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Abstract

We show that a linear algebraic group is the Galois group of a parameterized
Picard-Vessiot extension of k(x), x′ = 1, for certain differential fields k, if and only if
its identity component has no one dimensional quotient as a linear algebraic group.

1 Introduction

In the usual Galois theory of polynomial equations, one starts with a polynomial having
coefficients in a field1 k, forms a splitting field K of this polynomial and then defines the
Galois group of this equation to be the group of field automorphisms of K that leave k
element-wise fixed. A natural inverse question then arises: Given the field k, which groups
can occur as Galois groups. For example, if k = C(x), C an algebraically closed field and
x transcendental over C, any finite group occurs as a Galois group (Corollary 7.10,[28]).
In the Galois theory of linear differential equations, one starts with a homogeneous linear
differential equation with coefficients in a differential field k with algebraically closed con-
stants C, forms a Picard-Vessiot extension K (the analogue of a splitting field) and defines
the Galois group of the linear differential equation to be the differential automorphisms of
K that leave k element-wise fixed. This Galois group is a linear algebraic group defined
over C and one can again seek to determine which groups occur as the Galois group of
a homogeneous linear differential equation over a given differential field. For example, if
k = C(x), C an algebraically closed field, x′ = 1 and c′ = 0 for all c ∈ C, then any linear al-
gebraic group occurs as a Galois group of a Picard-Vessiot extension of k ([9, 10] for proofs
of this as well as references to earlier work). Besides putting the Picard-Vessiot theory
on a firm modern footing, Kolchin developed a generalization of Picard-Vessiot extensions
called strongly normal extensions and developed a Galois theory for these fields (see [12] for
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1In this paper, all fields considered are of characteristic zero.

1



an exposition and references to the original articles and [16] for a reworking of this theory
in terms of differential schemes). The Galois groups of these extensions can be arbitrary
algebraic groups. Kovacic [14, 15] studied the general inverse problem in the context of
strongly normal extensions and showed that this problem can be reduced to the inverse
problem for linear algebraic groups and for abelian varieties. If k = C(x) as above, Kovacic
showed that any abelian variety can be realized and, combining this with the solution for
linear algebraic groups described above, one sees that any algebraic group defined over C
can be realized as a Galois group of a strongly normal extension of C(x) (Kovacic also
solved the inverse problem for connected solvable linear algebraic groups and laid out a
general plan for attacking the inverse problem for linear groups over arbitrary fields).

In [17], Landesman developed a new Galois theory generalizing Kolchin’s theory of strongly
normal extension to include, for example, certain differential equations that contain param-
eters. The Galois groups appearing here are differential algebraic groups (as in [13]). A
special case was developed in [4] where the authors consider parameterized linear differ-
ential equations and discuss various properties of the associated Galois groups, named
parameterized Picard-Vessiot groups or PPV-groups for short. These latter groups are
linear differential algebraic groups in the sense of Cassidy [2], that is, groups of matrices
whose entries belong to a differential field and satisfy a fixed set of differential equations.
The inverse problem in these theories is not well understood. Landesman showed that any
connected differential algebraic group is a Galois group in his theory over some differential
field that may depend on the given differential algebraic group (Theorem 3.66, [17]). The
analogue of the field C(x) mentioned above is a field k0(x) with commuting derivations
∆ = {∂x, ∂1, . . . , ∂m}, m ≥ 1, where k0 is a differentially closed (see the definition below)
Π = {∂1, . . . , ∂m}-differential field, x is transcendental over k0, ∂i(x) = 0 for i = 1, . . . ,m
and ∂x is defined on k by setting ∂x(a) = 0 for all a ∈ k0 and ∂x(x) = 1. It is not known,
in general, which differential algebraic groups appear as Galois groups in Landesman’s
theory over this field. In [17] and [4], it is shown that the additive group Ga(k0) cannot
appear while any proper subgroup of these groups does appear as a Galois group (the same
situation for Gm(k0) is also described in [17])2. More recently, the results of [22] and [6]
give necessary and sufficient conditions in topological terms for a linear differential algebraic
group to be a PPV-group of a PPV-extension of k0(x) for certain k0 (see below for a precise
statement of their results).

