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INTRODUCTION

The motivation for the results given in this paper is our desire to study the entire
functions of several variables which are defined by exponential terms. By an
exponential term (in n variables) we mean a formal expression which can be built
up from complex constants and the variables z,, ..., z, using the symbols + (for
addition), - (for multiplication) and cxp(-) (for the exponential function with the
constant base e). (These are the terms and the functions considered in Section 5 of
[11]. There the set of exponential terms was denoted by Z. Note that arbitrary
combinations and iterations of the permitted functions can be formed; thus such
expressions as

7,25 explexp(z, +z3) + z3) + exp(2- z;)

are included here.) Each exponential term in n variables evidently defines an analytic

function on C"; we denote the ring of all such functions on C" by A,. This is in fact

an exponential ring; thatis, A, is closed under application of the exponential function.
It is clear that each function in A, can be written as a finite sum

Y pi-exply;)

in which p,, . . ., p, are polynomials over C in the variables z,,...,z,and g,..... g,
are also in 4,. In [11, Section 5] Nevanlinna theory is used to show that this
representation is unique, if we normalize by requiring that each of the functions g;
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satisfies ¢,(0,...,0)=0. (This amounts to subtracting a constant from g¢; and
multiplying p; by its exponential.) This argument, which is implicit in the proof of
[11, Theorem 5.2], is given in Section 1 below.

From this normal form result for 4, it follows that A, is isomorphic to a group
ring in which the group is a vector space of dimension 2 over the field ©@ and the
coefficient ring is the polynomial ring C[z,,....z,]. We use this abstract
representation of 4, and some purely algebraic arguments to prove several interesting
facts about A,. In particular we prove that it satisfies an interesting unique
factorization theorem, and that it is a coherent ring. (See Sections 3 and 4.) We also
use these ideas to give several examples which seem to have an analytic character,
but which prove to be purely algebraic. (See Section 5.)

Our unique factorization theorem for A, is of the same character as the unique
factorization theorem proved by Ritt [15]-[17] for the ring S of all simple
exponential sums

Y xeef

in which «,, ..., %, f,..... £, are complex constants. This ring is evidently just a
small subring of 4,. However, a simplc vcrsion of our normal form result for this
subring shows that it is isomorphic to a group ring in which the group is a
2%-dimensional vector space over Q@ (namely the vector space (C, +)) and the
coefficient ring is the field C. From this point of view the only difference between 4,
and the ring S is the “slightly” greater generality in the ring of coefficients. Our proof
of the unique factorization theorem for A, is closel: patterned after Ritt’s argument
for S, and the key ideas are certainly to be found in [15]-[17]. We should also note
that a similar unique factorization result is stated in [14] for the ring of exponential
sums of the form

Y pilz)-e*,

Nonetheless we wish to sketch this argument in some detail, especially because it
seems surprising that the exponential rings A4,, in which the exponents can be extremely
complicated, should satisfy a unique factorization result. (Certainly the analytic
behavior of functions in A4, can be much more complicated than that of the sums
studied by Ritt or by van der Poorten and Tijdeman.)

The normal form theorem proved in Section 1 is valid not only for the ring A4,
but also for the apparently much larger ring, which we denote by B,, of all entire
functions of n variables z,, ..., z, which can be written in the form

Y. pi-explg;)

in which each p, is a polynomial and each g, is an entire function. In fact, it follows
immediately from the normal form theorem that A, and B, are isomorphic rings for
each n = 1, that there is a retraction mapping from B, onto A,, that A, is algebraically
closed in B,, etc.

In Section 5 we give several examples and raise some questions of an analytic
character which seem interesting, and which indicate the kinds of problems about
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exponential functions which motivated us to obtain the results which are presented
here.
Throughout this paper we will make use of the group ring

Ry =Clz,,...,z,]JV, +)

in which the coefficient ring is the ring C[z,. ..., z,] of polynomials over C in the
variables z,. ..., z,, and the group (V, + ) is a divisible, torsion-free Abelian group.
(That is, the group (V, + ) is simply a vector space over the field of rational numbers.)
In this notation the number » is left as ambiguous and must be determined from the
context. In this paper all vector space concepts, such as “linear independence™ or
“linear span’ or “linear mapping” will be taken relative to the field Q of rational
numbers.
It is convenient to write the elements of R, as finite sums of the form

Y peexp(t)
in which each p; 1s a non-zero polynomiai in C{z,....,z,Jand ¢, ..., v, arc distinct
elements of V. (We will refer to the vectors v,. ... .0, as the exponents which occur
in the given element of R,..) This gives a unique representation of each element of
R,. The additive identity of R, is thus represented as the empty sum and the
multiplicative identity as I-exp{(0). This point of view amounts to replacing the
additive group (V, + ) by an isomorphic group which is written multiplicatively; the
isomorphism takes each v to exp(v}).

1. NORMAL FORMS

In Section 5 of [11] Nevanlinna theory was used to prove a normal form theorem
for A, (it 1s implicit in the proof of Theorem 5.2); essentially the same result was
proved independently using algebraic techniques by van den Dries [7] and, for 4,
by A. Wilkie [unpublished]. Here we observe that essentially the same argument
used in [11] yields a similar normal form result for the larger ring B,.

THEOREM 1.1  Each functionin B, can be written uniquely as a finite sum of the form:

m
Z p:-explg;)
i=1
where py, ..., p,arenon-zero polynomials over Cinthe variablesz,, ..., 2, 91, -+« s Gm
are distinct entire functions of z,,...,z, and we normalize by requiring that each
g;0,....0)=0.
In addition, if the function being represented is in A,, then the exponents g,, ..., g,

can be taken from A,.

