This means that* extends
to an isomorphism oB = K{L} ontoK{K}. SinceK is reductive, the isomorphism preseves the grading by t&e fir
part of the proposition. In particulge; (By) = K{K}o. AsK is dence inG/I", we obtain:

Bo =K [L] =K [G/r] =K[G] = A},
Let us consider the following sets

Asp:={xe (As)" |30#be By : bxeBg}, steN.
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These ar®y-submodules oA (via multiplication) satisfying$.2.2, as one can check. Moreover, for everg <| <m,
0 (Ast> - As+1,t+1~ (3.2.7)
Indeed, let € As;, b € By, andbx € Bs;. Then

b20) (x) = b(d) (bX) — X8 (b)) = bd; (bX) — (bX)3; (b) € Be; 1441.

Hence, B
0i1(X) € Asi 141
We have .
Bst C Ast C (Agy)".
We will show that B
A = (As)". (3.2.8)

This will finish the proof as follows. Suppose that

x€BNAg C (As)".

By (3.2.9), there existd € By such thabx € Bs;. Then, Theoren3.2.2impliesx € Bs;. We conclude&.2.6).

Now, let us prove.2.9 by induction ors, the cases= 0 being already considered above. Suppssel. Since
I is a finite normal subgroup of the connected gr@yjit is commutative’, Lem. V.22.1]. Therefore, evefy-module
has a basis consisting of semi-invariant vectors, thapasnsingl -invariantK -lines. Therefore, since a finite subset
of the algebrady belongs to a finite-dimensional subcomodule &gds finitely generated, one can chodseemi-
invariant generatorX := {xa,...,% } C Ag of A. Note thatX differentially generateé. Sincerl is finite, its scalar
action is given by algebraic numbers, which are constarit keispect to the derivations Kf. Hence, the actions of
and®© onA commute, and an arbitrary product of elements of the foxm6 € O, is I'-semi-invariant.

Let0#£x¢€ (Asvt)r. We will show thatx € Ag;. Since a sum of -semi-invariant elements is invariant if and only
if each of them is invariant, it suffices to consider the case

X= I_leJ Gjyj, ej S @, (329)

wherel is a finite set ang; € X C Ag. Moreover, by Theorer.2.2 (3.2.9 can be rewritten to satisfy
> ;010 <s and  maxe, {ordd; } <t.
Sincey; and®jy; have the samE-weights,
y:=[1;eYi € (A0)" =Bo.
Setg:= |[|. We have
Y ix=TT,0% 0ii) € (A"
and, for everyj € J,
— r
Y0i(¥1) € (Aown,)
If ord®; < sforall j € J, then, by induction,
y?_lei (Yi) € 'E‘ord(?j,ordej

for all j € J. This implies .
Yo Ix € Ag.

Hencex € As;.
Suppose that there isjac J such that orfl; = s. Let us seB := 6;. Then, there exist 1< i <r, anda e Ay such
that
x=ab(x) € AL.

It follows that
ax € A = By.
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We will show thatx € Ass =: As. There exist, 1< 1 < m, andd € ©, ordd = s— 1, such that
0=10,0.

If s=1, then® =0, and y
xx = (ax) (¥ 9ix) = (ax)ar () /g € By C Ay,

sincexig € Bg. Thereforex € A. Suppose that > 2. We have
x=0(ad(x)) — 81 (2)8(x).

Sinceu :=af(x) € (As_1)", by inductionu € As_1. Hence,

6| (U) S AS

Sinces > 2, we have
l1=o0rdd, <s and ord<s.

Since -
vi=0,(a)8(x) = x— 0 (u) € AL,

by the above argument (for dealing with the caseBprdsfor all j € J), ve As. Therefore,

Xx=0,(u)—veAs O

4  Filtrations of G-modules in reductive case

In this section, we show our main result, the bounds for difitial representations of semisimple LDAGs
(Theorem4.2.1) and reductive LDAGs witht(Z(G®)) < 0 (Theorem4.3.4 note that Lemm&.2.12implies that if

K is differentially closed then a reductive DFGG has this prty). In particular, we show that, & is a semisimple
LDAG, W a faithful semisimplés-module and/ € RepG, then theV-filtration of V coincides with its socle filtration.

4.1 Socle of aG-module

Let G be a LDAG. Given aG-moduleV, its soclesocV is the sum of all simple submodules \6f The ascending
filtration {soC'V }ney ONV is defined by

sod'V/sod 'V =soc(V/sod V), where solV := {0} and sotV :=socV.

Proposition 4.1.1. Letn € N.

@) If ¢:V — W is ahomomorphism d&-modules, then

d(soc'V) C soc'W. (4.1.1)

(i) If U,V Cc W areG-modules andV =U +V, then

soc'W = soc'U +soc'V. (4.1.2)

(iii) If V € RepG, then ‘ _ _ _
soc (Pf-...-Pm(V)) C P -...-P(soc'V). (4.1.3)

Proof. Letd :V — W be a homomorphism d&-modules. Since the image of a simple module is simple,
d(socV) C socW.

Suppose by induction that
¢ (soc V) C sod tW.
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SetV :=V/sod 1V, W :=W/sod 'W. We have the commutative diagram:

v w

b

— W,

wherery, andTyy are the quotient maps. Hence,
d(sodV) C 15, 0T (S0CV) = T8, 'd(socV) C 1%, SOGW = sod'W,

where we usetF(soc\7) C SOAW. Let us prove4.1.9. LetU,V c W beG-modules. It follows immediately from the
definition of the socle that
soqU +V) = sodJ + socV.

Note that, by 4.1.7),V Nnso¢'W = soc'V. We have
W/socd'W = (U/soc'W) + (V/soc'W) = (U /soc'U) + (V/soc'V).

Applying soc, we obtain statement.(.2).
In order to prove4.1.3, it suffices to do it only foilR (V), since the other cases would follow by induction. Let

w:R(\V)—>V
be the natural epimorphism frorf.2.2. We havert }(U) = B (U) +V for all submodules) c V. Hence, by 4.1.1),
sod'R (V) c Tt (sodV) = P(sod'V) +V.
Since sotsod' M = soc'M for an arbitrary modulé/,
so¢'R (V) =soc'soc'R (V) C soc'(R(soc'V)+V) C B(soc'V) +soc'V = B(soc'V). O

Proposition 4.1.2. Suppose that
soqU ®V) = (sodJ) @ (socV)

forallU,V € RepG. Then

sod(U®V) = ZI (sodU) ® (soc V) (4.1.4)

forallU,V € RepG andn € N.
Proof. For aG-moduleV, denote sotV by V", n € N. Suppose by induction that (.4 holds for alln < p and
U,V € RepG. Set
P .
S =5SU,V):=S U @vF

Forall 1<i < p, we have
FI — (Ui®vp+2—i)/(sjm (Ui®vp+2—i)) _ (UI ®Vp+2—i)/(ui—l®vp+2—i +Ui®vp+l—i).

