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Abstract. We present a Galois theory of parameterized linear differential equations where
the Galois groups are linear differential algebraic groups, that is, groups of matrices whose
entries are functions of the parameters and satisfy a set of differential equations with respect
to these parameters. We present the basic constructions and results, give examples, discuss
how isomonodromic families fit into this theory and show how results from the theory of linear
differential algebraic groups may be used to classify systems of second order linear differential
equations.
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1 Introduction

We will describe a Galois theory of differential equations of the form

∂Y

∂x
= A(x, t1, . . . , tn)Y

whereA(x, t1, . . . , tn) is anm×mmatrix with entries that are functions of the principal
variable x and parameters t1, . . . , tn. The Galois groups in this theory are linear
differential algebraic groups, that is, groups of m × m matrices (fi,j (t1, . . . , tn))
whose entries satisfy a fixed set of differential equations. For example, in this theory,
the equation

∂y

∂x
= t

x
y

has Galois group

G = {
(f (t)) | f �= 0 and f d

2f

dt2
− ( df

dt

)2 = 0
}
.

In the process, we will give an introduction to the theory of linear differential algebraic
groups and show how one can use properties of the structure of these groups to deduce
results concerning parameterized linear differential equations.

Various differential Galois theories now exist that go beyond the eponymous theory
of linear differential equations pioneered by Picard and Vessiot at the end of the 19th
century and made rigorous and expanded by Kolchin in the middle of the 20th century.
These include theories developed by B. Malgrange, A. Pillay, H. Umemura and one
presently being developed by P. Landesman. In many ways the Galois theory presented
here is a special case of the results of Pillay and Landesman yet we hope that the explicit
nature of our presentation and the applications we give justify our exposition. We will
give a comparison with these theories in the final comments.

The rest of the paper is organized as follows. In Section 2 we review the Picard–
Vessiot theory of integrable systems of linear partial differential equations. In Section 3
we introduce and give the basic definitions and results for the Galois theory of pa-
rameterized linear differential equations ending with a statement of the Fundamental
Theorem of this Galois theory as well as a characterization of parameterized equations
that are solvable in terms of parameterized liouvillian functions. In Section 4 we de-
scribe the basic results concerning linear differential algebraic groups and give many
examples. In Section 5 we show that, in the regular singular case, isomonodromic
families of linear differential equations are precisely the parameterized linear differen-
tial equations whose parameterized Galois theory reduces to the usual Picard–Vessiot
theory. In Section 6 we apply a classification of 2 × 2 linear differential algebraic
groups to show that any parameterized system of linear differential equations with
regular singular points is equivalent to a system that is generic (in a suitable sense) or
isomonodromic or solvable in terms of parameterized liouvillian functions. Section 7
gives two simple examples illustrating the subtleties of the inverse problem in our
setting. In Section 8 we discuss the relationship between the theory presented here
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and other differential Galois theories and give some directions for future research. The
Appendices contain proofs of the results of Section 3.

2 Review of Picard–Vessiot theory

In the usual Galois theory of polynomial equations, the Galois group is the collection
of transformations of the roots that preserve all algebraic relations among these roots.
To be more formal, given a field k and a polynomial p(y) with coefficients in k, one
forms the splitting field K of p(y) by adjoining all the roots of p(y) to k. The Galois
group is then the group of all automorphisms ofK that leave each element of k fixed.
The structure of the Galois group is well known to reflect the algebraic properties of
the roots of p(y). In this section we will review the Galois theory of linear differential
equations. Proofs (and other references) can be found in [40].

One can proceed in an analogous fashion with integrable systems of linear differ-
ential equations and define a Galois group that is a collection of transformations of
solutions of a linear differential system that preserve all the algebraic relations among
the solutions and their derivatives. Let k be a differential field1, that is, a field k to-
gether with a set of commuting derivations � = {∂1, . . . , ∂m}. To emphasize the role
of �, we shall refer to such a field as a �-field. Examples of such fields are the field
C(x1, . . . , xm) of rational functions inm variables, the quotient field C((x1, . . . , xm))

of the ring of formal power series inm variables and the quotient field C({x1, . . . , xm})
of the ring of convergent power series, all with the derivations � = {

∂
∂x1
, . . . , ∂

∂xm

}
.

If k is a�-field and�′ ⊂ �, the field C�
′

k = {c ∈ k | ∂c = 0 for all ∂ ∈ �′} is called
the subfield of�′-constants of k. When�′ = �we shall write Ck for C�k and refer to
this latter field as the field of constants of k. An integrable system of linear differential
equations is a set of equations

∂1Y = A1Y

∂2Y = A2Y

...

∂mY = AmY

(2.1)

where the Ai ∈ gln(k), the set of n× n matrices with entries in k, such that

∂iAj − ∂jAi = [Ai,Aj ] (2.2)

for all i, j . These latter equations are referred to as the integrability conditions. Note
that if m = 1, these conditions are trivially satisfied.

1All fields in this paper will be of characteristic zero
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The role of a splitting field is assumed by the Picard–Vessiot extension associated
with the integrable system (2.1). This is a �-extension field K = k(z1,1, . . . , zn,n)

where
(1) the zi,j are entries of a matrix Z ∈ GLn(K) satisfying ∂iZ = AiZ for i =

1, . . . , m, and

(2) CK = Ck = C, i.e., the �-constants of K coincide with the �-constants of k.
Note that condition (1) defines uniquely the actions onK of the derivations ∂i and that
the integrability conditions (2.2) must be satisfied since these derivations commute.
We refer to the Z above as a fundamental solution matrix and we shall denote K
by k(Z). If k = C(x1, . . . , xm) with the obvious derivations, one can easily show
the existence of Picard–Vessiot extensions. If we let �a = (a1, . . . , an) be a point
of Cn where the denominators of all entries of the Ai are holomorphic, then the
Frobenius Theorem ([55],Ch. 1.3) implies that, in a neighborhood of �a, there exist n
linearly independent analytic solutions (z1,1, . . . , zn,1)

T , . . . , (z1,n, . . . , zn,n)
T of the

equations (2.1). The field k(z1,1, . . . , zn,n) with the obvious derivations satisfies the
conditions defining a Picard–Vessiot extension. In general, if k is an arbitrary�-field
with Ck algebraically closed, then there always exists a Picard–Vessiot extension K
for the integrable system (2.1) and K is unique up to k-differential isomorphism. We
shall refer to K as the PV-extension associated with (2.1).

Let K be a PV-extension associated with (2.1) and let K = k(Z) with Z a fun-
damental solution matrix. If U is another fundamental solution matrix then an easy
calculation shows that ∂i(U−1Z) = 0 for all i and so U−1Z ∈ GLn(Ck). We define
the �-Galois group Gal�(K/k) of K over k (or of the system (2.1)) to be

Gal�(K/k) = {σ : K → K | σ is a k-automorphism of K and

∂iσ = σ∂i, for i = 1, . . . , m}.
Note that a k-automorphism σ of K such that ∂iσ = σ∂i is called a k-differential
automorphism. For any σ ∈ Gal�(K/k), we have that σ(Z) is again a fundamental
solution matrix so the above discussion implies that σ(Z) = ZAσ for some Aσ ∈
GLn(Ck). This yields a representation Gal�(K/k) → GLn(Ck). Note that different
fundamental solution matrices yield conjugate representations. A fundamental fact
is that the image of Gal�(K/k) in GLn(Ck) is Zariski-closed, that is, it is defined
by a set of polynomial equations involving the entries of the matrices and so has the
structure of an linear algebraic group. If G is a linear algebraic group defined over F
(that is, defined by equations having coefficients in the field F ) and E is any field
containing F , we will use the notation G(E) to denote the set of points of G having
entries in E.

These facts lead to a rich Galois theory, originally due to E. Picard and E. Vessiot
and given rigor and greatly expanded by E. R. Kolchin. We summarize the fundamental
result in the following

Theorem 2.1. Let k be a �-field with algebraically closed field of constants C and
(2.1) be an integrable system of linear differential equations over k.
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(1) There exists a PV-extension K of k associated with (2.1) and this extension is
unique up to a differential k-isomorphism.

(2) The �-Galois group Gal�(K/k) may be identified with G(C), where G is a
linear algebraic group defined over C.

(3) The map that sends any differential subfield F, k ⊂ F ⊂ K , to the group
Gal�(K/F) is a bijection between the set of differential subfields ofK containing
k and the set of algebraic subgroups of Gal�(K/k). Its inverse is given by the
map that sends a Zariski closed group H to the field KH = {z ∈ K | σ(z) =
z for all σ ∈ H }.

(4) A Zariski-closed subgroupH of Gal�(K/k) is a normal subgroup of Gal�(K/k)
if and only if the field KH is left set-wise invariant by Gal�(K/k). If this is the
case, the map Gal�(K/k) → Gal�(KH/k) is surjective with kernelH andKH

is a PV-extension of k with PV-group isomorphic to Gal�(K/k)/H . Conversely,
if F is a differential subfield ofK containing k and F is a PV-extension of k, then
Gal�(F/K) is a normal subgroup of Gal�(K/k).

Remarks 2.2. 1. The assumption that C is algebraically closed is necessary for the
existence of PV-extensions (cf., [42]) as well as necessary to guarantee that there
are enough automorphisms so that (3) is correct. Kolchin’s development in [21] of
the Galois correspondence for PV-extensions does not make this assumption and he
replaced automorphisms of the PV-extension with embeddings of the PV-extension
into a large field (a universal differential field). Another approach to studying linear
differential equations over fields whose constants are not algebraically closed is given
in [1] (see in particular Corollaire 3.4.2.4 and Exemple 3.4.2.6). One can also study
linear differential equations over fields whose fields of constants are not algebraically
closed using descent techniques (see [17]).

2. Theorem 2.1 is usually stated and proven for the case whenm = 1, the ordinary
differential case, although it is proven in this generality in [21]. The usual proofs in
the ordinary differential case do however usually generalize to this case as well. In
the appendix of [40], the authors also discuss the case of m > 1 and show how the
Galois theory may be developed in this case. We will give a proof of a more general
theorem in the appendix from which Theorem 2.1 follows as well.

3. Theorem 2.1 is a manifestation of a deeper result. IfK = k(Z) is a PV-extension
then the ring k

[
Z, 1

detZ

]
is the coordinate ring of a torsor (principal homogeneous

space)V defined over k for the group Gal�(K/k), that is, there is a morphismV×G →
V denoted by (v, g) 	→ vg and defined over k such that v1 = v and (vg1)g2 = v(g1g2)

and such that the morphism V × G → V × V given by (v, g) 	→ (v, vg) is an
isomorphism. The path to the Galois theory given by first establishing this fact is
presented in [15], [25] and [40] (although Kolchin was well aware of this fact as well,
cf., [21], Ch. VI.8 and the references there to the original papers.) This approach
allows one to give an intrinsic definition of the linear algebraic group structure on the
Galois group as well.
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We end this section with a simple example that will also illuminate the Galois
theory of parameterized equations.

Example 2.3. Let k = C(x) be the ordinary differential field with derivation d
dx

and
consider the differential equation

dy

dx
= t

x
y

where t ∈ C. The associated Picard–Vessiot extension is k(xt ). The Galois group
will be identified with a Zariski-closed subgroup of GL1(C). When t ∈ Q, one has
that xt is an algebraic function and when t /∈ Q, xt is transcendental. It is therefore
not surprising that one can show that

Gal�(K/k) =
{

C∗ = GL1(C) if t /∈ Q,

Z/qZ if t = p
q
, (p, q) = 1. �

3 Parameterized Picard–Vessiot theory

In this section we will consider differential equations of the form

∂Y

∂x
= A(x, t1, . . . , tm)Y

whereA is an n×nmatrix whose entries are functions of x and parameters t1, . . . , tm
and we will define a Galois group of transformations that preserves the algebraic
relations among a set of solutions and their derivatives with respect to all the variables.
Before we make things precise, let us consider an example.

Example 3.1. Let k = C(x, t) be the differential field with derivations � = {
∂x =

∂
∂x
, ∂t = ∂

∂t

}
. Consider the differential equation

∂xy = t

x
y.

In the usual Picard–Vessiot theory, one forms the differential field generated by the
entries of a fundamental solution matrix and all their derivatives (in fact, because the
matrix satisfies the differential equation, we get the derivatives for free). We will
proceed in a similar fashion here. The function

y = xt

is a solution of the above equation. Although all derivatives with respect to x lie in
the field k(xt ), this is not true for ∂t (xt ) = (log x)xt . Nonetheless, this is all that is
missing and the derivations � naturally extend to the field

K = k(xt , log x),
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the field gotten by adjoining to k a fundamental solution and its derivatives (of all
orders) with respect to all the variables.

Let us now calculate the group Gal�(K/k) of k-automorphisms of K commuting
with both ∂x and ∂t . Let σ ∈ Gal�(K/k). We first note that ∂x(σ (xt )(xt )−1) = 0
so σ(xt ) = aσ x

t for some aσ ∈ K with ∂xaσ = 0, i.e., aσ ∈ C{∂x}
K = C

{∂x}
k = C(t).

Next, a calculation shows that ∂x(σ (log x)− log x) = 0 = ∂t (σ (log x)− log x) so we
have that σ(log x) = log x + cσ for some cσ ∈ C. Finally, a calculation shows that

0 = ∂t (σ (x
t ))− σ(∂t (x

t )) = (∂taσ − aσ cσ )x
t

so we have that

∂t

(
∂taσ

aσ

)
= 0. (3.1)

Conversely, one can show that for any a such that ∂xa = 0 and equation (3.1) holds, the
map defined by xt 	→ axt , log x 	→ log x+ ∂t a

a
defines a differential k-automorphism

of K so we have

Gal�(K/k) =
{
a ∈ C

( ∂
∂x

)
K = C

( ∂
∂x

)
k | a �= 0 and ∂t

(
∂t a
a

) = 0
}
.

