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INTRODUCTION 
The motivation for the results given in this paper is our desire to study the entire 
functions of several variables which are defined by exponential terms. By an 
exponential term (in n variables) we mean a formal expression which can be built 
up from complex constants and the variables z , ,  . . . , z, using the symbols + (for 
addition), . (for multiplication) and exp(.) (for the exponential function with the 
constant base e). (These are the terms and the functions considered in Section 5 of 
[ I  11. There the set of exponential terms was denoted by C. Note that arbitrary 
combinations and iterations of the permitted functions can be formed; thus such 
expressions as 

are included here.) Each exponential term in n variables evidently defines an analytic 
function on C"; we denote the ring of all such functions on Cn by A,. This is in fact 
an exponential ring; that is, A, is closed under application of the exponential function. 

It is clear that each function in A, can be written as a finite sum 

1 ~ i . e x ~ ( g i )  
in which p l ,  . . . , p ,  are polynomials over @ in the variables z!. . . . . z, and gl ,  . . . . _ak 
are also in A,. In [ l l ,  Section 51 Nevanlinna theory is used to show that this 
representation is unique, if we normalize by requiring that each of the functions gi 
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2 C' .  W .  HENSON. L .  A .  RUBEL AND M .  F. SINGER 

satisfies gi(O.. . . , 0 )  = 0. (This amounts to subtracting a constant from gi and 
multiplying pi by its exponential.) This argument, which is implicit in the proof of 
[l I ,  Theorem 5.21, is given in Section 1 below. 

From this normal form result for A,  it follows that A, is isomorphic to a group 
ring in which the group is a vector space of dimension 2" over the field Q and the 
coefficient ring is the polynomial ring @ [ z , ,  . . . . ;,I. We use this abstract 
representation of A,  and some purely algebraic arguments to prove several interesting 
facts about A,. In particular we prove that it satisfies an interesting unique 
factorization theorem, and that it is a coherent ring. (See Sections 3 and 4.) We also 
use these ideas to give several examples which seem to have an analytic character, 
but which prove to be purely algebraic. (See Section 5.) 

Our  unique factorization theorem for A,  is of the same character as the unique 
factorization theorem proved by Ritt [IS]-[I71 for the ring S of all simple 
exponential sums 

in which r , ,  . . . . x,, p,. . . . . 8, are complex constants. This ring is evidently just a 
small subring of A , .  However, a simplc vcrsion of our normal form result for this 
subring shows that it is isomorphic to a group rlng in which the group is a 
2"-dimensional vector space over Q (namely the vector space (C, +) )  and the 
coefficient ring is the field @. From this point of view the only difference between A, 
and the ring S is the "slightly" greater generality in the ring of coefficients. Our proof 
of the unique factorization theorem for A, is closel:, patterned after Ritt's argument 
for S, and the key ideas are certainly to be found in [15]- [17]. We should also note 
that a similar unique factorization result is stated in [14] for the ring of exponential 
sums of the form 

Nonetheless we wish to sketch this argument in some detail, especially because it 
seems surprising that the exponential rings A,, in which the exponents can be extremely 
complicated, should satisfy a unique factorization result. (Certainly the analytic 
behavior of functions in A,  can be much more complicated than that of the sums 
studied by Ritt or by van der Poorten and Tijdeman.) 

The normal form theorem proved in Section 1 is valid not only for the ring A, 
but also for the apparently much larger ring, which we denote by B,, of all entire 
functions of n variables z , ,  . . . , z ,  which can be written in the form 

in which each pi is a polynomial and each gi is an entire function. In fact, it follows 
immediately from the normal form theorem that A ,  and B, are isomorphic rings for 
each n 2 1, that there is a retraction mapping from B, onto A,, that A, is algebraically 
closed in B,, etc. 

In Section 5 we give several examples and raise some questions of an analytic 
character which seem interesting, and which indicate the kinds of problems about 
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GkNERAT EXPOhEyTI4L POLYNOMIALS 3 

exponential functions which motivated us to obtain the results which are presented 
here. 

Throughout this paper we will make use of the group ring 

in which the coefficient ring is the ring C[zl, . . . , z,] c;f polynomials over @ in the 
variables z,. . . . , z , ,  and the group (V ,  +)  is a divisible, torsion-free Abelian group. 
(That is, the group (I/, + ) is simply a vector space over the field of rational numbers.) 
In this notation the number n is left as ambiguous and must be determined from the 
context. In this paper all vector space concepts, such as "linear independence" or 
"linear span" or "linear mapping" will be taken relative to the field Q of rational 
numbers. 

It is convenient to write the elements of K,. as finite sums of the form 

in which each pi is a non-zero polynomiai in cLlz,, . . . , z,] and i;,, . . . . G ,  arc distinct 
elements of I/. (We will refer to the vectors tll. . . . . r,, as the e.xponents which occur 
in the given element of K ,  . )  This gives a unique representation of each eieiiieiii of 
R,. The additix identity of R ,  is thus represented as the empiy jtiiii and the 
multiplicative identity as 1 .exp(O). This point of view amounts to replacmg the 
additive group (I/, + ) by an isomorphic group which is written multiplicatively; the 
isomorphism takes each c to exp(o). 

1 .  NORMAL FORMS 

In Section 5 of [1 l] Nevanlinna theory was used to prove a normal form theorem 
for A,  jir is implicit in the proof of Theorem 5.2); essentially the same result was 
proved independently using algebraic techniques by van den Dries [7] and, for A, ,  
by A. Wilkie [unpublished]. Here we observe that essentially the same argument 
used in [ l l ]  yields a similar normal form result for the larger ring B,. 

THEOREM 1.1 Each function in B, can be written uniquely as a $finite sum of the ,form: 

where p , ,  . . . , pm are non-zero polynomials ooer @ in the uariables z , ,  . . . , z,, g,, . . . , gm 
are distinct entire functions of z,, . . . , z,, and we normalize by requiring that each 
y,(O, . . . , 0 )  =o .  

