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Abstract. We present the first algorithm for the
(black boz) interpolation of ¢-sparse, n-variate ratio-
nal functions without knowing bounds on exponents of
their sparse representation with the number of queries
independent on exponents. In fact, the algorithm uses
O(nt*) queries to the black boz, and can be imple-
mented for a fixed ¢ in a polynomially bounded storage
(or polynomial parallel time).

Introduction.

A t-sparse rational function is a function that can be
written as a quotient of two polynomials, each con-
taining at most ¢ terms. We show in this paper that,
if we are given a black boz to evaluate a i-sparse ratio-
nal function f with integer coefficients, then one can
bound the exponents appearing in a t-sparse repre-
sentation of f by making 2(¢t +1)* — 1 black box eval-
uations in the univariate case and O(nt') black box
evaluations in the n-variable case. Using this, we also
give the first algorithm, depending in exponent only
ont (!), for interpolation of t-sparse rational functions
without knowing bounds on exponents and show that
for fixed ¢ this problem is in polynomial parallel time
(sequential storage).

The authors were motivated by the question
whether the recent parallel deterministic sparse in-
terpolation algorithms ([GK 87], [BT 88], [GKS 88),
[KL 88]) could be generalized to the rational function
case without knowing an a priori bound on the ex-
ponents of their defining polynomials; and also by its
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natural connection to the seminal problem of Strassen
([S 73)) of computing the numerator and denumerator
of rational functions. It was not known before whether
the number of queries needed for the problem was re-
cursive in n and t. Approximative unbounded degree
interpolation arises also naturally in the issues of com-
putational learnability of sparse rational functions (ef.
[KW 89)).

For the corresponding versions of bounded degree
rational interpolation (where the bound on the de-
gree is part of the input) see [S 73], [K 86], [BT 88],
(KT 88]. Another version of unbounded degree uni-
variate polynomial interpolation is studied in [BT 89].

To bound the exponents appearing in some i-
sparse representation of a t-sparse rational function
f(X) of one variable, we will proceed as follows.
We consider representations of f(X) of the form
(i) @i X®) /(i b XP:), where the a; and b; are
real numbers and the o; and f; are non-negative real
numbers. Such a function is called a quasirational
function. We show that for t-sparse f(X) the a; and

- B; must satisfy a system S of polynomial equalities and

inequalities whose coeflicients depend on the value of
J(X) at 2(t+ 1) — 1 points. By evaluating the black
box for f(X) at these points, we can determine this
system. Using the results of [GV 88)], we can bound
a real solution of this system. Using the fact that
f(X) is a t-sparse rational function, we are then able
to bound an integer solution of S and this gives our
desired bound. The detailed complexity analysis of
the algorithm will be given in the final version of the

paper.
The rest of this paper is organized as follows.

In Section 1 we give a formal definition of quasir-
ational functions and prove some basic facts about




these functions. In Section 2, we describe some ele-
mentary properties of right euclidean rings. An ex-
ample of such a ring is F[D], where F is the field of
quasirational functions of one variable and D is the
operator defined by D(f(X)) = f(pX) for some fixed
prime p. For this ring, we are able to derive an ana-
logue of the Sylvester matrix and the resultant. In
Section 3 we use this to obtain the system S and the
bound for the exponents appearing in a {-sparse rep-
resentation of a ¢-gparse rational function. In Section
4 we show how the results of section 3 can be used to
obtain a bound on the exponents of a t-sparse rational
function of several variables. In Section 5 we describe
an algorithm to interpolate t-sparse rational functions
and give complexity bounds.

1. Quasirational Functions.

A finite sum of the form
E er X!
1

where I = (a1,...,05),0< ;s € R, X' =X,
X3, cr € IRis called a quasipolynomialof n variables.
Denote by IR< Xj,...X, > the ring of quasipolyno-
mials of n variables.

A ratio of two quasipolynomials is called a quasira-
tional function. If the number of terms in the sum is
at most ¢, we say that the quasipolynomial is t-sparse.
If a quasirational function can be represented as a ra-
tio of two t-sparse quasipolynomials, we say that it
is also t-sparse. We use the expressions “polynomial”
or “rational function” in this usual sense, that is for
quasipolynomials or quasirational functions with non-
negative integer exponents in their terms.