Hence, o _ _
R (U0 @ (VP2 v,

By the hypothesis;; is semisimple. Hence, so is

p
S/S =Y FcUV)/S,
i=
By the inductive hypothesis, we conclude

sod@ (U ®V) D Sy1.

Now, we prove the other inclusion. Let _
g:U—U:=U/ul
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be the quotient map. Note the commutative diagram

UV —— X:=U®cV)/S

Jos 1
UsV — X:= (UV)/S1(0,V),
wheremtandrtare the quotient maps. By the inductive hypothesis, we have
sod (U V) =mt(X}) c (Geld)(Th)(socX) = (B@I1d) (sod (U V)) C Spia,
sincey*(so¢U) = sod+1U. O

It is convenient sometimes to consider the Zariski closdref G C GL (W) as an LDAG. To distinguish the
structures, let us denote the latter§™. ThenRepHY" is identified with a subcategory &epG.

Lemma 4.1.3. If H is reductive, then4.1.4) holds for allU,V € RepHY andn € N.

Proof. By Propositiont.1.2 we only need to prove the formula for= 1. SinceAZ = A, we have by Lemma.1.5
(sodJ) ® (soV) =Ug®@ Vo C (URV),=soqU ®V).
Let us prove the other inclusion. Since cKa& 0,
soqU ®k L) = (sodJ) ®k L
for all differential field extensionk O K by [6, §7]. Therefore, without loss of generality, we will assuthatK is
algebraically closed. Moreover, by Lemrid .5and Propositior$.2.4 anHY-module is semisimple if and only if it
is semisimple as afH d'ff)o-module. Therefore, it suffices to consider only the caseohected. Since a connected
reductive group over an algebraically closed field is defioeer Q and the defining equations of9™ are of order
zero, thew-filtration of B := K {Hd'ﬁ} is associated with a grading (see proof of Proposifidng. In particular, the
suml of all grading components b, = K[H] is an ideal oB. We have
B=By®l.
SinceB is an integral domain, it follows that, X y € B andxy € By, thenx,y € By. Hence,
(U ®V)o C Ug® Vo,

which finishes the proof. O

Proposition 4.1.4. For allV € Ii?pG,
V, C sodt1v.

Proof. We will use induction om € N, with the casan = 0 being done by Lemma.1.5 Suppose > 1 and
Vi_1 C soc'V.
We need to show that tH@-module
W = (Vh+soc'V)/soc'V ~V,/(V,Nsoc'V)
is semisimple. But the latter is isomorphic to a quotientat= V, /V;,_1, since
V,_1 C Vansod'V.

By Proposition3.1.3 U = Ug. Finally, Lemma3.1.5implies thatU, henceW, is semisimple. O
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4.2 Main result for semisimple LDAGs

Theorem 4.2.1.1f G° is semisimple, then, for alf € Ii?a/pG andn € N,

V, = sodt1v.

Proof. By Proposition4.1.4 it suffices to prove that, for alf € RepG andn € N,
sod" 1V c V. (4.2.1)

Let X C Ob(RepG) denote the family of aV satisfying ¢.2.1) for all n € N. We have, by Lemma.1.5V € X for all
semisimpleV. Suppose tha?,W € RepHY c RepG belong toX. ThenV &W andV @ W belong toX. Indeed, by
Propositions3.1.3and4.1.1and Lemmat.1.3

sodtH(V aW) = sod" 1V @ sod W c VoW, = (V W),

and
n n

sod (VW) = Z)(sod*lv) ® (sod™ W) € TVI@Whi C (VaW),,.
= 1=
Similarly, Proposition4.1.1 and @.1.1Q imply that, if V € X, then all possible submodules and differential
prolongations oV belong toX. SinceRepG is differentially generated by a semisimples RepH, it remains only
to check the following. IV € RepG satisfies 4.2.1), then so do the dud" and a quotien¥ /U, whereU € RepG.
SinceG° is semisimple, 13, Thm. 18] implies thaG° (), U a differentially closed field containintg, is differentially
isomorphic to a group of the for®, - G, -...- G; where, for each, there is an algebraically closed fietd, such
that G; is differentially isomorphic to thetl; points of a simple algebraic groug. SinceH; = [H;,Hi], we have
G° = [G°,G°] and so we must have® C SL(V). The groupSL(V) acts onV®9mV and has a nontrivial invariant
element corresponding to the determinant. We concludeftrat

r:=1|G/G’|dimV,

theSL(V)-moduleV®" has a nontriviaG-invariant element. LeE C GL (V) be the group generated B} (V) andG.
Then the space

Home (V¥ V1) ~ (ven)E (4.2.2)

is nontrivial. SinceV" is a simpleE-module, this means that there exists an embeddings V'~ of E-modules,
hence, ofG-modules. Theiv" € X. Finally, since(V/U)" embeds intd/", it belongs toX. Then its duaV /U € X.
Hence X = Ob(RepG). O

4.3 Reductive case

Proposition 4.3.1.Let SandT be reductive LDAGs an@ :=Sx T. ForV € RepG, if sV = (V) , andrV = (1V)
thenV = Vs s, maxu. 1.} (See Definitiors.2.3.

SACY

Proof. We need to show that = Vs, s, andV = V(maxt, 1,})- By Propositior2.2.3 V embeds into th&-module

dimV

U:= @A(i),

whereA(i) ;== A= B®x C, whereB := K{S} andC := K{T}. We will identify V with its image inU. Let E’?, jeN,
be subspaces & such that _
Bj = ijl@ Bj.

Similarly, we define subspac€s c C, r € N. We have
A= @” B] ®k Cr,

as vector spaces. Let

M, 1U = Al) =A—Bjak G
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denote the composition of the projections. Then, the canditV = (V) andsV = (sV)s, mean tha’n‘jr (V) ={0}

if | > s 0rr >s,. In particularV belongs to
dimVv

@ Al)s +s,-
i=1
HenceV =V s,. Similarly, using
(B&C)m) = Bn @Cp),
one shows/ = Vimaxt, t,))- O

Proposition 4.3.2.[39, Pf. of Lem. 4.5] LetG be a reductive LDAGS the differential commutator subgroup Gf
(that is, the Kolchin-closure of the commutator subgrou@9fandT the identity component of the center@f. The
LDAG Sis semisimple and the multiplication map

H:SXT — G°, (s,t) — st,
is an epimorphism of LDAGs with a finite kernel.