Proof 'The existence of such a representation is trivial, both for B, and for A,.
To prove uniqueness, it suffices to show that if the constant function 0 is given by
such a representation, then the sum is trivial. (That is, the sum has no terms.) (To
treat the general case, take the difference between two representations of the same

function and collect terms which have the same exp(g;) part.)
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Suppose we have such a representation of the 0 function in which m is as small
as possible, but with m > 0. It is clear that we must in fact have m > 1. Dividing by

explg,), and denoting g, — g, by h; foreachi=2, ..., m, we have:
—N= Z pi-exp(hy).
i=2
Note that h,, ..., h, are distinct and non-constant, and satisfy h,(0,...,0)=0 for

each i. As argued on pages 28-29 of [11], we may apply the H-O Lemma [11,
Lemma 2.1 and the surrounding discussion]. It follows that there exist complex
constants c,, ..., c, (not all zero) such that

m

Y. ci-pirexplh) = 0.

i=2

This sum must have at least one non-trivial term, and thus vields a non-trivial
representation of the 0 function in which there are fewer than m terms. This contradicts
the minimality of m and completes the proof. [ |

Let I/ be the vector space of all entire functions ¢ of the variables z,, . . ., z, which
satisfy g(0,...,0)=0. Let W be the subspace of V' defined by

W=VnA,.

We can rephrase Theorem 1.1 by saying that B, is canonically isomorphic to the
group ring R, =C[z,,...,z,](V, +) and that the isomorphism carries the subring
Ry =Clz,.....z,J(W. +) onto A,. Note that both (V. +) and (W, +) are
2®-dimensional vector spaces over (2. This statement and the number n of variables
completely determine the structure of 4, and B, and plays the key role in what we
prove in later sections. Note that this shows in particular that 4, and B, are isomorphic
rings.

A result equivalent to Theorem 1.1 for the ring A, was proved by van den Dries
[7] using purely algebraic techniques. (His normalization of exponents is different
from ours, but the two results can easily be seen to be equivalent.) Macintyre has
extended this approach to prove a normal form theorem for the field F, of exponential
rational functions in the variables z,, .. ., z,. Each element of F, can be regarded as
an analytic function defined on a connected, dense open subset of C”; it is the smallest
field of such functions which contains the polynomial functions and is closed under
application of the exponential function e*. (The difference between F, and 4,, is that

in F, the operation of division is permitted; thus F, contains functions such as exp()

Z;
exp(z)—1 . . . .
and ——"— which are not in 4,). The normal form theorem for F, which Macintyre
Z;
proved has the consequence that F, is isomorphic, as an algebra over C[z,, ..., z,].

to the field of fractions of R,, where V is a vector space over (O of dimension 2%,
(The vector space V can be explicitly identified from the development in [13, Chapter
7] but we will not give the details here.) Thus the results proved here about the rings
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Ry can be used to obtain results concerning the fine structure of the field F,, and its
relation to 4,.

2. BASIC FACTS

Let (¥, +) be a vector space over @ and let W be a subspace of V. Evidently Ry is
a subring of R,. There is a linear mapping T of V onto W which is the identity on
W. Each such mapping T can be used to define a ring homomorphism P from R,
onto Ry which is the identity on Ry. (P is a retraction of R, onto R,.) Namely,
define P by

P(Z pi-exp(vy)) = Z pi-exp(T(z;)).

The existence of such retractions can be quite useful. For example, any element of
Ry which is a unit in R, will already be a unit in Ry; more generally, if f and ¢
arein Ry and f divides gin R, then f must already divide g in the smaller ring Ry,

As is well known, all vector spaces over @ can be given a linear ordering which
1s compatible with the vector space structure. If V is finite dimensional, with basis
Uy.....U, then we may give V the lexicographic ordering, under which Y g;-v; is
positive if its first non-zero coefficient g, is positive. Or we may embed V into R over
@ and pull back the usual linear ordering of R to get a linear ordering of V. The
Hahn Embedding Theorem [8] states that every linear ordering on V can be obtained
by a mixture of these two methods.

Linear orderings of V are very useful in obtaining results about R,. For exampile,
we can give an easy proof that R, is an integral domain. Consider f =) p; -exp(v;)
and g =3 g;-exp(w;) both non-zero. We may suppose that the exponents of f and
the exponents of g are listed in increasing order, with respect to a given linear ordering
on V. The exponents of f-g will be among the sums v; + w;. Moreover, the term
P14, -exp{v; + wy) must actually occur in the product, since no cancellation wth
other terms can take place. Hence the produce f-g cannot be 0.

Let P(z, Y)=Plzy,...,2,, Y,,..., Y,) be a polynomial over C in the indicated
n+ m variables. (For notational convenience we often write z,, ..., z, simply as z
and Y, ..., Y, as Y.) Given any m vectors in V, say w,, ..., w,, we may regard the
expression

P(zy, ...,z exp(wy), ..., exp{w,))

as an element f of R, in an obvious way. If P is a simple monomial

YooYk
then f is just
CXp(kl 'Wl + +km"vm).

In general, f/ will consist of a finite combination of such terms with appropriate
coefficients coming from C[z,, ..., z,].