A goal of this paper, is to make progress in finding purely algebraic necessary and sufficient
conditions. In the following, We give an algebraic characterization of those linear algebraic
groups, considered as linear differential algebraic groups, that can occur as PPV-groups of
PPV-extensions of k (under suitable hypotheses concerning k). Before we state the main
result of this paper, we will recall some definitions. Although these definitions may be
stated in more generality, we will state them relative to the field k defined above.

2There are other Galois theories of differential equations due primarily to Malgrange [18], Pillay [23, 21,
24] and Umemura [27]. In particular, inverse problems are addressed in [21]. We will not consider these
theories here.
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The parameterized Picard-Vessiot theory (PPV-theory) considers linear differential equa-
tions of the form

∂xY = AY (1.1)

where A ∈ gln(k). In analogy to classical Galois theory and Picard-Vessiot theory, we
consider fields, called PPV-extensions of k, that act as “splitting fields” for such equations.
A PPV-extension K of k for (1.1) is a ∆-field K such that

1. K = k〈Z〉, the ∆-field generated by the entries of a matrix Z ∈ gln(K) satisfying
∂xZ = AZ, det(Z) 6= 0.

2. K∂x = k∂x = k0, where for any ∆-extension F of k, F ∂x = {c ∈ F | ∂xc = 0}.

A Π-field E is said to be differentially closed (also called constrainedly closed, see, for exam-
ple §9.1 of [4]) if for any n and any set {P1(y1, . . . , yn), . . . , Pr(y1, . . . , yn),
Q(y1, . . . , yn)} ⊂ E{y1, . . . , yn}, the ring of differential polynomials in n variables, if the
system

{P1(y1, . . . , yn) = 0, . . . , Pr(y1, . . . , yn) = 0, Q(y1, . . . , yn) 6= 0}

has a solution in some differential field F containing E, then it has a solution in E. In [4]
(and more generally in [8]), it is shown that under the assumption that k0 is differentially
closed, then PPV-extensions exist and are unique up to ∆-k-isomorphisms. This hypothesis
has been weakened to non-differentially closed k0 in [7] and [30]. In these papers the
authors give conditions weaker than differential closure for the existence and uniqueness
of PPV-extensions and and discuss the corresponding Galois theory. Although some of
our results remain valid under these weaker hypotheses, we will assume in this paper that
k0 is Π-differentially closed. The set of field-theoretic automorphisms of K that leave
k elementwise fixed and commute with the elements of ∆ forms a group G called the
parameterized Picard-Vessiot group (PPV-group) of (1.1). One can show that for any
σ ∈ G, there exists a matrix Mσ ∈ GLn(k0) such that σ(Z) = (σ(zi,j)) = ZMσ. Note that
∂x applied to an entry of such an Mσ is 0 since these entries are elements of k0 but that such
an entry need not be constant with respect to the elements of Π. In [4], the authors show
that the map σ 7→ Mσ is an isomorphism whose image is furthermore a linear differential
algebraic group, that is, a group of invertible matrices whose entries satisfies some fixed set
of polynomial differential equations (with respect to the derivations Π = {∂1, . . . , ∂m}) in
n2 variables. We say that a set X ⊂ GLn(k0) is Kolchin-closed if it is the zero set of such
a set of polynomial differential equations. One can show that the Kolchin-closed sets form
the closed sets of a topology, called the Kolchin topology on GLn(k0) (cf. [2, 3, 4, 13]).

As mentioned above, the papers [22] and [6] give necessary ([6], Corollary 2.18 and Theorem
3.10) and sufficient ([22], Corollary 5.2) conditions for a linear differential algebraic group
to be a PPV-group over k0(x), as above, assuming that k0 is “sufficiently large”. The notion
of “sufficiently large” is given in the following definition. A Π-field F is a Π-universal field
if for any Π-field E ⊂ F , finitely differentially generated over Q, any Π-finitely generated
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extension of E can be differentially embedded over E into F ([12], p. 133). Note that a
universal field is differentially closed. The results of [22] and [6] mentioned above combine
to give

Theorem 1.1 Let k = k0(x) be as above with k0 a Π-universal field and G a linear differ-
ential algebraic group defined over k0. The group G(k0) is a PPV-group over k if and only
if G(k0) is the Kolchin closure of a finitely generated subgroup.