We assume that we are given a “black box” repre-
senting an n-variable rational function f with integer
coefficients into which we can put points with ratio-
nal coefficients. The output of the black box is either
the value of the function at this point or some special
sign, e.g. “o0o”, if the denominator of the irreducible
representation of the function vanishes at this point
(a representation f = g/h, g,h € IR[Xy,...,X,), is
irreducible if g and h are relatively prime). In what
follows, we will sometimes obtain in intermediate steps
a representation of a rational function in the form of
a quasirational function. Nevertheless, our aim is to
obtain a representation of a rational function in the
usual form, provided that it is t-sparse.
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We will need a zero test for t-sparse rational func-
tions. This is similar to well known zero tests for -
sparse polynomials (cf. [GK 87], [GKS 88], [BT 88)).
Recall that if M;,..., M; are distinct positive num-
bers, then any ¢ x t subdeterminant of the (2t —
1) x t matrix (M§)1<s<t,1<j<2¢—1 is non-singular (c.f.
[EI 76)).

To test if a t-sparse rational function f is identically
zero, use its black box to evaluate f at the 2¢t — 1
points P/ = (p},...,pi),1 < j < 2t — 1, where the
P1,...,Pn are distinct primes. Since the black box
gives output based on an irreducible representation of
f, we see that any zero of the denominator of such
a representation is a zero of the denominator of a 1-
sparse representation of f. Using the remark about
the matrix (M]) above we see that the denominator
can vanish at, at most, t — 1 of these points. The
same concerns the numerator. Therefore, the ¢-sparse
function f is not identically zero if and only if the
black box outputs a number different from 0 and oo
at one of the points PJ.

The next result concerns different f-sparse repre-
sentations of a quasirational function f. This result
can be thought of as saying that, under suitable hy-
potheses, two such representations can only differ in
certain redundant terms that can be eliminated. If ¢
18 a quasipolynomial, we denote by ordx,(g) the least
power of X; occurring in g. We call a representa-
tion g1/h1 = f normalized if for each i, 1 < i < n,
min (ordx;(g1), ordx;(h1)) = 0. For an arbitrary
g1/ h1, there is a unique monomial M such that
(91/M) [ (h1/M) is normalized. We call the latter rep-

resentation the normalization of g1 / h;.

Lemma 1. Assume that g, / h; is a t-sparse rep-
resentation of a quasirational function and g3 /hy =
g1/ hy is another t-sparse normalized representation.
Let d = max {degx, (g1),degx (h1)}. We can delete

some terms from g, and h; obtaining g5, ks so that

Ga/ha=g1/M

and -
max {deg x,(J5), degx, (h2)} < 2td,

where §, / h is the normalization of g, / ha.



Proor.

Write

g2 = Zggi)xfi’ hy = Zhgj)x‘lﬁ

where By < f2 < ..., 71 <72 < ...and 0 # ¢ €
R< Xs..., X0 >0 hY) € R < Xa,...,Xn >.
We can assume that 8; = 0 (the argument is similar
if 41 = 0). In this case we see from gohy = hggy, that
71 £d. If Biy1 — B; < d for each i, then degy, 92 <
(t — 1)d. This would imply degy, hz < degy, g2h1 <
td and we would be done.

If 7vi41 — 73 < d for each i, then degy, hy < td.

This would imply that degx, g2 < degx, hag1 < td+ ’

d < 2td and we would be done. Therefore we can
assume that there is a minimal number s such that
Bio < 8 —d <8< i1 and 75, L 8-d <8< Yo+l
for suitable ip, jo. Since B = 0 and v, < d, we have
that s < (¢t + 1)d < 2td.

Let

G2= Y PXE, hy= Y APxY
igje

i<io

If one compares the coefficients of X7, p < s in
g2hy = hagy, one can see that Ghy = hag1 so

G2/ha = g1/h1.

