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Abstract. In this paper we compute the differential Galois group of a
third order linear diffcrential equation whose existence was predicted by
F. Klein [9] and whose construction is due to A. Hurwitz [7]. The aim
of this paper is to apply the results of [15] in order to prove, starting
only with the equation, that the simple group of 168 elements is the the
differential Galois group of this equation.

0 Introduction

Let L(y) = 0 be a (homogeneous) linear differentatial equation of degree n
whose coeflicients belong to a differential field k& whose field of constants C is
algebraically closed of characteristic 0 (see e.g. [8, 14, 16] for those notions).
Similar to the case of algebraic equations, there is a notion of a “splitting field”
for this equation. More specifically, there 1s a field K = k < yy,...,y, >, gen-
erated (in the differential sense) by a fundamental set of solutions {y1,....yn}
of L(y) = 0 such that K and k have the same set of coustants. K is called
the Picard- Vessiot extension of k corresponding to L{y)=0 and is unique up to
a differential k-isomorphism. The set of differential automorphisins of the field
extension K/k (i.e.. the field automorphisms of the field extension A /k which
commute with the derivation of K') that leave k elementwise fixed is called the
differential Galois group G(L) of L(y) = 0. Since the solution space of L(y) = 0
is an n-dimensional vector space over C and since the group G(L) sends a solution
of L{y) = 0 into another solution of L(y) = 0, we get a faithfull representation
of G(L) as a subgroup of GL(n,C). In lact, G(L) can be shown to be a linear
algebraic group. Many properties of the differential equation are mirrored in the
group structure of G(L). For example, irreducibility of the equation is equivalent
to irreducibility of the group and solvability in terms of exponentials, integrals
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and algebraic functions (the liouvillian functions) is equivalent to the connected
component of the identity of G(L) being solvable. It 1s therefore an important
problem to be able to calculate the Galois group or at least determine various
properties of this group. We note that despite much recent work in determining
the Galois group of a differential equation, there is, at present, no general algo-
rithm that will calculate the defining polynomial equations of this group or even
determine its dimension (see [15] for references to recent work).

In [15], we use the representation theory of groups to give simple necessary
and sufficient conditions regarding the structure of the Galois groups of second
and third order linear differential equations. These allow us to give simple nec-
essary and sufficient conditions for a second order linear differential equation
to have liouvillian solutions and for a third order linear differential equation to
have liouvillian solutions or be solvable in terms of second order equations. In
this note we show how these results can be applied to calculate the Galois group
of the following equation due to Hurwitz® (see [7]):
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In the first section we review the relevant results of [15], in the second section
we show how these can be used to calculate the example and in the final section
we make some conclnding remarks.

1 Symmetric powers and Galois groups

In [15] we show how by facloring differential operators, one can decide if the
differential Galois group G(L) is reducible, imprimitive or primitive and, if the
G(L) C SL(n,C) is a primitive linear group, how to compute this group. The
method uses the construction of the differential equation

—_—
LO™(y) = L(y)® - -®L(y) = 0,

called the symmetric power of order m of L(y) = 0. The equation LO™(y) = 0
is characterized by the property that it is the monic linear differential operator
of smallest order whose solution space is spanned by all products of length m of
solutions of L(y) = 0. In {13, 15] an algorithm to construct the above equation
is given. The differential equation L&™(y) is of order at most (”'ZTl_l), where
n is the degree of L(y). For example, the second symmetric power H®?(y) of

3 This equation is related to an equation previously produced by Halphen in a letter

to I. Klein (cf. [6])



H(y) is:
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In [15] it is shown how the orders of irreducible factors of LO™ (y) are related
to the decomposition of the character of the symmetric power of the represen-
tation of G C SL(n,C). This can be used to determine properties of G(L). For
example, we are able to give necessary and sufficient conditions for these linear
differential equations to have liouvillian solutions. In particular, we show:

Let L(y) = y' + ry = 0 be a second order linear differential equation
with r € k. L(y) = 0 has Liowvillian solutions if and only if LO%(y) is
reducible.

Factorization properties can also be used to determine Galois groups in many
cases. For example (note that the Tetrahedral group is the finite subgroup of SL»
having a center of order two such that its quotient by this center is isomorphic
to the alternating group on 4 letters):

Let L(y) = ¥y + ry = 0 be a second order linear differential equation
with r € k. The Galois group of L(y) = 0 is the Tetrahedral Group if
and only iof LO2(y) is irreducible and L®3(y) is reducible.