Let Repy, G denote the tensor subcategory RépG generated byP"(W) (the n" total prolongation). The
following Proposition shows th&ep,) G does not depend on the choicevif

Proposition 4.3.3. For allV € RepG, V € Repy, Gif and only if V = V().
Proof. Suppos® € Rep, G. Since the matrix entries (W) belong toA,, we have/ =Vy,). Conversely, suppose

V =Vn. ThenV is a representation of the LAG,) whose Hopf algebra i&, . SinceP"(W) is a faithful A-comodule,
itis a faithful A,)-comodule. HenceRepG, is generated by"(W). O

If 1(G) <0, then, by 1, §3.2.1], there exists € N such that
RepG = (Rep, G) .

The smallest such will be denoted by or(G). For aG-moduleV, let ££(V) denote the length of the socle filtration of
V. In particular, we have
(V) < dimV.

For aG-moduleV, let £¢(V) denote the length of the socle filtration\df In particular, we have
(V) < dimV.

Theorem 4.3.4. Let G be a reductive LDAG wittt(Z(G)°) < 0 andT := Z(G°)°. For allV € RepG, we have
V € Rep, G, where
n=max{¢/\V)—1,ordT)}. (4.3.1)

Proof. LetV € RepG. By Propositiont.3.3 we need to show that =V, wherenis given by ¢.3.1). SetG:=SxT,
whereS C G is the differential commutator subgroup@f. The multiplication map: G — G (see Propositio#.3.29
induces the structure of@-module on the spadé, which we will denoté/. By Theorem4.2.],

8\7 - S\7r - S\7(r)7

where B
r=200 (SV) —1=20(sV) -1

It follows from Propostior8.2.4(formula 3.2.3) and Lemma3.1.5that, ifW € RepG is semisimple, thegWV € RepS
is semisimple. Hence,
(V) < UV).

Therefore,
Next, sincet(T) < 0, we have
RepT =Repy T, t:=ord(T).
By Propositiorv.3.3 1V = 1V). Propositiont.3. limplies
V =Vimaxstp) = Vin-
Now, applying PropositioB.2.4to @:= |, we obtainV = V. O
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The following Proposition suggests an algorithm to find(@rd

Proposition 4.3.5. Let G C GL (W) be a reductive LDAG with (Z(G)®) < 0, where theG-moduleW is semisimple.
SetT :=Z(G°)° andH := G C GL(W). Let
p:H—GL(U)

be an algebraic representation with Igee [H°,H°]. Then ordT) is the minimal numbet such that the differential
tensor category generated gy € RepG coincides with the tensor category generatedligU ) € RepG.

Proof. We havep(G) =p(T) and KepNT is finite. Propositions.2.4and4.3.3finish the proof. O

5 Computing parameterized differential Galois group

In this section, we show how the main results of the paper eaagplied to constructing algorithms that compute
the maximal reductive quotient of a parameterized diffeatiGalois group and decide if a parameterized Galois is
reductive.

5.1 Linear differential equations with parameters and their Galois theory

In this section, we will briefly recall the parameterizedeliéntial Galois theory of linear differential equatioatso
known as the parameterized Picard—\Vessiot (PPV) théafly [Let K be aA’ = {0,04, ...,0m}-field and

Y = AY, AcMy(K) (5.1.1)

a linear differential equation (with respectdpoverK. A parameterized Picard-Vessiot extension (PPV-extension)
of K associated with51.1) is aA'-field F © K such that there existszac GL,(F) satisfyingdZ = AZ, F = K9, and
F is generated ovef as a/\'-field by the entries oZ (i.e.,F = K(Z)).

The fieldK? is aA = {0,,...,0,}-field and, if it is differentially closed, a PPV-extensiossaciated with¥.1.1)
always exists and is unique up t&aK-isomorphism {4, Prop. 9.6]. Moreover, iK? is relatively differentially closed
in K, thenF exists as well 20, Thm 2.5] (although it may not be unique). Some other situsticoncerning the
existence oK have been also treated ifd.

If F =K(Z) is a PPV-extension df, one defines thparameterized Picard-Vessiot Galois group (PPV-Galois
group)of F overK to be

G:={0:F — F|ois afield automorphisngd = &c for all 5 € A’, ando(a) = a, a€ K}.

For anyo € G, one can show that there exists a mafak € GL, (K?) such that(Z) = Z[o]; and the maw — [0]z

is an isomorphism o6 onto a differential algebraic subgroup (with resped}of GL (K").
One can also develop the PPV-theory in the language of medalénite-dimensional vector spadé over the
N -field K together with a map : M — M is called aparameterized differential moduie

o(m+my) =0(m)+0d(mp) and d(amy) =0(a)my +ad(m), m,meM, acK.

Let {es,...,e} be aK-basis ofM anda; € K be such thab(e) = —y;ajej;, 1 <i<n. Asin [46, §1.2], for
V=Vi€ +...+ V&,
Vi1 Vi
oV)=0 <= a|:|[=A[:], A=(a)j1
Vn Vn

Therefore, once we have selected a basis, we can associagardifferential equation of the fornd (L.1) with M.
Conversely, given such an equation, we define a map

0:K"—K" o)==} &g, A= (@)

This make" a parameterized differential module. The collection obpaeterized differential modules ou¢iforms

an abelian tensor category. In this category, one can définedtion of prolongatioM — B (M) similar to the notion
of prolongation of a group action as ia.2.1). For example, iDY = AY is the differential equation associated with the
moduleM, then (with respect to a suitable basis) the equation assatwithR (M) is

(A 3A
ov=(5 %)
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Furthermore, iZ is a solution matrix obY = AY, then

Z 0Z
0 Zz
satisfies this latter equation. Similar to f&total prolongation of a representation, we definesthéotal prolongation

PS(M) of a module Mas
PS(M) =PiP5-...- Pa(M).

If F is a PPV-extension foi5(1.1), one can define K°-vector space
w(M) :=Ker(d:M®xF - Mk F).

The correspondendd — w(M) induces a functow (called a differential fiber functor) from the category offeliential
modules to the category of finite-dimensional vector spavesk? carryingP’s into theP’s (see R0, Defs. 4.9, 4.22],
[45, Def. 2], [29, Def. 4.2.7], 8, Def. 4.12] for more formal definitions). Moreover,

(Repg, forget) = (<P11 P i, i > O>®,oo) (5.1.2)

as differential tensor categorie®) Thms. 4.27,5.1]. This equivalence will be further usedhia test of the paper to
help explain the algorithms.

In 85.3, we shall restrict ourselves to PPV-extensions of certpatial fields. We now describe these fields and
give some further properties of the PPV-theory over thesdsfieetK (x) be thedA! = {09, 04, ...,0m}-differential field
defined as follows:

(i) K is a differentially closed field with derivatiods= {01, ...,0m},
(i) X is transcendental ovét, and (5.1.3)
(iii) 0i(x)=0,i=1,...,m0(x) =1andd(a) =0 forallac K.

