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Summary

We compare several definitions of the Galois group of a linear difference
equation that have arisen in algebra, analysis and model theory and
show, that these groups are isomorphic over suitable fields. In addition,
we study properties of Picard-Vessiot extensions over fields with not
necessarily algebraically closed subfields of constants.

1 Introduction

In the modern Galois theory of polynomials of degree n with coefficients
in a field k1, one associates to a polynomial p(x) a splitting field K, that
is a field K that is generated over k by the roots of p(x). All such fields
are k-isomorphic and this allows one to define the Galois group of p(x)
to be the group of k-automorphisms of such a K. If k is a differential
field and Y ′ = AY,A an n × n matrix with entries in k, one may be
tempted to naively define a “splitting field” for this equation to be a
differential field K containing k and generated (as a differential field) by
the entries of a fundamental solution matrix Z of the differential equa-
tion2. Regrettably, such a field is not unique in general. For example,

† The author thanks the Isaac Newton Institute for Mathematical Sciences for its
hospitality and financial support during spring 2005.

‡ The preparation of this paper was supported by NSF Grant CCR- 0096842 and by
funds from the Isaac Newton Institute for Mathematical Sciences during a visit in
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1 All fields in this paper are assumed to be of characteristic zero.
2 that is, an invertible n × n matrix Z such that Z′ = AZ. Note that the columns

of Z form a basis of the solution space.
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for the equation y′ = 1
2xy over k = C(x), x′ = 1, the fields k(x1/2) and

k(z), z transcendental over k and z′ = 1
2xz are not k-isomorphic. If one

insists that the constants Ck = {c ∈ k | c′ = 0} are algebraically closed
and that K has no new constants, then Kolchin [16] showed that such a
K exists (and is called the Picard-Vessiot associated with the equation)
and is unique up to k-differential isomorphism. Kolchin [15] defined the
Galois group of such a field to be the group of k-differential automor-
phisms of K and developed an appropriate Galois theory3.

When one turns to difference fields k with automorphism σ and differ-
ence equations σY = AY, A ∈ GLn(k), the situation becomes more
complicated. One can consider difference fields K such that K is gener-
ated as a difference field by the entries of a fundamental solution matrix.
If the field of constants Ck = {c ∈ k | σ(c) = c} is algebraically closed
and K has no new constants, then such a K is indeed unique and is again
called a Picard-Vessiot extension ([23], Proposition 1.23 and Proposition
1.9). Unlike the differential case, there are equations for which such a
field does not exist. In fact there are difference equations that do not
have any nonzero solution in a difference field with algebraically closed
constants. For example, let K be a difference field containing an element
z 6= 0 such that σ(z) = −z. One then has that z2 is a constant. If, in
addition, the constants CK of K are algebraically closed, then z ∈ CK

so σ(z) = z, a contradiction. This example means that either one must
consider “splitting fields” with subfields of constants that are not nec-
essarily algebraically closed or consider “splitting rings” that are not
necessarily domains. Both paths have been explored and the aim of this
paper is to show that they lead, in essence, to the same Galois groups.

The field theoretic approach was developed by Franke4 in [10] and suc-
ceeding papers. He showed that for Picard-Vessiot extension fields the
Galois group is a linear algebraic group defined over the constants and
that there is the usual correspondence between closed subgroups and
intermediate difference fields. Franke notes that Picard-Vessiot exten-
sion fields do not always exist but does discuss situations when they do
exist and results that can be used when adjoining solutions of a linear
difference equation forces one to have new constants.

3 It is interesting to note that the Galois theory was developed before it was known
if such K always exist. See the footnote on p.29 of [15].

4 Bialynicki-Birula [2] developed a general Galois theory for fields with operators
but with restrictions that forced his Galois groups to be connected.
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Another field theoretic approach is contained in the work of Chatzidakis
and Hrushovski [4]. Starting from a difference field k, they form a certain
large difference extension U having the properties (among others) that
for any element in U but not in k, there is an automorphism of U that
moves this element and that any set of difference equations (not neces-
sarily linear) that have a solution in some extension of U already have
a solution in U . The subfield of constants CU is not an algebraically
closed field. Given a linear difference equation with coefficients in k,
there exists a fundamental solution matrix with entries in U . Adjoin-
ing the entries of these to k(CU ) yields a difference field K. A natural
candidate for a Galois group is the group of difference automorphisms
of K over k(CU ) and these do indeed correspond to points in a linear
algebraic group. Equality of this automorphism group with the Galois
group coming from Picard-Vessiot rings is shown in 4.15 under certain
conditions (which are always verified when Ck is algebraically closed).
Proofs are very algebraic in nature, and along the way produce some
new algebraic results on Picard-Vessiot rings: we find numerical invari-
ants of Picard-Vessiot rings of the equation σ(X) = AX, and show how
to compute them (see 4.9 and 4.11). Furthermore, we show how to com-
pute the number of primitive idempotents of a Picard-Vessiot ring when
the field Ck is algebraically closed (4.13). This situation will be further
discussed in Section 4.

The field theoretic approach also seems most natural in the analytic
situation. For example, let M(C) be the field of functions f(x) mero-
morphic on the complex plain endowed with the automorphism defined
by the shift σ(x) = x + 1. Note that the constants CM(C) are the pe-
riodic meromorphic functions. A theorem of Praagman [21] states that
a difference equation with coefficients in M(C) will have a fundamental
solution matrix with entries in M(C). If k is the smallest difference
field containing the coefficients of the equation and CM(C) and K is the
smallest difference field containing k and the entries of fundamental so-
lution matrix, then, in this context, the natural Galois group is the set
of difference automorphisms of K over k. For example, the difference
equation σ(y) = −y has the solution y = eπix. This function is algebraic
of degree 2 over the periodic functions k = CM(C). Therefore, in this
context the Galois group of K = k(eπix) over k is Z/2Z.

One can also consider the field M(C∗) of meromorphic functions on the
punctured plane C∗ = C\{0} with q−automorphism σq(x) = qx, |q| 6= 1.
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Difference equations in this context are q-difference equations and Praag-
man proved a global existence theorem in this context as well. The con-
stants CM(C∗) naturally correspond to meromorphic functions on the
elliptic curve C∗/qZ and one can proceed as in the case of the shift. One
can also define local versions (at infinity in the case of the shift and at
zero or infinity in the case of q-difference equations). In the local case
and for certain restricted equations one does not necessarily need con-
stants beyond those in C (see [9], [22], [23] as well as connections between
the local and global cases. Another approach to q-difference equations
is given by Sauloy in [26] and Ramis and Sauloy in [25] where a Galois
group is produced using a combination of analytic and tannakian tools.
The Galois groups discussed in these papers do not appear to act on
rings or fields and, at present, it is not apparent how the techniques
presented here can be used to compare these groups to other putative
Galois groups.)

An approach to the Galois theory of difference equations with coefficients
in difference fields based on rings that are not necessarily integral was
presented in [23] (and generalized by André in [1] to include differential
and difference equations with coefficients in fairly general rings as well).
One defines a Picard-Vessiot ring associated with a difference equation
σY = AY with coefficients in a difference field k to be a simple differ-
ence ring (i.e., no σ-invariant ideals) R of the form R = k[zi,j , 1/det(Z)]
where Z = (zi,j) is a fundamental solution matrix of σY = AY . As-
suming that Ck is algebraically closed, it is shown in [23] that such a
ring always exists and is unique up to k-difference isomorphism. A sim-
ilar definition for differential equations yields a ring that is an integral
domain and leads (by taking the field of quotients) to the usual theory
of Picard-Vessiot extensions (see [24]). In the difference case, Picard-
Vessiot rings need not be domains. For example, for the field k = C
with the trivial automorphism, the Picard-Vessiot ring corresponding
to σy = −y is C[Y ]/(Y 2 − 1), σ(Y ) = −Y . Nonetheless, one defines
the difference Galois group of σY = AY to be the k-difference auto-
morphisms of R and one can shows that this is a linear algebraic group
defined over Ck. In the example above, the Galois group is easily seen
to be Z/2Z. Furthermore, in general there is a Galois correspondence
between certain subrings of the total quotient ring and closed subgroups
of the Galois group.

The natural question arises: How do these various groups relate to each
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other? The example of σ(y) = −y suggests that the groups may be
the same. Our main result, Theorem 2.9, states that all these groups
are isomorphic as algebraic groups over a suitable extension of the con-
stants. This result has interesting ramifications for the analytic theory
of difference equations. In [11], the second author gave criteria to insure
that solutions, meromorphic in C∗, of a first order q-difference equa-
tion over C(x) satisfy no algebraic differential relation over CM(C∗)(x),
where CM(C∗) is the field of meromorphic functions on the elliptic curve
C∗/qZ. The proof of this result presented in [11] depended on know-
ing the dimension of Galois groups in the analytic (i.e., field-theoretic)
setting. These groups could be calculated in the ring theoretic setting
of [23] and the results of the present paper allow one to transfer this
information to the analytic setting. Although we will not go into more
detail concerning the results of [11], we will give an example of how
one can deduce transcendence results in the analytic setting from their
counterparts in the formal setting.

The rest of the paper is organized as follows. In Section 2, we show how
results of [23] and [24] can be modified to prove the correspondence of
various Galois groups. In Section 3 we prove this result again in the
special case of q-difference equations over C(x) using tannakian tools
in the spirit of Proposition 1.3.2 of [14]. In Section 4, we discuss the
model-theoretic approach in more detail and, from this point of view,
show the correspondence of the Galois groups. In addition, we consider
some additional properties of Picard-Vessiot rings over fields with con-
stant subfields that are not necessarily algebraically closed. The different
approaches and proofs have points of contacts (in particular, Proposi-
tion 2.4) and we hope comparisons of these techniques are enlightening.

The authors would like to thank Daniel Bertrand for suggesting the ap-
proach of Section 3 and his many other useful comments concerning this
paper.