Conversely, suppose wy, ..., w,, are linearly independent and f is an element of
R, whose exponents can all be written as linear combinations of wy, . . ., w,, in which
the coefficients are all non-negative integers. Then the process of the previous
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paragraph can be reversed, yielding a polynomial P(z, Y) which represents f, in the
sense that

f=Plz,,...,z.exp(w,), ....expw,)).

Finally, note that this representation of (certain) clements of R, by multivariable
polynomials is unique (as long as the same basis is being used.) That is. suppose
P(z, Y)and Q(z, Y) are polynomials over C, that w,. . . ., w,, are linearly independent
elements of V, and that

P(zy, ...y zZp €XpWy), ..., eXpW,))=0(zq, ..., Zy eXp(Wy), - . -, exp(W,,)).

Then P(z, Y)and Q(z, Y) must be equal as polynomials, as can be seen by comparing
monomials in the variables Y,, ..., Y,.

Definition 2.1 An element f of R, is normalized il it can be written in the {orm
=Pz, ..., 20 XPIW, ), ..., eXp(w,,))

where w,, ..., w,, are linearly independent elements of ¥ and P(z, Y) is a polynomial
over C which includes at least one monomial that does not contain any of the variables
Y,,..., Y, When f is given in this way, we will refer to P as giving a representation
of f with respect to Wy, ..., W,.

Note that when f is normalized, then it has one term of the form p-exp(0). with

p non-zero. Moreover, the other exponents of f are given by linear combinations of
the basis w,, ..., w,,, in which all of the coeflicients are non-negative integers.

LeEMMA 2.2 Each non-zero element g of R, can be written in the form g =exp(v)- f.
where f is normalized.

Proof Fix g and let W be the linear span of the exponents which occur in g. By
using a linear embedding, we may regard W as a linear subspace of R. (Recall that
we regard all vector spaces as over @.) Let v be the least exponent occurring in g
(in the usual ordering on R) and write the exponents in increasing order as
v<v+40,<---<v+u. It follows that if we set g=exp(—rv)-f, then g has as its

exponents the numbers 0 <v, <---<u,. Let r,...,r, be a basis over Q for the
linear span of vy, ..., 0. Foreachi=1,... klet us write
m
0=, Gyl
j=1

with all of the coefficients g;; being rational. Now choose T = (t;;) to be a non-singular
m x m matrix of rational numbers, in which each t;; is chosen to be very close to r;.
Using the non-singularity of T, there exist s,...,s, in R which are linearly
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independent over & and such that

- ¥
b= - [U S1
i=1
foreachi=1,.. ., m. Hence foreach i=1... .. k we have

m

=) Dij~ S

i=1

where the coefficients are given by

m

_ %
pi;= 2 du by
=1

Since cach ¢ is very close to ry it follows that p;; is close to ¢; itsell. Tn particular. if
this approximation is done carefully. all of the coefficients p;; w11! be positive rational

numbers. Let N be the least common denominator of these cocfficients, and define
|

w,= -s;foreachi=1,..., m. Then w, ..
N ‘

of the exponents ¢,, . . ., v, and each v, is a linear combination of these basis elements

in which each coefficient is a positive integer. The discussion above makes it clear

that ¢y must be a normalized element of R [ ]

.,w,. 18 also a basis for th

I

Note The proof of Lemma 2.2 shows that if we are given finitely many elements

g1, .- gp of Ry, then there exist vy, .. .. v, €V and normalized elements f, . ., f
of R, such that g, =exp(z;)- f; for eauh i=1, .k AND this can be done in such
a way that there is a singie set w,...,w, of lmearly independent elements of Ry
suchthat f,. ..., . f, arerepresented by polynomldlsP (z.Y). ... P.(z. Y)respectively
with respect to thc same basis w, ..., W,

The next result shows the usefulness of normalized elements of R, in reducing
factorization problems to questions about polynomials over C.

LemMa 2.3 Suppose f is a normalized element of R, represented by the polynomial

P(zy....,z Y. ..., Yo) with vespect to the basis wy, ..., w,. Let g and h be elements

of Ry satisfving { = g-h. Then there exists ve V such that the ring elements G = exp(v)-¢

and H=-exp(—¢t)-h are both normalized (and of course [ =G H). Indeed there

exist positive integers Ny, ..., N, and polynomials Q{z(,....z,. Yi..... Y,) and

Rizy,....z2, Y, ..., Y so that G is represented by Q(z, Y) and H is represented by
1 . . :

Rz, Y), with respect to the basis N W, N -w,. In this case ir necessarily follows
Ny Ny

that

Py iz YV YY) =00 Y)-Riz. Y)

as polynomials over C.
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Note In this situation the element f is obviously represented by the polynomial

. 1 1
P(zin. ooz, YY0, 00, Y¥) with respect to the basis - -w,,.... - -w.: thus the
N, N,
polynomial equation in Lemma 2.3 is equivalent to the equation f =G H.

Proof Let W be the linear span over @ of {w,,...,w,} and let < be any vector
space linear ordering on W with respect to which w, ..., w, are all > 0. It follows
that every exponent which occurs in /' must be >0, since it can be written as
a linear combination of the basis elements with non-negative integer coefficients. (Note
that because f is normalized, 0 must occur as an exponent in f.) Extend this linear
ordering in any way to the linear span of all exponents which occur in f. g or h. Let
v be the least exponent in this ordering among those which occur in g. We set
G =exp(—1t)-y and H = exp(r)-h; cvidently /= G-H, and we will show that they
satisly the other requirements in the Lemma.