When one further restricts, Propositions.1.1characterizes the LDAGSs that appear as PPV-Galois grougrssoxch
fields. We say thaK is auniversal differential fieldf, for any differential fieldkg C K differentially finitely generated
overQ and any differential field; D kg differentially finitely generated ove, there is a differentigty-isomorphism
of ky into K ([33, Ch.III,87]). Note that a universal differential field isffé@irentially closed.

Proposition 5.1.1(cf. [42], [18]). LetK be a universal-field andK (x) satisfy conditions¥.1.3. An LDAG Gis a
parameterized differential Galois group owe(x) if and only if G is a DFGG.

Assuming thaK is only differentially closed, one still has

Corollary 5.1.2. LetK(x) satisfy conditions®.1.3. If G is reductive and is a parameterized differential Galoisigro
overK(x), thent(Z(G®)) < 0.

Proof. Let L be a PPV-extension df (x) with parameterized differential Galois gro@and let be a universal
differential field containind< (such a field exists33, Ch.I11,87]). SinceK is a fortiori algebraically closed?l @k L
is a domain whose quotient field we denote Dil.. One sees that thA-constantsC of UL are U. We may
identify the quotient fieldU(x) of U®kK(x) with a subfield of UL, and one sees thatU is a PPV-extension
of U(x). Furthermore, the parameterized differential Galois groti ZZL over U(x) is G(U) (see also 40, §8]).
Propositior5.1.1implies thatG () is a DFGG. Lemma.2.12implies that

tr. deg, U(Z(G®)°) < oo.

SinceG° is defined oveK andK is algebraically closed, tdeg, K (Z(G°)°) < . Thereforeg(Z(G°)) < 0. O

5.2 Equivalent statements of reductivity

In this section, we give a characterization of parametdriiifierential modules whose PPV-Galois groups are redeccti
LDAGs which will be used in §.3to construct the main algorithms. Given a parameterizddreifitial moduleM and
its PPV-extension, leB be its PPV-Galois group. Recall a construction of the “drejgart” of M, denoted bMyiag,
which induces45] a differential representation

Pdiag: G — GL (w(Mdiag))a
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wherew is the functor of solutions. IM is irreducible, we seMgiag = M. Otherwise, ifN is a maximal differential
submodule oM, we set

SinceM is finite dimensional and did < dimM, Mgag is well-defined above. Another descriptionMfjiag is: let
M=MyDM;D...OM, ={0} (5.2.1)
be a complete flag of differential submodules, thaMs,; /M; are irreducible. We then let
r
Mdiag = @ Mi—l/Mi-
i=i

A version of the Jordan-Holder Theorem implies thial,gis unique up to isomorphism. Note thdg;gis a completely
reducible differential module. The complete fl&gA. 1) corresponds to a differential equation in block uppeniaar
form

A L
0 A
oY = : : : : Y, (5.2.2)
o ... 0 A
o ... 0 0 A

where, for each matri®;, the differential module correspondingd¥ = A;Y is irreducible. The differential module
Mgiag COrresponds to the block diagonal equation

A0 ... ... 0
0O A; O ... O
oY = : : : : ; Y. (5.2.3)
o ... 0 A O
O ... 0 0 A

Furthermore, given a complete flag Z.1), we can identify the solution space M in the following way. LetvV
be the solution space & and
V=V%>ViD...0V,={0} (5.2.4)

be a complete flag of spaces\wiwhere eacly; is the solution space dfl;. Note that each; is aG-submodule o¥/
and that alV; /Vi1 are simpleG-modules. One then sees that

r
Vdiag = @\/Ifl/\/l .
i=1

Proposition 5.2.1. Let
H:G—G/Ry(G) = GC GL(w(M))

be the morphisms (of LDAGS) corresponding to a Levi decoritjoosof G. Thenpgiag = .

Proof. Sincepgiagis completely reduciblen(Mgiag) is @ completely reduciblpgiag(G)-module. Thereforepgiag(G)
is a reductive linear algebraic groupd Ch. 2]. Hence,

Ry (G) C Kerpgiag,

wherepgiag is considered as a map fro@ On the other hand, by definition, Kggiag consists of unipotent elements
only. Therefore, since K@xjiagis @ normal subgroup @y and connected by, Cor. 8.5],

Kerpgiag= Ru (G). (5.2.5)

Since all Levi subgroups d& are conjugate (by an element Bf, (Gu)), (5.2.9 implies thatpgiag is equivalent to
W O



22

Corollary 5.2.2. In the notation of Propositiof.2.], pgiag iS faithful if and only if
G— G/Ry(G) (5.2.6)
is injective.

Proof. Sincepgiag = W by Proposition5.2.], faithfulness ofpgiag is equivalent to that ofi, which is precisely the
injectivity of (5.2.9. O

Proposition 5.2.3. The following statements are equivalent:
(i) Pdiag s faithful,
(i) Gis areductive LDAG,

(iii) there existsg > 0 such that
M € (PY(Mdiag))., - (5.2.7)

Proof. (i) implies (ii) by [44, Prop. 2] and 45, Cor. 3 and 4]. If a differential representatiprof the LDAG G is
not faithful, so are the objects in the categ@Rf(p)),, for all g > 0. Using the equivalence of neutral differential
Tannakian categories from$, Thm. 2], this shows thati() implies ().

If paiag is faithful, thenG is reductive by the first part of the proof &9, Thm. 4.7], showing that Y implies (i).
Suppose now thab is a reductive LDAG. Sinc®, (G) NG is a connected normal unipotent differential algebraic
subgroup ofG, it is equal to{id}. Thus, £.2.6 is injective and, by Corollar$.2.2 (ii) implies (). O

5.3 Algorithm

In this section, we will assume thit(x) satisfies conditions5(1.3 and furthermore tha& is computable, that is, one
can effectively carry out the field operations and effedyivapply the derivations. We will describe an algorithm for
calculating the maximal reductive quotieBf R,(G) of the PPV- Galois groufs of anydY = AY, A € GLy(K (X))
and an algorithm to decide @ is reductive, that is, i equals this maximal reductive quotient.

5.3.1 Ancillary Algorithms.

We begin by describing algorithms to solve the followingldems which arise in our two main algorithms.

(A). LetK be a computable algebraically closed fieldiHGL (K) a reductive LAG defined over K. Given the defining
equations for H, find defining equations fof ldnd Z(H°) as well as defining equations for normal simple algebraic
groups H, ..., H, of H° such that the homomorphism

T Hp X .o x Hpx Z(H®) — H°

is surjective with a finite kerng]19] gives algorithms for finding Grobner bases of the radi¢al polynomial ideal and
of the prime ideals appearing in a minimal decompositiorhf ideal. Therefore, one can find the defining equations
of H°. Elimination properties of Grobner bases allow one to cotap

Z(H?) = {heH"|ghg* =hforallge H}.