�

This example illustrates two facts. The first is that the Galois group of a parameter-
ized linear differential equation is a group of n×nmatrices (here n = 1) whose entries
are functions of the parameters (in this case, t) satisfying certain differential equations;
such a group is called a linear differential algebraic group (see Definition 3.3 below).
In general, the Galois group of a parameterized linear differential equation will be
such a group.

The second fact is that in this example Gal�(K/k) does not contain enough el-
ements to give a Galois correspondence. Expressing an element of C(t) as a =
a0

∏
(t − bi)ni , a0, bi ∈ C, ni ∈ Z, one can show that if a ∈ Gal�(K/k) then a ∈ C,

that is Gal�(K/k) = C∗. If σ ∈ Gal�(K/k) and σ(xt ) = axt with a ∈ C, then

σ(log x) = σ

(
∂tx

t

xt

)
= ∂t (ax

t )

axt
= log x.

Therefore log x is fixed by the Galois group and so there cannot be a Galois correspon-
dence. The problem is that we do not have an element a ∈ C(t) such that ∂t

(
∂t a
a

) = 0
and ∂ta �= 0.

In the Picard–Vessiot theory, one avoids a similar problem by insisting that the
constant subfield is large enough, i.e., algebraically closed. This insures that any
consistent set of polynomial equations with constant coefficients will have a solution
in the field. In the parameterized Picard–Vessiot theory that we will develop, we will
need to insure that any consistent system of differential equations (with respect to the
parametric variables) has a solution. This motivates the following definition.

Let k be a�-field with derivations� = {∂1, . . . , ∂m}. The�-ring k{y1, . . . , yn}�
of differential polynomials in n variables over k is the usual polynomial ring in the
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infinite set of variables

{∂n1
1 ∂

n2
2 . . . ∂nmm yj }ni∈N

j=1,...,n

with derivations extending those in � on k and defined by

∂i(∂
n1
1 . . . ∂

ni
i . . . ∂

nm
m yj ) = ∂

n1
1 . . . ∂

ni+1
i . . . ∂nmm yj .

Definition 3.2. We say that a�-field k is differentially closed if for any n and any set
{P1(y1, . . . , yn), . . . , Pr(y1, . . . , yn),Q(y1, . . . , yn)} ⊂ k{y1, . . . , yn}�, if the sys-
tem

{P1(y1, . . . , yn) = 0, . . . , Pr(y1, . . . , yn) = 0,Q(y1, . . . , yn) �= 0}
has a solution in some �-field K containing k, then it has a solution in k

This notion was introduced by A. Robinson [41] and extensively developed by
L. Blum [5] (in the ordinary differential case) and E. R. Kolchin [20] (who referred to
these as constrainedly closed differential fields). More recent discussions can be found
in [30] and [32]. A fundamental fact is that any�-field k is contained in a differentially
closed differential field. In fact, for any such k there is a differentially closed�-field k̄
containing k such that for any differentially closed �-field K containing k, there is
a differential k-isomorphism of k̄ into K . Differentially closed fields have many of
the same properties with respect to differential fields as algebraically closed fields
have with respect to fields but there are some striking differences. For example, the
differential closure of a field has proper subfields that are again differentially closed.
For more information, the reader is referred to the above papers.

Example 3.1 (bis). Let k be a � = {∂x, ∂t }-field and let k0 = C
∂x
k . Assume that k0

is a differentially closed ∂t -field and that k = k0(x) where ∂xx = 1 and ∂tx = 0. We
again consider the differential equation

∂xy = t

x
y

and let K = k(xt , log x) where xt , log x are considered formally as algebraically
independent elements satisfying ∂t (xt ) = (log x)xt , ∂x(xt ) = t

x
xt , ∂t (log x) = 0,

∂x(log x) = 1
x

. One can show that C{∂x}
K = k0 and that the Galois group is again

Gal�(K/k) = {
a ∈ k∗

o | ∂t
(
∂t (a)
a

) = 0
}
.

Note that Gal�(K/k) contains an element a such that ∂ta �= 0 and ∂t
(
∂t (a)
a

) = 0. To
see this, note that the {∂t }-field k0(u), where u is transcendental over k0 and ∂tu =
u is a {∂t }-extension of k0 containing such an element (e.g., u). The definition of
differentially closed ensures that k0 also contains such an element. This implies that
log x is not left fixed by Gal�(K/k). In fact, we will show in Section 4 that the
following is a complete list of differential algebraic subgroups of Gal�(K/k) and the
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corresponding �-subfields of K:

Field Group
k((xt )n, log x), n ∈ N>0 {a ∈ k∗

0 | an = 1} = Z/nZ

k(log x) {a ∈ k∗
0 | ∂ta = 0}

k {a ∈ k∗
0 | ∂t (∂t (a)/a) = 0}

�

We now turn to stating the Fundamental Theorem in the Galois theory of parame-
terized linear differential equations. We need to give a formal definition of the kinds of
groups that can occur and also of what takes the place of a Picard–Vessiot extension.
This is done in the next two definitions.

Definition 3.3. Let k be a differentially closed �-differential field.

(1) A subset X ⊂ kn is said to be Kolchin-closed if there exists a set {f1, . . . , fr} of
differential polynomials in n variables such that X = {a ∈ kn | f1(a) = · · · =
fr(a) = 0}.

(2) A subgroup G ⊂ GLn(k) ⊂ kn
2

is a linear differential algebraic group if G =
X ∩ GLn(k) for some Kolchin-closed subset of kn

2
.

In the previous example, the Galois group was exhibited as a linear differential
algebraic subgroup of GL1(k0). For any linear algebraic groupG, the groupG(k) is a
linear differential algebraic group. Furthermore, the group G(C�k ) of constant points
of G is also a linear differential algebraic group since it is defined by the (algebraic)
equations defining G as well as the (differential) equations stating that the entries of
the matrices are constants. We will give more examples in the next section

In the next definition, we will use the following conventions. If F is a � =
{∂0, ∂1, . . . , ∂m}-field, we denote by C0

F the ∂0 constants of F , that is, C0
F = C

{∂0}
F =

{c ∈ F | ∂0c = 0}. One sees that C0
F is a � = {∂1, . . . , ∂m}-field. We will use

the notation k〈z1, . . . , zr〉� to denote a �-field containing k and elements z1, . . . , zr
such that no proper�-field has this property, i.e.,k〈z1, . . . , zr〉� is the field generated
over k by z1, . . . , zn and their higher derivatives.

Definition 3.4. Let k be a � = {∂0, ∂1, . . . , ∂m}-field and let

∂0Y = AY

be a differential equation with A ∈ gln(k).

(1) A�-extensionK of k is a parameterized Picard–Vessiot extension of k (or, more
compactly, a PPV-extension of k) if K = k〈z1,1, . . . , zn,n〉� where

(a) the zi,j are entries of a matrix Z ∈ GLn(K) satisfying ∂0Z = AZ, and

(b) C0
K = C0

k , i.e., the ∂0-constants of K coincide with the ∂0-constants of k.
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(2) The group Gal�(K/k) = {σ : K → K | σ is a k-automorphism such that σ∂ =
∂σ for all ∂ ∈ �} is called the parameterized Picard–Vessiot group (PPV-group)
associated with the PPV-extension K of k.

We note that if K is a PPV-extension of k and Z is as above then for any σ ∈
Gal�(K/k) one has that ∂0(σ (Z)Z

−1) = 0. Therefore we can identify each σ ∈
Gal�(K/k) with a matrix in GLn(C0

k ). We can now state the Fundamental Theorem
of parameterized Picard–Vessiot extensions

Theorem 3.5. Let k be a � = {∂0, ∂1, . . . , ∂m}-field and assume that C0
k is a differ-

entially closed � = {∂1, . . . , ∂m}-field. Let

∂0Y = AY (3.2)

be a differential equation with A ∈ gln(k).

(1) There exists a PPV-extension K of k associated with (3.2) and this is unique up
to differential k-isomorphism.

(2) The PPV-group Gal�(K/k) may be identified with G(C0
k ), where G is a linear

differential algebraic group defined over C0
k .

(3) The map that sends any �-subfield F, k ⊂ F ⊂ K , to the group Gal�(K/F) is
a bijection between differential subfields of K containing k and Kolchin-closed
subgroups of Gal�(K/k). Its inverse is given by the map that sends a Kolchin-
closed group H to the field KH = {z ∈ K | σ(z) = z for all σ ∈ H }.

(4) A Kolchin-closed subgroupH of Gal�(K/k) is a normal subgroup of Gal�(K/k)
if and only if the field KH is left set-wise invariant by Gal�(K/k). If this is the
case, the map Gal�(K/k) → Gal�(KH/k) is surjective with kernelH andKH

is a PPV-extension of k with PPV-group isomorphic to Gal�(K/k)/H . Con-
versely, if F is a differential subfield ofK containing k and F is a PPV-extension
of k, then Gal�(F/K) is a normal subgroup of Gal�(K/k).

The proof of this result is virtually the same as for the corresponding result of
Picard–Vessiot theory. We give the details in Appendices 9.1–9.4.

We will give two simple applications of this theorem. For the first, letK be a PPV-
extension of k corresponding to the equation ∂0Y = AY and let K = k〈Z〉�, where
Z ∈ GLn(K) and ∂0Z = AZ. We now consider the field KPV

A = k(Z) ⊂ K . Note
that KPV

A is not necessarily a �-field but it is a {∂0}-field. One can easily see that it is
a PV-extension for the equation ∂0Y = AY and that the PPV-group leaves it invariant
and acts as {∂0}-automorphisms. We therefore have an injective homomorphism of
Gal�(K/k) → Gal{∂0}(KPV

A /k), defined by restriction. We then have the following
result

Proposition 3.6. Let k, C0
k ,K and KPV

A be as above. Then:

(1) When considered as ordinary {∂0}-fields, KPV
A is a PV-extension of k with alge-

braically closed field C0
k of ∂0-constants.
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(2) If Gal{∂0}(KPV
A /k) ⊂ GLn(C0

k ) is the Galois group of the ordinary differential
field KPV

A over k, then the Zariski closure of the Galois group Gal�(K/k) in
GLn(C0

k ) equals Gal{∂0}(KPV
A /k).

Proof. Since a differentially closed field is algebraically closed, we have already
justified the first statement. Clearly, Gal�(K/k) ⊂ Gal{∂0}(K/k). Since Gal�(K/k)
and Gal{∂0}(KPV

A /k) have the same fixed field k, the second statement follows.

Remark 3.7. Fix a PPV-extension K of k and let K = k〈z1,1, . . . , zn,n〉� where the
zi,j are entries of a matrix Z ∈ GLn(K) satisfying ∂0Z = AZ with A ∈ gln(k). One
sees that the fieldKPV

A defined above is independent of the particular invertible solution
Z of ∂0Y = AY used to generate K (although the Galois groups are only determined
up to conjugacy). On the other hand, KPV

A does depend on the equation ∂0Y = AY

and not just on the field K , that is if K is a PPV-extension of k for two different
equations ∂0Y = A1Y and ∂0Y = A2Y with solutions Z1 and Z2 respectively, the
fields KPV

A1
and KPV

A2
(and their respective PV-groups) may be very different. We will

give an example of this in Remark 7.3.

Our second application is to characterize those equations ∂0Y = AY whose PPV-
groups are the set of �-constant points of a linear algebraic group. We first make the
following definition.

Definition 3.8. Let k be a �-differential field and let A ∈ gln(k). We say that
∂0Y = AY is completely integrable if there exist Ai ∈ gln(k), i = 0, . . . , n with
A0 = A such that

∂jAi − ∂iAj = AjAi − AiAj for all i, j = 0, . . . n.

The nomenclature is motivated by the fact that the latter conditions on the Ai are
the usual integrability conditions and the system of differential equations ∂iY = AiY ,
i = 0, . . . , n are as in equations (2.1).

Proposition 3.9. Let k be a�-differential field and assume that k0 is a�-differentially
closed �-field. Let A ∈ gln(k) and let K be a PPV-extension of k for ∂0Y = AY .
Finally, let C = C�k .

(1) There exists a linear algebraic group G defined over C such that Gal�(K/k) is
conjugate to G(C) if and only if ∂0Y = AY is completely integrable. If this is
the case, then K is a PV-extension of k corresponding to this integrable system.

(2) If A ∈ gln(C
�
k ), then Gal�(K/k) is conjugate to G(C) for some linear alge-

braic group defined over C.

Proof. (1) LetK = k〈Z〉� whereZ ∈ GLn(K) satisfies ∂0Z = AZ. If the PPV-group
is as described, then there exists aB ∈ GLn(C0

k ) such thatBGal�(K/k)B−1 = G(C),
G an algebraic subgroup of GLn(C0

k ), defined over C. SetW = ZB−1. One sees that
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∂0W = AW and K = k〈W 〉�. A simple calculation shows that for any i = 0, . . . , n,
∂iW ·W−1 is left fixed by all elements of the PPV-group. Therefore ∂iW = AiW for
someAi ∈ gln(k). Since the ∂i commute, one sees that theAi satisfy the integrability
conditions.

Now assume that there exist Ai ∈ gln(k) as above satisfying the integrability
conditions. Let K be a PV-extension of k for the corresponding integrable system.
From Lemma 9.9 in the Appendix, we know that K is also a PPV-extension of k for
∂0Y = AY . Let σ ∈ Gal�(K/k) and let σ(Z) = ZD for someD ∈ GLn(C0

k ). Since
∂iZ · Z−1 = Ai ∈ GLn(k), we have that σ(∂iZ · Z−1) = ∂iZ · Z−1. A calculation
then shows that ∂i(D) = 0. Therefore D ∈ GLn(C�K). We now need to show that
C�K = C�k . This is clear since C�K ⊂ C0

K = C0
k . The final claim of Part (1) is now

clear.
(2) Under the assumptions, the matrices A0 = A,A1 = 0, . . . , An = 0 satisfy the

integrability conditions, so the conclusion follows from Part (1) above.