The exponents which occur in G are all 20, and 0 is an exponent in G. Suppose
the exponents which occur in H are v, < --- < v, The ¢exponents occurring in the
product G- H will be included among the vectors v+ v;, where 1 <i<Cpand v occurs
in G. Hence they are all > v,. Moreover, v, must actually occur as an exponent in
G-H, since v + v; = v, can only occur when v =0 and i = 1. From this it follows that
v, must be 0, and hence the exponents which occur in H are all > 0, and include 0.

Next we show that the exponents occurring in G are in W; by a similar argument
the same must be true of H. If not, let w,,...,w, be expanded to a basis
Wg, Wi, . .., W,, ... for the linear span of W together with all exponents which occur
in G or in H. Do this in such a way that at least one exponent occurring in G has
a negative wy-coefficient when it is written in terms of this basis. On the linear span
of this basis let < be the lexicographic order; it extends the given ordering on W.
Under this ordering, the exponents of f are all =0, while at least one exponcnt of
G is < 0. But 0 occurs as an exponent in H, so that the least exponent in H must
be <0. It follows that the least exponent which occurs in the product G- H would
have to be negative, contradicting the fact that G-H = f.

Next we show that when the exponents occurring in G or in H are written as linear
combinations of w, . . ., w,, then the coefficients will all be > 0. If not, then without
loss of generality we may assume that some exponent in G has a negative w, -coefficient.
On W consider the lexicographic ordering given by the basis w, . . ., w, (which might
have been permuted). We get a contradiction as in the last paragraph: in this ordering,
the exponents of f are still >0, some exponent is G is <0, and the least exponent
of H is <0. A similar argument treats the exponents which occur in H.

For eachi=1, ...,k we now choose N, to be a common denominator for all of
the coefficients of the basis vector w,, when the exponents of f, G or H are written
as linear combinations of w,, ..., w,. These exponents can all be written in terms of
the basis

1 1

— Wy, ., W

Ny Ny
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using only coefficients which are non-negative integers. One now obtains the
polynomials Q and R from G and H and proves the last statement of the Lemma as
is described just before Definition 2.1. [ ]

Remark Suppose we are given a normalized element of Ry, represented by P(z, Y)
with respect to a basis w, . .., w,. We sce that all factorizations of this element (up
to multiplication by units of the form exp(v)) can be obtained as follows: take positive
integers N, ..., N, and factor the polynomial P(zy, . ...z, Y¥e, ... YY), say as
the product of polynomials Q,(z, Y) fori=1...., M. For each i set

1 1
G,=0)z.....zmexp| —w, )....exp| —-wi ]
Q< 1 p<N1 1) p(Nk k))

Then the original element must be equal to the product G, -. . .- Gy,. Moreover, note
that each of the factors G, must be normalized. (Since P has at least one monomial
not including any of the variables Y. . . ., Y, the same must be true of each of the 9;s.)

LemMa 2.4 Let f be a normalized element of R,.

(a) If f is irreducible in Ry.. and if f is represented by P(z, Y') with respect to some
basis, then P(z, Y) is an irreducible polynomial. (Thus every polynomial of the
form P(zy, .. .z, Y¥', ..., YY) must also be irreducible, where Ny, ..., Ny
are positive integers.)

(b) Suppose P(z, Y) is a polynomial over C with at least one monomial not containing
any of the variables Y, ..., Y. If P(z,Y) has the property that for every
N,, ..., N, the polynomial P(z,, ..., z,, YY',. .., Y{¥)is irreducible, then any
element of R, which is represented by P(z, Y) with respect to some basis must
be an irreducible element of Ry.

(c) Every irreducible element of R, generates a prime ideal in R, .

(d) If W is a vector subspace of V, and if g is an irreducible element of Ry, then
g remains irreducible in Ry. In particular, each irreducible polynomial in
Clzy,...,2,] is irreducible in Ry.

s “n

Proof Parts (a) and (b) follow immediately from what is discussed above. Part
(d) follows immediately from Lemma 2.2 and parts (a) and (b). In proving (c), it
suffices to consider normalized elements, by Lemma 2.2. Let f be an irreducible,
normalized element of R, and suppose F -G = f - H isan element of the ideal generated
by f in R,. After multiplying F, G, H by units of the form exp(v), we may suppose
that there exists a single basis w,, . . . , w,, with respect to which all of f, F, G, H have
polynomial representations. (Multiply H by such a unit to make the new product
f-H normalized and then apply Lemma 2.3.) The polynomial by which [ is
represented must be irreducible, by part (a); hence it must divide one of the
polynomials representing F or G. It follows that f must divide F or G in R,,, completing
the proof. |

It is not the case that every non-unit element of R, has an irreducible factor. For
example, consider f =1+ exp(w); this is normalized, and is represented by the
polynomial 1 + Y with respect to the basis w. By Lemma 2.3, any factor of f must
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/1 \
be (up to multiplication by a unit) of the form g = q(expkﬁw)) for some integer

N > 0 and some polynomial q(Y ) with non-zero constant term. If the complex number

1
f is one of the roots of the polynomial ¢(Y), then -8 + exp(N-w\, divides g in R,.
N /

, 1
If « is a complex number satisfying «° = f§ then g has factors (i o+ exp(zN-w>).

Hence no factor of f is irreducible in R,. The proof of the unique factorization
theorem (given in the next section) shows that in some sense this is a typical example
of an element which fails to factor as a product of primes in R,. (See especially
Lemma 3.2.)