In addition, if the function being represented is in A,, then the exponents q , ,  . . . , g ,  
can he taken from A,. 

Prooj 'fhe existence of such a representation is iriviai, both for B, and for A,. 
To provc uniqueness, it suffices to show that if the constant function 0 is given by 
such a representation, then the sum is trivial. (That is, the sum has no terms.) (To 
treat the general case, take the difference between two representations of the same 
function and collect terms which have the same exp(gi) part.) 
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4 C. W. HENSON. L. A .  RIJREI. ANT? M. F.  SINGER 

Suppose we have such a representation of the 0 function in which m is as small 
as possible, but with m > 0.  It is clear that we must in fact have m > 1. Dividing by 
exp(g, ), and denoting g, - g, by h, for each i = 7, . . . , m, we have: 

Note that h,, . . . , hm are distinct and non-constant, and satisfy hi(O, . . . , 0 )  = 0 for 
each i. As argued on pages 28-29 of [ I  11, we may apply the H - 0  Lemma L11, 
Lemma 2.1 and the surrounding discussion]. It follows that there exist complex 
constants c,, . . . , c, (not all zero) such that 

This sum must have at least one non-trivial term, and thus yields a non-trivial 
representation of the O function in which rhere are fewer than m terms. T'nis contradicts 
the minimality of m and completes the proof. 

i .e t  V he the vector space of all entire functions g of the variables z , ,  . . . , z, which 
satisfy y(0, . . . , 0) = 0. Let W be the subspace of I/ defined by 

We can rephrase Theorem 1.1 by saying that B, is canonically isomorphic to the 
group ring R ,  = @[z , ,  . . . , z,](Y +) and that the isomorphism carries the subring 
R,  = C [ z l ,  . . . , z,J(W. +)  onto A,. Note that both (I/. + 1 and (W + 1 are 
2"'-dimensional vector spaces over Q. This statement and the number n of variables 
completely determine the structure of A,  and B, and plays ihe key role in what we 
prove in later sections. Note that this shows in particular that A, and B, are isomorphic 
rings. 

A result equivalent to Theorem 1 . 1  for the ring A,  was proved by van den Dries 
[7] using purely algebraic techniques. (His normalization of exponents is different 
from ours, but the two results can easily be seen to be equivalent.) Macintyre has 
extended this approach to prove a normal form theorem for the field F, of exponential 
rational functions in the variables z, ,  . . . , z,. Each element of F, can be regarded as 
an analytic function defined on a connected, dense open subset of C n ;  it is the smallest 
field of such functions which contains the polynomial functions and is closed under 
application of the exponential function ex. (The difference between F, and A, is that 

in F, the operation of division is permitted; thus F,, contains functions such as exp - 
( i ' i )  

exp(z.) - 1 and '-.-- which are not in A,).  The normal form theorem for F, which Macintyre 
Zi 

proved has the consequence that F, is isomorphic, as an algebra over C [ z , ,  . . . , z,], 
to the field of fractions of R,,  where V is a vector space over Q of dimension 2". 
(The vector space V can be explicitly identified from the development in [13, Chapter 
73 but we will not give the details here.) Thus the results proved here about the rings 
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GENERAL EXPONENTIAL POLYNOMIALS 5 

R ,  can be used to obtain results concerning the fine structure of the field F,, and its 
relation to A,.  

2. BASIC FACTS 
Let (I.; + ) be a vector space over Q and let W be a subspace of V; Evidently R ,  is 
a subring of R,. There is a linear mapping T of V onto W which is the identity on 
W. Each such mapping T can be used to define a ring homomorphism P from R ,  
onto Rw which is the identity on R,. (P  is a retraction of R,  onto R,.) Namely, 
define P by 

The existence of such retractions can be quite useful. For example, any element of 
Rw which is a unit in R,  will already be a unit in R,;  more generally, if f and g 
are in R,. and ,f divides g in R,.. then f' must already divide q in the smaller ring R , .  

.4s is well known, all vector spaces over 62 can be given a linear ordering which 
is compatible with the vector space structure. If V is finite dimensional. with basis 
L , ,  . . . . c, then we may give I/ the lexicographic ordering, under which 1 q i .  c i  is 
positive if its first non-zero coefficient qi is positive. Or  we may embed V into R over 
Q and pull back the usual linear ordering of R to get a linear ordering of I.: The 
Hahn Embedding Theorem [8] states that every linear ordering on V can be obtained 
by a mixture of these two methods. 

Linear orderings of V are very useful in obtaining results about R,. For example, 
we can give an easy proof that R ,  is an integral domain. Consider f = 1 pi.exp(vi) 
and g = qjexp(wj) both non-zero. We may suppose ihai ihe exponents o f f  and 
the exponents of g are listed in increasing order, with respect to a given linear ordering 
on I.: The exponents of f .g  will be among the sums v i  + wj. Moreover, the term 
p1 .q l  .exp(u, + w,) must actually occur in the product, since no cancellation wth 
other terms can take place. Hence the produce f . g  cannot be 0. 

Let P(z, Y) = P(z,, . . . , z,, Y,, . . . , Ym) be a polynomial over @ in the indicated 
n + m variables. (For notational convenience we often write z,, . . . , z, simply as z 
and Y,, . . . , Ym as Y.) Given any m vectors in I/, say w,, . . . , w,, we may regard the 
expression 

P k l ,  . . . , z,, exp(w,), . . . , exp(w,)) 

as an element f of R,  in an obvious way. If P is a simple monomial 

then f is just 
exp(k, .w, + .  . . + km.tvm). 

In general, f will consist of a finite combination of such terms with appropriate 
coefficients coming from @ [ z , ,  . . . , z,]. 