If A has entries that are analytic functions of x, t1, . . . , tm, the fact that
Gal�(K/k) = G(C) for some linear algebraic group does not imply that, for some
open set of values �τ = (τ1, . . . , τm) of (t1, . . . , tm), the Galois group G�τ of the ordi-
nary differential equation ∂xY = A(x, τ1, . . . , τm)Y is independent of the choice of �τ .
We shall see in Section 5 that for equations with regular singular points we do have a
constant Galois group (on some open set of parameters) if the PPV-group isG(C) for
some linear algebraic group but the following shows that this is not true in general.

Example 3.10. Let � = {∂1 = ∂
∂t1
, ∂2 = ∂

∂t2
} and k0 be a differentially closed �-

field containing C. Let k = k0(x) be a � = {∂0 = ∂
∂x
, ∂1, ∂2}-field where ∂0|k0 = 0,

∂0(x) = 1, and ∂1, ∂2 extend the derivations on k0 and satisfy ∂1(x) = ∂2(x) = 0.
The equation

∂Y

∂x
= A(x, t1, t2)Y =

(
t1 0
0 t2

)
Y

has solution

Y =
(
et1x 0
0 et2x

)
One easily checks that

A1 = ∂Y

∂t1
Y−1 ∈ gl2(k) and A2 = ∂Y

∂t2
Y−1 ∈ gl2(k)

so the Galois group associated to this equation is conjugate to G(C) for some linear
algebraic group G (in fact G(C) = C∗ × C∗). Nonetheless, for fixed values �τ =
(τ1, τ2) ∈ C2, the Galois group of ∂0Y = A(x, τ1, τ2)Y is G(C) if and only if τ1 and
τ2 are linearly independent over the rational numbers. �

For more information on how a differential Galois group can vary in a family of
linear differential equations see [1] §3.3, [2], [3], [4], [18], and [46].
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We end this section with a result concerning solving parameterized linear differen-
tial equations in “finite terms”. The statement of the result is the same mutatis mutandi
as the corresponding result in the usual Picard–Vessiot theory (cf., [40], Ch. 1.5) and
will be proved in the Appendix.

Definition 3.11. Let k be a � = {∂0, . . . ∂m}-field. We say that a �-field L is a
parameterized liouvillian extension of k if C0

L = C0
k and there exist a tower of �-

fields k = L0 ⊂ L1 ⊂ · · · ⊂ Lr such thatL ⊂ Lr andLi = Li−1〈ti〉� for i = 1 . . . r ,
where either

(1) ∂0ti ∈ Li−1, that is ti is a parameterized integral (of an element of Li−1), or

(2) ti �= 0 and ∂0ti/ti ∈ Li−1, that is ti is a parameterized exponential (of an integral
of an element in Li−1), or

(3) ti is algebraic over Li−1.

In Section 9.5 we shall prove a result (Lemma 9.14) that implies that a parmeterized
liouvillian extension is an inductive limit of ∂0-liouvillian extension (in the usual sense,
cf., Ch. 1.5, [40]). We will use this to prove the following result

Theorem 3.12. Let k be a �-field and assume that C0
k is a differentially closed � =

{∂1, . . . ∂m}-field. Let K be a PPV-extension of k with PPV-group G. The following
are equivalent

(1) G contains a solvable subgroup (in the sense of abstract groups) H of finite
index.

(2) K is a parameterized liouvillian extension of k.

(3) K is contained in a parameterized liouvillian extension of k.

4 Linear differential algebraic groups

In this section we review some known facts concerning linear differential algebraic
groups and give some examples of these groups. The theory of linear differential
algebraic groups was initiated by P. Cassidy in [9] and further developed in [10]–[14].
The topic has also been addressed in [7], [22], [34], [36], [23], [47], and [48]. For a
general overview see [8].

Let k0 be a differentially closed � = {∂1, . . . , ∂m}-field and let C = C�k0
. As we

have already defined, a linear differential algebraic group is a Kolchin-closed subgroup
of GLn(k0). Although the definition is a natural generalization of the definition of a
linear algebraic group there are many points at which the theories diverge. The first
is that an affine differential algebraic group (a Kolchin-closed subset X of km0 with
group operations defined by everywhere defined rational differential functions) need
not be a linear differential algebraic group although affine differential algebraic groups
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whose group laws are given by differential polynomial maps are linear differential
algebraic groups [9]. Other distinguishing phenomena will emerge as we examine
some examples.

Differential algebraic subgroups of Ga
n. The group Ga = (k0,+) is naturally iso-

morphic to
{ (

1 a
0 1

) | a ∈ k0
}

and, as such, has the structure of a linear differential
algebraic group. Nonetheless we will continue to identify this group with k0. The
set Ga

n = (kn0 ,+) can also be seen to be a linear differential algebraic group. In ([9],
Lemma 11), Cassidy shows that a subgroup H of Ga

n is a linear differential algebraic
group if and only if H is the set of zeros of a set of linear homogeneous differential
polynomials in k0{y1, . . . , yn}. In particular, when m = n = 1,� = {∂}, the linear
differential algebraic subgroups of Ga are all of the form

Ga
L(k0) = {a ∈ Ga(k0) | L(a) = 0}

where L is a linear differential operator (i.e., an element of the ring k0[∂] whose
multiplication is given by ∂ · a = a∂ + ∂(a)). The lattice structure of these subgroups
is given by

Ga
L1(k0) ⊂ Ga

L2(k0) ⇔ L2 = L3L1 for some L3 ∈ k0[∂].

Differential algebraic subgroups of Gm
n. These have been classified by Cassidy ([9],

Ch.IV).We shall restrict ourselves to the case n = m = 1,� = {∂}, that is, differential
algebraic subgroups of Gm(k0) = GL1(k0) = k∗

0 . Any such group is either

(1) finite and cyclic, or

(2) Gm
L = {

a ∈ Gm(k0) | L(
∂a
a

) = 0} for some L ∈ k0[∂]
}
.

For example, if L = ∂ , the group

Gm
∂ (k) = {

a ∈ k∗
0 | ∂(∂a

a
) = 0

}
is the PPV-group of the parameterized linear differential equation ∂xy = t

x
y where

∂ = ∂t . Notice that the only proper differential algebraic subgroup of {a ∈ k0 |∂a = 0}
is {0}. Therefore the only proper differential algebraic subgroups of Gm

∂ are either the
finite cyclic groups, or Gm(C). This justifies the left column in the table given in
Example 3.1 (bis). The right column follows by calculation.

The proof that the groups of (1) and (2) are the only possibilities proceeds in two
steps. The first is to show that if the group is not connected (in the Kolchin topology
where closed sets are Kolchin-closed sets), it must be finite (and therefore cyclic). The
second step involves the logarithmic derivative map l∂ : Gm(k0) → Ga(k0) defined
by

l∂(a) = ∂a

a
.

This map is a differential rational map (i.e., the quotient of differential polynomials)
and is a homomorphism. Furthermore, it can be shown that the following sequence is
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exact:

(1) −→ Gm(C) −→ Gm(k0) −→ Ga(k0) −→ (0)

a 	−→ ∂a

a
.

The result then follows from the classification of differential subgroups of Ga(k0).
Note that in the usual theory of linear algebraic groups, there are no nontrivial rational
homomorphisms from Gm to Ga .

Semisimple differential algebraic groups. These groups have been classified by
Cassidy in [14]. Buium [7] and Pillay [36] have given simplified proofs in the ordinary
case (i.e., m = 1). Buium’s proof is geometric using the notion of jet groups and
Pillay’s proof is model theoretic and assumes from the start that the groups are finite
dimensional (of finite Morely rank).

We say that a connected differential algebraic group is semisimple if it has no
nontrivial normal Kolchin-connected, commutative subgroups. Let us start by con-
sidering semisimple differential algebraic subgroups G of SL2(k0). Let H be the
Zariski-closure of such a group. IfH �= SL2(k0), thenH is solvable (cf., [40], p. 127)
and so the same would be true of G. Therefore G must be Zariski-dense in SL2(k0).
In [9] Proposition 42, Cassidy classified the Zariski-dense differential algebraic sub-
groups of SLn(k0). Let D be the k0-vector space of derivations spanned by �.

Proposition 4.1. Let G be a proper Zariski-dense differential algebraic subgroup of
SLn(k0). Then there exists a finite set �1 ⊂ D of commuting derivations such that G
is conjugate to SLn(C

�1
k0
), the �1-constant points of SLn(k0).

Note that in the ordinary case m = 1, we can restate this more simply: A proper
Zariski-dense subgroup of SLn(k0) is conjugate to SLn(C). A complete classification
of differential subgroups of SL2 is given in [48]. The complete classification of
semisimple differential algebraic groups is given by the following result (see [14],
Theorem 18). By a Chevalley group, we mean a connected simple Q-group containing
a maximal torus diagonalizable over Q.

Proposition 4.2. Let G be a Kolchin-connected semisimple linear2 differential al-
gebraic group. Then there exist finite subsets of commuting derivations �1, . . . , �r
of D, Chevalley groups H1, . . . , Hr and a differential isogeny σ : H1(C

�1
k0
) × · · · ×

Hr(C
�r
k0
) → G .

2One need not assume thatG is linear since Pillay [34] showed that a semisimple differential algebraic group
is differentially isomorphic to a linear differential algebraic group.
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5 Isomonodromic families

In this section we shall describe how isomonodromic families of linear differential
equations fit into this theory of parameterized linear differential equations. We begin3

with some definitions and follow the exposition of Sibuya [45], Appendix 5. Let D
be an open subset of the Riemann sphere (for simplicity, we assume that the point at
infinity is not in D) and let D(�τ , �r ) = ∏p

h=1D(τh, ρh) where �r = (ρ1, . . . , ρp) is a
p-tuple of positive numbers, �τ = (τ1, . . . , τp) ∈ Cp and D(τh, ρh) is the open disk
in C of radius ρh centered at the point τh. We denote by O(D × D(�τ , �r )) the ring of
functions f (x, �t ) holomorphic on D ×D(�τ , �r ). LetA(x, �t ) ∈ gln(O(D ×D(�τ , �r ))
and consider the differential equation

∂W

∂x
= A(x, �t )W (5.1)

Definition 5.1. A system of fundamental solutions of (5.1) is a collection of pairs
{D(xj , �rj ),Wj (x, �t )} such that

(1) the disks D(xj , �rj ) cover D and

(2) for each �t ∈ D(�τ , �r ) theWj(x, �t ) ∈ GLn(O(D(xj , �rj )×D(�τ , �r )) are solutions
of (5.1).

We define Ci,j (�t ) = Wi(x, �t )−1Wj(x, �t ) whenever D(xi, �ri) ∩ D(xj , �rj ) �= ∅
and refer to these as the connection matrices of the system of fundamental solutions.

Definition 5.2. The differential equation (5.1) is isomonodromic on D × D(�τ , �r )
if there exists a system {D(xj , �rj ),Wj (x, �t )} of fundamental solutions such that the
connection matrices Ci,j (�t ) are independent of t .

We note that for a differential equation that is isomonodromic in the above sense,
the monodromy around any path is independent of �t as well. To see this let γ be
a path in D beginning and ending at x0 and let D(x1, �r1), . . . , D(xs, �rs),D(x1, �r1)

be a sequence of disks covering the path so that D(xi, �ri) ∩ D(xi+1, �ri+1) �= ∅
and x0 ∈ D(x1, �r1). If one continues W1(x1, �t ) around the path then the resulting
matrix W̃ = W1(x1, �t )C1,sCs,s−1 . . . C2,1. By assumption, the monodromy matrix
C1,sCs,s−1 . . . C2,1 is independent of �t .

For equations with regular singular points, the monodromy group is Zariski dense
in the PV-group. The above comments therefore imply that for an isomonodromic
family, there is a nonempty open set of parameters such that for these values the
monodromy (and therefore the PV-group) is constant as the parameters vary in this
set. Conversely, fix x0 ∈ D and fix a generating set S for�1(D, x0). Assume that, for
each value �t ∈ D(�t, �r ), we can select a basis of the solution space of (5.1) such that
the monodromy matrices corresponding to S with respect to this basis are independent

3The presentation clearly could be cast in the language of vector bundles (see [3], [4], [26], [27]) but the
approach presented here is more in the spirit of the rest of the paper.
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of �t . Bolibruch (Proposition 1, [6]) has shown that under these assumptions (5.1) is
isomonodromic in the above sense4.

With these definitions, Sibuya shows ([45], Theorem A.5.2.3)

Proposition 5.3. The differential equation (5.1) is isomonodromic on D × D(�τ , �r )
if and only if there exist p matrices Bh(x, �t ) ∈ gln(O(D × D(�τ , �r ))), h = 1, . . . , p
such that the system

∂W

∂x
= A(x, �t )W

∂W

∂th
= Bh(x, �t )W (h = 1, . . . , p)

(5.2)

is completely integrable.

Some authors use the existence of matricesBi as in Proposition 5.3 as the definition
of isomonodromic (cf., [26]). Sibuya goes on to note that if A(x, �t ) is rational in x
and if the differential equation has only regular singular points, then the Bh(x, �t )
will be rational in x as well (without the assumption of regular singular points one
cannot conclude that the Bi will be rational in x.) This observation leads to the next
proposition.

For any open set U ⊂ Cp, let M(U) be the field of functions meromorphic
on U. Note that M(U) is a � = {

∂
∂t1
, . . . , ∂

∂tp

}
-field. If U′ ⊂ U then there is a

natural injection of resU,U′ : M(U) → M(U′). We shall need the following result
of Seidenberg [43], [44]: Let U be an open subset of Cp and let F be a �-subfield
of M(U) containing C. If E is �-field containing F and finitely generated (as a
�-field) over Q, then there exists a nonempty open set U′ ⊂ U and an isomorphism
φ : E → M(U) such that φ|F = resU,U′ .