We close this section by noting that the units of R, are exactly the elements of
the form c-exp(v) where ¢ is a non-zero complex number. Evidently every such
element is a unit. Lemma 2.2 shows that for the converse, it suffices to show that
every normalized unit is a constant. This is easily proved using the representing
polynomials as has been done several times above.

3. UNIQUE FACTORIZATION THEOREM

It is natural to call an element f of Ry, infinitely divisible if f has no irreducible factor
in Ry,. The main result in this section (Theorem 3.1) is a unique factorization theorem
which states that every non-zero, non-unit element of R, is uniquely a product of
an infinitely divisible element and a finite number of primes. Moreover, Theorem 3.1
and its proof give a detailed analysis of the infinitely divisible elements of R, .

THEOREM 3.1 Each (non-zero, non-unit) element of R, can be written uniquely as a
finite product of the form:

exp(u)-p1(exp(vy))-. . .- pu(exp(vy))-by-. . .-b,,

where by, ..., b, are primes in Ry, p,,...,p, are non-constant polynomials in one
variable over C with p,(0) # 0 for each i, and u, v, . .., v, are elements of V with the
property that no v; can be written as a rational multiple of any v; with i # j. (Uniqueness
of the factorization is up to order of the factors and up to multiplication of the factors
by units.)

Note Itis the elements {p;(exp(v;)) |i=1, ..., k} which are asserted to be unique
up to multiplication by units and order of listing. The complex polynomials
p:i(Y), ..., p(Y)arenot uniquely determined by the elements which they represent.

Proof We will first prove the existence of such a factorization. By Lemma 2.2 it
suffices to factor elements which are normalized. Let f be a normalized element,
represented by the polynomial P(z, Y) with respect to the basis w,, ..., w,. We first
assume that P(z, Y) is irreducible as a polynomial in z,,...,z, Y,,..., Y,; we will
treat the general case by factoring P and then treating the factors separately.
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We will make use of the following theorem, which is a sharpening by Gourin [9]
of a result originally proved by Ritt [15]-[17] in his analysis of factorization in the
ring of simple exponential sums. An cxposition of this theorem can also be found in
[18. Chapter 15].

THEOREM (Gourin) Let Piz,,....z, Y...., Y,) be an irreducible polynomial over
C which has at least three monomials (as a polynomial in its n+ m variables). Let d
be the maximum degree of P in its individual variables. For each m-tuple ky, ... .k,
of positive integers, there are positive integers t,,...,1,, all <d*, and integers
ly, ... by withk;=1;-1; for each j=1,...,m, such that if

P(zy,....z,, YP...., Y =T] Qiz, Y)

i=1

is a factorization into irreducible polynomials, then Q, . . .. Q, are distinct, and
r
Pizy,.. .z, Yo Y =] 0z, oz, Y oY)
i=1

is a factorization into irreducible polynomials.

We continue with the proof of Theorem 3.1, in the case where the irreducible
polynomial P(z, Y) has at least three monomials. By the theorem above, there exists
an integer D such that each of the polynomials P(z,,...,z, Y%, ..., Y& is the
produci of at most D irreducible polynomials. Let D be the smallest such bound,
and choose k,, . .., k, so that it is achieved. Let

D
Pzy ...,z Yo, .., Yy = n iz, Y)
i=1

be a factorization into irreducible polynomials. For each i=1,...,m let

1 1
b; = i 5o vy 2y €X - s - ,€X — W,
i Q (Zl p(kl W1> p(km )

so that our original normalized element f is equal to the product b, -.. .-b,,.

We claim that each b, is irreducible in R,. If not, then by Lemma 2.4(b) there
must exist I,,...,1, so that Q(z,....,z, Y%, ..., Yir) splits into at least two
irreducible factors. But it would follow from this that P(z;, . ...z, Y{", ..., Y Kl
would have at least D + 1 irreducible factors, which is impossible by the minimality
of D.

Note that this shows that if f is any normalized clement of R, which is represented
by an irreducible polynomial having at least three terms, then f is a product of
primes in R,. Moreover, the argument gives a procedure by which these primes can
{(in principle) be found.
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We must still deal with the case where the polynomial representing / has two or
fewer terms. The case where it has just one term, meaning that f is simply an element
of C[z,.....z,]).1s trivial, since irreducible polynomials in this ring remain irrcducible
in R,. Thus we are left with the case where

Pz, Y)=M,(z) + My(z)- Y. .. Y™

where M, and M, are monomials in the variables z,, ..., z,.

Suppose that M, and M, are not both constants. We may suppose that z, occurs
in one of them. Then the polynomial P(z; + 1,z,,...,2, Y,.....Y,) has at least
three monomials, so that (by the argument above) the element g of R, which is
defined by

g=Pz,+ 1. ..z explw), ..., expw,))

is a product of primes in R,.. But there is an automorphism ol R, which corresponds
to the replacement of =, by =, + 1, and this automorphism takes f to y. Hence f
must also be a product of primes in Ry

The remaining case is where P(z, Y) is of the form x+ - Y% . . Y™ with 2, §
non-zero complex numbers and ny, ..., n, not aii zero. But then f =+ B-exp(v),
where v=n;-w, +---+n,-w,#0. Hence our treatment of the case where [ is
represented by an irreducible polynomial is complete. Note that we have shown in
this case that either f is of the form o + - exp(v) for some non-zero complex numbers
a, f and some non-zero v from V, or f is a product of irreducible elements of R,..