Conversely, suppose w,, . . . , wm are linearly independent and f is an element of 
R ,  whose exponents can all be written as linear combinations of w,, . . . , w, in which 
the coefficients are all non-negative integers. Then the process of the previous 
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6 C. W. HENSON, L. A .  RUBEL AND M. F. SINGER 

paragraph can be reversed, yielding a polynomial P(z, Y )  which represents ,f, in the 
sense that 

Finally, note that this representation of (certain) elements of Rv by multivariable 
polynomials is unique (as long as thc same basis is being used.) That is, suppose 
P(z, Y )  and Q(z, Y )  are polynomials over @; that MI,, . . . , w, are linearly independent 
elements of 1/, and that 

P@I,  . . . , z,, exp(w, ), . . . , exp(w,)) = Qb, ,  . . . , z,, exp(w, ), . . . , exp(w,)). 

Then P(z, Y )  and Q(z, Y )  must be equal as polynomials, as can be seen by comparing 
monomials in the variables Y,, . . . , Y,. 

De$nirion 2.1 An element j' of R ,  is normuiizrd i l  i t  can be written in the form 

.f' = P(zl,  . . . , z,, exp(w,), . . . , exp(w,)) 

where w,, . . . , w, are linearly independent elements of V and P ( z ,  Y )  is a polynomial 
over C which includes at least one monomial that does not contain any of the variables 
Y,, . . . , Y,. When f is given in this way, we will refer to P as giving a representation 
off with respect to w,, . . . . w,. 

Note that when f is normalizedj then it has one term of the form p.exp(O), with 
p non-zero. Moreover, the other exponents o f f  are given by linear combinations of 
the basis wl, . . . , w,, in which all of the coefficients are non-negative integers. 

LEMMA 2.2 Each non-zero element g of' R ,  can be written in the form g = exp(v).f. 
where f is normalized. 

Proof Fix g and let W be the linear span of the exponents which occur in g. By 
using a linear embedding, we may regard W as a linear subspace of R. (Recall that 
we regard all vector spaces as over Q.) Let v be the least exponent occurring in g 
(in the usual ordering on R) and write the exponents in increasing order as 
v < v + v, c . . . < v + v,. It follows that if we set g = exp(- t1)- f ;  then g has as its 
exponents the numbers 0 < v,  < - . . < 0,. Let r,, . . . , r, be a basis over Q for the 
linear span of v,, . . . ,zl,. For each i = 1, . . . , k let us write 

with all of the coefficients qij  being rational. Now choose T = (tij) to be a non-singular 
m x m matrix of rational numbers, in which each tij is chosen to be very close to ri. 
Using the non-singularity of T, there exist s,, . . . , s, in R which are linearly 
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GENERAL EXPONENT!,\L POLYNOMIA1.S 

independent o \er  Q and such that 

for each i = I .  . . . . rn. Hence for each i = 1.  . . . . k we have 

where the coefficients are given by 

Since c i ~ c h  r l j  is L C I ~  c l u ~ r  t ~ )  I., i t  fgllov<> that pi: i:, c1:isi. !O ( r ,  itsc!f. 1x1 p~rticuicir. i f  
this approxirmtio!~ is donc carefully. all of the coetf~clents p,, wl! be pnsltlve rational 
numbers. Lct .V' be thc least common denominator of thcsc coefficients, and define 

1 .  -. 
12.: = . s ,  tar ezch i = 1 .  . . . . m.  ! her, !i3!, . . . , 1v, is also 2 &sis fcr the iinear snxn fi f-"" 

of the exponents r , ,  . . . , L., and each r i  is a iinear combination of these basis elemenis 
in which each coefficient is a positire integer. The discussion above makes i t  clear 
that y must be a normalized element of R,.. rn 

 vow The proof of Leinrna 2.2 ahows that if we are given finitely many elements 
g l ,  . . . , gi, of P.,-, t h m  tbere exist r -  L - " "  r ,  E I/ and norma!ized e!ements f ; .  . . . . -,, f :  
of K ,  such that g ,  = exp(r , ) .  1; for each I = I .  . . . . k AND this can be done in such 
a way that there is a singie set N.,, . . . , I\.,,, of iinearly independent elements of R,. 
such that f , .  . . . . t h  are represented by polynomials PI ( z .  Y I .  . . . , P,ir. Y i respectively 
with respect to thc sanie basis l v , .  . . . . \c ,,,. 

The next result shows the uqefulness of normalized elements of R ,  in reducing 
factorization problems to questions about polynomials over C. 

LEMMA 2.3 Suppose ,f' is a nortnulizrd element of' R,, represented hy the polynomicil 
P ( z , .  . . . , z,, I;, . . . , Y , )  wit l~ respect t o  the busis I<,, . . . , \vk.  Let q and / I  he elernents 
of R ,  .sc~ti.c:fjiny f = y . h .  Then there e.xists L- E V such rlzut zhe ritlg e/ement.s G = exp(r) .  y 
trnd H = e x p ( - ~ ) . h  are both nor~nrrlized (und of' course ,f = G ,  H ) .  Itdeed there 
exist positire integers N , ,  . . . . N, and polynoinials Q ( z , .  . . . . z,, Y, .  . . . , Y , )  and 
R ( z , ,  . . . , z,,, Y, ,  . . . , Y,) so that G is represented h! Q ( r ,  Y )  m d  H i.s r ~ p r e s t ~ n t ~ d  b!' 

1 1 
R ( z ,  Y ), ~ c i t h  respect t o  th' basis - , , . . . . . byh. 111 [his case ir r~ecessarily follo\c.s 

N! N'. 
thnr 
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8 C .  W. HFNSON, I>. A.  RUBEL AND M .  F. SINGER 

Notr In this situation the element f is obviously represented by thc polynomial 
1 1 

P(z,, . . . , z,,, Y z y l , .  . . , Y r k )  with respect to the basis .M.,, . . . . .\": thus the *vl N k  

polynomial equation in Lemma 2.3 is equivalent to the equation ,f = G. H. 