LetA(x, �t ) be as above, assume the entries ofA are rational in x and letF be the�-
field generated by the coefficients of powers of x that appear in the entries ofA. Let k0
be the differential closure ofF . We consider k = k0(x) to be a� = {

∂
∂x
, ∂
∂t1
, . . . , ∂

∂tp

}
-

field in the obvious way. Given open subsets U1 ⊂ U2 of the Riemann sphere, we
say that U1 is a punctured subset of U2 if there exist a finite number of disjoint closed
disks D1, . . . , Dr ⊂ U2 such that U1 = U2\

( ⋃r
i=1Di

)
.

Proposition 5.4. Let A(x, �t ), k0 and k be as above. Assume that the differential
equation

∂W

∂x
= A(x, �t )W (5.3)

has only regular singular points. Then this equation is isomonodromic on D ′ × U,
for some nonempty, open U ⊂ D(�τ , �r ) and D ′ a punctured subset ofD if and only if

4Throughout [6], Bolibruch assumes that A(x, �t ) = ∑s
i=1

Ai(�t )
x−ti but his proof of this result works mutatis

mutandi for any equation with regular singular points.
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the PPV-group of this equation over k is conjugate toG(C) for some linear algebraic
group G defined over C. In this case, the monodromy group of (5.3) is independent
of �t ∈ U .

Proof. Assume that (5.3) is isomonodromic. Proposition 5.3 and the comments after
it ensure that we can complete (5.3) to a completely integrable system (5.2) where
the Bi(x, �t ) are rational in x. The fact that this is a completely integrable system
is equivalent to the coefficients of the powers of x appearing in the entries of the
Bi satisfying a system S of �-differential equations with coefficients in k0. Since
this system has a solution and k0 is differentially closed, the system must have a
solution in k0. Therefore we may assume that the Bi ∈ gln(k). An application of
Proposition 3.9 (1) yields the conclusion.

Now assume that the PPV-group is conjugate to G(C) for some linear algebraic
group G. Proposition 3.9 (1) implies that we can complete (5.3) to a completely
integrable system (5.2) where theBi(x, �t ) are in gln(k). LetE be the�-field generated
by the coefficients of powers of x appearing in the entries ofA and theBi . By the result
of Seidenberg referred to above, there is a nonempty open set U ⊂ D(�τ , �r ) such that
these coefficients can be assumed to be analytic on U.The matrices Bi have entries
that are rational in x and so may have poles (depending on �t) inD. By shrinking U if
necessary and replacingD with a punctured subsetD′ ofD, we can assume thatA and
the Bi have entries that are holomorphic inD′ × U. We now apply Proposition 5.3 to
reach the conclusion.

6 Second order systems

In this section we will apply the results of the previous four sections to give a clas-
sification of parameterized second order systems of linear differential equations. We
will first consider the case of second order parameterized linear equations depending
on only one parameter.

Proposition 6.1. Let k be a� = {∂0, ∂1}-field, assume that k0 = C0
k is a differentially

closed� = {∂1}-field and letC = C�k . LetA ∈ sl2(k) and letK be the PPV-extension
corresponding to the differential equation

∂0Y = AY. (6.1)

Then, either

(1) Gal�(K/k) equals SL2(k0), or

(2) Gal�(K/k) contains a solvable subgroup of finite index andK is a parameterized
liouvillian extension of k, or



Galois theory of parameterized differential equations 131

(3) Gal�(K/k) is conjugate to SL2(C) and there exist B1 ∈ sl2(k) such that the
system

∂0Y = AY

∂1Y = B1Y

is an integrable system.

Proof. Let Z ∈ GL2(k) be a fundamental solution matrix of (6.1) and let z = detZ.
We have that ∂0z = (traceA)z ([40], Exercise 1.14.5), so z ∈ k0. For any σ ∈
Gal�(K/k), z = σ(z) = det σ · z so det σ = 1. Therefore, Gal� ⊂ SL2(k0).
Let G be the Zariski-closure of Gal�(K/k). If G �= SL2(k0), then G has a solvable
subgroup of finite index and so the same holds for Gal�(K/k). Therefore, (2) holds. If
G = Gal�(K/k) = SL2(k0), then (1) holds. If G = SL2(k0) and G �= Gal�(K/k),
then Proposition 4.1 and the discussion immediately following it imply that there
is a B ∈ SL2(k0) such that BGal�(K/k)B−1 = SL2(C). Proposition 3.9 then
implies that the parameterized equation ∂0Y = AY is completely integrable, yielding
conclusion (3).

If the entries of A are functions of x and t , analytic in some domain and rational
in x, we can combine the above proposition with Proposition 5.4 to yield the next
corollary. Let D be an open region on the Riemann sphere andD(τ0, ρ0) be the open
disk of radius ρ0 centered at τ0 in C. Let O(D ×D(τ0, ρ0)) be the ring of functions
holomorphic in D ×D(τ0, ρ0) and let A(t, x) ∈ sl2(O(D ×D(τ0, ρ0)) and assume
that A(x, t) is rational in x. Let � = {

∂0 = ∂
∂x
, ∂1 = ∂

∂t

}
and � = {∂1}. Let k0 be

a differentially closed �-field containing the coefficients of powers of x appearing in
the entries ofA and let k = k0(x) be the�-field gotten by extending ∂1 via ∂1(x) = 0
and defining ∂0 to be zero on k0 and ∂1(x) = 1.

Corollary 6.2. Let k0, k, A(t, x) be as above and letK be the PV-extension associated
with

∂Y

∂x
= A(x, t)Y. (6.2)

Then, either

(1) Gal�(K/k) = SL2(k0), or

(2) Gal�(K/k) contains a solvable subgroup of finite index andK is a parameterized
liouvillian extension of k, or

(3) equation (6.2) is isomonodromic on D′ × U where D′ is a punctured subset of
D and U is an open subset of D(τ0, ρ0).

We can also state a result similar to Proposition 6.1 for parameterized linear equa-
tions having more than one parameter. We recall that if k0 is a� = {∂1, . . . ∂m}-field,
we denote by D the k0-vector space of derivations spanned by �.
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Proposition 6.3. Let k be a � = {∂0, . . . ∂m}-field, assume that k0 = C0
k is a differ-

entially closed� = {∂1, . . . ∂m}-field. Let A ∈ sl2(k) and letK be the PPV-extension
corresponding to the differential equation

∂0Y = AY.

Then, either
(1) Gal�(K/k) = SL2(k0), or

(2) Gal�(K/k) contains a solvable subgroup of finite index and K is a parame-
terized liouvillian extension of k, or

(3) Gal�(K/k) is a proper Zariski-dense subgroup of SL2(k0) and there exist

(a) a commuting k0-basis {∂ ′
1, . . . , ∂

′
m} of D, and

(b) an integer r , 1 ≤ r ≤ m and elements Bi ∈ gl2(k), i = 1, . . . r ,

such that the system

∂0Y = AY

∂ ′
1Y = B1Y

...

∂ ′
rY = BrY

is an integrable system.

Proof. The proof begins in the same way as that for Proposition 6.1 and Cases (1)
and (2) are the same. If neither of these hold, then Gal�(K/k) is a proper Zariski-dense
subgroup of SL2(k0) and so by Proposition 4.1, there exist commuting derivations
�′ = {∂ ′

1, . . . , ∂
′
r} ⊂ D such that Gal�(K/k) is conjugate to SL2(C

�
k ). We may

assume that the ∂ ′
i are k0 independent. Proposition 7 of Chapter 0 of [22] implies

that we can extend �′ to a commuting basis of D. After conjugation by an element
B ∈ GL2(k), we can assume that the PPV-group is SL2(C

�′
k ). A calculation shows

that (∂ ′
iY )Y

−1 is left invariant by this group for i = 1, . . . , r and the conclusion
follows.

The third case of the previous proposition can be stated informally as: After a
change of variables in the parameter space, the parameterized differential equation
is completely integrable with respect to x and a subset of the new parameters.

7 Inverse problem

The general inverse problem can be stated as: Given a differential field, which groups
can occur as Galois groups of PPV-extensions of this field? We have no definitive
results but will give two examples in this section.
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Example 7.1. Let k be a� = {∂0, ∂1}-field with k0 = C
{∂0}
k differentially closed and

k = k0(x), ∂0(x) = 1, ∂1(x) = 0. We wish to know: Which subgroups G of Ga(k0)

are Galois groups of PPV-extensions of k? The answer is that all proper differential
algebraic subgroups of Ga(k0) appear in this way but Ga(k0) itself cannot be the
Galois group of a PPV-extension K of k.

We begin by showing that Ga(k0) cannot be the Galois group of a PPV-extensionK
of k. In Section 9.4, we show that K is the differential function field of a G-torsor. If
G = Ga(k0), then the Corollary to Theorem 4 of Chapter VII.3 of [22] implies that
this torsor is trivial and so K = k〈z〉� where σ(z) = z+ cσ for all σ ∈ Ga(k0). This
further implies that ∂0(z) = a for some a ∈ k. Since k = k0(x) and k0 is algebraically
closed, we may write

a = P(x)+
r∑
i=1

( si∑
j=1

bi,j

(x − ci)j

)

where P(x) is a polynomial with coefficients in k0 and the bi,j , ci ∈ k0. Furthermore,
there exists an element R(x) ∈ k such that

∂0(z− R(x)) =
r∑
i=1

bi,1

(x − ci)

so after such a change, we may assume that

a =
r∑
i=1

bi

x − ci

for some bi, ci ∈ k0.
We shall show that the Galois group of K over k is

{z ∈ k0 | L(z) = 0}
where L is the linear differential equation in k[∂1] whose solution space is spanned
(over C) by {b1, b2, . . . , br}. In particular, the group Ga(k0) is not a Galois group of
a PPV-extension of k.

To do this form a new PPV-extension F = k〈z1, . . . , zr〉� where ∂0zi = 1
x−ci .

Clearly, there exists an element w = ∑r
i=1 bizi ∈ F such that ∂0w = a. Therefore

we can consider K as a subfield of F . A calculation shows that ∂0
(
∂1zi + ∂1ci

x−ci
) = 0

so ∂1zi ∈ k. Therefore Proposition 3.9 implies that the PPV-group Gal�(F/k) is of
the form G(C) for some linear algebraic group G and that F is a PV-extension of
k. The Kolchin–Ostrowski Theorem ([21], p. 407) implies that the elements zi are
algebraically independent over k. The PPV-group Gal�(F/k) is clearly a subgroup
of Ga(C)

r and since the transcendence degree of F over k must equal the dimension
of this group, we have Gal�(F/k) = Ga(C)

r .
For σ = (d1, . . . , dr ) ∈ Ga(C)

r = Gal�(F/k), σ (w) = w + ∑r
i=1 dibi . The

Galois theory implies that restricting elements of Gal�(F/k) to K yields a surjective
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homomorphism onto Gal�(K/k), so we can identify Gal�(K/k) with the C-span of
the bi . Therefore Gal�(K/k) has the desired form.

We now show that any proper differential algebraic subgroup H of Ga(k0) is the
PPV-group of a PPV-extension of k. As stated in Section 4. H = {a ∈ Ga(k0) |L(a) =
0} for some linear differential operator L with coefficients in k0. Since k0 is differen-
tially closed, there exist b1, . . . , bm ∈ k0 linearly independent over C = C�k that span
the solution space of L(Y ) = 0. Let

a =
m∑
i=1

bi

x − i
.

The calculation above shows that the PPV-group of the PPV-extension of k for ∂0y = a

is H . �

The previous example leads to the question: Find a �-field k such that Ga(k0) is
a Galois group of a PPV-extension of k. We do this in the next example.

Example 7.2. Let k be a� = {∂0, ∂1}-field with k0 = C
{∂0}
k differentially closed and

k = k0(x, log x, xt−1e−x), ∂0(x) = 1, ∂0(log x) = 1
x

, ∂0(x
t−1e−x) = t−x−1

x
xt−1e−x ,

∂1(x) = ∂1(log x) = 0, ∂1(x
t−1e−x) = (log x)xt−1e−x . Consider the differential

equation

∂0y = xt−1e−x

and letK be the PPV-extension of k for this equation. We may writeK = k〈γ 〉�, where
γ satisfies the above equation (γ is known as the incomplete Gamma function). We
have thatK = k(γ, ∂1γ, ∂

2
1γ, . . . ). In [19], the authors show that γ, ∂1γ, ∂

2
1γ, . . . are

algebraically independent over k. Therefore, for any c ∈ Ga(k0), ∂i1γ 	→ ∂i1γ + ∂i1c,
i = 0, 1, . . . defines an element of Gal�(K/k). Therefore Gal�(K/k) = Ga(k0).

Over k0(x), γ satisfies

∂2γ

∂x2 − t − 1 − x

x

∂γ

∂x
= 0

and one can furthermore show that the PPV-group over k0(x) of this latter equation is

H = { (
1 a
0 b

) | a ∈ k0, b ∈ k∗
0 , ∂1

(
∂1b
b

) = 0
}

= Ga(k0)� Gm
∂1,

where Gm
∂1 = {

b ∈ k∗
0 | ∂1

(
∂1b
b

) = 0
}
. �

Remark 7.3. We can use the previous example to exhibit two equations ∂0Y = A1Y

and ∂0Y = A2Y having the same PPV-extension K of k but such that KPV
A1

�= KPV
A2

and that these latter PV-extensions have different PV-groups (cf., Remark 3.7). Let k
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and γ be as in the above example and let

A1 =
(

0 xt−1e−x
0 0

)
A2 =

⎛
⎝0 xt−1e−x (log x)xt−1e−x

0 0 0
0 0 0

⎞
⎠ .

We have that

Z1 =
(

1 γ

0 1

)
Z2 =

⎛
⎝1 γ ∂1(γ )

0 1 0
0 0 1

⎞
⎠

satisfy ∂0Z1 = A1Z1 and ∂0Z2 = A2Z2. K is the PPV-extension associated with
either equation and the Galois group Gal�(K/k) is Ga(k0). We have that KPV

A1
=

k(γ ) �= KPV
A2

= k(γ, ∂1γ ) since γ and ∂1γ are algebraically independent over k.
With respect to the first equation, Gal�(K/k) is represented in GL2(k0) as{(

1 c

0 1

) ∣∣ c ∈ k0

}

and with respect to the second equation Gal�(K/k) is represented in GL3(k0) as⎧⎨
⎩

⎛
⎝1 c ∂1(c)

0 1 0
0 0 1

⎞
⎠ ∣∣∣ c ∈ k0

⎫⎬
⎭ .