2 A Ring-Theoretic Point of View

In this section we shall consider groups of difference automorphisms of
rings and fields generated by solutions of linear difference equations and
show that these groups are isomorphic, over the algebraic closure of the
constants to the Galois groups defined in [24]. We begin by defining the
rings and fields we will study.
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Definition 2.1 Let K be a difference field with automorphism σ and
let A ∈ GLn(K).

a. We say that a difference ring extension R ofK is a weak Picard-Vessiot
ring for the equation σX = AX if

(i) R = K[Z, 1
det(Z) ] where Z ∈ GLn(R) and σZ = AZ and

(ii) CR = CK .

b. We say that a difference field extension L of K is a weak Picard-
Vessiot field for σX = AX if CL = CK and L is the quotient field of a
weak Picard-Vessiot ring of σX = AX.

In [23], the authors define a Picard-Vessiot ring for the equation σY =
AY to be a difference ring R such that (i) holds and in addition R is
simple as a difference ring, that is, there are no σ-invariant ideals except
(0) and R. When CK is algebraically closed, Picard-Vessiot rings exist,
are unique up toK-difference isomorphisms and have the same constants
as K ([23], Section 1.1). Therefore in this case, the Picard-Vessiot ring
will be a weak Picard-Vessiot ring.

In general, even when the field of constants is algebraically closed, Ex-
ample 1.25 of [23] shows that there will be weak Picard-Vessiot rings that
are not Picard-Vessiot rings. Furthermore this example shows that the
quotient field of a weak Picard-Vessiot integral domain R need not nec-
essarily have the same constants as R so the requirement that CL = CK

is not superfluous.

The Galois theory of Picard-Vessiot rings is developed in [23] for Picard-
Vessiot rings R over difference fields K with algebraically closed con-
stants CK . In particular, it is shown ([23], Theorem 1.13) that the
groups of difference K-automorphisms of R over K corresponds to the
set of CK-points of a linear algebraic group defined over CK . A similar
result for differential equations is proven in ([24], Theorem 1.27). It has
been observed by many authors beginning with Kolchin ([17], Ch. VI.3
and VI.6; others include [1], [7], [6], [14], [18] in a certain character-
istic p setting for difference equations) that one does not need Ck to
be algebraically closed to achieve this latter result. Recently, Dycker-
hoff [8] showed how the proof of Theorem 1.27 of [24] can be adapted
in the differential case to fields with constants that are not necessarily
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algebraically closed. We shall give a similar adaption in the difference
case.

Proposition 2.2 Let K be a difference field of characteristic zero and
let σY = AY,A ∈ GLn(K) be a difference equation over K. Let R
be a weak Picard-Vessiot ring for this equation over K. The group of
difference K-automorphisms of R can be identified with the CK-points
of a linear algebraic group GR defined over CK .

Proof. We will define the group GR by producing a representable functor
from the category of commutative CK-algebras to the category of groups
(c.f., [27]).

First, we may write R = K[Yi,j ,
1

det(Y ) ]/q as the quotient of a difference
ring K[Yi,j ,

1
det(Y ) ], where Y = {Yi,j} is an n × n matrix of indetermi-

nates with σY = AY , by a σ-ideal q. Let C = CK . For any C-algebra B,
one defines the difference rings K⊗C B and R⊗C B with automorphism
σ(f ⊗ b) = σ(f) ⊗ b for f ∈ K or R. In both cases, the ring of con-
stants is B. We define the functor GR as follows: the group GR(B) is the
group of K⊗CB-linear automorphisms of R⊗CB that commute with σ.
One can show that GR(B) can be identified with the group of matrices
M ∈ GLn(B) such that the difference automorphism φM of R ⊗C B,
given by (φMYi,j) = (Yi,j)M , has the property that φM (q) ⊂ (q) where
(q) is the ideal of K[Yi,j ,

1
det(Yi,j)

]⊗C B generated by q.

We will now show that GR is representable. Let Xs,t be new indeter-
minates and let M0 = (Xs,t). Let q = (q1, . . . , qr) and write σM0(qi)
mod (q) ∈ R⊗C C[Xs,t,

1
det(Xs,t)

] as a finite sum∑
i

C(M0, i, j)ei with all C(M0, i, j) ∈ C[Xs,t,
1

det(Xs,t)
] ,

where {ei}i∈I is a C-basis of R. Let I be the the ideal in C[Xs,t,
1

det(Xs,t)
]

generated by all the C(M0, i, j). We will show that

U := C[Xs,t,
1

det(Xs,t)
]/I

represents GR.

Let B be a C-algebra and φ ∈ GR(B) identified with φM for some
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M ∈ GLn(B). One defines the C-algebra homomorphism

Φ : C[Xs,t,
1

det(Xs,t)
] → B, (Xs,t) 7→M.

The condition on M implies that the kernel of Φ contains I. This then
gives a unique C-algebra homomorphism

Ψ : U → B, Ψ(M0 mod I) 7→M.

The Yoneda Lemma can now be used to show that GR = Spec(U) is
a linear algebraic group (see Appendix B, p. 382 of [24] to see how this
is accomplished or Section 1.4 of [27]).

We will refer to GR as the Galois group of R. When R is a Picard-Vessiot
extension of K, we have the usual situation. We are going to compare
the groups associated with a Picard-Vessiot extension and weak Picard-
Vessiot field extensions for the same equation over different base fields.
We will first show that extending a Picard-Vessiot ring by constants
yields a Picard-Vessiot ring whose associated group is isomorphic to the
original group over the new constants. In the differential case and when
the new constants are algebraic over the original constants this appears
in Dyckerhoff’s work ([8], Proposition 1.18 and Theorem 1.26). Our
proof is in the same spirit but without appealing to descent techniques.
We will use Lemma 1.11 of [23], which we state here for the convenience
of the reader:

Lemma 2.3 Let R be a Picard-Vessiot ring over a field k with CR =
Ck

5 and A be a commutative algebra over Ck. The action of σ on A

is supposed to be the identity. Let N be an ideal of R ⊗Ck
A that is

invariant under σ. Then N is generated by the ideal N ∩A of A.

Proposition 2.4 Let k ⊂ K be difference fields of characteristic zero
and K = k(CK). Let R be a Picard-Vessiot ring over k with CR = Ck

for the equation σX = AX,A ∈ GLn(k). If R = k[Y, 1
det(Y ) ]/q where

Y is an n× n matrix of indeterminates, σY = AY and q is a maximal
σ-ideal, then S = K[Y, 1

det(Y ) ]/qK is a Picard-Vessiot extension of K
for the same equation. Furthermore, CS = CK .

5 The hypothesis CR = Ck is not explicitly stated in the statement of this result in
[23] but is assumed in the proof.
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Proof. First note that the ideal qK 6= K[Y, 1
det(Y ) ]. Secondly, Lemma 2.3

states that for R as above and A a commutative Ck algebra with identity,
any σ-ideal N of R ⊗Ck

A (where the action of σ on A is trivial) is
generated by N ∩ A. This implies that the difference ring R ⊗Ck

CK

is simple. Therefore the map ψ : R ⊗Ck
CK → S = K[Y, 1

det(Y ) ]/(q)K
where ψ(a ⊗ b) = ab is injective. Let R′ be the image of ψ. One sees
that any element of S is of the form a

b for some a ∈ R′, b ∈ k[Ck] ⊂ R′.
Therefore any ideal I in S is generated by I ∩R′ and so S is simple.

For any constant c ∈ S, the set J = {a ∈ R′ | ac ∈ R′} ⊂ R′ is a nonzero
σ-ideal so c ∈ R′. Since the constants of R′ are CK , this completes the
proof.

Corollary 2.5 Let R and S be as in Proposition 2.4. If GR and GS

are the Galois groups associated with these rings as in Proposition 2.2,
then GR and GS are isomorphic over CK .

Proof. We are considering GR as the functor from Ck algebras A to
groups defined by GR(A) := Aut(R ⊗Ck

A) where Aut(..) is the group
of difference k⊗A-automorphisms. Let TR be the finitely generated Ck-
algebra representing GR (i.e., the coordinate ring of the group). Simi-
larly, let TS be the CK-algebra representing GS . We define a new functor
F from CK-algebras to groups as F (B) := Aut((R⊗Ck

CK)⊗CK
B). One

checks that F is also a representable functor represented by TR⊗Ck
CK .

Using the embedding ψ of the previous proof, one sees that F (B) =
Aut(S ⊗CK

B) = GR(B) for any CK-algebra B. The Yoneda Lemma
implies that TR ⊗Ck

CK ' TS .

In Proposition 2.7 we will compare Picard-Vessiot rings with weak Pi-
card-Vessiot fields for the same difference equation. To do this we need
the following lemma. A version of this in the differential case appears
as Lemma 1.23 in [24].

Lemma 2.6 Let L be a difference field. Let Y = (Yi,j) be and n ×
n matrix of indeterminates and extend σ to L[Yi.j ,

1
det(Y ) ] by setting

σ(Yi,j) = Yi,j. The map I 7→ (I) = I ·L[Yi.j ,
1

det(Y ) ] from the set of ideals
in CL[Yi.j ,

1
det(Y ) ] to the set of ideals of L[Yi.j ,

1
det(Y ) ] is a bijection.

Proof. One easily checks that (I) ∩ CL[Yi.j ,
1

det(Y ) ] = I. Now, let J be
an ideal of L[Yi.j ,

1
det(Y ) ] and let I = J ∩ CL[Yi.j ,

1
det(Y ) ]. Let {ei} be a
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basis of CL[Yi.j ,
1

det(Y ) ] over CL. Given f ∈ L[Yi.j ,
1

det(Y ) ], we may write
f uniquely as f =

∑
fiei, fi ∈ L. Let `(f) be the number of i such that

fi 6= 0. We will show, by induction on `(f), that for any f ∈ J , we have
f ∈ (I). If `(f) = 0, 1 this is trivial. Assume `(f) > 1. Since L is a field,
we can assume that there exists an i1 such that fi1 = 1. Furthermore,
we may assume that there is an i2 6= i1 such that fi2 ∈ L\CL. We have
`(f − σ(f)) < `(f) so σ(f)− f ∈ (I). Similarly, σ(f−1

i2
f)− f−1

i2
f ∈ (I).

Therefore, (σ(f−1
i2

)−f−1
i2

)f = σ(f−1
i2

)(f−σ(f))+(σ(f−1
i2
f)−f−1

i2
f) ∈ (I).

This implies that f ∈ (I).