For third order equations we proved similar results that we now state in more
detail. We first recall that a subgroup G of GL(V) is said to act irreducibly if
the only G-invariant subspaces of V are {0} and V, otherwise it is said to act
reducibly. Let G be a subgroup of GL(V) acting irreducibly. G is called im-
primitive if, for & > 1, there exist non-trivial subspaces Vy, -, Vi such that
V=V®. &V and, for each g € G, the mapping V; — g(V;) is a permuta-
tion of the set § = {Vi,...,Vi}. An irreducible group G C GL(n,C) which is
not imprimitive is called primitive. One knows the finite primitive subgroups of
PGL(3,0) (cf, [1]). From this list, one can derive the primitive subgroups of
SL(3.C) (c.f, [1]). Any finite primitive group of SL(3,C) is isomorphic to one
of the following groups:



1. The Valentiner Group AgLs of order 1080 generated as a transitive permu-
tation group of 18 letters by:
(1,2,4)(3,8,13)(5,7,9)(6,10,12)(11,15,14),
(1,3)(2.6)(4,5)(7,12)(8.9)(10,13),
(1,4)(3.8)(5.9)(6,11)(10,14)(12,15),
(1,4.8,3,5,9)(2.7,13)(6,12,10)(11,16,14,17,15,18),
(1,5,8)(2.7,13)(3,4,9)(6,12,10)(11,15,14)(16,18,17).
We have AS%2/Z(ASE2) = As.
2. 'The simple group Gygs of order 168 defined by:
{X,Y[XT=(X1Y)'=(XY)’=Y ?=id).

. Gpg x C3, the direct product of GG1gg with the cyclic group Cs of order 3.
. As, the alternating group of five letters.

. As x Cs, the direct product of As with a cyclic group Cs of order 3.

. The group H:fl[(‘f of order 648 defined by:

{UVST | U=V '=T3=83=(UV)’=id VS=TV

Sy O W

VT=8V[U®V]=[U® T]=[U,S]=id,[UV?]=5}.

The group H3E /Z(Hf{:if) is the hessian group of order 216.

7. The gioup H3,® of order 216 generated by the elements S, T', V and UVU 1!
of H3[&.

8. The group F:fsl“‘ of order 108 generated by the elements S, T and V of H.fl%".

For each finite primitive subgroup of SL(3, €), using its character table (com-
puted using the group theory system Cayley [2]) and the orthogonality relations
of characters, we can decompose the characters of the synumetric product (com-
puted using the computer algebra system AXIOM). The result is summarized
in the following table, where the numbers 4,32 in the column As and row 3 of
Figure 1 means that the 3¢ symmetric product of the character of any faith-
full irreducible representation of As in SL(3, C) has an irreducible summand of
degree 4 and two irreducible summands of degree 3.
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Figure 1



The next iwo results are proved in [15]:

Theorem 1. Let L(y) = 0 be a third order Linear differential equation with
coefficients in a differential field k with algebraically closed field of constants
whose differential Galois G(L) group is unimodular.

1. L(y) = 0 is reductble if and only if L(y) = 0 has a solution y # 0 such that
v /y €k or L*(y) = 0, the adjoint of L(y) = 0, has a solution y # 0 such
that yf [y € k (if L(y) = Li_g @iy, then L™(y) = Ti_o(=1) (aiy)®)) .

2. Assume L(y) is irreducible. Then G(L) is imprimitive if and only if LO3(y) =
0 has a solution y # 0 such that y*> € k. In this case G(L) is isomorphic to
a subgroup of C* x S3, where Sz is the symmetric group on three letters. If
G(L) is isomorphic to a subgroup of C* x Az, where Az is the alternating
group on three letiers, then the above solution y is already in k.

3. Assume L(y) is irreducible and 2. does not hold, then G(L) is a primilive
group.

Theorem 2. Let L(y) = 0 be a third order linear differential equation with coef-
ficients in a differential field k with algebraically closed field of constants, whose
differential Galois group G(L) is unimodular. Assume that G(L) is primitive.

1. If L®%(y) has order 5 or factors then G(L) is isomorphic to PSLy, PSLy x
Cs, As, A5 x C3 or F;,SGL"'. In this case one of the following holds
- G(L) = Fas,sL3 if and only if LO%*(y) has a factor of order 3, or
- G(L) = As or As x C5 if and only if L®3(y) has a factor of order § and
a factor of order 4, or
— G(L)= PSLy or G(L) = PSLsxCs if and only if the previous two cases
do not hold.
2. If L9%(y) has order 6 and is irreducible, then one of the following holds
— G(L) = G6s8 or Ges x C3 if and only if L93(y) has a factor of order 3.
— G(L) = AZL if and only if LO%(y) is reducible and LO3(y) is irreducible.
- G(L) = H.;g?L“ if and only if LO%(y) has more than 2 factors of order 3.
- G(L) = Hf}’é“ if and only if LO%(y) has exactly 2 factors of order 3 and
L®%(y) has a factor of degree 2.
~ The Galois group 1s SL(3,C) if and only if none of the above happen.