We may writeH° = S-Z(H°) whereS= [H°,H°] is semisimple. A theorem of Reé7] states that every element of a
connected semisimple algebraic group is a commutator, so

S= {[hl,hz] | hl,hz S HO}

Using the elimination property of Grobner bases, we seedh@can compute defining equations e know that
S=H;-...-H, for some simple algebraic groupt. We now will find theH;. Given the defining ideal of S, the Lie
algebras of Sis

{seMu(K) | f(l,+€s) =0 mode?forall f € J},

whereg is a new variable. Thik-linear space is also computable via Grobner bases tewbsitn P2, 81.15], one finds
algorithms to decide i§ is simple and, if not, how to decompaos@to a direct sum of simple ideats=s1 @ ... D s.
Note that each; is the tangent space of a normal simple algebraic subgipopSandS=Hjs -...-H,. Furthermore,
H; is the identity component of

{heS|Ad(h)(s.®...®s,) =0},
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and this can be computed via Grobner bases method& lbet the identity component of
{he S| Ad(h)(s;) = 0}.

We haveS= H; - S}, and we can proceed by induction to deterntize. .., H, such thatS, = H,-...-H,. The groups
Z(H°) andHs,...,H, are what we desire.

(B). Given Ac Mp(K(x)), find defining equations for the Picard-Vessiot (PV)-Galgisup H € GL,(K) of the
differential equatiordY = AY . When H is finite, construct the PV-extension associaitdtiis equationA general
algorithm to compute PV-Galois groups is given by HrushowsK 26]. WhenH is assumed to be reductive, an
algorithm is given in 15]. An algorithm to find all algebraic solutions of a differ@aitequation is classical (due to
Painlevé and Boulanger) and is describedigy (9.

(C). Given Ac Mp(K(x)) and the fact that the PPV-Galois group G of the differentigli@iondY = AY satisfies
1(G) <0, find the defining equations of G\n algorithm to compute this is given id 1, Alg. 1].

(D). Assume we are given an algebraic extension K ©f), a matrix Ac M (F), the defining equations for the PV-
Galois group G of the equatioglY = AY over F and the defining equations for a normal algebraicgsoip H of
G. Find an integer, a faithful representatiop : G/H — GL,(K) and a matrix Be M,(F) such that the equation
dY = BY has PV-Galois group(G/H).

The usual proof 7, §11.5]) that there exists ahand a faithful rational representatipn G/H — GL,(K) is
constructive, that is i¥/ ~ K" is a faithful G-module and we are given the defining equationsGoandH, then,
using direct sums, subquotients, duals, and tensor predane can construct @-moduleW ~ K’ such that the
mapp : G — GL,(K) has kerneH. Let M be the differential module associated wét¥i = AY. Applying the same
constructions tavl yields a differential modul®&l. The Tannakian correspondence implies that the actidb @ the
associated solution space is (conjugatepi(@).

(E). Assume we are given F, an algebraic extensiold of), and Ac My(F),and B, ...,B, € F". Let
W = {(Z,c,...,¢/) | Z€F",cy,...,coeK and 0Z+AZ =By +...+ By}

Find aK-basis of W Let F[0] be the ring or differential operators with coefficientdinLetC = 1,0 + A € My (F[d]).
We may writedZ + AZ=c;B; +...+¢/By as

CZ=cB1+...+¢By.

SinceF[d] has a left and right division algorithm4®, §2.1]), one can row and column reduce the maijxhat is,
find a left invertible matrixJ and a right invertible matri¥ such thatUCV = D is a diagonal matrix. We then have
that(Z,cy,...,c,) e Wifand only if X = (V=1Z, ¢, ..., c,) satisfies

DX =cUBy+...+¢cUB;,.
SinceD is diagonal, this is equivalent to finding bases of scalaaipaterized equations
Ly=ciby+...+¢ciby, LeF[d], b eK.

[50, Prop. 3.1 and Lem. 3.2] give a method to solve this latteblerm. We note that, iA € K(x) and/ = 1, an
algorithm for finding solutions with entries K(x) directly without having to diagonalize is given if]{

(F). Let Ac My(K(x)) and let M be the differential module associated vd¥h= AY . Find a basis of M so that the
associated differential equatiay = BY, B € My(K(x)) is as in(5.2.9), that is, in block upper triangular form with
the blocks on the diagonal corresponding to irreducible med.We are asking to “factor” the systedy = AY. Using
cyclic vectors, one can reduce this problem to factoringdimoperators of order; for which there are many algorithms
(cf. [46, 84.2]). A direct method is also given igJ].

(G). Suppose we are given F, an algebraic extensidf ©f), A< M, (F), and the defining equations of the PV-Galois
group H ofdY = AY . Assuming that H is a simple LAG, find the PPV-Galois G gajad)y = AY . Let D be theK-span
of A. A Lie K-subspaceE of D is aK -subspace such that,if, D’ € £, then

[D,D]=DD'—-DDe€ .

We know that the grou is a Zariski-dense subgroup Bf. The Corollary to L3, Thm. 17] states that there is a Lie
K-subspaceE C D such thaG is conjugate tdd (Kf). Therefore, to describ@, it suffices to findE. Let

W={(Z,c1,...,6m) | ZEMa(F) =F" C1,....Cn € K and 0Z+ [Z,A] = c101A+ ... + CrdmA}.
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The algorithm described ifit) allows us to calculaté/. We claim that we can take
E ={C101+ ...+ CnOm | there existZ € GL(F) such tha{Z,c;, ...,cn) € W}. (5.3.1)
Note that thisk is a LieK-subspace of). To see this, it suffices to show thatPpf, D, € £, then[D4,D;] € E. If
0B; +[B;,Al=D;A and 0B,+ [By,A]=D,A forsomeB;,B; € GL(F),
then a calculation shows that
0B+ [B,A] = [D1,DJA, where B=D;B,—DyB;—[By,By].

In particular, B4, 80.5, Prop. 6 and 7] imply thak has aK-basis ofcommutingierivations{él, . ..,5t} that extends
to a basis of commuting derivatiog®y, .. .,0m} of D.

To show thaG is conjugate tdH (K *) we shall need the following concepts and results Alet {9,0,...,0m}
andk aA -field. LetA — {51, . ,5m} and= c A. Assume tha€ = K is differentially closed.

Definition 5.3.1. LetA € M (k). We say?Y = AY isintegrable with respect t& if, for all 9; € 3, there exist#\ € M n(K)
such that

0A;—0;A = [AA] forall 9; €= and, (5.3.2)
A —0;A = [A,A] forall 9,0, €3 (5.3.3)

The following characterizes integrability in terms of thehlavior of the PPV-Galois group.

Proposition 5.3.2. Let K be the PPV-extension &ffor Y = AY and letG C GLn(C) be the PPV-Galois group. The
groupG is conjugate to a subgroup 6L, (C*) if and only if 0¥ = AY is integrable with respect tb.