Proqf Let W be the linear span over Q of (w,, . . . , w,{ and let < be any vector 
space linear ordering on W with respect to which w,, . . . , wk are all > 0. It follows 
that every exponent which occurs in f must be 2 0, since i t  can be written as 
a linear combination of the basis elements with non-negative integer coefficients. (Note 
that because j is normalized, 0 must occur as an exponent in f . )  Extend this h e a r  
ordering in any way to the linear span of all exponents which occur in f ;  g or 11. Let 
1: be the least exponent in this ordering among those which occur in g.  We set 
G  = exp(-r).g and H  = exp(c).h; evidently f = G.11, and we will show that they 

Omma. satisiy the other requirements in the L, 
The exponents which occur in G are all 0. and 0 is an exponent in G.  Suppose 

the exponents which occur in H are r ,  < .  . . < r,. The cxpuncnh occurl-ing in the 
product G . H  wi!! be inc!udcd among the vcctors c + ci, where 1 < i < p and c occurs 
in G. Hence they are all 2 a ? .  Moreover, must actually occur as an exponent in 
G .  H, since v + ui = o, can only occur when o = 0 and i = 1. From this it follows that 
v, must be 0, and hence the exponents which occur in Hare all 2 0, and include 0. 

Next we show that the exponents occurring in G are in W, by a similar argument 
the same must be true of H. If not, let w,, . . . , w, be expanded to a basis , , . . . w k j .  . . for the linear span of W together with all exponents which occur 
in G  or in H .  Do this in such a way that at least one exponent occurring in G  has 
a negative w,-coefficient when it is written in terms of this basis. On the linear span 
of this basis let < be the lexicographic order; it extends the given ordering on W: 
Under this ordering, the exponents off '  are all 0, while at least one exponent of 
G is < 0. But 0 occurs as an exponent in H ,  so that the least exponent in H must 
be < 0. It follows that the least exponent which occurs in the product G . H  would 
have to be negative, contradicting the fact that G . H  = f .  

Next we show that when the exponents occurring in G  or in H  are written as linear 
combinations of w,, . . . , w,, then the coefficients will all be 3 0. If not, then without 
loss of generality we may assume that some exponent in G  has a negative w ,  -coefficient. 
On W consider the lexicographic ordering given by the basis w,, . . . , w, (which might 
have been permuted). We get a contradiction as in the last paragraph: in this ordering, 
the exponents o f f  are still 0, some exponent is G is < 0, and the least exponent 
of H is < 0. A similar argument treats the exponents which occur in H .  

For euch i = 1 , .  . . , k we now choose N ,  to be a common denominator for all of 
the coefficients of the basis vector wij  when the exponents off .  G or H are written 
as linear combinations of w,, . . . , w,. These exponents can all be written in terms of 
the basis 
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GENERAL EXPONENTlAl POLYNOMIALS 9 

using only coefficients which are non-negative integers. One now obtains the 
polynomials Q and R from G and H and proves the last statement of the Lemma as 
is described just before Definition 2.1. 

Remark Suppose we are given a normalized element of R,, represented by P(z ,  Y) 
with respect to a basis w,, . . . , w,. We see that all factorizations of this element (up 
to multiplication by units of the form exp(c)) can be obtained as follows: take positive 
integers N , ,  . . . , N, and factor the polynomial P(z, ,  . . . ,in, Y r ' ,  . . . . Y?), say as 
the product of polynomials Qi(z, Y) for i = 1.. . . . M. For each i set 

Then the original element must be equal to the product G ,  - .  . :G,. Moreover, note 
that each of the factors Gi must be normalized. (Since P has at least one monomial 
not including any of the variables Y,. . . . . Y,, the same must be true ofeach of the Qi's.) 

LEMMA 2.4 L,er f he u normalized element o f  R,.  

(a)  If' f is irreducible in R,. and l f ' f  is represented by P(:. I') with respect to some 
hasis, then P(z ,  Y )  is an irreducible polynomial. (Thus every polynomial of' the 
form P(z,, . . . , z,, Yy', . . . , Y p )  must also be irreducible, where N , ,  . . . , N, 
are positive integers.) 

(b) Suppose P(z ,  Y) is a polynomial over cC with at least one monomial not containing 
any of the variables Y,, . . . , Y,. I f  P(z ,  Y )  has the property that for every 
N , ,  . . . , N,, the polynomial P(z,, . . . . z,, Yyl, . . . , Y,Nk) is irreducible, then any 
e l~ment  of R ,  which is represented by  P(i, Y )  with respect to  some basis must 
be an irreducihle element of Rv. 

(c) Eoery irreducihle element of Rv generates a prime ideal in R,. 
(d) If W is a vector subspace of V ,  and if g is an irreducible element of Rw,  then 

y remains irreducible in Rv.  In particular, each irreducihle polynomial in 
@[z, ,  . . . , z,] is irreducible in Rv.  

Proof Parts (a) and (b) follow immediately from what is discussed above. Part 
(d) follows immediately from Lemma 2.2 and parts (a) and (b). In proving (c),  it 
suffices to consider normalized elements, by Lemma 2.2. Let f be an irreducible, 
normalized element of Rv, and suppose F . G = f . H is an element of the ideal generated 
by f in Rv. After multiplying F, G, H by units of the form exp(v), we may suppose 
that there exists a single basis w,, . . . , w,, with respect to which all off,  F, G, H have 
polynomial representations. (Multiply H by such a unit to make the new product 
f .H normalized and then apply Lemma 2.3.) The polynomial by which f is 
represented must be irreducible, by part (a); hence it must divide one of the 
polynomials representing F or G. It follows that f must divide F o r  G in Rv,  completing 
the proof. 

It is not the case that every non-unit element of Rv has an irreducible factor. For 
example, consider f = 1 + exp(w); this is normalized, and is represented by the 
polynomial 1 + Y with respect to the basis w. By Lemma 2.3, any factor o f f  must 
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G L N E K A L  EXPONENTIAL POT YNOMIALS I 1  

We will makc use of the following theorem, which is a sharpening by Gourin [9] 
of a result originally proved by Ritt [15]-[I71 in his analysis of factorization in the 
ring of simple exponential sums. An cxposition of this theorem can also be found in 
[ l a ,  Chapter 151. 