In Section 2, we will show

Proposition 1.2 Let k0 be a differentially closed field and G be a linear algebraic group
defined over k0. The group G(k0) contains a Kolchin-dense finitely generated subgroup if
and only if the identity component of G has no quotient (as an algebraic group) isomorphic
to the additive group Ga or the multiplicative group Gm.

Theorem 1.1 and Proposition 1.2 combine to immediately give the result mentioned in the
abstract:

Theorem 1.3 Let k = k0(x) be as above with k0 a Π-universal field and let G(k0) the group
of k0-points of a linear algebraic group G defined over k0. The group G(k0) is a PPV-group
of a PPV-extension of k if and only if the identity component of G has no quotient (as an
algebraic group) isomorphic to the additive group Ga or the multiplicative group Gm.

Although the proof of Proposition 1.2 is purely algebraic, the proof of Theorem 1.3 outlined
above depends heavily on Theorem 1.1 whose proof is analytic. Nonetheless, part of Theo-
rem 1.3 can also be given a purely algebraic proof. In Section 3, we give a purely algebraic
proof of the fact that a linear differential algebraic group whose identity component has
a quotient isomorphic to the additive group Ga or the multiplicative group Gm cannot be
a PPV-group over k0(x). It would be of interest to give a purely algebraic proof of all of
Theorem 1.3.

The author wishes to thank Phyllis Cassidy for helpful discussions concerning the content
of this paper.

2 Linear algebraic groups with finitely generated Kolchin-

dense subgroups.

The proof of Proposition 1.2 depends on the following four lemmas.

Lemma 2.1 Let G be a linear algebraic group defined over k0 and G0 be its identity compo-
nent. G(k0) contains a Kolchin-dense finitely generated group if and only if G0(k0) contains
a Kolchin-dense finitely generated group.
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Proof. Assume that G0(k0) contains a Kolchin-dense group generated by g1, . . . , gs. Let
{h1, . . . , ht} be a subset of G(k0) mapping surjectively onto G(k0)/G

0(k0). The set
{g1, . . . , gs, h1, . . . , ht} generates a group that is Kolchin-dense in G(k0).

Assume that G(k0) contains elements g1, . . . , gs that generate a Kolchin-dense subgroup.
From ([29], p.142) or ([1], lemme 5.11, p.152), one knows that any linear algebraic group
G(k0), k0 algebraically closed, is of the form HG0(k0) where H is a finite subgroup of
G(k0). Therefore we may write each gi as a product of an element of H and an element of
G0(k0) and so we may assume that there is a finite set S = {g̃1, . . . , g̃t} ⊂ G0(k0) such that
the group generated by S and H is Kolchin-dense in G(k0). Extending S if necessary, we
may assume that S is stable under conjugation by elements of H and therefore that the
group generated by S is stable under conjugation by the elements of H. An elementary
topological argument shows that the Kolchin-closure G′ of the group generated by S is also
stable under conjugation by H. Therefore H · G′ forms a group. It is a finite union of
Kolchin-closed sets, so it is also Kolchin-closed. It contains H and S so it must be all of
G(k0). Finally G′ is normal and of finite index in G(k0) so it must contain G0(k0). Clearly
G′ ⊂ G0(k0) so G0(k0) = G′ and this shows that G0(k0) is finitely generated.

Lemma 2.2 Let P ⊂ GLn be a connected semisimple linear algebraic group defined over
k0. Then P (k0) contains a finitely generated Kolchin-dense subgroup.