The image of Ga(k0) in GL2(k0) is Zariski-closed while the Zariski closure of the
image of Ga(k0) in GL3(k0) is⎧⎨

⎩
⎛
⎝1 c d

0 1 0
0 0 1

⎞
⎠ ∣∣∣ c, d ∈ k0

⎫⎬
⎭ .

As algebraic groups, the first group is just Ga(k0) and the second is Ga(k0)×Ga(k0).

8 Final comments

Other Galois theories. In [37], Pillay proposes a Galois theory that extends Kolchin’s
Galois theory of strongly normal extensions. We will explain the connections to our
results.

Let k be a differential field and K a Picard–Vessiot extension of k. K has the
following property: for any differential extension E of K and any differential k-
isomorphism φ of K into E, we have that φ(K) · C = K · C, where C is the field
of constants of E. Kolchin has shown ([21], Chapter VI) this is the key property for
developing a Galois theory. In particular, he defines a finitely generated differential
field extension K of k to be strongly normal if for any differential extension E of K
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and any differential k-isomorphism of K into E we have that

φ(K)〈C〉 = K〈C〉, where C are the constants of E and(1)

φ leaves each of the constants of K fixed.(2)

For such fields, Kolchin shows that the differential Galois group of K over k has the
structure of an algebraic group and that the usual Galois correspondence holds.

In [31], [35], [37], [38] Pillay considers ordinary differential fields and generalizes
this theory. The key observation is that the condition (1) can be restated as

φ(K)〈X(E)〉 = K〈X(E)〉,(1′)

whereX is the differential algebraic variety defined by the equation ∂Y = 0 andX(E)
are theE-points ofX. ForX, any differential algebraic variety defined over k (or more
generally, any Kolchin-constructible set), Pillay defines a differential extension K to
be an X-strongly normal extension of k if for any differential extension E of K and
any differential k-isomorphism of K into E we have that equation (1′) holds and that
(2) is replaced by technical (but important) other conditions. Pillay then uses model
theoretic tools to show that for these extensions, the Galois group is a finite dimen-
sional differential algebraic group (note that in the PPV-theory, infinite dimensional
differential algebraic groups can occur, e.g., Ga). The finite dimensionality results
from the fact that the underlying differential fields are ordinary differential fields and
that finite sets of elements in the differential closure of an ordinary differential field
generate fields of finite transcendence degree (a fact that is no longer true for partial
differential fields). Because of this, Pillay was able to recast his theory in [38] in the
language of subvarieties of certain jet spaces. If one generalizes Pillay’s definition of
strongly normal to allow partial differential fields with derivations� and takes for X
the differential algebraic variety defined by {∂Y = 0 | ∂ ∈ �} where� ⊂ �, then this
definition would include PPV-extensions. Presumably the techniques of [37] can be
used to prove many of these results as well. Nonetheless, we feel that a description
of the complete situation for PPV-fields is sufficiently self contained as to warrant an
independent exposition.

Landesman [24] has been generalizing Kolchin’s Galois theory of strongly normal
extensions to differential fields having a designated subset of derivations acting as
parametric derivations. When this is complete, many of our results should follow as
a special case of his results.

Umemura [49]–[54] has proposed a Galois theory for general nonlinear differential
equations. Instead of Galois groups, he uses Lie algebras to measure the symmetries
of differential fields. Malgrange [28], [29] has proposed a Galois theory of differen-
tial equations where the role of the Galois group is taken by certain groupoids. Both
Umemura and Malgrange have indicated to us that their theories can analyze param-
eterized differential equations as well.

Future directions. There are many questions suggested by the results presented here
and we indicate a few of these.
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(1) Deligne [15], [16] (see also [40]) has shown that the usual Picard–Vessiot theory
can be presented in the language of Tannakian categories. Can one characterize
in a similar way the category of representations of linear differential algebraic
groups and use this to develop the parameterized Picard–Vessiot theory?5

(2) How does the parameterized monodromy sit inside the parameterized Picard–
Vessiot groups? To what extent can one extend Ramis’ characterization of the
local Galois groups to the parameterized case?

(3) Can one develop algorithms to determine the Galois groups of parameterized
linear differential equations? Sit [48] has classified the differential algebraic
subgroups of SL2. Can this classification be used to calculate Galois groups
of second order parameterized differential equations in analogy to Kovacic’s
algorithm for second order linear differential equations?

(4) Characterize those linear differential algebraic groups that appear as Galois
groups of k0(x) where k0 is as in Example 7.1.

9 Appendix

In this Appendix, we present proofs of results that imply Theorem 3.5 and Theo-
rem 3.12. In Section 3, Theorem 3.5 is stated for a parameterized system of ordinary
linear differential equations but it is no harder to prove an analogous result for pa-
rameterized integrable systems of linear partial differential equations and we do this
in this appendix. The first section contains a discussion of constrained extensions,
a concept needed in the proof of the existence of PPV-extensions. In the next three
sections, we prove results that simultaneously imply Theorem 2.1 and Theorem 3.5.
The proofs are almost, word-for-word, the same as the proofs of the corresponding
result for PV-extensions ([39], Ch. 1) once one has taken into account the need for
subfields of constants to be differentially closed. Nonetheless we include the proofs
for the convenience of the reader. The final section contains a proof of Theorem 3.12.

9.1 Constrained extensions

Before turning to the proof of Theorem 3.5, we shall need some more facts concerning
differentially closed fields (see Definition 3.2). If k ⊂ K are �-fields and η =
(η1, . . . , ηr) ∈ Kr , we denote by k{η}� (resp. k〈η〉�) the �-ring (resp. �-field)
generated by k and η1, . . . , ηr , that is, the ring (resp. field) generated by k and all
the derivatives of the ηi . We shall denote by k{y1, . . . , yn}� the ring of differential
polynomials in n variables over k (cf., Section 3). A k-�-isomorphism of k{η}� is a
k-isomorphism σ such that σ∂ = ∂σ for all ∂ ∈ �.

5Added in proof: Alexey Ovchinnikov has done this and the details will appear in his forthcoming Ph.D.
thesis at NC State University.
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Definition 9.1. ([21], Ch. III.10; [20]) Let k ⊂ K be �-fields.
(1) We say that a finite family of elements η = (η1, . . . , ηr) ⊂ Kr is constrained

over k if there exist differential polynomials P1, . . . , Ps,Q ∈ k{y1, . . . , yr}�
such that

(a) P1(η1, . . . , ηr) = · · · = Ps(η1, . . . , ηr) = 0 and Q(η1, . . . , ηr) �= 0, and

(b) for any�-fieldE, k ⊂ E, if (ζ1, . . . , ζr ) ∈ Er andP1(ζ1, . . . , ζr ) = · · · =
P1(ζ1, . . . , ζr ) = 0 andQ(ζ1, . . . , ζr ) �= 0, then the map ηi 	→ ζi induces
a k-�-isomorphism of k{η1, . . . , ηr}� with k{ζ1, . . . , ζr}�.

We say that Q is the constraint of η over k.

(2) We say K is a constrained extension of k if every finite family of elements of K
is constrained over k.

(3) We say k is constrainedly closed if k has no proper constrained extensions.

The following Proposition contains the facts that we will use:

Proposition 9.2. Let k ⊂ K be �-fields and η ∈ Kr

(1) η is constrained over k with constraintQ if and only if k{η, 1/Q(η)}� is a simple
�-ring, i.e. a �-ring with no proper nontrivial �-ideals.

(2) If η is constrained over k andK = k〈η〉�, then any finite set of elements ofK is
constrained over k, that is, K is a constrained extension of k.

(3) K is differentially closed if and only if it is constrainedly closed.

(4) Every differential field has a constrainedly closed extension.

One can find the proofs of these in [20], where Kolchin uses the term constrainedly
closed instead of differentially closed. Proofs also can be found in [32] where the
author uses a model theoretic approach. Item (1) follows from the fact that any
maximal �-ideal in a ring containing Q is prime ([21], Ch. I.2, Exercise 3 or [40],
Lemma 1.17.1) and that for any radical differential ideal I in k{y1, . . . , yr}� there exist
differential polynomialsP1, . . . , Ps such that I is the smallest radical differential ideal
containing P1, . . . , Ps (the Ritt–Raudenbusch Theorem [21], Ch. III.4). Item (2) is
fairly deep and is essentially equivalent to the fact that the projection of a Kolchin-
constructible set (an element in the boolean algebra generated by Kolchin-closed sets)
is Kolchin-constructible. Items (3) and (4) require some effort but are not too difficult
to prove. Generalizations to fields with noncommuting derivations can be found in
[56] and [33].

In the usual Picard–Vessiot theory, one needs the following key fact: Let k be a
differential field with algebraically closed subfield of constantsC. IfR is a simple dif-
ferential ring, finitely generated over k, then any constant of R is in C (Lemma 1.17,
[40]). The following result generalizes this fact and plays a similar role in the pa-
rameterized Picard–Vessiot theory. Recall that if k is a � = {∂0, . . . , ∂m}-field and
� ⊂ �, we denote by C�k the set {c ∈ k | ∂c = 0 for all ∂ ∈ �}. One sees that C�k is
a � = �\�-field.
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Lemma 9.3. Let k ⊂ K be �-fields, � ⊂ �, and � = �\�. Assume that C�k is
�-differentially closed. If K is a �-constrained extension of k, then C�K = C�k .

Proof. Let η ∈ C�K . SinceK is a�-constrained extension of k, there existP1, . . . , Ps,

Q ∈ k{y}� satisfying the conditions of Definition 9.1 with respect to η and k. We
will first show that there exist P1, . . . , Ps,Q ∈ C�k {y}� satisfying the conditions of
Definition 9.1 with respect to η and k.

Let {βi}i∈I be a C�k -basis of k. Let R ∈ k{y}� and write R = ∑
Riβi where

each Ri ∈ C�k {y}�. Since linear independence over constants is preserved when
one goes to extension fields ([21], Ch. II.1), for any differential �-extension E of
k and ζ ∈ C�E , we have that R(ζ ) = 0 if and only if all Ri(ζ ) = 0 for all i. If
we write Pj = ∑

Pi,jβi,Q = ∑
Qiβi then there is some i0 such that η satisfies

{Pi,j = 0},Qi0 �= 0 and that for any ζ ∈ C�E that satisfies this system, the map
η 	→ ζ induces a � isomorphism of k〈η〉� and k〈ζ 〉�.

We therefore may assume that there exist P1, . . . , Ps,Q ∈ C�k {y}� satisfying the
conditions of Definition 9.1 with respect to η and k. We now show that there exist
P̃1, . . . , P̃s, Q̃ in the smaller differential polynomial ring C�k {y}� satisfying: If E is
a �-extension of k and ζ ∈ C�E satisfies P̃1(ζ ) = · · · = P̃s(ζ ) = 0, Q̃(ζ ) �= 0 then
there is a k-�-isomorphism of k〈η〉� and k〈ζ 〉� mapping η 	→ ζ . To do this, note
that any P ∈ C�k {y}� is a C�k -linear combination of monomials that are products of

terms of the form ∂
i0
0 . . . ∂

im
m y. We denote by P̃ the differential polynomial resulting

from P be deleting any monomial that contains a term ∂
i0
0 . . . ∂

im
m yj with it > 0 for

some ∂it ∈ �. Note that for any �-extension E of k and ζ ∈ C�E we have P(ζ ) = 0
if and only if P̃ (ζ ) = 0. Therefore, for any ζ ∈ C�E , if P̃1(ζ ) = · · · = P̃1(ζ ) = 0 and
Q̃(ζ ) �= 0, then the map η 	→ ζ induces a �-k-isomorphism of k{η}� with k{ζ }�.

We now use the fact that C�k is a �-differentially closed field to show that any
η ∈ C�K must already be in C�k . Let P̃1, . . . , P̃s, Q̃ ∈ C�k {y}� be as above. Since
C�k is a�-differentially closed field and P̃1 = · · · = P̃s = 0, Q̃ �= 0 has a solution in
some �-extension of C�k (e.g., η ∈ C�K ), this system has a solution ζ ∈ C�k ⊂ k. We
therefore can conclude that the map η 	→ ζ induces a�-k-isomorphism from k〈η〉 to
k〈ζ 〉. Since ζ ∈ k, we have that η ∈ k and so η ∈ C�k .

We note that if� is empty, then�-differentially closed is the same as algebraically
closed. In this case the above result yields the important fact crucial to the Picard–
Vessiot theory mentioned before the lemma.

9.2 PPV-extensions

In the next three sections, we will develop the theory of PPV-extensions for parame-
terized integrable systems of linear differential equations. This section is devoted to
showing the existence and uniqueness of these extensions. In Section 9.3 we show
that the Galois group has a natural structure as a linear differential algebraic group
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and in Section 9.4 we show that a PPV-extension can be associated with a torsor for
the Galois group. As in the usual Picard–Vessiot theory, these results will allow us to
give a complete Galois theory (see Theorem 9.5).

In this and the next three sections, we will make the following conventions. We
let k be a�-differential field. We designate a nonempty subset� = { ∂0, . . . , ∂r} ⊂ �

and consider a system of linear differential equations

∂0Y = A0Y

∂1Y = A1Y

...

∂rY = ArY

(9.1)

where the Ai ∈ gln(k), the set of n× n matrices with entries in k, such that

∂iAj − ∂jAi = [Ai,Aj ] (9.2)

We denote by � the set �\�. One sees that the derivations of � leave the field
C�k invariant and we shall think of this latter field as a �-field. Throughout the next
sections, we shall assume that C = C�k is a �-differentially closed differential field.
The set � corresponds to derivations used in the linear differential equations and �
corresponds to the parametric derivations.Throughout the first part of this paper �
was {∂0, . . . , ∂m},� = {∂0}, and � = {∂1, . . . , ∂m}. We now turn to a definition.