Proof. AssumeG is conjugate to a subgroup &L, (C*) and letB € GL,(C) satisfy BGB™* c GL,(C?). Let

Z € GL,(K) satisfydZ = AZ andW = ZB L. For anyV € GL(K) such tha®V = AV ando € G, we will denote
by [o]v the matrix inGL,(C) such thao(V) =V]ao],,. We have

o(W) = Z[o],B~* = ZB'B[0],B~* = W[a],,

so [}y, = B[0],B~* € GL, (C?). A calculation shows that := oW -W~1 is left fixed by allo € G and so lies in
Mn(k). Since the); commute withd and each other, we have that tResatisfy 6.3.9 and 6.3.3.

Now assume thalY = AY is integrable with respect tb and, for convenience of notation, [Bt= {51, . ,Et}.
We first note that sinc€ is differentially closed with respect #, the fieldC* is differentially closed with respect

to M = {011,...,0m} (in fact, C* is also differentially closed with respect £ [37]). Note thatC* = k(O | et
R=k{Z,1/(detZ)}zy be the PPV-extension ring &ffor the integrable system

Y = AY (5.3.4)
Y = AY,i=1.t (5.3.5)

TheringRis aZ’-simpIe ring generated both agladifferential ring and as A-differential ring by the entries &t and
1/detZ. ThereforeR s also the PPV-ring for the single equatidnd.4), ([24, Definition 6.10]). Let_ be the quotient
field of R. The groupG of Z’-automorphisms ok overk is both the PPV-group of the system§.4) (5.3.5 and of
the single equatiorb(3.4). In the first case, we see that the matrix representatiohisfgroup with respect td lies
in GL, (C*) and therefore the same is true in the second case. Shedifferentially closed, the PPV-extension
K = k(U) is k-isomorphic toL asA-fields. This isomorphism will take to ZD for someD & GL,(C) and so the
matrix representation of the PPV-groupkobverk will be conjugate to a subgroup &fL (CZ).

One can also argue as follows. First note fBas alsoZ-differentialy closed by37]. For everyA-LDAG G’ C
GL(C) with defining ideal C C{Xj,1/det}z, letG;s denote th&-LDAG with defining ideald := I NC{X;j,1/dets.
ThenG' is conjugate t&-constants if and only iG5 is. Indeed, the former is equivalent to the existend@ efGL »(C)
such that, for all,j, 1< i, j <nandd € £, we haved (DX D‘l)ij € 1, which holds if and only iB(DXD‘l)ij cJ.

LetK =k(Z)z. Thez-fieldKs :=k(Z) 5, > is aZ-PPV extension fodY = AY by definition. As in [L4, Prop. 3.6],

one sees thdds is its Z-PPV Galois group. Finally3s is conjugate t&-constants if and only iBY = AY is integrable
with respect t& by [14, Prop. 3.9]. O
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Corollary 5.3.3. Let K be the PPV-extension d¢ for aY = AY andG C GLn(C) be the PPV-Galois group. Then
G is conjugate to a subgroup &L, (C*) if and only if, for everyd; € %, there existsA € My(k) such that
5Aj + [Aj,A] = éjA.

Proof. In[21], the authors show (Theorem 4.4) thabas conjugate to a subgroup GiL (CZ) if and only if for each
d; € =, Gis conjugate to a subgroup 6fL , (C"i). Two applications of Propositiof.3.2yields the conclusion. [

Applying Corollary5.3.3to d = @ and the commuting bask= {ds,...,0;} of Z, implies thaG is conjugate to
H(KE).

885.3.2 5.3.2now present the two algorithms described in the introductio

5.3.2 An algorithm to compute the maximal reductive quotiepfRyG) of a PPV-Galois group G.

Assume we are given a matrixe M, (K). Let H be the PV-Galois group of this equation. We proceed as fallow
taking into account the following general principle. Foesvnormal algebraic subgrodiy of H andB € M, (K), if
H/H’ is the PV-Galois group aY = BY, thenG/(GNH’) is its PPV-Galois group, which follows froiiD).

Step 1. Reduce to the case where H is reductising (F), we find an equivalent differential equation as 22
whose matrix is in block upper triangular form where the nmledeorresponding to the diagonal blocks are irreducible.
We now consider the block diagonal equatiér?(3). This latter equation has PPV-Galois graBpR,(G).

Step 2. Reduce to the case where G is connected and semisikvplshall show that it is sufficient to be able to
compute the PPV-Galois group of an equatidd= AYassumingA has entries in an algebraic extensionkofx),
assuming we have the defining equations of the PV-GaloispgoddY = AY and assuming this PV-Galois group is
connected and semisimple.

Using (B), we compute the defining equations of the PV-Galois grdupf dY = AY overK (x). Using(A), we
calculate the defining equations faf andZ(H°) as well as defining equations for normal simple algebraicigso
Hi,...,H, of H° asin(A). Note that

H® = SH Z(Ho)v

whereSy = Hj -...-H, is the commutator subgroup bi°. Note thatSs = [G°, G°] is Zariski-dense i1g;. Using (D),
we construct a differential equatiayY = BY whose PV-Galois group ikl /H°. This latter group is finite, so this
equation has only algebraic solutions, and, again ugingwe can construct a finite extensiénof K (x) that is the
PV-extension corresponding & = BY. The PV-Galois group adY = AY overF is H°.

Since we have the defining equationsZgH°), (D) allows us to construct a representatpnH® — H°/Z(H®)
and a differential equatiodY = BY, B having entries irF, whose PV-Galois group is(H°). Note thatp(G°) is the
PPV-Galois group oY = BY and is Kolchin dense ip(H®). Therefore p(G°) is connected and semisimple. Let us
assume that we can find defining equationg(@°). We can therefore compute defining equationsdfp(G°)). The
groupp~(p(G°)) NSy normalizeg G, G°] in S4. By Lemma5.3.4below, we have

P HP(G))NSi =Ss.

Therefore, we can compute the defining equatiorg;of

To compute the defining equations @f we proceed as follows. Usin@®), we compute a differential equation
dY = BY, B having entries irK (x), whose PV-group i#i /S;. The PPV-Galois group of this equatiorlis- G/Ss. By
Lemma2.2.12 this group has differential type at most 0, (§&) implies that we can find the defining equationd_of
Letp:H — H/Sy. We claim that

G=p*(L) NNk (Se)-
Clearly,

Gcp HL) NNy (Ss).
Now let

hep (L) NNu(Ss).

We can writeh = hgg whereg € G andhy € Sy. Furthermorehy normalizesSs. Lemmab.3.4implies thathy € Sg
and soh € G. Since we can compute the defining equationSgHfwe can compute the defining equationdNpf( Ss).
Since we can compufeand the defining equations bf we can compute the defining equationgot(L), and so we
get the defining equations &. All that remains is to prove

Lemma 5.3.4. Let G be a Zariski-dense differential subgroup of a semisimpledr algebraic groud. Then
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() Z(H) Cc G,and
(i) N4 (G)=G.