Proof. From Proposition 1 of [26] or Lemma 5.13 of [25], we know that a linear algebraic
group contains a Zariski-dense finitely generated subgroupH. We also know that P contains
a maximal torus T of positive dimension. After conjugation, we may assume that T is
diagonal and that the projection onto the first diagonal entry is a homomorphism of T
onto k∗0 = k0\{0}. Since k0 is differentially closed, the derivations ∂1, . . . , ∂m are linearly
independent so there exist nonzero elements x1, . . . , xm ∈ k0 such that det(∂ixj)1≤i,j≤m 6= 0
(Theorem 2, p. 96, [12]). For each i = 1, . . . ,m, let gi ∈ T be an element whose first
diagonal entry is xi. Let P ′ be the Kolchin-closure of the group generated by H and
{g1, . . . , gm}. We claim P ′ = P .

To see this note that since P ′ contains H, P ′ is Zariski-dense in P . If P ′ 6= P , then results
of [3] imply that there exist a nonempty subset Σ ⊂ k0Π, the k0 span of Π, such that P ′ is
conjugate to a group of the form P ′′(C) where P ′′ is a semisimple algebraic group defined
over Q and C = {c ∈ k0 | ∂c = 0 for all ∂ ∈ Σ}. This implies that each element of G
has eigenvalues in C and so, for each xi, ∂(xi) = 0 for all ∂ ∈ Σ. Yet, if ∂ =

∑m
j=1 aj∂j,

not all aj zero and ∂(xi) = 0 for i = 1, . . . ,m, then (a1, . . . am)X = (0, . . . , 0) where
X = (∂ixj)1≤i,j≤m. This contradicts the fact that detX 6= 0. Therefore P ′ = P .

Lemma 2.3 Let G(k) = P (k0) n U(k0) be a connected linear algebraic group where P (k0)
is a semisimple linear algebraic group and U(k0) is a commutative unipotent group, both
defined over k0. If G(k0) has no quotient isomorphic to Ga(k0), then G(k0) contains a
Kolchin-dense finitely generated subgroup.
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Proof. Note that U(k0) is isomorphic to km0 for some m. Since P acts on U by conjugation,
we may write U = ⊕mi=1Ui where each Ui is an irreducible P -module. Furthermore, if the
action of P on some Uj is trivial, then this Uj would be of the form Ga(k0) and we could
write PnU = (Pn⊕i 6=jUi)×Ga(k0). This would imply that there is an algebraic morphism
of G(k0) onto Ga(k0), a contradiction. Therefore we may assume the action of P on each
Ui is nontrivial. Let B be a Borel subgroup of P . From the representation theory of
semisimple algebraic groups (Ch.13.3, [11]), we know that each Ui contains a unique B-
stable one-dimensional subspace corresponding to a weight λi : B → Gm(k0) (the highest
weight of Ui). For each i, let ui span this one-dimensional space. We claim that the P (k0)-
orbit of ui generates a group that equals Ui(k0). Note that since B(k0) is connected and λi
is not trivial, we have the P (k0)-orbit of ui contains Gm(k0)ui. Since Ui is an irreducible
P (k0)-module, there exist g1, . . . , gs ∈ P (k), such that g1uig

−1
1 , . . . gsuig

−1
s span Ui. Since

gj(Gm(k0)ui)g
−1
j = Gm(k0)(gjuig

−1
j ) for j = 1, . . . , s, we have that the P (k0)-orbit of ui

generates all of Ui.

Now Lemma 2.2 asserts that there exists a finite set S ⊂ P (k0) that generates a Kolchin-
dense subgroup of P (k0). We then have that S∪{ui}mi=1 generates a Kolchin-dense subgroup
of G(k0).

Lemma 2.4 The homomorphism l∂1 : Gm(k0) → Ga(k0) where l∂1(u) = ∂1(u)/u maps
Gm(k0) onto Ga(k0).

Proof. Since k0 is differentially closed, we need only show that for any u ∈ k0, there
is a Π-differential extension F of k0 such that ∂1y = uy has a solution y 6= 0 in F .
Let Π1 = {∂2, . . . , ∂m} and let F be the Π1-field k0〈v〉, where v is a Π1-differentially
transcendental element. We extend the derivation ∂1 from k0 to F by setting ∂1v = uv,
and ∂1(∂

i2
2 . . . ∂

im
m v) = ∂i22 . . . ∂

im
m (∂1v) = ∂i22 . . . ∂

im
m (uv). With these definitions, F becomes

a Π-differential extension of k0 and y = v satisfies ∂1y = uy.