The following is a version of Proposition 1.22 of [24] modified for differ-
ence fields taking into account the possibility that the constants are not
algebraically closed.

Proposition 2.7 Let K be a difference field with constants C and let
A ∈ GLn(K). Let S = K[U, 1

det(U) ], U ∈ GLn(S), σ(U) = AU be a
Picard-Vessiot extension of K with CS = Ck and let L = K(V ), V ∈
GLn(L), σ(V ) = AV be a weak Picard-Vessiot field extension of K.
Then there exists a K-difference embedding ρ : S → L⊗C C where C is
the algebraic closure of C and σ acts on L⊗C C as σ(v⊗ c) = σ(v)⊗ c.

Proof. Let X = (Xi,j) be an n × n matrix of indeterminates over L
and let S0 := K[Xi,j ,

1
det(X) ] ⊂ L[Xi,j ,

1
det(X) ]. We define a difference

ring structure on L[Xi,j ,
1

det(X) ] by setting σ(X) = AX and this gives
a difference ring structure on S0. Abusing notation slightly, we may
write S = S0/p where p is a maximal σ-ideal of S0. Define elements
Yi,j ∈ L[Xi,j ,

1
det(X) ] via the formula (Yi,j) = V −1(Xi,j). Note that

σYi,j = Yi,.j for all i, j and that L[Xi,j ,
1

det(X) ] = L[Yi,j ,
1

det(Y ) ]. Define
S1 := C[Yi,j ,

1
det(Y ) ]. The ideal p ⊂ S0 ⊂ L[Yi,j ,

1
det(Y ) ] generates an

ideal (p) in L[Yi,j ,
1

det(Y ) ]. We define p̃ = (p) ∩ S1. Let m be a maximal
ideal in S1 such that p̃ ⊂ m. We then have a homomorphism

S1 → S1/m→ C.

We can extend this to a homomorphism

ψ : L[Yi,j ,
1

det(Y )
] = L⊗C S1 → L⊗C C.

Restricting ψ to S0, we have a difference homomorphism

ψ : S0 → L⊗C C
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whose kernel contains p. Since p is a maximal σ-ideal we have that this
kernel is p. Therefore ψ yields an embedding

ρ : S = S0/p→ L⊗C C.

Corollary 2.8 Let K,C,C, S, L, ρ be as above and let T = K[V, 1
det(V ) ].

Then ρ maps S⊗C C isomorphically onto T ⊗C C. Therefore the Galois
group GS is isomorphic to GT over C.

Proof. In Proposition 2.7, we have that ρ(U) = V (ci,j) for some (ci,j) ∈
GLn(C). Therefore ρ is an isomorphism. The isomorphism of GS and
GT over C now follows in the same manner as the conclusion of Corol-
lary 2.5.

We can now prove the following result.

Theorem 2.9 Let

1. k be a difference field with algebraically closed field of constants
C,

2. σY = AY be a difference equation with A ∈ GLn(k) and let R be
the Picard-Vessiot ring for this equation over k,

3. K a difference field extension of k such that K = k(CK)
4. L a weak Picard-Vessiot field for the equation σ(Y ) = AY over

K.

Then

a. If we write L = K(V ) where V ∈ GLn(L) and σV = AV then
R ⊗C CK ' K[V, 1

det(V ) ] ⊗CK
CK where CK is the algebraic

closure of CK . Therefore K[V, 1
det(V ) ] is also a Picard-Vessiot

extension of K.
b. The Galois groups of R and K[V, 1

det(V ) ] are isomorphic over CK .

Proof. Let Y = (Yi,j) be an n × n matrix of indeterminates and write
R = k[Yi,j ,

1
det(Y ) ]/(p), where (p) is a maximal σ-ideal. Assumptions 1.

and 2. imply that CR = Ck ([23],Lemma 1.8) so Propostion 2.4 implies
that S = K[Yi,j ,

1
det(Y ) ]/(p)K is a Picard-Vessiot ring with constants

CK . Corollary 2.5 implies that its Galois group GR is isomorphic over
C to GS . Corolary 2.8 finishes the proof.
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3 A Tannakian Point of View

In this section we shall give another proof of Theorem 2.9 for q-difference
equations in the analytic situation. Let M(C∗) be the field of functions
f(x) meromorphic on C∗ = C\{0} with the automorphism σ(f(x)) =
f(qx) where q ∈ C∗ is a fixed complex number with |q| 6= 1. As noted be-
fore, the constants CM(C∗) in this situation correspond to meromorphic
functions M(E) on the elliptic curve E = C∗/qZ. We shall show how
the theory of tannakian categories also yields a proof of Theorem 2.9
when k = C(x) and K = k(CM(C∗)).

We shall assume that the reader is familiar with some basic facts con-
cerning difference modules ([23], Ch. 1.4) and tannakian categories
([7],[6]; see [24], Appendix B or [3] for an overview). We will denote
by Dk = k[σ, σ−1] (resp. DK = K[σ, σ−1]) the rings of difference op-
erators over k (resp. K). Following ([23], Ch. 1.4), we will denote by
Diff (k, σ) (resp. by Diff (K,σ)) the category of difference-modules over
k (resp. K). The ring of endomorphisms of the unit object is equal to
C (resp. CK = CM(C∗) = M(E)) the field of constants of k (resp. K).

Let M be a Dk-module of finite type over k. We will denote by MK =
M ⊗k K the DK-module constructed by extending the field k to K. We
will let {{M}} (resp. {{MK}}) denote the full abelian tensor subcategory
of Diff (k, σ) (resp. Diff (K,σ)) generated by M (resp. MK) and its dual
M∗ (resp. MK

∗).

Theorem 1.32 of [23] gives a fiber functor ωM over C for {{M}}. In
[21], Praagman gave an existence theorem (see Section 1) for q-difference
equations which can be used to construct a fiber functor ωMK

for {{MK}}
over CK (described in detail in Proposition 3.9 below). In particular,
{{M}} and {{MK}} are neutral tannakian categories over C and CK

respectively. The main task of this section is to compare the Galois
groups associated to the fiber functors ωM and ωMK

. We will prove the
following theorem:

Theorem 3.1 Let M ∈ Diff (k, σ) be a Dk-module of finite type over k.

Then

Aut⊗(ωM )⊗C CK ' Aut⊗(ωMK
)⊗CK

CK .

The proof is divided in two parts. In the first part, we will construct a
fiber functor ω̃M from {{MK}} to V ectCK

, which extends ωM and we will
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compare its Galois group to that associated to ωM . In the second part,
we will compare the Galois group associated to ωMK

and the Galois
group associated to ω̃M , and finally relate these groups to the Galois
groups considered in Theorem 2.9.b).

3.1 The action of Aut(CK/C) on {{MK}}

A module MK = M ⊗k K is constructed from the module M essen-
tially by extending the scalars from C to CK . In order to compare the
subcategories {{M}} and {{MK}} they generate, it seems natural there-
fore to consider an action of the automorphism group Aut(CK/C) on
MK as well as on {{MK}}. Before we define this action we state some
preliminary facts.

Lemma 3.2 We have:

1. The fixed field CAut(CK/C)
K is C.

2. K ' CK(X) where CK(X) denotes the field of rational functions
with coefficients in CK . This isomorphism maps C(X) isomor-
phically onto k.

Proof. 1. For all c ∈ C∗, the restriction to CK of the map σc which as-
sociates to f(x) ∈ CK the function σc(f)(x) = f(cx) defines an element
of Aut(CK/C). Let φ ∈ CAut(CK/C)

K , the fixed field of Aut(CK/C). Be-
cause σc(φ) = φ for any c ∈ C∗, φ must be constant.

2. For any f(X) ∈ CK [X], put φ(f) = f(z), viewed as a meromorphic
function of the variable z ∈ C∗. Then, φ is a morphism from CE [X] to
KE . We claim that φ is injective. Indeed, let us consider a dependence
relation:

(1)
∑

ci(z)ki(z) = 0,∀z ∈ C

where ci ∈ CE and ki ∈ K. Using Lemma II of ([5], p. 271) or the
Lemma of ([9], p. 5) the relation (1) implies that

(2)
∑

ci(z)ki(X) = 0,∀z ∈ C.

So φ extends to the function field CK(X), whose image is the full K.
Notice that, by definition of φ, C(X) maps isomorphically on k.

Since Aut(CK/C) acts on CK(X) (via its action on coefficients), we
can consider its action on K.
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Lemma 3.3 1. The action of Aut(CK/C) on K extends the natural
action of Aut(CK/C) on CK . Moreover the action of Aut(CK/C)
on K is trivial on k.

2. KAut(CK/C) = k.
3. The action of Aut(CK/C) on K commutes with the action of σq.

Proof. 1. This comes from the definition of the action of Aut(CK/C) on
K. Because Aut(CK/C) acts trivially on C(X), its action on k is also
trivial.

2. Because of Lemma 3.2, CAut(CK/C)
K = C. Thus, by construction

KAut(CK/C) = k.

3. Let i be a natural integer and f(X) = cXi where c ∈ CK . Then

τ(σq(f)) = τ(cqiXi) = τ(c)qiXi = σq(τ(f))

with τ ∈ Aut(CK/C). Thus, the action of Aut(CK/C) commutes with
σq on CK [X]. It therefore commutes on CK(X) = K.

Before we finally define the action of Aut(CK/C) on {{MK}}, we need
one more definition.

Definition 3.4 Let F be a field of caracteristic zero and V be a F -
vector space of finite dimension over F . We denote by ConstrF (V )
any construction of linear algebra applied to V inside V ectF , that is to
say any vector space over F obtained by tensor products over F , direct
sums, symetric and antisymetric products on V and its dual V ∗ :=
HomF−lin(V, F ).

Lemma 3.5 Let V be a vector space of finite dimension over k (respec-
tively over C). Then, Constrk(V )⊗kK = ConstrK(V ⊗K) (respectively
ConstrC(V )⊗CK = ConstrCK

(V ⊗CK)). In other words, the construc-
tions of linear algebra commute with the scalar extension.