At this point we know that an arbitrary non-zero, non-unit element of R, is equal

a Fimitn e o
to the product of a finite number of irreducible elements of R, and a finite number

of elements of the form o + f-exp(v). We now discuss how to group these latter
factors into the form required by the statement of Theorem 3.1. Suppose u;. . . .. u
are non-zero elements of V and that each u;, u; can be written as a rational multiple

1
of the other. Choose N so that each u; is an integer multiple of u = -u,. For each

i=1,...,p, consider an element of R, of the form g, =o; + f;-exp(y;), in which «;
and f; are non-zero complex numbers, and let g =g,-...-g,. Multiplying g by
appropriate units (of the form exp(—u;)) if necessary, we may suppose that each u;
in this representation is a positive integer multiple of u. say u,=k;-u. Then
g = p{exp(u)), where p is the polynomial

14
p(Y)=[] (o;+ B;- Y™).

i=1

This completes the proof that there exists a factorization of the required type for
each non-zero, non-unit element of R,.

For the uniqueness of this factorization, we need to analyze the factors of the form
f = plexp(v)) somewhat more. In particular, we will show that such an f has no
irreducible factors, and no factors of the form g(exp(u)) unless u is a rational multiple
of v.
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LEMMA 3.2 Let v be a non-zero element of V and let p(Y) be a polynomial in one
variable over C which has at least two terms. Up to multiplication by units, every factor

1
of plexp(v)) in R, is of the form q(exp(Nm)) for some integer N >0 and some

\

polynomial q(Y). (In particular, p(exp(v)) has no irreducible factors in Ry.)

Proof We may suppose that p(0) # 0: otherwise factor out a power of Y and use
the fact that (exp(v))* =exp(k-v) is a unit in R,. Then p(exp(v)) is a normalized
clement of R, . represented by p(Y) with respect to the basis v. By the remark after
Lemma 2.3, every factor of p(exp(v)) must have the required form. Moreover, any

1 1
such factor q(exp(N . v\\ of p(exp(v)) has a factor of the form —a + exp(N . v) (take

J)
\ 1 r 2
a e C with g(«) = 0) and hence further factors, for example + f + exp(zN . 1:) if g7 =a.
/
|

We now complete the proof of Theorem 3.1, by showing that the terms in the
factorization are uniquely determined (up to multiplication by units) by their product.
Using Lemmas 2.4 and 3.2 it follows that no two factors which appear in this product
have any divisors in common, if the restrictions in the statement of Theorem 3.1 are
satisfied. The uniqueness proof therefore goes along the usual lines, once we have

proved the following Lemma.

LeMMA 3.3 Let f, g, F, G be non-zero, non-unit elements of R,. Suppose fg=F-G
in R, and that f and F have no non-trivial factors in common. Then | divides
G in Ry.

Proof Applying Lemma 2.3 twice we may suppose that the elements f, g, F, G
are all normalized, represented say by polynomials P, Q, R, S with respect to the
same basis w,, ..., w,,. Hence we have P-Q =R-S. The hypothesis implies that P
and R must be relatively prime as polynomials in z,, ..., z, Y;,..., Y, Therefore
P must divide S in C[z, Y], implying that f divides H in R,. [ ]

Note that a similar argument to that used in proving Lemma 3.3 can be used to
show that if f, g€ Ry, then f divides g in R, if and only if the factors of f (according
to the factorization given in Theorem 3.1) occur among the factors of g, counting
multiplicities, up to multiplication of factors by units. It follows that in R, each finite
set of elements has a greatest common divisor and a least common multiple; indeed,
these can be obtained in the usual way directly from the factorization of the elements
as given in Theorem 3.1.

We close this section by noting that if W is a vector subspace of V and if f is an
element of Ry, then the unique factorization of f is the same in R, as in Ry.
By Lemma 2.4(d) the irreducible factors of f in Ry remain irreducible in R,, and
the infinitely divisible factors of f also remain unchanged on passing from Ry
to Ry.
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4. COHERENCE

In this section we show that the integral domains R, considered here are coherent
in the sense of Bourbaki [3, Chapters 1-2]. A commutative ring is said to be coherent
if every finitely generated ideal is finitely presented. For integral domains, this is
equivalent to the statement that the intersection of two finitely generated ideals is
finitely generated. (See [6].) Note that R, is not Noetherian, unless V = {0}. Indeed,

1
if w# 0 and we let I, be the ideal of R, generated by the element 1 -exp("-u),
n!

then it can easily be shown that {I, ’ n=1,2,...} provides a strictly increasing
sequence of ideals in R,

We will use the fact that R, is the localization of the direct limit of a family {B,}
of rings, where each ring B, is a purely transcendental extension of C (and is therefore
Noetherian) and where B, is a free B;-module whenever B, is an extension of B, in
the family. Before describing this repreqentation of R,-, we explain why it shows that
R, is coherent. First we make use of the criterion in [3, Ex. 12¢, p. 63]; it states that
the direct limit of the system {B,} is coherent, providing that: (i) each B, is coherent,

and (ii) B, is a flat B;-module whenever B; extends B;. These conditions follow from

he fact that each B, is Noetherian and that free modules are flat. Hence R, is the
localization of a coherent subring; it follows using [10] that R, is coherent.