Definition 9.4. (1) A parameterized Picard–Vessiot ring (PPV-ring) over k for the
equations (9.1) is a �-ring R containing k satisfying:

(a) R is a �-simple �-ring.

(b) There exists a matrix Z ∈ GLn(R) such that ∂iZ = AiZ for all ∂i ∈ �.

(c) R is generated, as a �-ring over k, by the entries of Z and 1/ det(Z), i.e.,
R = k{Z, 1/ det(Z)}�.

(2) A parameterized Picard–Vessiot extension of k (PPV-extension of k) for the
equations (9.1) is a �-field K satisfying

(a) k ⊂ K .

(b) There exists a matrix Z ∈ GLn(K) such that ∂iZ = AiZ for all ∂i ∈ � and K
is generated as a �-field over k by the entries of Z.

(c) C�K = C�k , i.e., the �-constants of K coincide with the �-constants of k.

(3)The group Gal�(K/k) = {σ : K → K |σ is a k-automorphism such that σ∂ =
∂σ for all ∂ ∈ �} is called the parameterized Picard–Vessiot group (PPV-group) as-
sociated with the PPV-extension K of k.

Note that when� = �,� = ∅ these definitions give us the corresponding defini-
tions in the usual Picard–Vessiot theory.
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Our goal in the next three sections is to prove results that will yield the following
generalization of both Theorem 2.1 (when � = �) and Theorem 3.5 (when � =
{∂0, ∂1, . . . , ∂m} and � = {∂0}).

Theorem 9.5. (1) There exists a PPV-extensionK of k associated with (9.1) and this
is unique up to �-k-isomorphism.

(2) The PPV-group Gal�(K/k) equalsG(C�k ), whereG is a linear�-differential
algebraic group defined over C�k .

(3) The map that sends any�-subfield F, k ⊂ F ⊂ K , to the group Gal�(K/F) is
a bijection between �-subfields of K containing k and �-Kolchin closed subgroups
of Gal�(K/k). Its inverse is given by the map that sends a �-Kolchin closed group
H to the field {z ∈ K | σ(z) = z for all σ ∈ H }.

(4) A �-Kolchin closed subgroup H of Gal�(K/k) is a normal subgroup of
Gal�(K/k) if and only if the fieldKH is left set-wise invariant by Gal�(K/k). If this
is the case, the map Gal�(K/k) → Gal�(KH/k) is surjective with kernelH andKH

is a PPV-extension of k with PPV-group isomorphic to Gal�(K/k)/H . Conversely,
if F is a differential subfield of K containing k and F is a PPV-extension of k, then
Gal�(K/F) is a normal �-Kolchin closed subgroup of Gal�(K/k).

We shall show in this section that PPV-rings for (9.1) exist and are unique up to�-
k-isomorphism and that every PPV-extensionK of k is the quotient field of a PPV-ring
(and therefore is also unique up to �-k-isomorphism.) We begin with

Proposition 9.6. (1) There exists a PPV-ring R for (9.1) and it is an integral domain.

(2) The field of�-constants C�K of the quotient fieldK of a PPV-ring over k is C�k .

(3) Any two PPV-rings for this system are k-isomorphic as �-rings.

Proof. (1) Let (Yi,j ) denote an n×nmatrix of�-indeterminates and let “det” denote
the determinant of (Yi,j ). We denote by k{Y1,1, . . . , Yn.n, 1/ det}� the �-differential
polynomial ring in the variables {Yi,j } localized at det. We can make this ring into a
�-ring by setting (∂kYi,j ) = Ak(Yi,j ) for all ∂k ∈ � and using the fact that ∂k∂l = ∂l∂k
for all ∂k, ∂l ∈ �. Let p be a maximal �-ideal in R. One then sees that R/p is a
PPV-ring for the equation. Since maximal differential ideals are prime,R is an integral
domain.

(2) Let R = k{Z, 1/ det(Z)}�. Since this is a simple differential ring, Proposi-
tion 9.2 (1) implies that Z is constrained over k with constraint det. Statement (2) of
Proposition 9.2 implies that the quotient field of R is a �-constrained extension of k.
Lemma 9.3 implies that C�K = C�k .

(3) Let R1, R2 denote two PPV-rings for the system. Let Z1, Z2 be the two
fundamental matrices. Consider the �-ring R1 ⊗k R2 with derivations ∂i(r1 ⊗ r2) =
∂ir1⊗r2+r1⊗∂ir2. Letp be a maximal�-ideal inR1⊗kR2 and letR3 = R1⊗kR2/p.
The obvious maps φi : Ri → R1 ⊗k R2 are �-homomorphisms and, since the Ri are
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simple, the homomorphisms φi are injective. The image of each φi is differentially
generated by the entries of φi(Zi) and det(φ(Z−1

i )). The matrices φ1(Z1) and φ2(Z2)

are fundamental matrices in R3 of the differential equation. Since R3 is simple, the
previous result implies that C�k is the ring of�-constants of R3. Therefore φ1(Z1) =
φ2(Z2)D for some D ∈ GLn(C�k ). Therefore φ1(R1) = φ2(R2) and so R1 and R2
are isomorphic.

Conclusion (2) of the above proposition shows that the field of fractions of a PPV-
ring is a PPV-field. We now show that a PPV-field for an equation is the field of
fractions of a PPV-ring for the equation.

Proposition 9.7. Let K be a PPV-extension field of k for the system (9.1), let Z ∈
GLn(K) satisfy ∂i(Z) = AiZ for all ∂i ∈ � and let det = det(Z).

(1) The �-ring k{Z, 1/ det}� is a PPV-extension ring of k for this system.

(2) IfK ′ is another PPV-extension of k for this system then there is a k-�-isomorphism
of K and K ′.

To simplify notation we shall use 1
det to denote the inverse of the determinant of

a matrix given by the context. For example, k
{
Yi,j ,

1
det

}
�

= k
{
Yi,j ,

1
det(Yi,j )

}
�

and

k
{
Xi,j ,

1
det

}
�

= k
{
Xi,j ,

1
det(Xi,j )

}
�

.
As in [40], p. 16, we need a preliminary lemma to prove this proposition. Let (Yi,j )

be ann×nmatrix of�-differential indeterminates and let det denote the determinant of
this matrix. For any�-field k, we denote by k{Yi,j , 1/ det}� the�-ring of differential
polynomials in the Yi,j localized with respect to det. If k is, in addition, a�-field, the
derivations ∂ ∈ � can be extended to k{Yi,j , 1/ det}� by setting ∂(Yi,j ) = 0 for all
∂ ∈ � and i, j with 1 ≤ i, j ≤ n. In this way k{Yi,j , 1/ det}� may be considered as a
�-ring. We considerC�k {Yi,j , 1/ det}� as a�-subring of k{Yi,j , 1/ det}�. For any set
I ⊂ k{Yi,j , 1/ det}�, we denote by (I )� the �-differential ideal in k{Yi,j , 1/ det}�
generated by I .

Lemma 9.8. Using the above notation, the map I 	→ (I )� from the set of�-ideals of
C�k {Yi,j , 1/ det}� to the set of�- ideals of k{Yi,j , 1/ det}� is a bijection. The inverse
map is given by J 	→ J ∩ C�k {Yi,j , 1/ det}�.

Proof. If S = {sα}α∈a is a basis of k overC�k , then S is a module basis of k
{
Yi,j ,

1
det

}
�

over C�k
{
Yi,j ,

1
det

}
�

. Therefore, for any ideal I of C�k
{
Yi,j ,

1
det

}
�

, one has that
(I )� ∩ C�k

{
Yi,j ,

1
det

}
�

= I .
We now prove that any �-differential ideal J of k

{
Yi,j ,

1
det

}
�

is generated by
I := J ∩ C�k

{
Yi,j ,

1
det

}
�

. Let {eβ}β∈B be a basis of C�k
{
Yi,j ,

1
det

}
�

over C�k . Any
element f ∈ J can be uniquely written as a finite sum

∑
β∈B mβeβ with the mβ ∈ k.

By induction on the length, l(f ), of f we will show that f ∈ (I )�. When l(f ) = 0, 1,
the result is clear. Assume l(f ) > 1. We may suppose that mβ1 = 1 for some
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β1 ∈ B and mβ2 ∈ k\C�k for some β2 ∈ B. One then has that, for any ∂ ∈ �,
∂f = ∑

β ∂mβeβ has a length smaller than l(f ) and so belongs to (I )�. Similarly

∂(m−1
β2
f ) ∈ (I )�. Therefore ∂(m−1

β2
)f = ∂(m−1

β2
f )−m−1

β2
∂f ∈ (I )�. SinceC�k is the

field of�-constants of k, one has ∂i(m
−1
β2
) �= 0 for some ∂i ∈ � and so f ∈ (I )�.

Proof of Proposition 9.7. (1) Let R0 = k
{
Xi,j ,

1
det

}
�

be the ring of �-differential
polynomials over k and define a�-structure on this ring by setting (∂iXi,j ) = Ai(Xi,j )

for all ∂i ∈ �. Consider the �-rings R0 ⊂ K ⊗k R0 = K
{
Xi,j ,

1
det

}
�

. Define a set
of n2 new variables Yi,j by (Xi,j ) = Z · (Yi,j ). Then K ⊗k R0 = K

{
Yi,j ,

1
det

}
�

and
∂Yi,j = 0 for all ∂ ∈ � and all i, j . We can identify K ⊗k R0 with K ⊗C�k

R1 where

R1 := C�k

{
Yi,j ,

1
det

}
�

. Let P be a maximal �-ideal of R0. P generates an ideal in
K ⊗k R0 which is denoted by (P ). Since K ⊗ R0/(P ) ∼= K ⊗ (R0/P ) �= 0, the
ideal (P ) is a proper differential ideal. Define the ideal P̃ ⊂ R1 by P̃ = (P ) ∩ R1.
By Lemma 9.8 the ideal (P ) is generated by P̃ . If M is a maximal �-ideal of R1
containing P̃ then R1/M is a simple, finitely generated �-extension of C�k and so is
a constrained extension of C�k . Since C�k is differentially closed, Proposition 9.2 (3)
implies that R1/M = C�k . The corresponding homomorphism of C�k -algebras R1 →
C�k extends to a differential homomorphism ofK-algebrasK⊗C�k

R1 → K . Its kernel
contains (P ) ⊂ K ⊗k R0 = K ⊗C�k

R1. Thus we have found a k-linear differential
homomorphismψ : R0 → K with P ⊂ ker(ψ). The kernel ofψ is a differential ideal
and so P = ker(ψ). The subring ψ(R0) ⊂ K is isomorphic to R0/P and is therefore
a PPV-ring. The matrix (ψ(Xi,j )) is a fundamental matrix in GLn(K) and must have
the form Z · (ci,j ) with (ci,j ) ∈ GLn(C�k ), because the field of �-constants of K is
C�k . Therefore, k{Z, 1/ det}� is a PPV-extension of k.

(2) Let K ′ be a PPV-extension of k for ∂0Y = AY . Part (1) of this proposition
implies that bothK ′ andK are quotient fields of PPV-rings for this equation. Proposi-
tion 9.6 implies that these PPV-rings are k-�-isomorphic and the conclusion follows.

The following result was used in Proposition 3.9.

Lemma 9.9. Let � = {∂0, ∂1, . . . , ∂m} and � = {∂0}. Let

∂0Y = AY

∂1Y = A1Y

...

∂mY = AmY

(9.3)

be an integrable system with Ai ∈ gln(k). If K is a PV-extension of k for (9.3), then
K is a PPV-extension of k for ∂0Y = AY
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Proof. We first note that C�k is a subfield of C�k . Since this latter field is differentially
closed, it is algebraically closed. Therefore, C�k is also algebraically closed. The
usual Picard–Vessiot theory6 implies thatK is the quotient field of the Picard–Vessiot
ring R = k{Z, 1/ detZ}� where Z satisfies the system (9.3). Since R is a simple
�-ring, we have that Z is constrained over k, Proposition 9.2 (2) implies that K is a
�-constrained extension of k. Since C�k is differentially closed, Lemma 9.3 implies

that C∂0
K = C

∂0
k so K is a PPV-extension of k.

9.3 Galois groups

In this section we shall show that the PPV-group Gal�(K/k) of a PPV-extension K
of k is a linear differential algebraic group and also show the correspondence between
Kolchin-closed subgroups of Gal�(K/k) and �-subfields of K containing k. This is
done in the next Proposition and conclusions (2) and (3) of Theorem 3.5 are immediate
consequences.

To make things a little more precise, we will use a little of the language of affine
differential algebraic geometry (see [9] or [22] for more details). We begin with some
definitions that are the obvious differential counterparts of the usual definitions in
affine algebraic geometry. Let k be a�-field. An affine differential variety V defined
over k is given by a radical differential ideal I ⊂ k{Y1, . . . , Yn}�. In this case, we
shall say V is a differential subvariety of affine n-space and write V ⊂ An. We will
identify V with its coordinate ring k{V } = k{Y1, . . . , Yn}�/I . Conversely, given a
reduced�-ringR that is finitely generated (in the differential sense) as a k-algebra, we
may associate with it the differential variety V defined by the radical differential ideal
I where R = k{Y1, . . . , Yn}�/I . Given any�-field K ⊃ k, the set of K-points of V ,
denoted by V (K), is the set of points ofKn that are zeroes of the defining ideal of V ,
and may be identified with the set of k-�-homomorphisms of k{V } to K . If V ⊂ An

and W ⊂ Ap are affine differential varieties defined over k, a differential polynomial
map f : V → W is given by a p-tuple (f1, . . . , fp) ∈ (k{Y1, . . . , Yn}�)p such
that the map that sends an F ∈ k{Y1, . . . , Yp}� to F(f1, . . . , fp) ∈ k{Y1, . . . , Yn}�
induces a k-�-homomorphism f ∗ of k{W } to k{V }. A useful criterion for showing
that a p-tuple (f1, . . . , fp) ∈ (k{Y1, . . . , Yn}�)p defines a differential polynomial
map from V to W is the following: (f1, . . . , fp) defines a differential polynomial
map from V to W if and only if for any �-field K ⊃ k and any v ∈ V (K), we
have (f1(v), . . . , fp(v)) ∈ W(K). This is an easy consequence of the theorem of
zeros ([21], Ch. IV.2) which in turn is an easy consequence of the fact that a radical
differential ideal is the intersection of prime differential ideals.