Proof. Consider for instance Constrk(V ) = Homk−lin(V, k). Because V
is of finite dimension over k, we have

Homk−lin(V, k)⊗k K = HomK−lin(V ⊗k K,K).
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To define the action of Aut(CK/C) on {{MK}} we note that for any
object N of {{MK}}, there exists, by definition, a construction M ′ =
Constrk(M) such that N ⊂ M ′ ⊗k K. Let now M ′ = Constrk(M)
be a construction of linear algebra applied to M . The Galois group
Aut(CK/C) acts on M ′

K = M ′ ⊗k K via the semi-linear action (τ →
id⊗τ). It therefore permutes the objects of {{MK}}. It remains to prove
that this permutation is well defined and is independent of the choice
of the construction in which these objects lie. If there exist M1 and M2

two objects of Constrk(M) such that N ⊂M1⊗kK and N ⊂M2⊗kK.
Then, by a diagonal embedding N ⊂ (M1 ⊕ M2) ⊗k K. The action
of Aut(CK/C) on (M1 ⊕M2) ⊗k K is the direct sum of the action of
Aut(CK/C) on M1⊗kK with the action of Aut(CK/C) on M2⊗kK.This
shows that the restriction of the action of Aut(CK/C) onM1⊗kK toN is
the same as the restriction of the action of Aut(CK/C) on M2⊗kK to N .
Thus, the permutation is independent of the choice of the construction
in which these objects lie.

3.2 Another fiber functor ω̃M for {{MK}}

We now extend ωM to a fiber functor ω̃M on the category {{MK}}. For
this purpose, we appeal to Proposition 2.4 to conclude that if R be a
Picard-Vessiot ring for M over k and σX = AX,A ∈ GLn(k) be an
equation of M over k. If R = K[Y, 1

det(Y ) ]/I where Y is an n × n

matrix of indeterminates, σY = AY and I is a maximal σ-ideal, then
RK = R⊗k K is a weak Picard-Vessiot ring for MK over K.

We then have the following proposition-definition:

Proposition 3.6 For any object N of {{MK}} let

ω̃M (N) = Ker(σ − Id,RK ⊗K N).

Then ω̃M : {{MK}} → V ectCK
is a faithful exact, CK-linear tensor

functor. Moreover, ω̃M (N ⊗K) = ωM (N)⊗ CK for every N ∈ {{M}}.

Proof. Because of the existence of a fundamental matrix with coefficients
in RK , ω̃M (MK) satisfies RK ⊗KK

MK = RK ⊗CK
ω̃M (MK). Let σX =

AX,A ∈ GLn(k) be an equation of M over k and R = k[Y, 1
det(Y ) ]/I be

its corresponding Picard-Vessiot ring over k. Let M ′ be a construction
of linear algebra applied to M over k. Then RK contains a fundamental
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matrix of M ′ ⊗ K. This comes from the fact that an equation of M ′

is obtained from the same construction of linear algebra applied to A.
Moreover, if N ∈ {{MK}}, then R contains also a fundamental matrix
for N . Indeed, there exists M ′, a construction of linear algebra applied
to M over k, such that N ⊂ M ′ ⊗ K. Now, RK contains the entries
of a fundamental solution matrix of N and this matrix is invertible
because its determinant divides the determinant of a fundamental matrix
of solutions of M ′⊗K. Thus, RK ⊗K N = RK ⊗CK

ω̃M (N). We deduce
from this fact, that ω̃M is a faithful, exact, CK-linear tensor functor.

For every N ∈ {{M}}, we have a natural inclusion of CK-vector spaces
of solutions ωM (N) ⊗ CK ⊂ ω̃M (N ⊗K). Since their dimensions over
CK are both equal to the dimension of N over k, they must coincide.

3.3 Comparison of the Galois groups

Let M ′ = ConstrK(M) be a construction of linear algebra applied to
M . The group Aut(CK/C) acts on ω̃M (M ′

K) = ωM (M ′)⊗C CK via the
semi-linear action (τ → id⊗ τ). It therefore permutes the objects of the
tannakian category generated by ωM (M)⊗C CK inside V ectCK

.

Lemma 3.7 Let N be an object of {{MK}} and τ be an element of
Aut(CK/C). Then, for the actions of Aut(CK/C) defined as above and
in Section 3.1, we have:

τ(ω̃M (N)) = ω̃M (τ(N))

(equality inside ωM (M ′) ⊗C CK for any M ′ = Constrk(M) such that
N ⊂M ′ ⊗K.)

Proof. Let M ′ = ConstrKM be such that N ⊂ M ′ ⊗k K and consider
the action of Aut(CK/C) on R⊗k (M ′ ⊗k K) defined by id⊗ id⊗ τ .

This allows us to consider the action of Aut(CK/C) on RK ⊗K N =
R⊗k N . By definition, we have

τ(RK ⊗K N) = R⊗k (τ(N)) = RK ⊗K τ(N)

for all τ ∈ Aut(CK/C). Moreover inside R ⊗k (M ′ ⊗K), the action of
Aut(CK/C) commutes with the action of σq (see Lemma 3.3). Therefore

τ(Ker(σq − Id,RK ⊗K N)) = Ker(σq − Id,RK ⊗K τ(N)).
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The next proposition is Corollary 2.5, but we shall now give a tan-
nakian proof of it, following the proof of ([14], Lemma 1.3.2).

Proposition 3.8 Aut⊗(ωM )⊗ CK = Aut⊗(ω̃M ).

Proof. By definition, Aut⊗(ω̃M ) = Stab(ω̃M (W ), W ∈ {{MK}}) is the
stabilizer inside Gl(ω̃M (MK)) = Gl(ωM (M))⊗CK of the fibers of all the
sub-equations W of MK . Similarly, Aut⊗(ωM ) = Stab(ωM (W )), W ∈
{{M}}), so that the following inclusion holds:

Aut⊗(ω̃M ) ⊂ Aut⊗(ωM )⊗ CK .

The semi-linear action of Aut(CK/C) permutes the sub-DK-modules
W of {{MK}} and the fixed field of CK of ΓE is C (see Lemma 3.2.1).
Therefore Aut⊗(ω̃M ) is defined over C, i.e., it is of the form G⊗CK for a
unique subgroup G ⊂ Aut⊗(ωM ). By Chevalley’s theorem, G is defined
as the stabilizer of one C-subspace V of ωM (M ′) for some construction
M ′ = Constrk(M).

We must show that V is stable under Aut⊗(ωM ), i.e., we must show that
V is of the form ωM (N) for N ∈ {{M}}. Because G⊗CK = Aut⊗(ω̃M )
leaves V ⊗ CK stable, we know that there exists N ∈ {{MK}} with
ω̃M (N) = V ⊗ CK . For any τ ∈ Aut(CK/C),

ω̃M (N) = V ⊗ CK = τ(V ⊗ CK) = τ(ω̃M (N)) = ω̃M (τ(N)),

in view of Lemma 3.7. We therefore deduce from Proposition 3.6 that
τ(N) = N for any τ ∈ Aut(CK/C). Consequently, N is defined over K
(see Lemma 3.3.3)), i.e., it is of the form N ⊗K, where N ∈ {{M}}.

We need to define one more functor before we finish the proof of Theo-
rem 3.1.

Proposition 3.9 Let

(3) σqY = AY

be an equation of M with A ∈ GLn(K). There exists a fundamental ma-
trix of solutions U of (3) with coefficients in the field M(C∗) of functions
meromorphic on C∗. Moreover, if V is another fundamental matrix of
solutions of (3), there exists P ∈ GLn(CK) such that U = PV .
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Let L be the subfield of M(C∗) generated over K by the entries of U .
For any object N of {{MK}} let

ωMK
(N) = Ker(σ − Id, L⊗N).

Then ωMK
: {{MK}} → V ectCK

is a faithful exact, CK-linear tensor
functor.

Proof. For the existence of U see [21] Theorem 3. Since the field of
constants of L is CK , L is a weak Picard Vessiot field for MK , and the
proof that ωMK

is a fiber functor on {{MK}} is the same as that of
Proposition 3.6.

We now turn to the

Proof of Theorem 3.1. By Propositions 3.6 on the one hand and 3.9
on the other hand, there exists two fiber functors ω̃M and ωMK

on
{{MK}} which is a neutral tannakian category over CE . A fundamental
theorem of Deligne ([7], Theorem 3.2) asserts that for any field C of
caracteristic zero, two fiber functors of a neutral tannakian category over
C become isomorphic over the algebraic closure of C. Taking C = CK

and combining this with Proposition 3.8, we therefore have

Aut⊗(ωM )⊗ CK ' Aut⊗(ωMK
)⊗ CK .

To show the connection between Theorem 3.1 and Theorem 2.9 we must
show that the group of difference k (rep. K)-automorphisms of R (resp.
F ) can be identified with the C (resp. CK)-points of Aut⊗(ωM ) (resp.
Aut⊗(ωMK

)). In the first case, this has been shown in Theorem 1.32.3 of
[23]; the second case can be established in a similar manner. This enables
us to deduce, in our special case, Theorem 2.9 from Theorem 3.1.

We conclude with an example to show that these considerations can be
used to show the algebraic independence of certain classical functions.

Example 3.10 Consider the q-difference equation

(4) σq(y) = y + 1.

In ([23], Section 12.1) the authors denote by l the formal solution of 4,
i.e. the formal q-logarithm. It is easily seen that the Galois group, in the
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sense of [23], of (4) is equal to (C,+) and therefore that the dimension
of the Galois group GR/C is equal to 1. We deduce from Theorem 2.9
that the dimension of the Galois group GS/CK

is also equal to 1. In
particular, the field generated over K by the meromorphic solutions of
(4) has transcendence degree 1 over K.

The classical Weiestrass ζ function associated to the elliptic curve E =
C∗/qZ satisfies the equation (4). Therefore, if ℘ is the Weierstrass func-
tion of E, we obtain that ζ(z) is transcendental over the field C(z, ℘(z)).

4 A Model-Theoretic Point of View

4.1 Preliminary model-theoretic definitions and results

Definition 4.1 Let K be a difference field with automorphism σ.

1. K is generic iff
(∗) every finite system of difference equations with coefficients
in K and which has a solution in a difference field containing K,
already has a solution in K.

2. A finite σ-stable extension M of K is a finite separably algebraic
extension of K such that σ(M) = M .

3. The core of L over K, denoted by Core(L/K), is the union of all
finite σ-stable extensions of K which are contained in L.