Algorithms for factoring linear differential operators are well known, [11, 12,
5). Therefore the above results will in theory allow one to determine the Galois
group of H(y) = 0. Nonetheless, we show how simpler calculations allow us to
determine these factorization properties.

2 The Galois group of Hurwitz’s equation

We start our computations by first showing that G(H) is unimodular (i.e. a
subgroup of SL(n,C)). According to [8] p. 41, this follows from the fact that for
the rational function w = z*(z — 1)3 we have

w’ 4 3 Tex—4
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2.1 Reducibility

We must show that H(y) is irreducible. Theorem 1 says that we just need to
check if H(y) = 0 or H*(y) = 0 have a solution y # 0 such that y'/y € C(=z).
There is an algorithm to decide this (cf. [16], section 3.2) which has been imple-
mented in the AXIOM system by M. Bronstein. We used this implementation
to show that H(y) = 0 and H"(y) = 0 have no such solution. Therefore H(y) is
irreducible.

2.2 Imprimitivity

Now one must check to see if G(H) is an imprimitive linear group. Theorem 1 says
that we need to check if H®3(y) = 0 has a solution y # 0 such that y? € C(2).
One can calculate H®3(y) = 0 and use AXIOM to decide this question, but
there is an easier way using exponents (c.l., [10] for a definition of exponents
and their elementary properties). One can calculate the exponents of H(y) = 0
at the singular points 0, 1 and oo (which are all regular singular points) and one
gets:

171 } at oo

L2y e
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Since the exponents at infinity and 0 do not differ by integers, there exist solu-
tions of the form z# 3 52  x~* for each exponent p at infinity and =y ;o z*for
each exponent p at 0. Calculating further, one can show that despite the fact
that the exponents differ by an integer at | there exist similar solutions at
x =1, i.e., no logarithmic terms. A basis for the solution space of H®3(y) = 0
will be gotten by taking three such solutions (allowing repetitions) and form-
ing their products. Using this fact one sees that the exponents at infinity are
%, %;1—, %,9, % 2—78~ =4, 2—71, 57—7- + n for some non-negative integer n, %, —%,E, :“'73. Sim-
ilar lists can be made at (0 and 1. Note that for 0 any such exponent is at worst
a fraction with denominator 3 and is > —2 and at 1 they are at worst a fraction
with denominator 2 and is > —%.

A solution y of H®3(y) = 0 with y?> € C(z) must be of the form (because
everything is fuchsian) y = p(2)z°(z — 1)® where p(z) is a polynomial and a
resp. b are exponents of /®3(y) = 0 at 0 resp. 1. We also have that —a — b-
deg(p) will be an exponent at infinity. by comparing denominators, we see that
the only possibility is that —a — b—deg(p) = 4. Since a > —2 and b > —%, we
have —a — b-deg(p) < % < 4. Therefore, H®3(y) = 0 does not have a solution of
the required form and so G(H) is not an imprimitive linear group.

2.3 Primitivity

We now know that the Galois group is a primitive group subgroup of SL(3,C).
It therefore must be one of the groups listed above. The computation of H®4(y)
shows that this equation has order 14. This already gives us some information.



If we start with a vector space V of dimension 3 and form its fourth symmetric
power S*(V), we will get a vector space of dimension 15. If we let V be the
solution space of /(y) = 0, then there is a G(4/) morphism of §'(V) onto the
solution space of H®*(y) = 0 (cf. [15], Section 3.2.2). This means that the kernel
of this morphism is a G(H) invariant subspace of S*(V), i.e., S*(V) will have a
one dimensional invariant subspace. Looking at Figure 1, we see that this can
only happen for groups corresponding to the first, second and fourth columns.
Thus G(H) must be one of the groups PSLy, As, G1es or the direct product of
one of those groups with Cj.

We now show that the groups corresponding to the first two columns cannot
occur. Since H®2%(y) is of order 6, we get from Figure 1 that if G(H) is one of
the groups PSLg, A5, PSLa x Cs or A5 x C3, then H®2(y) must have a factor of
order 1. Since the singularities are fuchsian and the exponents are rational, this
implies that H®?(y) = 0 would have a solution y such that y* € C(z) for some
i. If o0 € G(H) then a(y) = x(o)y where x is a character of G(H). PSLy and Aj;
are simple groups and so have no nontrivial characters while if x is a character
of PSLy x C3 or As x C3 then x* = 1. In all these cases we therefore must
have that y? is left fixed by the Galois group and so y3 € C(z). Looking at the
exponents 18, 1 18 19 22 af infinity we see that this is impossible. Therefore
the Galois group must be one of the groups corresponding to column 4, i.e., Gg3
or Gieg X C3. We must now distinguish between Gigs and Grgg X Cj.