We now take the normalization §,/h2 of §2/hs and

apply considerations similar to those above to §,/h2
with X3 playing the role of X;. At the end of this pro-
cess we obtain the normalized representation g, /hy. It
corresponds to a pre-normalized §;/h; that satisfies
the conclusion of the lemma. o

Corollary. If, in the above Lemma, we assume
g2,h2 € IR[X;,. .;,X,,] are polynomial, then we can
conclude that g,, hy € IR[X,..., X,] as well.

_ We note that in Lemma 1 and its corollary, g2 and
hy are obtained by eliminating terms of sufficiently

high degree and keeping lower order terms in g2 and
ha.

2. Right Euclidean Rings (a digest).

Let F be a field and let D : F+ — F+ be a homomor-
phism with respect to the additive structure of F. Let
F[D] be the subring of HOM (F*, F't) generated by
F (acting on F'* by multiplication) and D. We assume

that each element a # 0 from F[D] can be uniquely
represented in the form @ = Y gcicm @D’ where
@; € F and oy # 0. We denote the integer m by
deg(a) and adopt the convention that deg(0) = —oo.

We furthermore assume that for a,b € F[D],
deg(ab) = deg(a) + deg(d). This assumption is equiv-
alent to the statement that for each a in F there are
unique ay,az in F, with ay # 0, such that D . a =
a1 D+ay. We can conclude that there exists right Eu-
clidean division in F[D], that is, for any a,b € F[D)
b # 0, there exist unique b;,b; with deg(bs) < deg(b)
such that a = byb+b,. This leads to a right Euclidean
algorithm and a notion of greatest common right di-
visor (gerd(a, b)) of two elements a and b, which can
be represented in the form gerd(a,b) = aja + b,b for
some ay,b; € F[D]. Furthermore a = aggcrd(a,b) and
b = bogcrd(a, b) for some ao, by € F[D] (c.f. (O 33]).

Let deg(a) = m and deg(b) = k and consider

Dig) = Y, opi, Dip)= Y oD
0<j<m+i 0<j<k+

for 0 < i < k-1,0<1< m-1Let S be the
(m+k) x (m+ k) matrix whose columns correspond to
the operators D¥tm-1 . D? D, 1 and whose rows
contain the coefficients of the operators in Di(a),
0<i<k-1and D'(h),0 <1< m—1(S resem-
bles the Sylvester matrix [VDW 66]; for differential
operators a similar object is described in [G 89]). As
in [G 89] Lemma 12, one can show:

Lemma 2. deg(gdrc(a,b)) = n — rank(S).

In what follows we restrict ourselves to the case where
F is the field of quasirational functions in one variable
and D is the operator defined by D(X*) = (pX)*,
where p is some fixed prime number. Note that D f =
D(f) - D.

Lemma 3. If f € F and D(f) = f, then f € IR.

Proor. If D(f) = f, then f(X) = f(pX) =
J(p?>X) = .... The zero test of section 1 implies that
f(X) = f(YX) for a new variable Y. If f = g/h let

g= Za,-X_"‘, h= Zngﬂ‘

0<a1<as<...0</ <P<...,anda;, b€ IR
Since
9(Y X)h(X) = g(X)h(Y X),

we can conclude, by comparing coefficients of the cor-
responding monomialsin X and Y, that a; = f;,a3 =
B2, ... and a;b; = a;b; for all i,j. Therefore f € IR.
(]
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Lemma 4.

fyi,...,yn € F,then y,...,yn are
linearly dependent over IR if and only if
nlpz YnlpPT
W(yi,..-,yn) = det : :
n(p"~'z) Ya(p""12)
=0
ProoF. If y;,...,yn are linearly dependent over
IR then, clearly, W(y,...,yn) = 0. Now assume
that W(y,...,yn) = 0. In this case there exist

fi,. .5, fn € F, not all zero, such that
flyl+---+fnyn =flpyl+---+anyn =...