One of the difficulties with difference fields, is that there are usually
several non-isomorphic ways of extending the automorphism to the al-
gebraic closure of the field. An important result of Babbitt (see [5]) says
that once we know the behaviour of σ on Core(K/K), then we know
how σ behaves on the algebraic closure K of K.

Fix an infinite cardinal κ which is larger than all the cardinals of
structures considered (e.g., in our case, we may take κ = |C|+ = (2ℵ0)+).
In what follows we will work in a generic difference field U , which we will
assume sufficiently saturated, i.e., which has the following properties:

(i) (∗) above holds for every system of difference equations of size
< κ (in infinitely many variables).
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(ii) (1.5 in [4]) If f is an isomorphism between two algebraically
closed difference subfields of U which are of cardinality < κ, then
f extends to an automorphism of U .

(iii) Let K ⊂ L be difference fields of cardinality < κ, and assume that
K ⊂ U . If every finite σ-stable extension of K which is contained
in L K-embeds in U , then there is a K-embedding of L in U .

Note that the hypotheses of (iii) are always verified if K is an alge-
braically closed subfield of U . If K is a difference field containing the
algebraic closure Q of Q, then K will embed into U , if and only if the
difference subfield Q of K and the difference subfield Q of U are isomor-
phic. This might not always be the case. However, every difference field
embeds into some sufficiently saturated generic difference field.

Let us also recall the following result (1.12 in [4]): Let n be a posi-
tive integer, and consider the field U with the automorphism σn. Then
(U , σn) is a generic difference field, and satisfies the saturation properties
required of (U , σ).

Notation. We use the following notation. Let R be a difference ring.
Then, as in the previous sections, CR denotes the field of “constants”
of R, i.e., CR = {a ∈ R | σ(a) = a}. We let DR = {a ∈ R | σm(a) =
a for some m 6= 0}. Then DR is a difference subring of R, and if R is a
field, DR is the relative algebraic closure of CR in R. We let D′

R denote
the difference ring with same underlying ring as DR and on which σ acts
trivially. Thus CU is a pseudo-finite field (see 1.2 in [4]), and DU is its
algebraic closure (with the action of σ), D′

U the algebraic closure of CU
on which σ acts trivially.

Later we will work with powers of σ, and will write Fix(σn)(R) for
{a ∈ R | σn(a) = a} so that no confusion arises. If R = U , we will
simply write Fix(σn). Here are some additional properties of U that we
will use.

Let K ⊂ M be difference subfields of U , with M algebraically closed,
and let a be a tuple of U . By 1.7 in [4]:

(iv) If the orbit of a under Aut(U/K) is finite, then a ∈ K (the
algebraic closure of K).
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We already know that every element of Aut(M/KCM ) extends to an
automorphism of U . More is true: using 1.4, 1.11 and Lemma 1 in the
appendix of [4]:

(v) every element of Aut(M/KCM ) can be extended to an element of
Aut(U/KCU ).

Recall that a definable subset S of Un is stably embedded if whenever
R ⊂ Unm is definable with parameters from U , then R∩Sm is definable
using parameters from S. An important result ([4] 1.11)) shows that CU
is stably embedded. Let d ≥ 1. Then, adding parameters from Fix(σd),
there is a definable isomorphism between Fix(σd) and Cd

U . Hence,

(vi) for every d > 0, Fix(σd) is stably embedded, and
(vii) if θ defines an automorphism of DU which is the identity on DM ,

then θ extends to an automorphism of U which is the identity on
M .

We also need the following lemma. The proof is rather model-theoretic
and we refer to the Appendix of [4] for the definitions and results. Recall
that if K is a difference subfield of U , then its definable closure, dcl(K),
is the subfield of U fixed by Aut(U/K). It is an algebraic extension of
K, and is the subfield of the algebraic closure K of K which is fixed by
the subgroup {τ ∈ Gal(K/K) | σ−1τσ = τ}.

Lemma 4.2 Let K be a difference field, and M be a finite σ-stable
extension of KCU . Then M ⊂ KDU , i.e., there is some finite σ-stable
extension M0 of K such that M ⊂M0DU .

Proof. Fix an integer d ≥ 1. Then, in the difference field (U , σd), Fix(σd)
is stably embedded, dcl(K) = K and dcl(Fix(σd)) = Fix(σd). Denoting
types in (U , σd) by tpd, this implies

(]) tpd(K/K ∩ Fix(σd)) ` tpd(K/Fix(σd)).

Assume by way of contradiction that KCU has a finite σ-stable ex-
tension M which is not contained in KDU . We may assume that M
is Galois over KCU (see Thm 7.16.V in [5]), with Galois group G.
Choose d large enough so that σd commutes with all elements of G, and
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M = M0DU , where M0 is Galois over KFix(σd). Then there are sev-
eral non-isomorphic ways of extending σd to M . As tpd(K/Fix(σd)) de-
scribes in particular theKFix(σd)-isomorphism type of the σd-difference
field M , this contradicts (]) (see Lemmas 2.6 and 2.9 in [4]).

4.2 The Galois group

From now on, we assume that all fields are of characteristic 0. Most of
the statements below can be easily adapted to the positive characteristic
case. Let K be a difference subfield of U , A ∈ GLn(K), and consider
the set S = S(U) of solutions of the equation

σ(X) = AX, det(X) 6= 0.

Consider H = Aut(K(S)/KCU ). We will call H the Galois group of
σ(X) = AX over KCU 6.

Then H is the set of CU -points of some algebraic group H defined over
KCU . To see this, we consider the ring R = K[Y,det(Y )−1] (where
Y = (Yi,j) is an n×nmatrix of indeterminates), extend σ to R by setting
σ(Y ) = AY , and let L be the field of fractions of R. Then L is a regular
extension of K, and there is a K-embedding ϕ of L in U , which sends
CL to a subfield of CU , and DL to a subfield of DU . We let T = ϕ(Y ).
Then every element g ∈ H is completely determined by the matrix
Mg = T−1g(T ) ∈ GLn(CU ), since if B ∈ S, then B−1T ∈ GLn(CU ).
Moreover, since KCϕ(L)(T ) and KCU are linearly disjoint over KCϕ(L),
the algebraic locus W of T over KCU (an algebraic subset of GLn) is
defined over KCϕ(L), and H is the set of elements of GLn(CU ) which
leave W invariant. It is therefore the set of CU -points of an algebraic
group H, defined over KCϕ(L). We let H′ denote the Zariski closure of
H(CU ). Then H′ is defined over CU , and it is also clearly defined over
Kϕ(CL), so that it is defined over CU ∩Kϕ(CL) = CU ∩ ϕ(CL).

Proposition 4.3 Let H0 denote the connected component of H, and let
M0 be the relative algebraic closure of Kϕ(CL) in ϕ(L), M its Galois
closure over Kϕ(CL).

1. dim(H) = tr.deg(L/KCL).

6 Warning: This is not the usual Galois group defined by model theorists, please
see the discussion in subsection 4.4.
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2. M0 is a finite σ-stable extension of Kϕ(CL) and [H : H0] divides
[M : Kϕ(CL)]

3. [H′ : H0] = [H(CU ) : H0(CU )] equals the number of left cosets of
Gal(M/M0) in Gal(M/Kϕ(CL)) which are invariant under the
action of σ by conjugation.

4. If the algebraic closure of CK is contained in CU , then the element
σ ∈ Gal(DL/CL) lifts to an element of Aut(KCU (T )/KCU ).

Proof. 1. Choose another K-embedding ϕ′ of L into U which extends
ϕ on the relative algebraic closure of KCL in L, and is such that ϕ′(L)
and ϕ(L) are linearly disjoint over M0. Then B = ϕ′(Y )−1T ∈ H(CU ),
and tr.deg(ϕ(KCL)(B))/ϕ(KCL)) = tr.deg(L/KCL). Thus dim(H) =
tr.deg(L/KCL).

2. As M0 ⊂ Kϕ(L), we obtain that [M0 : Kϕ(CL)] is finite and
σ(M0) = M0. Furthermore, σ(M) = M (see Thm 7.16.V in [5]). The
algebraic group H is defined as the set of matrices of GLn which leaves
the algebraic set W (the algebraic locus of T over Kϕ(CL)) invariant.

Hence H0 is the subgroup of H which leaves all absolutely irreducible
components of W invariant. Its index in H therefore must divide
[M : Kϕ(CL)].

3. The first equality follows from the fact that H0(CU ) and H′(CU ) are
Zariski dense in H0 and H′ respectively. Some of the (absolutely irre-
ducible) components of W intersect S in the empty set. Indeed, let W0

be the component of W containing T , let W1 be another component of
W and τ ∈ Gal(M/Kϕ(CL)) such that W1 = W τ

0 . Then W1 is defined
over τ(M0). If τ defines a (difference-field) isomorphism between M0

and τ(M0), then τ extends to an isomorphism between Kϕ(L) and a
regular extension of Kϕ(CL)τ(M0), and therefore W1 ∩ S 6= ∅. Con-
versely, if B ∈ W1 ∩ S, then B−1T ∈ H(CU ), so that B is a generic
of W1. The difference fields Kϕ(CL)(B) and Kϕ(L) are therefore iso-
morphic (over Kϕ(CL)), and τ(M0) ⊂ Kϕ(CL)(B). Hence the dif-
ference subfields M0 and τ(M0) of M are Kϕ(CL)-isomorphic. One
verifies that M0 and τ(M0) are isomorphic over Kϕ(CL) if and only if
σ−1τ−1στ ∈ Gal(M/M0), if and only if the coset τGal(M/M0) is invari-
ant under the action of σ by conjugation.

4. We know that the algebraic closure K of K and DU are linearly
disjoint over CK = CK . Let a ∈ ϕ(DL) generates ϕ(DL) over ϕ(CL).
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By 4.1(vi), tp(a/KCU ) = tp(σ(a)/KCU ), and therefore there is θ in
Aut(U/KCU ) such that θ(a) = σ(a). Thus T−1θ(T ) ∈ H.

Remarks 4.4 1. Even when the algebraic closure of CK is con-
tained in CU , we still cannot in general conclude that H′ = H.