Given affine differential varieties V and W defined over k, we define the product
V ×kW of V andW to be the differential affine variety associated with k{V }⊗k k{W }.
Note that since our fields have characteristic zero, this latter ring is reduced.

6Proposition 1.22 of [40] proves this only for the ordinary case. Proposition 9.7 above yields this result if we
let � = �.
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In this setting, a linear differential algebraic group G (defined over k) is the
affine differential algebraic variety associated with a radical differential ideal I ⊂
k{Y1,1,, . . . , Yn,n, Z}� such that

(1) 1 − Z · det((Yi,j )) ∈ I ,

(2) (id, 1) ∈ G(k) where id is the n× n identity matrix.

(3) the map given by matrix multiplication

(g, (det g)−1)(h, (det h)−1) 	→ (gh, (det(gh))−1)

(which is obviously a differential polynomial map) is a map from G × G to G
and the inverse map (g, (det g)−1) 	→ (g−1, det g) (also a differential polynomial
map) is a map from G to G.

Since we assume that 1 − Z · det((Yi,j )) ∈ I , we may assume that G is defined
by a radical differential ideal in the ring k{Y1,1,, . . . , Yn,n, 1/ det(Yi,j )}�, which we
abbreviate as k{Y, 1/ det Y }�. In this way, for any K ⊃ k we may identify G(K)
with elements of GLn(K) and the multiplication and inversion is given by the usual
operations on matrices. We also note that the usual Hopf algebra definition of a linear
algebraic group carries over to this setting as well. See [10] for a discussion of k-
differential Hopf algebras, and criteria for an affine differential algebraic group to be
linear.

Proposition 9.10. LetK ⊃ k be a PPV-field with differential Galois group Gal�(K/k).
Then

(1) Gal�(K/k) is the group of C�k -points G(C�k ) ⊂ GLn(C�k ) of a linear �-
differential algebraic group G over C�k .

(2) LetH be a subgroup of Gal�(K/k) satisfyingKH = k. Then the Kolchin closure
H̄ of H is Gal�(K/k).

(3) The field KGal�(K/k) of Gal�(K/k)-invariant elements of the Picard–Vessiot
field K is equal to k.

Proof. (1) We shall show that there is a radical �-ideal I ⊂ S = C�k

{
Yi,j ,

1
det

}
�

such that S/I is the coordinate ring of a linear �-differential algebraic group G and
Gal�(K/k) corresponds to G(C�k ).

Let K be the PPV-extension for the integrable system (9.1). Once again we de-
note by k

{
Xi,j ,

1
det

}
�

the �-differential polynomial ring with the added �-structure
defined by (∂rXi,j ) = Ar(Xi,j ) for ∂r ∈ �. K is the field of fractions of R :=
k
{
Xi,j ,

1
det

}
�
/q, where q is a maximal �-ideal. Let ri,j be the image of Xi,j in R

so (ri,j ) is a fundamental matrix for the equations ∂iY = AiY , ∂i ∈ �. Consider the
following rings:

k
{
Xi,j ,

1
det

}
�

⊂ K
{
Xi,j ,

1
det

}
�

= K
{
Yi,j ,

1
det

}
�

⊃ C�k

{
Yi,j ,

1
det

}
�

where the indeterminates Yi,j are defined by (Xi,j ) = (ri,j )(Yi,j ). Note that ∂Yi,j = 0
for all ∂ ∈ �. Since all fields are of characteristic zero, the ideal qK

{
Yi,j ,

1
det

}
�

⊂
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K
{
Xi,j ,

1
det

}
�

= K
{
Yi,j ,

1
det

}
�

is a radical �-ideal (cf., [40], Corollary A.16). It
follows from Lemma 9.8 that qL

[
Yi,j ,

1
det

]
is generated by I = qK

{
Yi,j ,

1
det

}
�

∩
C�k

{
Yi,j ,

1
det

}
�

. Clearly I is a radical�-ideal of S = C�k

{
Yi,j ,

1
det

}
�

. We shall show
that S/I is the�-coordinate ring of a linear differential algebraic groupG, inheriting
its group structure from GLn. In particular, we shall show that G(C�k ) is a subgroup
of GLn(C�k ) and that there is an isomorphism of Gal�(K/k) onto G(C�k ).

Gal�(K/k) can be identified with the set of (ci,j ) ∈ GLn(C�k ) such that the map
(Xi,j ) 	→ (Xi,j )(ci,j ) leaves the ideal q invariant. One can easily show that the
following statements are equivalent:

(i) (ci,j ) ∈ Gal�(K/k),

(ii) The map k
{
Xi,j ,

1
det

}
�

→ K defined by (Xi,j ) 	→ (ri,j )(ci,j )maps all elements
of q to zero.

(iii) The mapK
{
Xi,j ,

1
det

}
�

→ K defined by (Xi,j ) 	→ (ri,j )(ci,j )maps all elements
of qK

{
Xi,j ,

1
det

}
�

= qK
{
Yi,j ,

1
det

}
�

to zero.

(iv) Considering qK
{
Yi,j ,

1
det

}
�

as an ideal of K
{
Xi,j ,

1
det

}
�

, the map

K
{
Yi,j ,

1
det

}
�

→ K, (Yi,j ) 	→ (ci,j ),

sends all elements of qK
{
Yi,j ,

1
det

}
�

to zero.

Since the ideal qK
{
Yi,j ,

1
det

}
�

is generated by I , the last statement above is equivalent
to (ci,j ) being a zero of the ideal I , i.e., (ci,j ) ∈ G(C�k ). Since Gal�(K/k) is a group,
the setG(C�k ) is a subgroup of GLn(C�k ). ThereforeG is a linear differential algebraic
group.

(2) Assuming that H̄ �= Gal�, we shall derive a contradiction. We shall use the no-
tation of part (1) above. If H̄ �= Gal�, then there exists an elementP ∈ C�k

{
Yi,j ,

1
det

}
�

such that P �∈ I and P(h) = 0 for all h ∈ H . Lemma 9.8 implies that P �∈ (I ) =
qk

{
Yi,j ,

1
det

}
�

. Let T = {
Q ∈ K

{
Xi,j ,

1
det

}
�

| Q �∈ (I ) and Q((ri,j )(hi,j )) =
0 for all h = (hi,j ) ∈ H}

. Since K
{
Xi,j ,

1
det

}
�

= K
{
Yi,j ,

1
det

}
�

⊃ C�k

{
Yi,j ,

1
det

}
�

we have that T �= {0}. Any element of K
{
Xi,j ,

1
det

}
�

may be written as
∑
α fαQα

where fα ∈ K and Qα ∈ k{Xi,j , 1
det

}
�

. Select Q = fα1Qα1 + · · · + fαmQαm ∈ T
with the fαi all nonzero and m minimal. We may assume that fα1 = 1. For each
h ∈ H , let Qh = f hα1

Qα1 + · · · + f hαmQαm . One sees that Qh ∈ T . Since Q −Qh

is shorter than Q and satisfies (Q − Qh)((ri,j )(hi,j )) = 0 for all h = (hi,j ) ∈ H

we must have that Q −Qh ∈ (I ). If Q −Qh �= 0 then there exists an l ∈ K such
that Q − l(Q −Qh) is shorter than Q. One sees that Q − l(Q −Qh) ∈ T yielding
a contradiction unless Q − Qh = 0. Therefore Q = Qh for all h ∈ H and so the
fαi ∈ k. We conclude thatQ ∈ k{Xi,j , 1

det

}
�

. SinceQ(ri,j ) = 0 we have thatQ ∈ q,
a contradiction.

(3) Let a = b
c

∈ K\k with b, c ∈ R and d = b⊗ c− c⊗b ∈ R⊗k R. Elementary
properties of tensor products imply that d �= 0 since b and c are linearly independent
overC�k . The ringR⊗kR has no nilpotent elements since the characteristic of k is zero
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(cf., [40], LemmaA.16). We define a�-ring structure onR⊗kR by letting ∂(r1⊗r2) =
∂(r1) ⊗ r2 + r1 ⊗ ∂(r2) for all ∂ ∈ �. Let J be a maximal differential ideal in the
differential ring (R ⊗k R)

[ 1
d

]
. Consider the two obvious morphisms φi : R → N :=

(R⊗k R)
[ 1
d

]
/J . The images of the φi are generated (over k) by fundamental matrices

of the same matrix differential equation. Therefore both images are equal to a certain
subring S ⊂ N and the maps φi : R → S are isomorphisms. This induces an element
σ ∈ G with φ1 = φ2σ . The image of d in N is equal to φ1(b)φ2(c) − φ1(c)φ2(b).
Since the image of d in N is nonzero, one finds φ1(b)φ2(c) �= φ1(c)φ2(b). Therefore
φ2((σb)c) �= φ2((σc)b) and so (σb)c �= (σc)b. This implies σ

(
b
c

) �= b
c
.

We have therefore completed proof of parts (2) and (3) of Theorem 9.5.

9.4 PPV-rings and torsors

In this section we will prove conclusion (4) of Theorem 9.5. As in the usual Picard–
Vessiot theory, this depends on identifying the PPV-extension ring as the coordinate
ring of a torsor of the PPV-group.

Definition 9.11. Let k be a�-field andG a linear differential algebraic group defined
over k. AG-torsor (defined over k) is an affine differential algebraic variety V defined
over k together with a differential polynomial map f : V ×k G → V ×k V (denoted
by f : (v, g) 	→ (vg, v)) such that

(1) for any �-field K ⊃ k, v ∈ V (K), g, g1, g2 ∈ G(K), v1G = v, v(g1g2) =
(vg1)g2 and

(2) the associated homomorphism k{V }⊗kk{V } → k{V }⊗kk{G} is an isomorphism
(or equivalently, for any K ⊃ k, the map V (K)×G(K) → V (K)× V (K) is a
bijection.

We note thatV = G is a torsor forG over k with the action given by multiplication.
This torsor is called the trivial torsor over k. We shall use the following notation. If V
is a differential affine variety defined over kwith coordinate ringR = k{V } andK ⊃ k

we denote by VK the differential algebraic variety (over K) whose coordinate ring is
R ⊗k K = K{V }.

We again consider the integrable system (9.1) over the �-field k. The PPV-ring
for this equation has the form R = k

{
Xi,j ,

1
det

}
�
/q, where q is a maximal �-ideal.

In the following, we shall think of q as only a �-differential ideal. We recall that
k
{
Xi,j ,

1
det

}
�

is the coordinate ring of the linear �-differential algebraic group GLn
over k. Let V be the affine differential algebraic variety associated with the ring
k
{
Xi,j ,

1
det

}
�
/q. This is an irreducible and reduced�-Kolchin-closed subset of GLn.

LetK denote the field of fractions of k
{
Xi,j ,

1
det

}
�
/q. We have shown in the previous

section that the PPV-group Gal�(K/k) of this equation may be identified withG(C�k ),
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that is the C�k -points of a �-linear differential algebraic group G over C�k . We recall
how G was defined. Consider the following rings

k
{
Xi,j ,

1
det

}
�

⊂ K
{
Xi,j ,

1
det

}
�

= K
{
Yi,j ,

1
det

}
�

⊃ C�k

{
Yi,j ,

1
det

}
�
,

where the relation between the variablesXi,j and the variablesYi,j is given by (Xi,j ) =
(ri,j )(Yi,j ). The ra,b ∈ K are the images of Xa,b in k

{
Xi,j ,

1
det

}
�
/q ⊂ K . In

Proposition 9.10 we showed that the ideal I = qK
{
Xi,j ,

1
det

}
�

∩ C�k

{
Yi,j ,

1
det

}
�

defines G. This observation is the key to showing the following.

Proposition 9.12. V is a G-torsor over k.

Proof. LetE be a�-field containing k. The groupG(C�k ) ⊂ GLn(C�k ) is precisely the
set of matrices (ci,j ) such that the map (Xi,j ) 	→ (Xi,j )(ci,j ) leaves the ideal q stable.
In particular, for (ci,j ) ∈ G(C�k ), (z̄i,j ) ∈ V (E) we have that (z̄i,j )(ci,j ) ∈ V (E).
We will first show that this map defines a morphism from V ×Gk → V . The map is
clearly defined over k so we need only show that for any (c̄i,j ) ∈ G(E), (z̄i,j ) ∈ V (E)
we have that (z̄i,j )(c̄i,j ) ∈ V (E). Assume that this is not true and let (c̄i,j ) ∈
G(E), (z̄i,j ) ∈ V (E) be such that (z̄i,j )(c̄i,j ) �∈ V (E). Let f be an element of q such
that f ((z̄i,j )(c̄i,j )) �= 0. Let {αs} be a basis of E considered as a vector space over
C�k and let f ((z̄i,j )(Ci,j )) = ∑

αs
αsfαs ((Ci,j )) where the Ci,j are indeterminates

and the fαs ((Ci,j )) ∈ C�k {C1,1, . . . , Cn,n}�. By assumption (and the fact that linear
independence over constants is preserved when one goes to extension fields), we have
that there is an αs such that fαs ((c̄i,j )) �= 0. Since C�k is a �-differentially closed
field, there must exist (ci,j ) ∈ G(C�k ) such that fαs (ci,j ) �= 0. This contradicts the
fact that f ((z̄i,j )(ci,j )) = 0.