= fID"—lyl +...+ fa D"-l

We may assume f; = 1. Applymg D to each of th&e
equations, we have

Dy +DfaD'yr+ ...+ DfuDiyn =0

for i = 1,...,n. This implies that

(f? - DfZ)D‘.'h +'- o+ (.fn e Dfn)Diyn =0

fori=1,...,n—1. Either fi—Df; =0fori=2,...,n,
in which case we are done by Lemma 3, or by induction
there exist as,...,a, € IR, not all zero, such that
oDy + ... + a,.'Dy,, = 0. Therefore D(a2y2 + . +
ayn) =080 azyz + ...+ anyn = 0.

Corollary.  Let L = Y i_oa;D' with a; € F,
not all zero. The dimension of the IR-vectorspace of
solutions in F' of Ly = 0 is at most ¢.

PrOOF. Let yi,...
We then have

Yoo
Dy ... Dy
(ag,y-..,at) , : =0

Dly; ... Dly

Lemma 4 implies that y, ..., y+1 are linearly depen-
dent. (m]

Lemma 5. Let L = ¥} _a;D/ with a; € R
and assume that Pr(z) = aiz' + ... + ag € IR[7]
has t distinct roots > 1, say p°t,...,p%". Then

{X°1,...,X2} is a base for the space of solutions
of Ly=0. =]

PROOF.
i=1,...

One easily sees that L(X*) = 0 for
,t. The functions Xo,..., X% are linearly

, Y141 be solutions of Ly = 0.
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independent over IR, so by the corollary to Lemma 4
they must be a basis of the space of solutions. (u]

Lemma 6. Let L be as in Lemma 5 and as-

sume that L = L; - Ly where L; = 2;::, bgl)D-’ and

Ly = ):._0 bgz)‘DJ with bg') € F. Then the space of
solutions in ¥ of La(y) = 0 has dimension s.

PROOF. Let V be the solution space of Ly = 0.
By Lemma 5, this has dimension {. L; maps V into
the solution space of L,y = 0, which has dimension at
most t — s by Lemma 4. Therefore the dimension of
the solution space of Lay = 0 is at least s and so by
Lemma 4, it must equal s. a

3. Bounding the Exponents of a Sparse
Univariate Rational Function

Lemma 5 in the previous section allows us to charac-
terize t-sparse quasipolynomials g as those quasipoly-
nomials for which there exits an operator of degree
t, L = EJ—O a;DI, with Pr(z) = az* + ... +
ap € IR[z] having distinct real roots > 1, such that
Lg = 0. Therefore a t-sparse quaslratlonal function
f is a quasirational function for which there exists a
quasipolynomial h and operators of degree ¢, L; and
Ly as above such that Ly(k) = 0 and Ly(hf) =

Ly(y) and L(yf) will therefore have a common solu-
tion. The results of section 2 allow us to eliminate y
using the determinant of the Sylvester matrix. This
determinant is a quasirational function and, by evalu-
ating at sufficiently many points, we obtain (together
with the conditions that the a;,; are distinct and
> 1) a system of polynomial inequalities that must
be satisfied by the exponents appearing in f. We will
then bound a realsolution of this system using [GV 88]
and, assuming that f is a univariate rational function,
we can use Lemma 1 to bound thé exponents of f.

We now proceed more formally. Let f = 4 be a
t-sparse quasirational function of one variable where

= Y _,aiX% and h = 3i_, b;XP are t-sparse
quasipolynomials. Let G(2) = co+¢12+...+2* be the
unique monic polynomial whose roots are p®t, ..., p™
and let H(z) = do+d1z+...+ 2" be the unique monic
polynomial whose roots are pft,...,p%. Consider
the operators Lg = E:=o ¢iD' and Ly = ¥ i_,diD*
(where d; = ¢; = 1). We then have Ly(h) = 0 and
Lg(fh) = 0. Therefore Ly(y) = 0 and Lg(fy) =
Le(y) = 0 have a non-zero common solution y = h in
F (note that the coefficients of Lg are IR-linear com-
binations of f,Df,...,D'f). Consider the Sylvester
matrix S = S(CQ,CI, ceesCtea,do, .. .,dg_l,f) of Ly




and Lg. By Lemma 2, det (S) = 0 (note that det S
is a quasirational function).