Proof of Proposition 1.2. Assume that G(k0) contains a Kolchin-dense finitely generated
subgroup. Lemma 2.1 implies that G0(k0) also contains a Kolchin-dense finitely generated
subgroup. If there is an algebraic morphism of G0(k0) onto Gm(k0) then Lemma 2.4 implies
that there is a differential algebraic morphism of G0(k0) onto Ga(k0). Therefore we may
assume that we have a differential homomorphism of G0(k0) onto Ga(k0). This implies
that Ga(k0) would contain a Kolchin-dense subgroup generated by a finite set of elements
{αi}mi=1. We will show that any finite set of elements of Ga(k0) satisfy a linear differential
equation over k0 and so could not generate a Kolchin-dense subgroup of Ga(k0). Let C
be the ∂1-constants of k0 and β1, . . . , βs a C-basis of the C-span of the αi’s. Let R(Y ) =
wr(Y, β1, . . . , βs) where wr denotes the wronskian determinant. R(Y ) is a linear differential
polynomial yielding the desired R ∈ k0[∂1]. Therefore there is no algebraic morphism of
G0(k0) onto Gm(k0) or Ga(k0).

Assume that there is no algebraic morphism of G0(k0) onto Gm(k0) or Ga(k0). Lemma 2.1
implies that it is enough to show that G0(k0) contains a Kolchin-dense finitely generated
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group. We may write G0 = P n Ru where P is a Levi subgroup and Ru is the unipotent
radical of G ([11], Ch.30.2).

We first claim that P must be semisimple. We may write P = (P, P )Z(P ) where (P, P )
is the derived subgroup of P and Z(P ) is the center of P . Furthermore, Z(P )0 is a torus
([11], Ch.27.5). We therefore have a composition of surjective morphisms

G0 → G0/Ru ' P → P/(P, P ) ' Z(P )/(Z(P ) ∩ (P, P )).

Since G0 is connected, its image lies in the image of Z0(P ) in Z(P )/(Z(P ) ∩ (P, P ) and
therefore is a torus. This torus, if not trivial, has a quotient isomorphic to Gm. This would
yield a homomorphism of G0(k0) onto Gm(k0) and, by assumption, this is not possible.
Therefore Z0(P ) is trivial. Since G0 is connected we must have Z(P ) ⊂ (P, P ). Therefore
P = (P, P ) and is therefore semisimple.

We shall now show that it suffices to prove that G0(k0) contains a Kolchin-dense finitely
generated subgroup under the assumption that Ru is commutative. In [14], Kovacic shows
([14],Lemma 2): Let G be an abstract group, H a subgroup and N a nilpotent normal
subgroup of G. Suppose H · (N,N) = G. Then H = G. Therefore, if we can find a Kolchin-
dense finitely generated subgroup of the k0-points of G0/(Ru, Ru) ' P n (Ru/(Ru, Ru)),
then the preimage of this group under the homomorphism G0 → G0/(Ru, Ru) generates a
Kolchin-dense subgroup of G(k0).

Therefore, we need only consider connected groups satisfying the hypotheses of Proposi-
tion 1.2 and of the form P (k0) n U(k0), where P is semisimple and U is a commutative
unipotent group. Lemma 2.3 guarantees that such a group has a finitely generated Kolchin-
dense subgroup.

We note that Theorem 1.1 allows one to show other classes of linear differential algebraic
groups are PPV-groups of PPV-extensions of k0(x). As noted above, if G is a linear al-
gebraic group defined over an algebraically closed field C, then G(C) contains a finitely
generated Zariski-dense subgroup. If C is the field of Π-constants of k0, then the Zariski
and Kolchin topologies are the sam on G(C). Therefore G(C) will be a PPV-group over
k0(x).