2. The isomorphism type of the algebraic group H only depends on
the isomorphism type of the difference field K (and on the matrix
A). The isomorphism type of the algebraic group H′ does however
depend on the embedding of K in U , that is, on the isomorphism
type of the difference field Core(K/K). Indeed, while we know
the isomorphism type of the difference field M0 over Kϕ(CL), we
do not know the isomorphism type of the difference field M over
Kϕ(CL), and in view of 4.3.3, if Gal(M/Kϕ(CL)) is not abelian,
it may happen that non-isomorphic extensions of σ to M yield
different Galois groups.

3. Assume that σ acts trivially on Gal(Core(K/K)/K), and that
Gal(Core(K/K)/K) is abelian. Then

H = H′ and [H : H0] = [M0 : Kϕ(CL)].

Indeed, by Lemma 4.2, M0 is Galois over Kϕ(CL) with abelian
Galois group G and σ acts trivially on G. The result follows by
4.3.3. Thus we obtain equality of H and H′ in two important
classical cases:

a. K = C(t), CK = C and σ(t) = t+ 1.
b. K = C(t), CK = C and σ(t) = qt for some 0 6= q ∈ C, q

not a root of unity.

4. If B ∈ S, then the above construction can be repeated, using
B instead of T . We then obtain an algebraic group H1, with
H1(CU ) ' Aut(KCU (S)/KCU ). Since KCU (B) = KCU (T ), the
algebraic groups H1 and H are isomorphic (via B−1T ).

5. In the next subsection, we will show that the algebraic group H
and the algebraic group GR′ introduced in section 2 are isomor-
phic when CR′ = CK = DK .
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4.3 More on Picard-Vessiot rings

Throughout the rest of this section, we fix a difference ring K, some
A ∈ GLn(K), R = K[Y,det(Y )−1] as above, with σ(Y ) = AY , and
R′ = R/q a Picard-Vessiot ring for σ(X) = AX over K. We denote the
image of Y in R′ by y. We keep the notation introduced in the previous
subsections.

If q is not a prime ideal, then there exists ` and a prime σ`-ideal p of
R which is a maximal σ`-ideal of R, such that q =

⋂`−1
i=0 σ

i(p), and
R′ ' ⊕`−1

i=0Ri, where Ri = R/σi(p) (see Corollary 1.16 of [23]. One veri-
fies that the second proof does not use the fact that CK is algebraically
closed). Thus the σ`-difference ring R0 is a Picard-Vessiot ring for the
difference equation σ`(X) = σ`−1(A) · · ·σ(A)AX over K. We denote
σ`−1(A) · · ·σ(A)A by A`.

We will identify R′ with ⊕`−1
i=0Ri, and denote by ei the primitive idem-

potent of R′ such that eiR
′ = Ri. Then ei = σi(e0). We will denote

by R∗ the ring of quotients of R′, i.e., R∗ = ⊕`−1
i=0R

∗
i , where R∗i is the

field of fractions of Ri. The difference ring R∗ is also called the total
Picard-Vessiot ring of σ(X) = AX over K. There are two numerical in-
variants associated to R′: the number ` = `(R′), and the number m(R′)
which is the product of `(R′) with [DR∗

0
: DKCR∗

0
]. We call m(R′) the

m-invariant of R′. We will be considering other Picard-Vessiot rings for
σ(X) = AX, and will use this notation for them as well.

Recall that the Krull dimension of a ring S is the maximal integer n (if
it exists) such that there is a (strict) chain of prime ideals of S of length
n. We denote it by Kr.dim(S). If S is a domain, and is finitely generated
over some subfield k, then Kr.dim(S) equals the transcendence degree
over k of its field of fractions. Observe that if S is a domain of finite Krull
dimension, and 0 6= I is an ideal of S, then Kr.dim(S) > Kr.dim(S/I).
Also, if S = ⊕iSi, then Kr.dim(S) = sup{Kr.dim(Si)}.

Lemma 4.5 1. CR′ is a finite algebraic extension of CK , and is
linearly disjoint from K over CK (inside R′).

2. If CR′ ⊗CK
DK is a domain, then R′ is a Picard-Vessiot ring for

σ(X) = AX over KCR′ .

Proof. 1. We know by Lemma 1.7 of [23] that CR′ is a field. Assume
by way of contradiction that CR′ and K are not linearly disjoint over
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CK , and choose n minimal such that there are a1, . . . , an ∈ CR′ which
are CK-linearly independent, but not K-linearly independent. Let 0 6=
c1, . . . , cn ∈ K be such that

∑n
i=1 aici = 0. Multiplying by c−1

1 , we may
assume c1 = 1. Then σ(

∑n
i=1 aici) =

∑n
i=1 aiσ(ci) = 0, and therefore∑n

i=2 ai(σ(ci) − ci) = 0. By minimality of n, all (σ(ci) − ci) are 0, i.e.,
all ci ∈ CK , which gives us a contradiction.

Observe that e0CR′ ⊂ Fix(σ`)(R0), and we may therefore replace R′

by the domain R0. Since R0 is a finitely generated K-algebra, we know
that its Krull dimension equals the transcendence degree over K of its
field of fractions. Thus R0 cannot contain a subfield which is transcen-
dental over K, i.e., the elements of Fix(σ`)(R0) are algebraic over K.
his furthermore implies that Fix(σ`)(R0) is an algebraic extension of
Fix(σ`)(K). Since the latter field is an algebraic extension of CK , we
have the conclusion.

2. Our hypothesis implies that K[CR′ ] is a field. Hence R′ is a simple
difference ring containing KCR′ , and is therefore a Picard-Vessiot ring
for σ(X) = AX over KCR′ .

Lemma 4.6 1. CR′ = CR∗ .

2. Fix(σ`)(e0R∗) = e0CR′ .

3. DR∗ = ⊕`−1
i=0DeiR∗ .

Proof. 1. If c ∈ CR∗ , then c can be represented by some `-tuple
(a0

b0
, . . . , a`−1

b`−1
), where ai, bi ∈ Ri, and bi 6= 0. Thus the ideal I =

{d ∈ R′ | dc ∈ R′} is a σ-ideal of R′ and contains the element b =
(b0, . . . , b`−1) 6= 0. Since R′ is simple, 1 ∈ I, i.e., c ∈ R′.

2. Assume a ∈ e0R∗ satisfies σ`(a) = a. Then a = e0a,
∑`−1

i=0 σ
i(e0a) is

fixed by σ, and therefore belongs to CR′ . Hence a ∈ e0CR′ .

3. If a ∈ R∗ satisfies σm(a) = a for some m, then σm`(eia) = eia.

Remark 4.7 Observe that ` and the isomorphism type of the K-σ`-
difference algebra R0 completely determine the isomorphism type of the
difference algebra R′. Indeed, for each i = 1, . . . , ` − 1, one chooses a
copy Ri of the domain R0, together with an isomorphism fi : R0 →
Ri which extends σi on K. This fi then induces an automorphism
σ` of Ri. One then defines σ on ⊕`−1

i=0Ri by setting σ(a0, . . . , a`−1) =
(f1(a0), f2f−1

1 (a1), . . . , σ`f−1
`−1(a`−1)).
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Proposition 4.8 Let K ⊂ K1 be difference fields of characteristic 0
where K1 = K(CK1), and assume that CK = DK . Then R′ ⊗K K1 =
⊕d

i=1R
′
i, where each R′i is a Picard-Vessiot ring for σ(X) = AX over K1,

and d ≤ [CR′ : CK ]. Moreover, each R′i has the same Krull-dimension
and m-invariant as R′.

Proof. Our assumption implies that K ⊗CK
CK1 is a domain. Let C be

the relative algebraic closure of CK in CK1 . Then K(C) = K[C], and
R′ ⊗K K(C) ' R′ ⊗CK

C.

Let a ∈ CR′ be such that CR′ = CK(a) and let f(X) ∈ CK [X] be its
minimal polynomial over CK . Let g1(X), . . . , gd(X) be the irreducible
factors of f(X) over C. Then f(X) =

∏d
i=1 gi(X), and C ′R ⊗CK

C '
⊕d

i=1Ci, where Ci is generated over C by a root of gi(X) = 0. Indeed,
identifying C with 1⊗C, every prime ideal of CR′ ⊗CK

C must contain
some gi(a ⊗ 1); on the other hand, each gi(a ⊗ 1) generates a maximal
ideal of CR′ ⊗CK

C. Thus

R′ ⊗CK
C ' R′ ⊗CR′ (CR′ ⊗CK

C) ' ⊕d
i=1R

′ ⊗CR′ Ci.

By Lemmas 2.3 and 4.5, each R′⊗CR′ Ci = R′i is a simple difference ring,
with field of constants Ci. Hence R′i is a Picard-Vessiot ring for σ(X) =
AX over KC (and also over KCi). Note that d ≤ deg(f) = [CR′ : CK ],
and that Kr.dim(R′i) = Kr.dim(R′) (because KC is algebraic over K,
and R′i is finitely generated over K).

By Proposition 2.4, R′i ⊗KCi
K1Ci is a Picard-Vessiot ring. Because

Ci and K1 are linearly disjoint over C, and Ci is algebraic over C,
KCi ⊗KC K1 ' K1Ci, and therefore

R′i ⊗KC K1 ' R′i ⊗KCi
K1Ci.

This shows that R′⊗K K1 is the direct sum of Picard-Vessiot rings over
K1.

Identifying CR′ with ejCR′ = CRj
, we obtain

R′i = (⊕`−1
j=0Rj)⊗CR′ Ci ' ⊕`−1

j=0Rj ⊗CR′ Ci.

Each Rj being a Picard-Vessiot ring for σ`(X) = A`X, we know by
Proposition 2.4 that Rj⊗CR′ Ci is also a Picard-Vessiot ring for σ`(X) =
A`X. Thus R0 ⊗CR′ Ci =

∑s−1
j=0 Sj , where each Sj is a simple σ`s-

difference ring, and a domain. Because all rings Rj are isomorphic over
CR′ , and all Sj are isomorphic over CR′ , m(R′i) is the product of `s with
m(S0) = [DS∗0

: CS∗0
], where S∗0 is the field of fractions of S0. To show
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that m(R′i) = m(R′), it therefore suffices to show that sm(S0) = m(R0).
By Lemma 4.5.2,

Fix(σ`s)(S∗0 ) = Fix(σ`)(R∗0 ⊗CR′ Ci) = Fix(σ)(R′ ⊗CR′ Ci) = Ci.