To obtain the desired representation of R, we proceed as follows. Let ) be a basis
over Q for the vector space V. An index I consists of a positive integer i = i(I) and
a finite subset b(I) of Y. The ring B, is the subring of R, which is generated by

/

1
Clz,,...,z,] and the elements exp(.-w , where i =i(I) and web(I). We regard B,
«l /

as an extension of B, when i(I) divides i(J) and b(I) = b(J); when these conditions
are satisfied then evidently B; = B, so that we have a directed system of subrings
with the natural inclusion mappings.

Evidently each B, is a finitely generated, purely transcendental extension of C.
Indeed, we may write

B =Clzy,...,z,, Xy, ..., X, ]

1

where X, ..., X, is a list of the elements exp<.-w> with i=i(I) and web(I). If B,
i

is an extension in this family of B,, then

1/k lk
By=Clzy,. oz XV X X,y X, ]

where k is the integer such that i(J)=k-i(I) and X, ..., X,,,, is a list of all the

p+m

1
elements exp<.-w> with j=i(J) and web(J)\b(I). The elements z,,...,z,,
J

Xy, ..., X, are algebraically independent; it follows that B, is freely generated as

a B;-module by the products

p

fl e fl e

i=1
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in which n,,... n,,, arc non-negative integers and ny,...,n, are all <k. Hence
the directed system {B,} has the required properties and, as discussed above, its direct
limit is coherent. Let this direct limit be R. It is easily scen that R is the subring of
R, which is generated by C[z,,....z,] and the elements exp{q-w) where we X and
g is a positive rational number. Let S be the set of all products of these latter elements:
that 1s, S consists of all elements exp(v), where v can be written as a finitc hnear
combination of basis clements from X in which the coefficients are all non-negative.
It is evident that R, is precisely the localization of the direct limit R at the
multiplicatively closed set S. This completes the proof that R, i1s a coherent ring.

5. MISCELLANY

In this section we discuss several consequences of the results in the earlier sections
and discuss the relation between the algebraic and the analytic behavior of exponential
functions. We raise here a number of problems for further investigation.

First of all we note that A, 1salgebraically closed in B, for each n. More generally:

TaroreMm S.1 If Visavector space and W is a subspace of 'V, then Ry is algebraically

Proof  Suppose fg. ..., f, are elements of Ry (k> 0), g is in Ry, and
Y firg’=0.

Without loss of generality we may assume f, #0 and f, #0; evidently ¢ divides f,
in Ry. As noted at the end of Section 3, the unique factorization of f; is the same
in Ry as in Ry,. From the Unique Factorization Theorem (Theorem 3.1) it follows
that there exists ve V such that exp(v)-g is in Ry, {The irreducible factors of ¢ must
be among the irreduciblie factors of f,,. and hence must be in Ry up to multiplication
by a unit. The infinitely divisible factors of g must divide the infinitely divisible factors
of f,; Lemma 3.2 implies that these factors of ¢ must also be in Ry, up to multiplication
by a unit.)
Let h=exp(r)-g and F; = f;-h/ for each j=0, ..., k; we have then

Y F-exp(—jv)=0.

If ve W, then we are done. Otherwise we may construct an automorphism of ¥ which
fixes every element of W, and which maps v to any other element of '\ W. Each such
mapping gives rise to an automorphism of R, which leaves the elements of Ry, fixed;
it follows that the polynomial equation

has infinitely many roots in R,, which is impossible. (Indeed, this equation would
be satisfied by every Y = exp(— u), where u is an element of V\ W) [ |

Note For the logician we remark that if ¥V and W arc as in Theorem 5.1, and if
W has infinite dimension over @, then Ry, must actually be an elementary subring
of Ry. In particular, 4, is an elementary subring of B, for each n. This can be proved
using the Tarski test for elementary submodels (see [5]) and the easy fact that (when
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W is infinite dimensional) for any given elements f,, ..., f, of Ry and g of R, there
is an automorphism of R, which leaves each f; fixed and which moves g into R,
This automorphism comes from a linear automorphism of V which fixes each exponent
of fi..... Jr and which moves all the exponents of g into W.

In contrast to these results. the nature of the algebraic relation of 4, or B, to the
ring of all entire functions of n variables is very unclear. For example, we do not
know how to answer the following natural question.

QUESTION 1 If f is an entire function of n variables and [ is an element of B,, then
must f also be in B,? (A positive answer would give the same result with B, replaced
by A,, using Theorem 5.1.)

If f and gy are elements of B, with no common zero, then we can find entire
functions F and G which solve the Bezout equation

f-F4+ag-G=1.

However, we need not be able to find F and G in B,. For example, suppose
S =1+exp(z)and y = 1 +exp(z?). Writing B, = R, for an appropriate vector space
V, we see that f = 1 + exp(v)and g = 1 + exp(w) for exponents v, w which are linearly
independent over . From Lemma 3.2 it follows that f and g havc no non-trivial
common factor in B;. However, there cannot exist F, G in B, which solve the Bezout
equation for f, g. If otherwise, we may assume without loss of generality that all
exponents of F, G lie in the linear span of {v, w}. (Apply a retraction of V onto the
linear span of {v, w} as discussed at the beginning of Section 2.) Choose an integer
k large enough so that all exponents of F and of G are > —k(v + w) in the lexicographic
ordering on the span of {v, w}. As discussed in Section 2, we may therefore obtain
polynomials P(Y,, Y,) and Q(Y,, Y,) over C such that