3 Linear differential algebraic groups a PPV-groups.

As mentioned above, it would be of interest to give a purely algebraic proof of Theorem 1.3
and give an equally simple characterization of all linear differential algebraic groups that
are PPV-groups over k0(x). In this section we show, by example, that the necessary
condition of Theorem 1.3 insuring that a linear algebraic group is a PPV-group can be
proved algebraically and extended to linear differential algebraic groups. We will also show
that this condition is not sufficient to insure that a linear differential algebraic group is a
PPV-group over k0(x).
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Lemma 3.1 If G0(k0) has Gm(k0) or Ga(k0) as a homomorphic image (under a differential
algebraic homomorphism) and G(k0) is a PPV-group of a PPV-extension of k0(x), then
Ga(k0) is a PPV-group of a PPV-extension of a finite algebraic extension E of k0(x).

Proof. We will show that this result follows from the Galois theory of parameterized
linear differential equations ([17],[4]). Let K be a PPV-extension of k0(x) having G as
its PPV-group. The fixed field E of G0 is a finite algebraic extension of k0(x). If G0

has Gm(k0) as a homomorphic image under a differential homomorphism then composing
this homomorphism with l∂1 : Gm(k0) → Ga(k0) where l∂1(u) = ∂1(u)/u, Lemma 2.4
implies that Ga(k0) would also be a homomorphic image of G0(k0) under a differential
homomorphism. Therefore we shall only deal with this latter case. Let φ : G0(k0)→ Ga(k0)
be a surjective differential algebraic homomorphism and let H be its kernel. The Galois
theory (Theorem 9.5, [4]) implies that the fixed field of H is a PPV-extension F of E whose
PPV-group over E is differentially isomorphic to Ga(k0).

The following lemma is the key to showing that Ga(k0) is not a PPV-group over a finite
algebraic extension of k0(x).

Lemma 3.2 Let E be a finite algebraic extension of k0(x) and f ∈ E. Let K be the
PPV-extension of k0(x) corresponding to the equation

∂xy = f.

Let z ∈ K satisfy ∂xz = f . Then there exists a nonzero linear differential operator L ∈
k0[∂1] and an element g ∈ E such that

L(z) = g.

Proof. The proof of this lemma is a slight modification of Manin’s construction of the
Picard-Fuchs equations (see Section 3, pp. 64-65 of the English translation of [19]). We shall
use (as does Manin) ideas and results that appear in [5]. In Ch. VI, §7 of [5], Chevalley shows
that ∂1 can be used to define a map D on differentials of E satisfying D(ydx) = (∂1y)dx.
Furthermore, Theorem 13 of Ch. VI, §7 of [5] states that for any differential ω and any
place P of E, we have resPD(ω) = ∂1(resPω) (where resP denotes the residue at P ). Let
α1, . . . , αm be the non-zero residues of fdx. As in the proof of Proposition 1.2, one can
show that there is a nonzero linear differential operator et R ∈ k[∂1] such that R(αi) =
0, i = 1, . . . ,m. We then have that for any place P , resP (R(f)dx) = R(resP (fdx)) = 0.
Therefore R(f)dx has residue 0 at all places, that is, it is a differential of the second kind.
Note that ∂i1(R(f))dx is also a differential of the second kind for any i ≥ 1. The factor
space of differentials of the second kind by the space of exact differentials has dimension
2g over k, where g is the genus of E (Corollary 1, Ch. VI, §8,[5]). Therefore there exist
v2g, . . . v0 ∈ k0 such that

v2g∂
2g
1 (R(f))dx+ . . .+ v0R(f)dx = dg̃ = ∂xg̃dx
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for some g̃ ∈ E. This implies that there exists a linear differential operator L ∈ k0[∂1] such
that

L(f) = ∂xg̃.

Furthermore, ∂x(L(z)) = L(∂xz) = L(f) = ∂xg̃. Therefore L(z) = g where g = g̃ + c for
some c ∈ k0.

Proposition 3.3 If G is a linear differential algebraic group defined over k0 such that
G0(k0) has Gm(k0) or Ga(k0) as a quotient (as a linear differential group), then G(k0)
cannot be a PPV-group of a PPV-extension of k0(x).