Conversely if det(S) = 0, then Lemma 2 im-
plies that deg(gerd(Ly,Lg)) > 1. Since the coeffi-
cients of Ly satisfy the hypotheses of Lemma 5 and
gerd(Ly, Lg) divides Ly, Ly and Lg will have a com-
mon non-zero solution hg in F (by Lemma6). Lemma
5 then implies that f is a t-sparse quasirational func-
tion because hg and hof are both t-sparse quasipoly-
nomials, again by Lemma 5. We have therefore proved
the following lemma.

"Lemma 7. A quasirational function f is

t-sparse if and only if there exist real numbers
&, .. .,ds—y such that

(i) det(S(Eo, Pe

81, do, .-

,53-1,&0, .. .,Jg_l,f)) =0, and

(ii) there exist ¢ distinct real numbers > 1 that are
roots of

G(z)=co+ ...+ 12" +2'=0

and there exist ¢ distinct real numbers > 1 that
are roots of

H(z)=do+...+di12*"t 4+ 2 =0.

Now assume that f is a t-sparse rational function
whose coefficients are integers. We see that each en-
try of S is a t-sparse rational function. ;From the form
of the matrix, we see that det(S) is a (¢ + 1)* sparse
rational function. Therefore condition (i) is equiva-
lent (by the zero test) to the fact that det(.S')x_p
is either co of O for i = 1,...,2(t + 1) = 1 (p; is any
prime). For at least (t+l)‘ of these points det(S) x—p;
will be zero. Using the black box, we can deter-
mine a system of (£ + 1)! equations in the unknowns
€o,---,Ct=1,do,...,di1 of degree at most 2t, that is
equivalent to the vanishing of det(S) at these points.
Assume the bitsize of the values (yielded by the black
box) of DI f(pi), i =1,...,2(¢+1) =1, =0,...,tis
at most M (that is, those that are not oo and there-
fore rational numbers). We then see that the bitsize of
each coefficient in this system is at most O(t Int)+tM.

Furthermore, condition (ii) is equivalent to

(i) On1<z<1—¢i1+6€_2—...%co, the polyno-
mial G(z) 0 has precisely t roots and a similar
statement holds for H. In addition, the discrimi-
nants of G and H are not zero.
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The first sentence of (ii’) can be expressed in termg
of Sturm sequences. This yields a system of 2¢ poly-
nomial inequalities and (by the Habicht subresultant
theorem [LO 83]) each inequality has degree at most
2t and the bitsize of the coefficients is at most O(t In+),
Similar bounds hold for the discriminants.

Therefore, under the assumption that f is a t-sparse
rational function with integer coefficients, we are able
to construct a system of polynomial inequalities equiv-
alent to (i) and (ii) and bound the bitsize of the co-
efficients of this system. The results of [GV 88] im-
ply that this system has a solution in a ball of radius
exp((M1t)0)).

This gives a bound on some solution &,...,
&-1,dg,.... di—y which gives a t-sparse quasira-
tional representation of f.  The exponents in
this representation can be bounded from these
Zo,...,%—1,do, . - ., di—1 also by exp((Mt*’ )9M) since
they are roots of the polynomials G(z) and H(z). By
Lemma 2, the exponents in a t-sparse rationalfunction
representation of f are bounded by a similar number.
This bound therefore can be explicitly calculated by
making 2(t + 1)* — 1 black box evaluations.

4. Bounding the Exponents of a Sparse
Multivariate Rational Function.

Let
— g(xlw")xn)
f(Xl"..,Xn) - h(xlyn.-yxﬂ)
—_ E::lgi(XZ)---,Xn)Xfi
Z::l h"(x2; S ,Xn)Xf‘

be a normalized representation of the t-sparse rational
function f.
,Ph)

Consider the 2t + 2t 4 1 points Pi = (p3,...

for1<j<2t4+42t2+41. Let

fj(Xl) = f(Xl,p%, ,p;')
i gi(ﬂi....,p{;)xi’i
::1 hi(l%, . tP’ft)Xf'

Note that there are at most 2t? points P/ for which
some g; or h; vanishes at P/. We call these points
bad points. For a point P; that is not bad, let D; be
the bound on the degree of some normalized t-sparse
representation of f/(X1). For these points, Lemma 2




allows is to conclude that there exist t;,t, (not neces-
sarily unique) such that

Tiligi(ph, . PRXY _ @

(X)) = - 2 ==
7 it hi(ph, . P)XE W

and
max{degx, §',degx, h'} < 2tD;.