To do this, we shall use the monodromy group of the above equation. Con-
sider a linear differential equation with coeficients in C(z). For these equations
we can use analytic considerations to define a group called the monodromy group
that is a subgroup of the Galois group. Let ¢;,..., ¢, be the singular points of
L(y) = 0 (including infinity if it is a singular point) and let ¢y be an ordi-
nary point of the equation. We consider these points as lying on the Riemann
Sphere S%. Let {y1,...,yn} be a fundamental set of solutions of L(y) = 0 ana-
lytic at ¢ and let 4 be a closed path in §% — {c;,...,¢,} that begins and ends
at co. One can analytically continue {y1,...,ya} along v and get new funda-
mental solutions {71, ...,¥n} analytic at ¢o. These two sets must be related via
@ T = My(n1. - -, ya)T where My € GL(n,C). One can show that M,
depends only on the homotopy class of v and that the map v — M, defines
a group homomorphism from 7, (5% — {¢1,...,¢cn}) to G(L). The image of this
map depends on the choice of ¢o and {y1,...,yn} but is unique up to conjugacy
and is called the monodromy group of L(y). In general the image of this group
will be a proper subgroup of G(L) but when L(y) is fuchsian, the Zariski closure
of this group will be the full Galois group G(L) (c.f., [17]). In particular if G(L)
is finite (i.e., all solutions of L(y) = 0 are algebraic) then the map is surjective
and the monodromy and Galois groups coincide.

We now return to H(y) = 0. At each singular point «, we have linearly
independent solutions y; = (z—a)”* Y a;j(z—a),i = 1,2, 3 where the p; are the
distinct exponents at a. Each p; is a rational number, say p; = ff, (riysi) = 1.
If we analytically continue each y; around o, we get a new solution y; = (y;
where (; :exp(%). Therefore the local monodromy group of H(y) = 0 around



each singular poinl « is a cyclic subgroup generated by one element g, whose
order is the least common multiple of the denominator of the exponents at .
Thus goo is of order 7, gq is of order 3 and g¢; is of order 2. The product gecgog1
corresponds to the zero path and thus must be the identity. Since gg, g3 and
goo generate the monodromy group and gogi = go', we get that the group
G(H) is generated by an element of order 2 and an element of order 3 whose
product 1s an element of order 7. Using the group theory system CAYLEY (see
[2]) one can see that G1es has such a set of generators, while G1gs x C3 does not.
have such a set of generators. The group Gigs is generated by S and T, where
ST =(81T)* = (ST)3 = T? = 1. A set of generators of the above form is given
by the element T of order 2 and TS~! of order 3 whose product is of order 7.

This shows that G(H) = Ges.

3 Final comments

The techniques of [16] give another way to distinguish between these two groups
G1es and Gigs X Cs. In[16], we show (among other things) that when the Ga-
lois group of a linear differential equation is a finite primitive group one can
use invariant theory to construct the minimal polynomial of a solution of the
linear differential equation (this is an idea going back to L. Fuchs [3]). In par-
ticular if G(H) = G1es, then H(y) = 0 has an algebraic solution whose minimal
polynomial is of degree 42, while if G(H) = G163 x C3. then any solution of
H(y) = 0 has minimal polynomial of degree at least 126 (cf. [16], Theorem 4.2).
Techniques are given in [16] to compute these polynomials and one can use these
to distinguish between Gjes and Gigs X Cs.

We finally mention the source of H(y) = 0. In [9], Klein studied the Riemann
suface S defined by 23y+122+ 23z = 0 in CP2. This surface has genus 3 and its
automophism group Aut(S) is the group Gyes. The quotient of S under the action
of Aut(S8) is just the Riemann sphere cPl. Let wy = fidt,wg = fodt,wg = fadt
be a basis for the holomorphic I-forms on S, where ¢ is a Aut(S) invariant
function. The map &(p) — (fi(p), f2(p), fa(p)) defines the canonical embedding
of the curve into CP2. One can show that (after an automorphism of CPZ:
if necessary), £(S) = S. Aut(S) acts linearly on the space of holomorphic 1-
forms and leaves § invariant. Therefore {f1, f2, fa} span an Aut(S8) invariant
vector space of dimension 3. This implies that {f;, fa, f3} span the solution space
of a linear differential equation H(y) = Wr(y, fi, fa, f3)/Wr(f1.f2, f3) = 0
having coeflicients that are rational functions. This eguation has Galois group
Gies and it has solutions parameterizing the Riemann surface S. Referring to
this curve, Klein says in footnote 21 of [9]: “Sie muss sich auch durch eine
lineare Differentialgleichung dritter Ordnung losen lassen; wie hat man dieselbe
aufzustellen?”. Hurwitz (7] used the above reasoning to find this equation (c.f.,
[4], p. 232, 390).
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