T T  THEOREM (Gourin) Let Pjz,, . . . .z,. 1 , .  . . . , Y,) he ilr, irreducible polynomial over 
C which hus at leust three monomials (as a pol)mmiul in its n + nr zluriilblrs). Let d 
be the muximum degree of P  in its indiz?idual uariables. For each m-tuple k , ,  . . . , k, 
of positive integers, there ure positive integers z,, . . . , T,, all < d 2 ,  and integers 
I , ,  . . . , 1 ,  with k j  = . r j . l j  for euch j = 1 ,  . . . , m, such that if 

is a factorizc~fion iiiro irreducible polynomiuls, then Q,,  . . . , Q, arc distinct. and 

is a jactorizatio~ into irreducible polynomials. 

We continue with the proof of Theorem 3.1, in the case where the irreducible 
polynomial P ( z ,  Y )  has at least three monomials. By the theorem above, there exists 
an integer D such that each of the polynomials P ( z , ,  . . . , z,, Y f l , .  . . , YLm) is the 
product or" at most D irreducible po!j..nomia!s. Let Un he ?he smallest such bound. 
and choose k , ,  . . . , k ,  so that it is achieved. Let 

be a factorization into irreducible polynomials. For each i = 1, . . . , m let 

so that our original normalized element f is equal to the product b ,  . . . : b,. 
We claim that each b, is irreducible in R,. If not, then by Lemma 2.4(b) there 

must exist l , ,  . . . , 1, so that Qi(z,, . . . , z,, Y ? ,  . . . , Yf;;) splits into at least two 
irreducible factors. But it would follow from this that P(z, ,  . . . ; z,: Y:"'. . . . , y>lrn) 
would have at least D + I irreducible factors, which is impossible by the minimality 
of D. 

Note that this shows that if J' ib any normalized element of R ,  which is represented 
by an irreducible polynomial having at least three terms, then f is a product of 
primes in R,. Moreover, the argument gives a procedure by which these primes can 
(in principle) be found. 
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12 C .  W. HENSON, I.. A.  RUREI. AND M.  F. SINGER 

We must still deal with the case where the polynomial representing f '  has two or 
fewer terms. The case where it has just one term, meaning that f ' i s  simply an element 
of rf[z,, . . . . I,], is trivial, since irreducible polynomials in this ring remain irrcducible 
in R , .  Thus we are left with the case where 

where M ,  and h.i, are monomials in the variables z,, . . . , z,. 
Suppose that MI and M,  are not both constants. We may suppose that z ,  occurs 

in one of them. Then the polynomial P ( z ,  + I ,  z,. . . . , z,, Y, ,  . . . . Y,) has at least 
three monomials, so that (by the argument above) the element g  of R v  which is 
defined by 

is a product of primes in  R, . .  R u t  there is an autnnlorphism ol' H v  which corresponds 
to the replacement of z ,  by z ,  + 1.  and this automorphism takes ,f to y. Hence ,1' 
must also bc a product of primcs in R,. 

The remaining case is where P(z ,  Y 1 is of the form .I + Y;'. . . . .  2'2 with x ,  ,h' 
non-zero complex numbers and n , ,  . . . , n ,  not all zero. But then f '= cx + D.exp(zi), 
whcrc v = 1 1 , .  w ,  + . . . + t ~ , .  w, # 0. Hence our treatment of the case where f is 
represented by an irreducible polynomial is complete. Note that we have shown in 
this case that either f is of the form cr + p.exp(v) for some non-zero complex numbers 
M ,  0 and some non-zero t, from V,  or f is a product of irreducible elements of R,-. 

At this point we know that an arbitrary non-zero, non-unit element of R,. is equal 
te ?he preduc? ef a finite number of irreducible e!emen:s of R ,  and a finite iiiiiiibei 
of elements of the form cr + p.exp(~)).  We now discuss how to group these latter 
factors into the form required by the statement of Theorem 3.1. Suppose u , ,  . . . . up 
are non-zero elements of V and that each ui, u j  can be written as a rational multiple 

1 
of the other. Choose N so that each ui is an integer multiple of u = - .u , .  For each N 
i = 1, . . . , p, consider an element of Rv of the form g, = ai + pi.exp(ui), in which cri 
and pi are non-zero complex numbers, and let y = g ,  - .  . :gP.  Multiplying g by 
appropriate units (of the form exp(-u,)) if necessary, we may suppose that each ui 
in this representation is a positive integer multiple of u. say ui = ki.u. Then 
g = p(exp(u)), where p is the polynomial 

This completes the proof that there exists a factorization of the required type for 
each non-zero, non-unit eiement of R v .  

For the uniqueness of this factorization, we need to analyze the fxtors  of the form 
f =p(exp(v)) somewhat more. In particular, we will show that such an f has no 
irreducible factors, and no factors of the form q(exp(u)) unless u is a rational multiple 
of o. 
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GENEKAL EXPONENT~AL POLYNOMIALS 13 

LEMMA 3.2 Let o be a non-zero element of V and let p(Y) br a polynomial in one 
variable over C which has at least two terms. Up to multiplication by units, every factor 

of p(exp(v)) in R v  is of the .form q exp -.v for some integer N > 0 and some ( (it )) 
polynumiul q(Y). (In particular, p(exp(v)) has no irreducible factors in R v . )  

Proof We may suppose that p(0) # 0: otherwise factor out a power of Y and use 
the fact that ( e x p ( ~ ) ) ~  = exp(k.v) is a unit in R,. Then p(exp(z1)) is a normalized 
element of R v ,  represented by p(Y) with respect to the basis o. By the remark after 
Lemma 2.3, every factor of p(exp(v)) must have the required form. Moreover, any 

such factor q(exp(k u ) )  of p(exp(v)) has a factor of the form -a + exp 

cr E C with q(a) = 0) and hence further factors, for example t /? + exp -. 11 if p2 = a 
(22 ) 

We now complete the proof of Theorem 3.1, by showing that the terms in the 
factorization are uniquely determined (up to multiplication by units) by their product. 
Using Lemmas 2.4 and 3.2 it follows that no two factors which appear in this product 
have any divisors in common, if the restrictions in the statement of Theorem 3.1 are 
satisfied. The uniqueness proof therefore goes along the usual lines, once we have 
proved the following Lemma. 