Therefore the map (V ×k Gk)(E) → V (E) defined by (z, g) 	→ zg defines
a morphism V ×k Gk → V . At the ring level, this morphism corresponds to a
homomorphism of rings

k
{
Xi,j ,

1
det

}
�
/q → k

{
Xi,j ,

1
det

}
�
/q ⊗C�k

C�k

[
Yi,j ,

1
det

]
/I

� k
{
Xi,j ,

1
det

}
�
/q ⊗k

(
k ⊗C�k

C�k

{
Yi,j ,

1
det

}
�
/I

)
where the map is induced by (Xi,j ) 	→ (ri,j )(Yi,j ). We have to show that the morphism
f : V ×k Gk → V ×k V , given by (z, g) 	→ (zg, z) is an isomorphism of differential
algebraic varieties over k. In terms of rings, we have to show that the k-algebra
homomorphism f ∗ : k{V } ⊗

k k{V } → k{V } ⊗C�k
k{G} is an isomorphism. To do

this it suffices to find a�-field extension k′ of k such that 1k′ ⊗k f
∗ is an isomorphism.

For this it suffices to find�-field extension k′ of k such that Vk′ is isomorphic toGk′ as
a Gk′-torsor over k′ that is, for some field extension k′ ⊃ k, the induced morphism of
varieties over k′, namely Vk′ ×k′ G′

k → Vk′ , makes Vk′ into a trivial G-torsor over k′.
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Let k′ = K , the PPV-extension of k for the differential equation. We have already
shown that I = qK

{
Xi,j ,

1
det

}
�

∩ k0
{
Yi,j ,

1
det

}
�

and this fact implies that

K{V } = K ⊗k (k
{
Xi,j ,

1
det

}
�
/q)

∼= K ⊗C�k

(
C�k

{
Yi,j ,

1
det

}
�
/I

) = K ⊗C�k
C�k {G} = K{G} (9.4)

In other words, we found an isomorphism h : VK ∼= GK . We still have to verify that
VK as aG torsor overK is, via h, isomorphic to the trivial torsorG×C�k

GK → GK .
To do this it is enough to verify that the following diagram is commutative and we
leave this to the reader. The coordinate ring C�k {G} of the group appears in several
places. To keep track of the variables, we will write C�k {G} as C�k

{
Ti,j ,

1
det

}
�
/Ĩ

where Ĩ is the ideal I with the variables Yi,j replaced by Ti,j .

K ⊗k k
{
Xi,j ,

1
det

}
�
/q ��

(Xi,j )	→(ri,j )(Yi,j )

��

K
{
Xi,j ,

1
det

}
�′/qK

{
Xi,j ,

1
det

}
�

⊗C�k
C�k {G}

(Xi,j )	→(ri,j )(Yi,j )

��

K ⊗C�k
C�k

{
Yi,j ,

1
det

}
�
/I �� K

{
Yi,j ,

1
det

}
�
/(I)� ⊗C�k

C�k {G}
�

In the above diagram, the top arrow represents the map (Xi,j ) 	→ (Xi,j )(Ti,j ) and
the bottom arrow represents the map (Yi,j ) 	→ (Yi,j )(Ti,j ). Using this result (and
its proof), we can now finish the proof of Theorem 9.5 by proving conclusion (4)
of this theorem. As in the usual Picard–Vessiot theory, the proof depends on the
following group theoretic facts. LetG be a linear differential algebraic group defined
over a �-differentially closed field C�k . For any g ∈ G the map ρg : G → G given
by ρg(h) = hg is a differential polynomial isomorphism of G onto G and therefore
corresponds to an isomorphism ρ∗

g : C�k {G} → C�k {G}. In this wayG acts on the ring
k{G}. Let H be a normal linear differential algebraic subgroup of G. The following
facts follow from results of [9] and [22]:

(1) TheG-orbit {ρ∗
g(f ) | g ∈ G(C�k )} of any f ∈ C�k {G} spans a finite dimensional

C�k -vector space.

(2) The group G/H has the structure of a linear differential algebraic group (over
C�k ) and its coordinate ring C�k {G/H } is isomorphic to the ring ofH -invariants
C�k {G}H .

(3) The two rings Qt(C�k {G})H and Qt(C�k {G}H ) are naturally �-isomorphic,
where Qt( · ) denotes the total quotient ring.

We now can prove

Proposition 9.13. Let K be a PPV-extension of k with Galois group G and let H be
a normal Kolchin-closed subgroup. Then KH is a PPV-extension of k.
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Proof. LetK be the quotient field of the PPV-ringR = k
{
Z, 1

det

}
. As we have already

noted (cf., (9.4)), we have

K ⊗k R ∼= K ⊗C�k
C�k {G}

that is, the torsor corresponding to R becomes trivial over K . The group G acts on
K ⊗C�k

C�k {G} by acting trivially on the left factor and via ρ∗ on the right factor,
or trivially on the left factor and with the Galois action on the right factor. In this
way we have that K ⊗k R

H ∼= K ⊗C�k
C�k {G}H = K ⊗C�k

C�k {G/H } and that

K ⊗k K
H ∼= K ⊗C�k

Qt(k{G}H ) by the items enumerated above.

We now claim that RH is finitely generated as a �-ring over k, hence as a �-ring
over k. SinceC�k {G/H } is a finitely generated�-C�k -algebra, we have that there exist
f1, . . . , fs ∈ RH that generateK⊗k R

H as a�-K-algebra. We claim that f1, . . . , fs
generateRH as a�-k-algebra. Let M be a k-basis of k{f1, . . . , fs}�. By assumption,
any element of f ∈ K ⊗k R

H = K ⊗k k{f1, . . . , fs}� can be written uniquely as
f = ∑

u∈M au ⊗ u where au ∈ K . The Galois group G(C�k ) of K over k also acts
on K ⊗k R

H by acting as differential automorphisms of the left factor and trivially
on the right factor. Write 1 ⊗ f ∈ 1 ⊗ RH ⊂ K ⊗k R

H as 1 ⊗ f = ∑
u∈M au ⊗ u

where au ∈ K . Applying σ ∈ G(C�k ) to 1 ⊗ f we have 1 ⊗ f = ∑
u∈M σ(au)⊗ u.

Therefore σ(au) = au for all σ ∈ G(C�k ). The parameterized Galois theory implies
that au ∈ k for all u. Therefore f ∈ k{f1, . . . , fs}� and so RH = k{f1, . . . , fs}�.

Using item (1) in the above list, we may assume that f1, . . . , fs form a basis of
a G/H(C�k ) invariant C�k -vector space. Let � be the free commutative semigroup
generated by the elements of �. By Theorem 1, Chapter II of [21] (or Lemma D.11
of [40]), there exist θ1 = 1, . . . , θs ∈ � such that

W = (θi(fj ))1≤i≤s,1≤j≤s
is invertible. For each ∂i ∈ �, we have that Ai = (∂iW)W

−1 is left invariant by
the action of G/H(k0). Therefore each Ai ∈ gln(k). Furthermore, the Ai satisfy the
integrability conditions. We have that KH is generated as a �-field over k by the
entries of W . Since the constants of KH are C�k , we have that KH is a PPV-field for
the system ∂iY = AiY , ∂i ∈ �.

We can now complete the proof of conclusion (4) of Theorem 9.5. IfF = KH is left
invariant by Gal�(K/k) then restriction to F gives a homomorphism of Gal�(K/k)
to Gal�(F/k). By the previous results, the kernel of this map is H so H is normal in
Gal�(K/k). To show surjectivity we need to show that any φ ∈ Gal�(F/k) extends
to a φ̃ ∈ Gal�(K/k). This follows from the fact of the unicity of PPV-extensions.

Now assume that H is normal in Gal�(K/k) and that there exists an element
τ ∈ Gal�(K/k) such that τ(F ) �= F . The Galois group of K over τ(F ) is τHτ−1.
Since F �= τ(F ) we have H �= τHτ−1, a contradiction.

The last sentence of conclusion (4) follows from the above proposition.
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9.5 Parameterized liouvillian extensions

In this section we will prove Theorem 3.12. One may recast this latter result in the
more general setting of the last three sections but for simplicity we will stay with
the original formulation. Let K and k be as in the hypotheses of this theorem. Let
KPV
A ⊂ K be the associated PV-extension as in Proposition 3.6.

(1) ⇒ (2): Assume that the Galois group Gal�(K/k) contains a solvable subgroup
of finite index. We may assume this subgroup is Kolchin closed. Since Gal�(K/k) is
Zariski-dense in Gal{∂0}(KPV

A /k), we have that this latter group also contains a solvable
subgroup of finite index. Theorem 1.43 of [40] implies that KPV

A is a liouvillian
extension of k, that is, there is a tower of ∂0-fields k = K0 ⊂ K1 ⊂ · · · ⊂ Kr = KPV

A

such that Ki = Ki−1(ti) for i = 1, . . . , r where either ∂0ti ∈ Ki−1, or ti �= 0 and
∂0ti/ti ∈ Ki−1 or ti is algebraic over Ki−1. We can therefore form a tower of �-
fields k = K̃0 ⊂ K̃1 ⊂ · · · ⊂ K̃r by inductively defining K̃i = K̃i−1〈ti〉�. Since
KPV
A = Kr , we have K = K̃r and so K is a parameterized liouvillian extension.

(3) ⇒ (1): Assume that K is contained in a parameterized liouvillian extension
of k. We wish to show that KPV

A is contained in a liouvillian extension of k. For this
we need the following lemma.

Lemma 9.14. If L is a parameterized liouvillian extension of k then L = ⋃
i∈N

Li
where Li+1 = Li({ti,j }j∈N) and {ti,j } is a set of elements such that for each j either
∂0ti,j ∈ Li or ti,j �= 0 and ∂0ti,j /ti,j ∈ Li or ti,j is algebraic over Li .

Proof. In this proof we shall refer to a tower of fields {Li}as above, as a ∂0-tower forL.
By induction on the length of the tower of �-fields defining L as a parameterized
liouvillian extension of k, it is enough to show the following: Let {Li} be a ∂0-tower
for the�-field L and let L〈t〉� be an extension of L such that ∂0t ∈ L, ∂0t/t ∈ L or t
is algebraic of L. Then there exists a ∂0-liouvillian tower for L〈t〉�. We shall deal
with three cases.

If t is algebraic over L, then it is algebraic over some Lj−1. We then inductively
define L̃i = Li if i < j, L̃j = Lj(t) and L̃i = Li(L̃j ) if i > j . The fields {L̃i} are
then a ∂0-tower for L〈t〉�.

Now, assume that ∂0t = a ∈ L. Let � = {∂n0
0 ∂

n1
1 . . . ∂

nm
m } be the commutative

semigroup generated by the derivations of�. Note thatL〈t〉� = L({θt}θ∈�). For any
θ ∈ �we have ∂0(θt) = θ(∂0t) = θ(a) ∈ L. We define L̃i = Li({θt | (θa) ∈ Li−1}).
Each L̃i contains L̃i−1 and is an extension of L̃ of the correct type. Since a ∈ L,
we have that for any θ ∈ � there exists an i such that θ(a) ∈ Li−1, so θ(t) ∈ L̃i .
Therefore,

⋃
i∈N

L̃i = L〈t〉� so {L̃} is a ∂0-tower for L〈t〉�.
Finally assume that ∂0t/t = a ∈ Lj ⊂ L. For θ = ∂

n0
0 ∂

n1
1 . . . ∂

nm
m ∈ �, we

define ordθ = n0 + n1 + · · · + nm. For any θ ∈ �, the Leibnitz rule implies that
θ(at) = pθ + aθt where

pθ ∈ Q
[{θ ′a}ord(θ ′)≤ord(θ), {θ ′′t}ord(θ ′′)<ord(θ)

]
.
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Note the strict inequality in the second subscript. Let Sθ = {θ ′a}ord(θ ′)≤ord(θ) ∪
{θ ′′t}ord(θ ′′)<ord(θ). We define a new tower inductively:

L̃1 = L1(t), L̃i = the compositum of Li and L̃i−1({θt | Sθ ⊂ L̃i−1})
We now show that this is a ∂0-tower for L〈t〉�. We first claim that L̃i is an {∂0}-
extension of L̃i−1 generated by ∂0-integrals or ∂0-exponentials of integrals or elements
algebraic over L̃i−1. For i = 1, we have that ∂0t/t ∈ L0 and L1 is generated by such
elements. For i > 1, assume θ ∈ � and Sθ ⊂ L̃i−1. We then have that

∂0

(
θt

t

)
= pθ

t
∈ L̃t−i

since t, pθ ∈ L̃i−1. Therefore L̃i−1 is generated by the correct type of elements.
We now show that for any θ ∈ � there is some j such that θ(t) ∈ L̃j . We proceed

by induction on i = ord(θ). For i = 0 this is true by construction. Assume the
statement is true for ord(θ ′) < i. Since there are only a finite number of such θ ,
there exists an r ∈ N such that {θ ′′t}ord(θ ′′)<ord(θ) ⊂ L̃r . Since {θ ′a}ord(θ ′)≤ord(θ) is
a finite subset of L, there is an s ∈ N such that {θ ′a}ord(θ ′)≤ord(θ) ⊂ Ls . Therefore

for j > max(r, s), θt ∈ L̃j . Thus,
⋃
i∈N

L̃i = L〈t〉� so {L̃} is a ∂0-tower for L〈t〉�.

Let L be a parameterized liouvillian extension of k containing the field K .
Lemma 9.14 implies that KPV

A lies in a ∂0-tower. Since KPV
A is finitely generated,

one sees that this implies that KPV
A lies in a liouvillian extension of k. Therefore the

PV-group Gal�(KPV
A /k) has a solvable subgroupH of finite index. Since we can iden-

tify Gal{∂0}(K/k) with a subgroup of Gal�(KPV
A /k), we have that Gal�(K/k) ∩ H

is a solvable subgroup of finite index in Gal�(K/k). �
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