To each j corresponds some pair ty,¢3. Therefore, at
least 2t 4 1 non-bad points P7 correspond to some
pair (#,%2). For this pair (f;,%;) we have that

t
9(Xz, .., Xn) S hi(Xa,. .., Xa)XE

_h(xl,...,x,,)Zg.-(xz,...,x,,)Xf‘ (1)

is zero at these 2¢2 + 1 points. If we consider (1) as
a polynomial in X; whose coefficients are 2t2 sparse
polynomials in X,, ..., X,, we see that (1) is identi-
cally zero. This implies that f has a t-sparse repre-
sentation with degy, f < By = max {2tD;}. We con-

sider this representation and let X3 play the role of
the principal variable. We apply the same construc-
tion to prove the existence of a representation with
degx, f < By and degy, f < Ba. In this way we are
able to determine B for which these exists a t-sparse
representation of f withdegy f<Bfori<i<n.

Note that as in the wunivariate case, B <
exp((Mt*)9())) where M is a bound on the bitsize
of f(7, ... pi) for 1< § < 2(t+ 1)t — 1.

5. Interpolation of Sparse Multivariate
Rational Functions and the Complexity
Issues.

Let f be a t-sparse multivariate rational function and
let B < exp((M1t")°())) be the bound obtained in the
previous section. Let

A ={A; = (aiy,...,0,)|0 < a;j < B}

and

B= {Bi = (ﬂiu"':ﬂiu)'o < ﬂij < B}‘

Select, in parallel, 2 t-tuples I = {A;,..., A},
J = {Bi,...,B;} with A; € Aand B; € B. We
calculate f(X) at (p},...,p}) fori =1,...,4t%. For

each selection of I and J we obtain the following linear
system

(pll !pn)(bl(pp“ pﬁm)i +b1(p€" ‘e ‘pgm)i)
=a (.. .p3) 4+ (P o) (2)

where 1 < i < 412, in the unknowns by,..., bi,ay,.. .,

a;. Ifsuch a system has a solution by, ..., b, 8,,.. .,
then the zero test implies that
f(X1,..., Xn) =
G X7 XS e XL X

blxlﬁu . gln + . .+ nga“ . gt.

For some I and J we will be able to solve (2) so the
algorithm terminates with a correct answer. We give
now an analysis of the complexity referring the reader
to the basics of algebraic computation (cf., e. g,
[KR 88]). Each of A and B contain B" terms. We
select ¢ elements from each, so there are O(B™) sys-
tems of type (2), each of size at most 4t2, This im-
plies that the sequential time complexity is BO(nt) and
the parallel complexity is (nt log B)°() (cf. [BGH 82,
[M 86), [KR 88]). We can further bound B in terms
of the size of the output. Let § = max {degy, f} and
let u be a bound on the bitsize of the coefficients of
f. Let p; be the bitsize of any coefficient of f/(X;)
(as in section 4). We then have that the bitsize of any
output is not greater than y;j + ¢ + 6. Furthermore,
each y; can be bounded by u+ O(t*6n log n) by look-
ing at each term of the representation of f and noting
that p, = O(nlogn). Therefore

exp((Mt*")°()

exp(((u + t1énlogn + 6)t")°1))
exp(((u + 6nlog n)t*’))e)

B, <
<

Therefore the sequential complexxty of the algo-
rithm is exp((u + 6nlogn)tt’ )0(’) and the parallel
complexity is ((¢ + Snlogn)t*’)?(). Therefore, for
fixed ¢, interpolation of t-sparse rational functions can
be done in polynomial parallel time (as well as in se-
quential storage, [C 81]). o

6. Further Research

It remains an interesting open problem how to im-
prove our algorithm. Is, in view of our results, also
the polynomial time solution in the size of g, h and n,
t possible?
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