We know that DR∗
0

is a (cyclic) Galois extension of CR′ = Fix(σ`)(R∗0),
and is therefore linearly disjoint from Ci over DR∗

0
∩Ci = C ′i. Write C ′i =

CR′(α), and let a, b ∈ R0, b 6= 0, be such that (inside R∗0), CR′(a/b) = C ′i.
The minimal prime ideals of R0 ⊗CR′ Ci are the ideals Q0, . . . , Qr−1,
where r = [C ′i : CR′ ] and Qk is generated by σk`(a) ⊗ 1 − σk`(b) ⊗ α.
This shows that r = s, since s is also the number of minimal prime ideals
of R0 ⊗CR′ Ci.
Let e be a primitive idempotent of R0⊗CR′ Ci such that S0 = e(R0⊗CR′

Ci). Then eCiDR∗
0

is a subfield of S∗0 , contained in DS∗0
, and its degree

over eCi = Fix(σ`s)(S∗0 ) is the quotient of [DR∗
0

: CR′ ] by [C ′i : CR′ ],
i.e., equals m(R0)/s. To finish the proof, it therefore suffices to show
that DS∗0

= eCiD
∗
R0

.

Assume that c ∈ R∗0 ⊗CR′ Ci satisfies σm(c) = c for some m 6= 0.
Write c =

∑
k ak ⊗ ck, where the ak are in R∗0, and the ck are in Ci and

are linearly independent over CR′ . Then σm(c) = c =
∑

k σ
m(ak)ck,

which implies σm(ak) = ak for all k, and all ak’s are in DR∗
0
. As every

element of DS∗0
is of the form ec for such a c (Lemma 4.6.3), this shows

that DS∗0
= eCiD

∗
R0

. This finishes the proof that m(R′i) = m(R′).

Consider now R′ ⊗KC K1. It is the direct sum of `s σ`s-difference
rings, each one being isomorphic to S0⊗KC K1. Because K1 is a regular
extension of KC, S0 ⊗KC K1 is a domain, of Krull dimension equal to
Kr.dim(S0) = Kr.dim(R′). Inside its field of fractions (a σ`s-difference
field) K1 and S∗0 are linearly disjoint over KC, which implies that CK1Ci

is the field of constants of S0 ⊗KC K1, CK1DS∗0
is the field of elements

fixed by some power of σ, and [CK1DS∗0
: CK1Ci] = [D∗

S0
: Ci] = m(S0).

This shows that m(R′i ⊗KC K1) = m(R′) and finishes the proof.

Proposition 4.9 Assume that CK = DK . Then all Picard-Vessiot
rings for σ(X) = AX over K have the same Krull dimension and the
same m-invariant.

Proof. Let C be the algebraic closure of CK , and let R′′ be a Picard-
Vessiot ring for σ(X) = AX over K. By Proposition 4.8, R′ ⊗K KC

is the direct sum of finitely many Picard-Vessiot rings for σ(X) = AX

over KC, and each of these rings has the same Krull dimension and
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m-invariant as R′. The same statement holds for R′′. On the other
hand, by Proposition 1.9 of [23], all Picard-Vessiot rings over KC are
isomorphic.

Corollary 4.10 Assume DK = CK . Let R′′ = K[V,det(V )−1], where
σ(V ) = AV , and assume that Kr.dim(R′′) = Kr.dim(R′) and that R′′

has no nilpotent elements. Then R′′ is a finite direct sum of Picard-
Vessiot rings for σ(X) = AX.

Proof. Because R′′ has no nilpotent elements and is Noetherian, (0) is
the intersection of the finitely many prime minimal ideals of R′′. Let
P be the set of minimal prime ideals of R′′. Then the intersection of
any proper subset of P is not (0), i.e., no element of P contains the
intersection of the other elements of P. Also, if P ∈ P, then σ(P ) ∈ P,
and there exists m > 0 such that σm(P ) = P . Then IP =

⋂m−1
i=0 σi(P )

is a σ-ideal, which is proper if the orbit of P under σ is not all of
P. Observe that for each P ∈ P, Kr.dim(R′′/P ) ≤ Kr.dim(R′′/IP ) ≤
Kr.dim(R′′) = Kr.dim(R′), and that for some P we have equality.

If I is a maximal σ-ideal of R′′, then Kr.dim(R′′/I) = Kr.dim(R′) =
Kr.dim(R′′) by Proposition 4.8, and this implies that I is contained in
some P ∈ P. Hence I = IP and R′′/IP is a Picard-Vessiot ring. If
I = (0), then we are finished. Otherwise, P contains some element P1

not in the orbit of P under σ. Observe that IP1 is contained in some
maximal σ-ideal of R′′, and is therefore maximal, by the same reasoning.
Since the intersection of any proper subset of P is non-trivial, IP + IP1

is a σ-ideal of R′′ which contains properly IP , and therefore equals 1.
If P1, . . . , Pr are representatives from the σ-orbits in P, the Chinese
Remainder Theorem then yields R′′ ' ⊕r

i=1R
′′/IPi

.

Proposition 4.11 Assume CK = DK . Then KCL[R] is a Picard-
Vessiot ring for σ(X) = AX over KCL,

Kr.dim(R′) = tr.deg(L/KCL), and [DL : CL] = m(R′).

Proof. Let us first assume that R′ is a domain. There is some generic
difference field U containing R′ and its field of fractions R∗, and which
is sufficiently saturated. Because L is a regular extension of K, there is
some K-embedding ϕ of L into U , and we will denote by T the image
of Y in U , and by y the image of Y in R′. Then ϕ(CL) ⊂ CU , and there
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is some B ∈ GLn(CU ) such that T = yB. Hence

KCU [T,det(T )−1] = KCU [y,det(y)−1].

By Proposition 4.8, R′ ⊗K KCU is a direct sum of Picard-Vessiot rings
of σ(X) = AX over KCU , and clearly one of those is the domain
KCU [y,det(y)−1]. Thus

Kr.dim(R′) = tr.deg(R∗/K) = tr.deg(L/KCL),
DR∗CU = ϕ(DL)CU , and m(R′) = [DL : CL].

This implies also that Kϕ(CL)[T,det(T )−1] is a simple difference ring,
and therefore a Picard-Vessiot ring for σ(X) = AX overKϕ(CL). Hence
KCL[R] is a Picard-Vessiot extension for σ(X) = AX over KCL.

In the general case, we replace R′ by R0, σ by σ`, find some generic suf-
ficiently saturated σ`-difference field U containing R0, and a K-embed-
ding ϕ of the σ`-difference domain L into U , and conclude as above that
KFix(σ`)[R0] = KFix(σ`)[ϕ(R)], that the Krull dimension of R′ equals
tr.deg(L/KCL), and that m(R0) = [Fix(σ`)(ϕ(DL)) : Fix(σ`)].

Because K and DL are linearly disjoint over CK , [KDL : KCL] =
[DL : CL], whence DKCL

= KCL, and by Corollary 4.10, the difference
domain KCL[R] is a simple difference ring, i.e., a Picard-Vessiot ring for
σ(X) = AX over KCL. By Proposition 4.8 m(R′) = [DL : CL].

We have m(R′) = `m(R0), and m(R0) is the quotient of [DL : CL] by
the greatest common divisor of [DL : CL] and `.

Corollary 4.12 Assume that CK = DK . Let R′′ = K[V,det(V )−1] be
a difference domain, where σ(V ) = AV , with field of fractions L1, and
assume that CL1 is a finite algebraic extension of CK . Then R′′ is a
Picard-Vessiot ring for σ(X) = AX over K.

Proof. Let U be a sufficiently saturated generic difference field containing
R′′, and let ϕ be a K-embedding of L into U . Then KCU [ϕ(R)] =
KCU [R′′]. Hence Kr.dim(R′′) = Kr.dim(R′) and R′′ is a Picard-Vessiot
ring by Corollary 4.10.

Corollary 4.13 Assume that CK is algebraically closed. Then `(R′) =
[DL : CL].

Proof. Immediate from Proposition 4.11 and the fact that DR∗ = CR′ =
CK .
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Corollary 4.14 The difference ring KCL[R] is a Picard-Vessiot ring
for σ(X) = AX over KCL. All Picard-Vessiot rings for σ(X) = AX

over K have the same Krull dimension, which equals tr.deg(L/KCL).

Proof. Let m = [DK : CK ]. Note that replacing σ by some power of
σ does not change the fields DK or DL, and that Fix(σm)(K) = DK .
Therefore we can apply the previous results to the equation σm(X) =
AmX over K. By Corollary 4.12 and because KCL[R] is a domain,
KCL[R] is a Picard-Vessiot ring for σm(X) = AmX over KCL, and
therefore a simple σm-difference ring, whence a simple σ-difference ring,
and finally a Picard-Vessiot ring for σ(X) = AX over K.

Let R′ = R/q be a Picard-Vessiot ring for σ(X) = AX over K. Assume
first that R′ is a domain, and let U be a generic difference field containing
it. Because L is a regular extension of K, there is a K-embedding ϕ of
L into U , and from KCU [ϕ(R)] = KCU [R′] and Lemma 4.5.1, we obtain
the result. If R′ is not a domain, then we reason in the same fashion,
replacing R′ by R0 and σ by σ`, to obtain the result.

Proposition 4.15 Assume that CR′ = CK = DK and K ⊂ U . Then
GR′ and H are isomorphic.

Proof. By Proposition 2.4, we may replace R′ by R′ ⊗K KD′
U , and

consider the ring Kϕ(CL)[T,det(T )−1]⊗Kϕ(CL)KD
′
U , which is a Picard-

Vessiot ring by Proposition 4.11 and Corollary 4.10. We identify 1⊗KD′
U

with KD′
U . These two rings are isomorphic over KD′

U by Proposition
1.9 of [23], and it therefore suffices to show that

Aut(ϕ(L)⊗Kϕ(CL) KD
′
U/KD

′
U ) = H(D′

U ).