Proof. Assume that G(k0) is a PPV-group of a PPV-extension of k0(x). Lemma 3.1
implies that, in this case, Ga(k0) is a PPV-group of a PPV-extension K of E, where E is
a finite algebraic extension of k0(x). From Proposition 9.12 of [4], K is the function field
of a Ga(k0)-principal homogeneous space. The corollary to Theorem 4 of (Ch. VII,§3, [13])
implies that this principal homogeneous space is the trivial principal homogeneous space
and so K = E〈z〉 where for any σ ∈ Ga(k0) there exists a cσ ∈ k0 such that σ(z) = z + cσ.
In particular, σ(∂xz) = ∂xz for all σ ∈ Ga(k0) and so ∂xz = f ∈ E. Lemma 3.2 implies
that there exists a linear differential operator L ∈ k0[∂1] and an element g ∈ E such that
L(z) = g. For any σ ∈ Ga(k0), we have g = σ(g) = σ(L(z)) = L(σ(z)) = L(z + cσ) =
g+L(cσ) so L(cσ) = 0. This implies that the PPV-group of K over E is a proper subgroup
of Ga(k0), a contradiction.

We shall now show that the necessary conditions of Proposition 3.3 are not sufficient, in
general, for guaranteeing that a linear differential algebraic group is a PPV-group of a
PPV-extension of k0(x).

Let k0 be an ordinary differentially closed field with derivation ∂1 and let

G = {
(

1 0
a b

)
|a, b ∈ k0, b 6= 0, ∂1b = 0} ' G1 oG2

where

G1 = {
(

1 0
a 1

)
|a ∈ k0} ' Ga(k0)

G2 = {
(

1 0
0 b

)
|b ∈ k0, b 6= 0, ∂1b = 0} ' Gm(C)

where C = {c ∈ k0 | ∂1c = 0}. Let k = k0(x) be a ∆ = {∂x, ∂1}-field as in the introduction.
We shall show that G(k0) contains no Kolchin-dense finitely generated subgroup, G is
Kolchin-connected, and there is no surjective differential algebraic homomorphism of G(k0)
onto Ga(k0) or Gm(k0). From the first property, Theorem 1.1 implies that G(k0) cannot be
a PPV-group of a PPV-extension of k0(x).

To see that G(k0) contains no Kolchin-dense finitely generated subgroup, note that any
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element of G(k0) can be written as a product of an element of Ga(k0) and Gm(C). Therefore
it is enough to show that any set of elements of the form(

1 0
a1 1

)
, . . . ,

(
1 0
an 1

)
,

(
1 0
0 b1

)
, . . . ,

(
1 0
0 bm

)
with the ai ∈ k0 and the bi ∈ C do not generate a Kolchin-dense subgroup of G. Let H be
the group generated by these elements and let L ∈ k[∂1] be a nonzero differential operator
such that L(ai) = 0 for all i = 1, . . . , n. A calculation shows that any element of H is of
the form (

1 0
c1a1 + . . .+ cnan b

)
with b ∈ k0 and the ci ∈ C. Therefore H is a subgroup of

{
(

1 0
a b

)
| L(a) = 0, ∂1b = 0, b 6= 0}

which is a proper Kolchin-closed subgroup of G.

To see that G is Kolchin-connected, note that G is the product of Kolchin-irreducible
Kolchin-closed sets and so must be irreducible.

We now show the last claimed property of G. Since Ga(k0) is a differential homomorphic
image of Gm(k0), it suffices to show that there is no surjective differential algebraic homo-
morphism of G(k0) onto Ga(k0). Assume not and let φ : G(k0) → Ga(k0). Restricting φ
to G2 yields an algebraic homomorphism of Gm(C) into Ga(k0). Since algebraic homomor-
phisms preserve the property of being semisimple, we must have that G2 ⊂ kerφ. Therefore
for any a ∈ k and any b ∈ C∗, we have(

1 0
a 1

)(
1 0
0 b

)(
1 0
−a 1

)
=

(
1 0

a− ba b

)
∈ kerφ.

For any ã ∈ k0 and 1 6= b ∈ C there exists a a ∈ k0 such that a− ba = ã, so kerφ contains
all elements of the form (

1 0
ã b

)
a ∈ k0, 1 6= b ∈ C. Since G2 ⊂ kerφ as well, we have that G ⊂ kerφ, a contradiction.
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