LEMMA 3.3 Let ,f, g, F, G be non-zero, non-unit elements of R v .  Suppose f - g  = F .  G 
in R v  und that f and F have no non-triviai factors in common. Tkeii f dtotdes 
G in R v .  

Proof Applying Lemma 2.3 twice we may suppose that the elements f, g,  F, G 
are all normalized, represented say by polynomials P, Q, R ,  S with respect to the 
same basis w , ,  . . . , w,. Hence we have P - Q  = R . S .  The hypothesis implies that P 
and R must be relatively prime as polynomials in z , ,  . . . , z,, Y,, . . . , Y,. Therefore 
P must divide S in C[z, Y], implying that f divides H in R v .  

Note that a similar argument to that used in proving Lemma 3.3 can be used to 
show that i f f ,  g E Rv,  then f divides g in R v  if and only if the factors off  (according 
to the factorization given in Theorem 3.1) occur among the factors of g, counting 
multiplicities, up to multiplication of factors by units. It follows that in R v  each finite 
set of elements has a greatest common divisor and a least common multiple; indeed, 
these can be obtained in the usual way directly from the factorization of the elements 
as given in Theorem 3.1. 

We close this section by noting that if iV is a vector subspace of V aiib if j is an 
element of Rw,  then the unique factorization of f is the same in R ,  as in R,. 
By Lemma 2.4(d) the irreducible factors o f f  in Rw remain irreducible in R,, and 
the infinitely divisible factors of f also remain unchanged on passing from R w  
to Rv.  
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14 C. W. HENSON, L. A. RUBEL AND M. F.  SINGER 

4. COHERENCE 

In this section we show that the integral domains Rv considered here are coherent 
in the sense of Bourbaki [3, Chapters 1-21. A commutative ring is said to be coherent 
if every finitely generated ideal is finitely presented. For integral domains, this is 
equivalent to the statement that the intersection of two finitely generated ideals is 
finitely generated. (See [6].) Note that Rv is not Noetherian, unless V = {Of. Indeed, 

if w # 0 and we let I, be the ideal of Rv generated by the element 1 - exp - -  1.v , (i! ) 
then it can easily be shown that {I, ( n = 1,2, . . .) provides a strictly increasing 
sequence of ideals in Rv. 

We will use the fact that Rv is the localization of the direct limit of a family {B,) 
of rings, where each ring BI is a purely transcendental extension of @ (and is therefore 
Noetherian) and where B, is a free B,-module whenever Bj  is an extension of B, in 
the family. Before describing this representation of R,., we explain why i t  ~hows  that 
R, is coherent. First we make use of the criterion in [3. Ex. 12e, p. 633; it states that 
the direct limit of the system (B,] is coherent, providing that: ( i )  each B, is coherent. 
and (ii) B, is a flat B,-module whenever Rj extends B,. These conditions follow from 
the fact that each B, is Noetherian and that free modules are flat. Hence Rv is the 
localization of a coherent subring; it follows using [lo] that Rv is coherent. 

To obtain the desired representation of Rv we proceed as follows. Let 1 be a basis 
over Q for the vector space V.  An index I consists of a positive integer i = i(1) and 
a finite subset b(1) of 1. The ring B, is the subring of Rv which is generated by 

@[z,, . . . , z,] and the elements exp :- w , where i = i(1) and w E b(l). We regard B, (: ) 
as an extension of B, when i(1) divides i(J) and b(1) G b(J); when these conditions 
are satisfied then evidently Bj  2 B,, so that we have a directed system of subrings 
with the natural inclusion mappings. 

Evidently each B, is a finitely generated, purely transcendental extension of @. 
Indeed, we may write 

B, = @[zl,.  . . , z,, XI, . . . , Xp] 

where XI,  . . . , Xp is a list of the elements exp with i = i(1) and W E  b(1). If BJ 

is an extension in this family of B,, then 

where k is the integer such that i ( J )  = k.i(l)  and X,+,,  . . . , Xp+, is a list of all the 

with j =  i(J) and web(J) \b( l) .  The elements z,, . . . , z,, 

XI, . . . , XP+, are algebraically independent; it follows that Bj  is freely generated as 
a B,-module by the products 
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GEPU'ERAL ~ X P O N E N T I A L  POLYNOMIALS 15 

in which n,, . . . , n,,, are non-negative integers and n , ,  . . . , n, are all < k .  Hence 
the directed system { B , )  has the required properties and, as discussed above, its direct 
limit is coherent. Let this direct limit be R. I t  is easily seen that R  is the subring of 
R ,  which is generated by @[:,, . . . . z , ]  and the elements exp(y-wi where W . E X  and 
q is a pcisiiiw rational number. Let S be the set of all products of these latter elements: 
that is, S consists of all elements exp(r?), where 11 can be written as a finite linear 
combination of hasis elemenls from X in which the coefficients are all non-negative. 
It is evident that R ,  is precisely the localization of the direct limit R  at the 
multiplicatively closed set S. This completes the proof that R ,  is a coherent ring. 

5. MISCELLANY 

In this section we discuss several consequences of the results in the earlier sections 
and discuss the relation between the algebraic and the analytic behavior of exponential 
functions. We raise here a number of problems for further investigation. 

First of all we note that A ,  1s aigehraically closed in B,, tor each rl. More generally : 

THUOREM 5 . 1  r f '  !' ix u rector. spacc m i !  W i~ n sirhspucc~ oj' li, thon R ,  is alqebm~c~rrl l~~ 
 close^? ! n  R,.. 

Pr.oof' Suppose fo, . . . , f ,  are elements of R ,  ( k  > 0), g is in R , ,  and 

C . f ; . . y j =  0.  