Inside ϕ(L)⊗Kϕ(CL)KD
′
U , ϕ(L)⊗ 1 and KD′

U are linearly disjoint over
Kϕ(CL). Hence, the algebraic loci of (T,det(T )−1) over Kϕ(CL) and
over KD′

U coincide. As H was described as the subgroup of GLn which
leaves this algebraic set invariant, we get the result.

4.4 Concluding remarks

4.16 Model-theoretic Galois groups: definition and a bit of his-
tory. Model-theoretic Galois groups first appeared in a paper by Zilber
[28] in the context of ℵ1-categorical theories, and under the name of
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binding groups. Grosso modo, the general situation is as follows: in a
saturated model M we have definable sets D and C such that, for some
finite tuple b in M , D ⊂ dcl(C, b) (one then says that D is C-internal).
The group Aut(M/C) induces a group of (elementary) permutations of
D, and it is this group which one calls the Galois group of D over C.
In Zilber’s context, this group and its action on D are definable in M .
One issue is therefore to find the correct assumptions so that these Ga-
lois groups and their action are definable, or at least, an intersection of
definable groups. Hrushovski shows in his PhD thesis ([12]) that this is
the case when the ambient theory is stable.

Poizat, in [20], recognized the importance of elimination of imaginaries
in establishing the Galois correspondence for these Galois groups. He
also noticed that ifM is a differentially closed field of characteristic 0 and
D is the set of solutions of some linear differential equation over some
differential subfield K of M , and C is the field of constants of M , then
the model-theoretic Galois group coincides with the differential Galois
group introduced by Kolchin [15]. This connection was further explored
by Pillay in a series of papers, see [19]. Note that because the theory of
differentially closed fields of characteristic 0 eliminates quantifiers, this
Galois group does coincide with the group of KC-automorphisms of the
differential field KC(D).

Since then, many authors studied or used Galois groups, under var-
ious assumptions on the ambient theory, and in various contexts, ei-
ther purely model-theoretic (e.g., simple theories) or more algebraic (e.g.
fields with Hasse derivations). In the context of generic difference fields,
(model-theoretic) Galois groups were investigated in (5.11) of [4] (a slight
modification in the proof then gives the Galois group described in sec-
tion 4.1 of this paper). In positive characteristic p, the results generalize
easily to twisted difference equations of the form σ(X) = AXpm

, the
field Fix(σ) being then replaced by Fix(τ), where τ : x 7→ σ(x)p−m

.

Recent work of Kamensky ([13]) isolates the common ingredients un-
derlying all the definability results on Galois groups, and in particular
very much weakens the assumptions on the ambient theory (it is not even
assumed to be complete). With the correct definition of C-internality of
the definable set D, he is able to show that a certain group of permu-
tations of D is definable in M . These are just permutations, do not a
priori preserve any relations of the language other than equality. From
this group, he is then able to show that subgroups which preserve a
(fixed) finite set of relations are also definable, and that the complexity
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of the defining formula does not increase, or not too much. For details,
see section 3 of [13].

This approach of course applies to the set D of solutions of a linear
system of difference equations (over a difference field K), and Kamensky
also obtains the result that Aut(KFix(σ)(D)/KFix(σ)) is definable (see
section 5 in [13]).

4.17 A question arises in view of the proof of the general case of Propo-
sition 4.11. When R′ is not a domain, we found an embedding of the
σ`-difference ring R0 into a generic σ`-difference field U . It may however
happen that K is not relatively algebraically closed in R∗0, even when
DR0 = CK . Thus one can wonder: can one always find a generic differ-
ence field U containing K, and such that there is a K-embedding of the
σ`-difference ring R0 into (U , σ`)? Or are there Picard-Vessiot rings for
which this is impossible?

4.18 Issues of definability. It is fairly clear that the algebraic group
H is defined over ϕ(KCL). On the other hand, using the saturation
of U and the fact that L is a regular extension of K, we may choose
another K-embedding ϕ1 of L in U , and will obtain an algebraic group
H1, which will be isomorphic to H (via some matrix C ∈ GLn(CU )). It
follows that H is K-isomorphic to an algebraic group H0 defined over
the intersections of all possible ϕ(KCL), i.e., over K.

Observe that the isomorphism between H and H1 yields an isomor-
phism between H(CU ) and H1(CU ), so that we will also have an iso-
morphism between H0(CU ) and H(CU ), i.e., H′ is K-isomorphic to an
algebraic subgroup of H0 which is defined over CK ∩ CU . Thus when
CK is algebraically closed, it will be defined over CK .

The Galois duality works as well for subgroups of H(CU ) defined by
equations (i.e., corresponding to algebraic subgroups of H′, whose irre-
ducible components are defined over CU ). It works less well for arbitrary
definable subgroups of H(CU ). In order for it to work, we need to replace
K(S) by its definable closure dcl(KS), i.e., the subfield of U which is
fixed by all elements of Autel(U/KS). Because the theory of U elimi-
nates imaginaries (1.10 in [4]), any orbit of an element of S under the
action of a definable subgroup of H(CU ) has a “code” inside dcl(KS).

4.19 Problems with the algebraic closure. Assume that U is a
generic difference field containing K, and sufficiently saturated. Then if
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K is not relatively algebraically closed in the field of fractions of R0, we
may not be able to find a K-embedding of R0 into the σ`-difference field
U . Thus in particular, a priori not all Picard-Vessiot domains K-embed
into U . This problem of course does not arise if we assume that K is
algebraically closed, or, more precisely, if we assume that
All extensions of the automorphism σ to the algebraic closure of K define
K-isomorphic difference fields.

This is the case if K has no finite (proper) σ-stable extension, for
instance when K = C(t), with σ(t) = t+ 1 and σ the identity on C.
However, in another classical case, this problem does arise: let q ∈ C
be non-zero and not a root of unity, and let K = C(t), where σ is the
identity on C and σ(t) = qt. Then K has non-trivial finite σ-stable
extensions, and they are obtained by adding n-th roots of t.
Let us assume that, inside U , we have σ(

√
t) =

√
q
√
t. Let us consider

the system

σ(Y ) = −√qY, Y 6= 0

over K. Then the Picard-Vessiot ring is R′ = K(y), where y2 = t

and σ(y) = −√qy. Clearly R′ does not embed in U . If instead we had
considered this system over K(

√
t), then the new Picard-Vessiot ring R′′

is not a domain anymore, because it will contain a non-zero solution of
σ(X)+X = 0 (namely, y/

√
t). In both cases however the Galois group is

Z/2Z. And because R′ embeds in R′′, it also embeds in K(T )⊗ϕ(CL)D
′
U .

This suggests that, when CK = DK , if one takes M to be the subfield of
U generated over KCU by all tuples of U satisfying some linear difference
equation over K, then M⊗CUD

′
U is a universal (full) Picard-Vessiot ring

of KD′
U . This ring is not so difficult to describe in terms of M. Observe

that M contains DU . Thus M⊗CUD
′
U is isomorphic to M⊗DU (DU⊗CU

D′
U ). It is a regular ring, with prime spectrum the Cantor space C (i.e.,

the prime spectrum of DU ⊗CU D
′
U ), and σ acting on C. As a ring, it is

isomorphic to the ring of locally constant functions from C to M.

It would be interesting to relate this ring to the universal Picard-
Vessiot rings defined in [23].

4.20 Saturation hypotheses. The saturation hypothesis on U is not
really needed to define the model-theoretic Galois group, since we only
need U to contain a copy of L to define it. We also used it in the proof of
Proposition 4.11, when we needed a K-embedding of L into U . Thus, to
define the model-theoretic Galois group, we only need U to be a generic
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difference field containing K. Its field of constants will however usually
be larger than CK . Indeed, the field CU is always a pseudo-finite field
(that is, a perfect, pseudo-algebraically closed field, with Galois group
isomorphic to Ẑ). However, one can show that if F is a pseudo-finite field
of characteristic 0, then there is a generic difference field U containing F
and such that CU = F . Thus, the field of constants of U does not need
to be much larger than CK . In the general case, a general non-sense
construction allows one to find a pseudo-finite field F containing CK

and of transcendence degree at most 1 over CK .

4.21 A partial description of the maximal σ`-ideal p of R. We
keep the notation of the previous subsections, and will first assume that
the Picard-Vessiot ring R′ = R/q is a domain contained in U .

We will describe some of the elements of q. Write CL = CK(α1, . . . , αm),
and αi = fi(Y )/gi(Y ), where fi(Y ), gi(Y ) ∈ K[Y ] are relatively prime.
Then σ(fi)(AY ) and σ(gi)(AY ) are also relatively prime. Looking at
the divisors defined by these polynomials, we obtain that there is some
ki ∈ K such that σ(fi)(AY ) = kifi(Y ) and σ(gi)(AY ) = kigi(Y ). Then
(q, fi(Y )) and (q, gi(Y )) are σ-ideals. By the maximality of q, this im-
plies that either fi(Y ) and gi(Y ) are both in q, or else, say if fi(Y ) /∈ q,
that there is some ci ∈ CR′ such that gi(y) = cifi(y), because fi(y)
is invertible in R′. If Pi(Z) is the minimal monic polynomial of ci
over CK and is of degree r, then gi(Y )rPi(gi(Y )/fi(Y )) ∈ q. In case
CR′ = CK (this is the case for instance if CK is algebraically closed),
then ci ∈ CK , and gi(Y ) − cifi(Y ) will belong to q. (Note also that if
ki = kj , then also for some dj ∈ CK we will have fj(Y ) − djfi(Y ) ∈ q,
and gj(Y )− cjdjfi(Y ) ∈ q). The σ-ideal I generated by all these poly-
nomials in R could all of q. In any case one shows easily that q is a
minimal prime ideal containing it (because KCL[Y,det(Y )−1] and R/I

have the same Krull dimension, which is also the Krull dimension of R′).

A better result is obtained by Kamensky in [13] Proposition 33: if
CR′ = CK , and instead of looking at a generating set of CL over CK

one applies the same procedure to all elements of CL, one obtains a
generating set of the ideal q.

In case R′ is not a domain, we reason in the same fashion to get a
partial description of the σ`-ideal p.
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