Proof. [13, Thm. 15] implies thaH =H;-...-H;, andG = G; -...- G, where eachH; is a normal simple algebraic
subgroup oH with [H;,H;] = 1 fori # j and eaclG; is Zariski-dense irH; and normal inG. Therefore, it is enough
to the prove the claims whet itself is a simple algebraic group. In this case, let us asstivatH c GL (V), where
H acts irreducibly o®V. Schur's Lemma implies that the centerbtonsists of scalar matrices and, sitte- (H,H)
these matrices have determinant 1. Therefore, the matieesf the form(| where( is a root of unity. L3, Thm. 19]
states that there is a LK-subspaceE of D, theK-span ofA, such thaG is conjugate tdH (Kf). Since the roots of
unity are constant for any derivation, we have that the cerftel lies in G. _
To proveNy (G) = G, assumés = H (K”*) and letg € G andh € Ny (G). For anyd € ‘£, we have

0=0(h 'gh) = —h~*a(h)h ‘gh+hga(h).

Therefor_eE(h)h‘l commutes with the elements Gfand so must commute with the elementsiofAgain by Schur’s
Lemma,a(h)h:l is a scalar matrix. On the other har&dh)h‘l_lies in the Lie algebra of ([33, §V.22, Prop. 28]) and
so the trace od(h)h~1 is zero. Therefored(h)h~—1 = 0. Sinced(h) = 0 for all @ € £, we haveh € G. O

Step 3. Computing G when G is connected and semisimpe.have reduced the problem to calculating the PPV-
Galois groupG of an equatioY = AY where the entries oA lie in an algebraic extensidh of K (x) and where we
know the equations of the PV-Galdisgroup of this equation ovét. Let

H=H;-....H, and G=Gi-...-G,,

where theH; are simple normal subgroups dfandG; is Zariski-dense irH;. Using(D), we construct, for each an
equatiomY = B;Y with B; € My(F) whose PV-Galois group id /H;, where

Hi=Hy-....Hig-Hig-...-Hy

and a surjective homomorphism : H — H/H;. Note thatH/H; is a connected simple linear algebraic group.
Therefore(G) allows us to calculate the PPV-Galois gra@pof dY = B;Y. We claim that

G = Tlrl(G_|) N H;.

To see this, note that; N H; lies in the center of; and, therefore, must lie iG; by Lemma5.3.4 Therefore, we have
defining equations for eadh; and so can construct defining equations@or

5.3.3 An algorithm to decide if the PPV-Galois group of a paramigiedl linear differential equation is reductive.

LetK(x) be asin$.1.3. Assume we are given a differential equatid= AY with A € M,(K(x)). Using the solution
to (F) above, we may assume thatis in block upper triangular form as s 2.2 with the blocks on the diagonal
corresponding to irreducible differential modules. 1fgf.g be the corresponding diagonal matrix as in2(3, let
M, G andMygiag, Gaiag b€ the differential modules and PPV-Galois groups assatiaith 0Y = AY anddY = AgiagY,
respectively. Of cours&giag~ G/ Ry(G), soG is reductive if and only iGgjag >~ G.

This implies via the Tannakian equivalence that the difféettensor category generatedMy;,qis a subcategory
of the differential tensor category generated Myand thatG is reductive if and only if these categories are the
same. The differential tensor category generated by a redduis the usual tensor category generated by all the total
prolongations*(M) of that module. From this, we see thatis a reductive LDAG if and only iM belongs to the
tensor category generated by some total prolongd®foNlgiag). Therefore, to decide i is reductive, it suffices to
find algorithms to solve problenisi) and(l) below.

(H). Given differential modules M and N, decide if M belongs totéresor category generated by Since we are
considering the tensor category and notdhiferentialtensor category, this is a question concerning non-parinetl
differential equations. LeKy, Ky, Kmon be PV-extensions associated with the corresponding diffeal modules
and letGy, Gy, Gnem be the corresponding PV-Galois groups. The following foamditions are easily seen to be
equivalent:

(a) N belongs to the tensor category generated/by

(b) Ky C Ky considered as subfields Kfqn.
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(©) Kman = K.
(d) The canonical projection: Gyan C Gy ® Gy — G is injective (it is always surjective).

Therefore, to solvéH), we apply the algorithmic solution ¢B) to calculateGy,n andGy, and, using Grobner bases,
decide ifrtis injective.

(). Given M and Mag as above, calculate an integer s such that, if M belongs tadifferential tensor category
generated by Mag, then M belongs to the tensor category generated #Ra.g). We will apply Theoren?.3.4and
Propositior4.3.5 Note that, since the PPV-Galois groGgiag associated tMgiqg is reductive, Lemma.2.12implies
that we may apply these results@giog. Theorem4.3.4implies that such a bound is given by the integer

max{£((V) — 1,ord(T)}

whereV is a solutions space associated whhjag and T = Z(G;iag)o. As noted in the discussion preceding
Theorem4.3.4 £4(V) < dimg (V) = dimg ) Mgiag. Proposition4.3.5 implies that ordT) can be bounded in the
following way. Using the algorithm to solvés), we calculate the defining equations of the PV-Galois grilug,
associated witMgiag and then calculate the defining equationsigf, and [Hgiag, Hgiag] (as in(A)). Using the solution
to (D), one calculates a differential equatiévi = BY whose PV-Galois group is

H/ [Hgiagv Héiag] .

Denote the associated differential moduleNbyProposition4.3.5implies that ordT) is the smallest value dfso that
the differential tensor category generated\bgoincides with the tensor category generatedPtfiN). The following
conditions are easily seen to be equivalent

(@) The differential tensor category generated\bgoincides with the tensor category generated®ifix).
(b) The tensor category generated®yN) coincides with the tensor category generated®by (N).
(c) P1(N) belongs to the tensor category generate@ti).

Therefore, to bound ofd@), one uses the algorithm @fi) to check fort = 0,1,2,... if P""1(N) belongs to the tensor
category generated b§'(N) until this event happens (see alstl[ §3.2.1, Alg. 1]). As noted in the discussion
preceding Theorem.3.4 this procedure eventually halts. Taking the maximum of thand dink )M — 1 yields
the desired.

6 Examples

In this section, we will illustrate both Theorefn2.1and our main algorithm. In Examplie1.2, we will show that the
bound in Theoremd.2.1is sharp. Examplé.1.3is an illustration of the algorithm.