Without loss of generality we may assume ,f, # 0 and f ,  # 0; evidently y  divides f ,  
in Rv. As noted at the end of Section 3, the unique factorization off,  is the same 
in R ,  as ir, R,.  From the Unique Factorization Theorem (Theorem 3.1 I it follows 
that there exists V E  V such that exp(uj.y is in R,. (The irreducible factors of g must 
be among the irreducibie factors off,, and hence must be in R ,  up to multiplication 
by a unit. The infinitely divisible factors of y must divide the infinitely divisible factors 
off,; Lenma 3.2 implies that these factors of g must also be in R ,  up to multiplication 
by a unit.) 

Let h = exp(v).y and Fj = 1j.h' for each j = 0, . . . , k; we have then 

If V E  W, then we are done. Otherwise we may construct an automorphism of V which 
fixes every element of I/t: and which maps o to any other element of I.'\ I f  Each such 
mapping gives rise to an automorphism of R ,  which leaves the elements of R ,  fixed; 
it follows that the polynomial equation 

C F, . Y' = 0 

has infinitely many roots in R,, which is impossible. (Indeed, this equation would 
1.- - -  ' '?-A 
vt: siiiisll~u by every Y = e x p (  u), where t: is ar, element of v \, W.) 

Note For the logician we remark that if 1.' and U' are as in Theorem 5.1, and if 
W has infinite dimension over Q, then R, must actually be an elementary subring 
of R,. In particular, A ,  is an elementary subring of B, for each n .  This can be proved 
using the Tarski test for elementary submodels (see [ 5 ] )  and the easy fact that (when 
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16 C. W. HENSON, L. A. RUREL AND M.  F. SINGER 

W is infinite dimensional) for any given elements f,, . . . , f, of Rw and g of R,,  there 
is an automorphism of Rv which leaves each ji fixed and which moves g into Rw. 
This automorphism comes from a linear automorphism of 1' which fixes each exponent 
of , f , .  . . . . ,f, and which moves all the exponents of g into W. 

In contrast to these results, the nature of the algebraic relation of A, or B, to the 
ring of all entire functions of n variables is very unclear. For example, we do not 
know how to answer the following natural question. 

QUESTION 1 I f f  is an entire function of n variables and f is an element of  B,, then 
must f also be in B,? ( A  positi~~e answer would gh?e the same result with B, replaced 
by A,, using Theorem 5.1 .) 

If J and y are elements of B, with no common zero, then we can find entire 
functions F and G which solve the Bezout equation 

However, we need not be able to find F and G in B , .  For example. suppose 
j'= I + exp(:) and y = 1 + exp(z2). Writicg B, = R,. for an appropriate vector space 
I/, we see that ,f = 1 + exp(a) and g = 1 + exp(w) for exponents c, MJ which are linearly 
independent over 0. From Lemma 3.2 it follows that f and y have no non-trivial 
common factor in B,. However, there cannot exist F, G in B,  which solve the Bezout 
equation for f, g. If otherwise, we may assume without loss of generality that all 
exponents of F, G lie in the linear span of ( 2 3 ,  MJ}. (Apply a retraction of V onto the 
linear span of {o, w) as discussed at the beginning of Section 2.) Choose an integer 
k large enough so that a:: eiipoiieiiis of F aiid of G are 3 - k(v  + w j iii the lexicographic 
ordering on the span of {o, w). As discussed in Section 2, we may therefore obtain 
polynomials P(Y,. Y2) and Q(Y,, Y2) over C such that 

e x p ( - k ( c + w ) ) . F = P  exp . u  ,exp ( (3 (3) 
and 

exp(-k(v+w)).G=Q ( exp (:.L1).eXP(+)) 

for appropriate integers r and s. After multiplying through by exp(-k(o + w)) and 
using the uniqueness of the representation of elements of R, by polynomials, we 
obtain the polynomial equation 

This is impossible, as can be seen by taking Y, and 'r; to be appropriate roots of 
unity in @. 

A similar argument (shown to us by A. Macintyre and L. van den Dries) shows 
that the identity 1 is not even in the E-ideal generated by 1 + exp(z) and 1 + exp(z2) 
in A , .  (An ideal I is an E-ideal if f €1  always implies exp( f )  - 1 ~ 1 .  See [7].) If 
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GENERAL EXPONENTIAL POLYNOMIALS 17 

otherwise, then there would be an exponential term T in two variables such that 
s(0,O) = 0 and 

From the results proved in [7] i t  follows that this equation must hold as an  identity 
in all E-rings. However. one can use the methods of [7] to construct an  E-ring with 
an  element a satisfying E(r)  = ~ ( 2 ~ )  = - 1 ,  thus obtaining a contradiction. 

QUESTION 2 Given ,f' and g in A,  or in B,, is there any - "algebraic" way to recognize 
that f and g have no common zero? 

Ritt [17] showed that iff  and g are simple exponential sums (of the form a i . ea t z  
C 

J for some complex numbers 2,. . . . , r, ,  b , .  . . . . f l , )  and if is an  entire function, then 
B 

1' 
- must  iiself be a simple exponcntial sum. (That is, if gj divides f' in the ring nf entire 
Y 
functions. then g d~vides f In the ring of simple exponential sums.) Berenstein and 
Dostal [2] extended this result to functions of several variabies. The entire funct~ons 
1 - 2  sin(n.z2) 
- - and (more subtly) -- are quotients of functions in A , .  but are not 

z sin(n. z )  
themselves elements of A , .  (This can be shown by a fairly simple argument based 
on the Normal Form Theorem, Theorem 1 . I  .) It is a n  open question whether there 
is any generalization of the Ritt result to A ,  or  B,. For  example: 

f QUESTION 3 If f; g~ A, and is un entire function, then must there exist an 
B 

exponential term which defines g and which is syntactically simpler than any exponential 
term which defines f'? 

In this question we may reasonably assume that f and y have n o  non-trivial 
common factor in the ring A,. The example f = sin(n. z 2 ) ,  y = sin(n . z )  seems especially 
suggestive here. 

One may ask several related questions concerning the possible zero sets of functions 
in A,  or B,, and rather little seems known here, even for n = 1. While sin(n.z) has 
Z as its zero set, it is not hard to show that no  function defined by an  exponential 
term, indeed no function in B l ,  can have N as its zero set. (Iff were such a function, 
then we could write 

where h is an  entire function and T(z) is the usual Gamma function. From this it 
sin(n. z )  - 1 would follow that -- - would be in B , ;  this is false, as noted 

n . z  r(i + ~ ) . r ( 1  - Z )  

above.) 
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i 8 ( W H b N \ O N ,  I A K C J H E L  AN11 M .  I- .  \ INGFK 

QUESTION 4 bt'e conjwf  urt,: I /  / t A ,  crnd if' / ( k  ) = 0 f i ~ r  k  = 1 ,  2, ?, . . . , then a h  
,f ( 0 )  = 0. (Applying this rcputrd ly  to  f ( z  - k )  would yield t h ~  furtiz~r c'oizr.lu.sion that 
/ ( r )  = 0 f o r  (1 /1  r E a.) 

T o  provide a little support for this conjecture. wc prove that it holds when f ic a 
simple exponential polynomial, 

for complex polynomials q, ,  . . . , q, and complex numbers I.,, . . . ,I.,. T o  do  this we 
make use of some p-adic analysis as in the proof of the Skolem Mahler Lech  
Theorem. In particular, we invoke the following result of Cassels 141. (See also 1121 
for other appiications of this resuit to obtain severai generaiizations of the 
Skolem Mahler--Lech Theorem.) 

Siipposc that f j z j  is a simpic cxpoiieiitiai poiyiioiiiiai as above ihai , f (k i  = 6 
for every positiw integer k.  Let C be the collection of all thc coefficients of q , ,  . . . , qk 
and all of E L , ,  . . . , I-,, and let K be Q(C). Let q :  K + Q, be one of the embeddings 
given by Theorem C. Let Qi  be the polynomial over Q, which is the image of qj 
under cp (for each j = I ,  . . . , k )  and let F be the function on Q, which is defined by 

It is easy to sec that t.' is given by a power series in the p-adic variable z 
w 

using e w  = 1 n ! )  and that this series converges in a su~table p-adlc disc about n = 0, 

By hypothesis, t.' vanishes at infinitely many p-adic integers. Hence the zeros of F 
have a p-adic limit point, so that F must be identically 0 on 0,. In particular F ( 0 )  = 0 
and consequently also f (0) = 0 ,  which was to be proved. 

Note that the above conjecture becomes false if one replaces A ,  by B,. This is 
because the function 

is an  element of B,.  
There are several decision problems for exponential terms which are connected 

with the results given here. These make sense only when we restrict the constants 
which are allowed to occur; let us consider here just the case where we allow only 
Gaussian integers (a  + h .  i; u.  h E B,l as constants. We will call an exponential term 
(and the function it defines) restricted if it is built up from constants for the Gaussian 
integers (but not for any other complex numbers) and from the variables, using 
addition, multiplication and exponentiation. If the term contains no variable, then 
we will refer to the complex number which it represents as an cxponentiul constunt. 
(There are natural sets of complex numbers other than the Gaussian integers to use 
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GENERAL EXPONENTIAL POLYNOMIALS 19 

as a starting set of constants here, and we only mean to illustrate here the results 
and questions which are possible.) For example e" + ei is an exponential constant. 

It is an open problem whether there is an algorithm for the equality problem 
between exponential constants. Let us denote this decision problem by E Q .  Most 
decision problems about restricted exponential terms contain EQ, and thus i t  is 
natural to consider these problems relative to an oracle for EQ. For example, there 
is an algorithm relative to EQ which produces, for each restricted exponential term. 
the term which is its normal form (as in Theorem 1 . 1 ) .  This permits us to decide, 
relative to EQ, whether two terms represent the same function. (This is true iff they 
have the same normal form.) In the same way we can decide, relative to EQ, whether 
the function defined by a given restricted exponential term has a root. (It has no 
root exactly when its normal form equals a non-zero constant multiplied by an 
exponential.) 

QUESTION 5 Do there exist algorithms, relatire to E Q ,  which (a) decide whether thr 
funcrion defined by a grrm restricted exponenriui term is irreduc.ihlr, (b) Je.c,ide whr'rhw 
a giren such firnction is infinitely rlirisihle, (c) produce the ji?ctorizarion o f  a given such 
funcrion, (d) determine wherher u given Jinitr sequence of  suc4 jiinctions urc l inearl~~ 
independent over Q, ( e )  determine wherhcr or nor tr qirwn jinite sequence of such 
juncrions have a common factor in the appropriate ring A,? 

Adler [ l ]  has shown that there is no absolute algorithm for deciding whether a 
given finite set of restricted exponential terms (in several variables) define functions 
which have a common zero. (This is equivalent to saying that the existential theory 
of the exponential field (C, +, ., exp) is undecidable. Adler's proof shows that this 
undecidability result remains true even if exp(z) is replaced by 2'. a modification 
which would seem to lead to a smaller collection of exponential constants and to a 
perhaps "simpler" class of decision problems.) It seems unlikely that the introduction 
of an oracle for the equality problem EQ (which is itself likely to be decidable) would 
change this state of affairs. However, it seems interesting to consider such decision 
problems in restricted settings, such as when functions of just one variable are 
concerned. 

QUESTION 6 IS there an ulgorithm (possibly relative to an oracle for the equality 
problem EQ) which will determine whether the .finite sequence of functions, defined by 
a given sequence of restricted exponential terms involving only the single variable z,  
have a common zero? Indeed, is there un algorithm (possibly relative to an oracle .for 
some portion qf EQ) which decides whether two simple exponential polynomials 
f = pi.ezLZ and g = 1 yj.efl~' have u common zero in C? (Here the pi's and q i s  are 
polynomials in z with Gaussiun integer coefficients und the ails and pj's are Guussiun 
integers.) 
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