Example 6.1.1. Following [40, Ex. 4.18], let
V = spark {1, X11X1 — X11%1, X11%02 — Xp1X12, X1 2X02 — X12X0p, X11X22 — Xy X1} C A,

where
A= K{X11, X12, Xo1, %22} / [X11Xp2 — X12%o1 — 1], (6.1.6)

which induces the following differential representatidrSh.,:

1 dc—ad ad—-bcd bd—bd ad-bcd
a b 0 a2 ab 03 ab —ab
SLx(U) > <c d> — |0  2ac ad+bc 2bd 2(ad —bc)
0 c? cd & cd —cd
0 0 0 0 1

under the right action 08L, on A. Since the length of the socle filtration faris 3, leth = 2. Theorem4.2.1claims
thatV e <P2(Vdiag)>®. We will show that, in fact,

V € (P(Vaiag)) .- (6.1.7)
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Indeed, by the Clebsch-Gordon formula for tensor produaisaducible representations 8L, the usual irreducible
representatiot = span {u, v} of SL; is a direct summand &fyiag® Viiag MOreover,

Vc((PU)ePU))®((PU)®PU))

under the embedding
UaU — A (au+bvcu+dv) — axg+ bXo+ %1+ dxeo,

which implies ¢6.1.7).
Example 6.1.2. Consider the first prolongatio¥V) of the usual (irreducible) representationSL, — GL (V) of

dimension 2: )
] A A
P(r).SL29AI—> <0 A).

The length of the socle filtration is 2, and we tautologichliye
P(V) € (PP *(P(V)diag)) .

Notice that
P(V) ¢ <P(V)diag>®

as every object ofP(V )diag) ., = (V) , is completely reducibledd, Thm 4.7] butP(V) is not completely reducibletp,
Prop. 3], 1, Thm. 4.6]. By Propositiod.1.4 for alln > 0,

P"(V), C so¢ P (V). (6.1.8)
Sincer¥ =:p:V — V ®g Ag, WwhereA is defined in 6.1.9), for alln > 0,
P'(p) : P"(V) = P"(V) @k Aq
(see B8.1.3). ThereforeP"(V),, = P"(V). SinceP"(V) D sod¢*1P"(V), (6.1.8 implies that
P"(V) = sod P (V).

Therefore, the length of the socle filtration®f(V ) does not exceed+ 1. If

P™H(V) € (PY(V)),, (6.1.9)
then, for allg > n, PA(V) € (P"(V))_, which implies that
(P'(V)]i=0)_ = (P"(V)),. (6.1.10)

By [16, Prop. 2.20], §.1.10 implies thatA is a finitely generate -algebra, which is not the case. Therefof21(9
does not hold. Thus, the bound in Theorér.lis sharp.

We will now illustrate how the algorithm works. Lef denote the differential closure @ with respect to a
singe derivatiord;. In the following examples, we consider the differentialiations over the fieltk (x) = C(x) with
derivationsd’ = {0x, 0} andA = {0;}.

Example 6.1.3.As in [41, Ex. 3.4], consider the equatioRY = AY where
_ (L it
A= <0 1 ’

abeUa# 0} ~ Gy x Gy, (6.1.11)

whose PV-group is

3

which is not reductive. Lel be the corresponding differential module. Using our aldponi, we will test whether the
PPV-Galois grougs of d5Y = AY is reductive. We have

10
Adiag: <O 1> ’
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and the PV and PPV-Galois groups®l = AgiagY areGny, andGm(C), respectively 14, Prop. 3.9(2)]. Therefore,
ord(G/Ry(G)) = ord(Gn(C)) = 1.
The matrix ofM & P!(Mgiag) With respect to the appropriate basis is

t 1
xTxa O

[oNeoNoNoNolyo
[cNeoNoNak 2
OO Or o
ooroooO
Orooo o
OO0 O0O0QC

which is not completely reducible by (L.11). Therefore, its PV group is not isomorphic@g,, the PV group oMgiag.
Thus,G is not reductive. In factG is calculated in41, Ex. 3.4] yielding

G_{<8 ;)eGm(C)xGa(C) de=0, aff_o}.

Example 6.1.4.Consider the equation
02(y) + 2xtdy(y) +ty = 0. (6.1.12)

The PPV-Galois group of this equation lies@h ,. One can make a standard substitutiagt([Exc. 1.35.5]) resulting

in a new equation having PPV-Galois groufSh,. Once we know the PPV-Galois group of this new equation lt®su
of [1] allow us to construct the PPV-group of the original equatim our example, the appropriate substitution is
y = ze /X, We find thatz satisfies the equation

02(y) — (1/4(2xt)®+ (2xt)' /2—t)y=0 <= 0:(y)— (xt)’y=0, (6.1.13)
which now has PPV-Galois group 8L,, ande™/* satisfies the equation
oY)+ ((2x)/2y=0 = d(y)+(xt)y=0, (6.1.14)
which has PPV-Galois group 8L ; = G,,. We shall refer to equaton6.(..13 and ©.1.19 as the auxillary equations.
A calculation on MapPLE using thekovaci csol s procedure of th®Et ool s package shows that the PV Galois group
H of (6.1.13 is SLy. Since, for all 0% n € Z, U(x) has no solutions of
Ox(y) + (nxtly =0,
the PV Galois group ofd.1.19 is G, Therefore, by, 83.4], the PV Galois group 06(1.19 is
GL, 2 (SLp xGm) /{1,—1}.
Hence, the PPV-Galois groupof (6.1.12) is of the form
G=(G1xGy)/{1,-1} CH,

whereG; is Zariski dense irG,, andG; is conjugate inGL ; either toSL, or SL,(C). We will now calculateG; and
G,. For the former, note the matrix form o3.(L.13 is

B,y — ( (X(t))z é) Y.

0 X
B:= <t_ i)a
2 2t

which can be found using thisol ve procedure of MPLE, one ha9y(B) — d;(A) = [A,B], (6.1.13 is completely
integrable and, therefor&; is conjugate t&SL,(C). To find G,, compute the first prolongation di .(L.14:

. [—xt =X
A (33

Since, for the matrix
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Setting

1 1
C:= <—_2 —_2> )
X2 X2+t

2%t 0
c!ac-cl@C) = * X212 | -

0 X2+t

we see that

Hence, the differential equation corresponding\fas completely reducible. Therefor€, = G,(C), that is,
G=GLy(C).
Note thatC can be found using thesol ve procedure of MPLE.
Example 6.1.5. Starting with
2y) ~ 2 0,(y) =0 (6.1.15)
the auxiliary equations will be

tt+1 t
a2y) - y—0 and o)=Ly

The PPV-Galois group of the latter equation is

Gy = {g € Gn | (atzg)g_ (atg)z = O}'

For the former equation, a calculation usidgpl ve from MAPLE shows that there is nB € M,(U(X)) such that
0x(B) —0:(A) = [A,B], where
0 1
A= ,
<t(t;2-l) 0>

which implies that this equation is not completely intedeal herefore,G; = SL,. Thus, the PPV-Galois group
of (6.1.19 is

{ge€GL, | (07det(g)) dedg) — (0 det(g))” =0}.
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