1 1
exp( — k(v + w))-F = P<exp< '1;)7 exp< W>>
r S
1 1
exp(_k(U+W))'G=Q<eXp< 'l’>,6xp<-w>>
r S

for appropriate integers r and s. After multiplying through by exp(—k(v+ w)) and
using the uniqueness of the representation of elements of R, by polynomials, we
obtain the polynomial equation

and

(1+ Y5)-P(Y,, Vo) + (14 Y3)- QY. Yy) = Y- Y
This is impossible, as can be seen by taking Y, and Y, to be appropriate roots of
unity in C.
A similar argument (shown to us by A. Macintyre and L. van den Dries) shows
that the identity 1 is not even in the E-ideal generated by 1 + exp(z) and 1 + exp(z?)
in A;. (An ideal I is an E-ideal if fel always implies exp(f)—1€l. See [7].) If
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otherwise, then there would be an exponential term 1 in two variables such that
7(0,0)=0 and

1=1(1 +exp(z), | +exp(z?)).

From the results proved in [7] it follows that this equation must hold as an identity
in all E-rings. However, one can use the methods of [7] to construct an E-ring with
an element o satisfying E(x) = E(2?) = — 1, thus obtaining a contradiction.

QUESTION 2 Given f and g in A, or in B,, is there any “‘algebraic™ way to recognize
that [ and g have no common zero?

Ritt [17] showed that if f and g are simple exponential sums (of the form ) «;-e*

for some complex numbers «,. ..., %, f,,..., ) and iff is an entire function, then
g

! must itself be a simple exponential sum. (That is, if g divides f in the ring of entire
g

functions. then g divides f in the ring of simple exponential sums.) Berenstein and
Dostal [2] extended this result to functions of several variabies. The entire functions
1—e* ~sin(m-z?) , . ,

— — and (more subtly) — { - are quotients of functions in A,, but are not

z sin(m-z)

themselves elements of A,. (This can be shown by a fairly simple argument based
on the Normal Form Theorem, Theorem 1.1.) It is an open question whether there

is any generalization of the Ritt result to 4, or B,. For example:

QUESTION 3 If f,ge A, and S is an entire function, then must there exist an
g

exponential term which defines g and which is syntactically simpler than any exponential
term which defines [

In this question we may reasonably assume that f and g have no non-trivial
common factor in the ring 4,. The example f = sin(rn-z2), gy = sin(r - z) seems especially
suggestive here.

One may ask several related questions concerning the possible zero sets of functions
in A, or B,, and rather little seems known here, even for n=1. While sin(z-z) has
Z as its zero set, it is not hard to show that no function defined by an exponential
term, indeed no function in B, can have N as its zero set. (If f were such a function,
then we could write

RO
I 2)—l_(z)e

where h is an entire function and I'(z) is the usual Gamma function. From this it
sin(n-z) 1

would follow that =
Tz rd+z)-Ir(1 —z)

would be in B, ; this is false, as noted

above.)
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QursTioN 4 We conjeciure: if fe A, and if [{(ky=0 for k=1,2,3, ..., then also
f(0)y=0. (Applying this repeatedly to f(z — k) would vield the further conclusion that
firi=0 forall res.)

To provide a little support for this conjecture, we prove that it holds when f is a
simple exponential polynomial,

f(z)=3 qdz)-e?”

for complex polynomials g, . . ., g, and complex numbers A, ..., 4,. To do this we
make use of some p-adic analysis as in the proof of the Skolem Mabhler-Lech
Theorem. In particular, we invoke the following result of Cassels [4]. (See also [12]
for other appiications of this resuit to obtain several generalizations of the
Skolem- Mahler--Lech Theorem.)

THEOREM C (Cassels) Let K be a finitely generated field extension of @, und ler C

ho o finite cot of npn zprs plompnie nf K Then th of smfinifol

g o

primes p such that there is an embedding - K — Q, of K into Q, for which |p(c)f, = |
for all ceC.

Suppose that fizj is a simpic exponential polynomiai as above and that f{kj=0
for every positive integer k. Let C be the collection of all the coefficients of ¢, .. ., g,
and all of 4,, ..., 4, and let K be Q(C). Let ¢: K - Q, bc onc of the ecmbeddings
given by Theorem C. Let Q; be the polynomial over @, which is the image of g,

under ¢ (foreachj=1, ..., k)andlect F be the function on Q, which is defined by
F(z)=) Q)z)-e”?=

It 1s easy to sec that F is given by a power serics in the p-adic variable z

(using =y ::) and that this series converges in a suitable p-adic disc about z = 0.

By hypothesis, F vanishes at infinitely many p-adic integers. Hence the zeros of F
have a p-adic limit point, so that F' must be identically 0 on Q. In particular F(0)=0
and consequently also f(0) =0, which was to be proved.

Note that the above conjecture becomes false if one replaces A, by B,. This is

because the function
o)
P 1 —z)
is an element of B,.

There are several decision problems for exponential terms which are connccted
with the results given here. These make sense only when we restrict the constants
which are allowed to occur; let us consider here just the case where we aliow only
Gaussian integers (a + b-i, a. be Z) as constants. We will call an exponential term
(and the function it defines) restricred if it is built up from constants for the Gaussian
integers (but not for any other complex numbers) and from the variables, using
addition, multiplication and exponentiation. If the term contains no variable, then
we will refer to the complex number which it represents as an exponential constant.
(There are natural sets of complex numbers other than the Gaussian integers to use
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as a starting set of constants here, and we only mean to illustrate here the results
and questions which are possible.) For example e¢’ + ¢' is an exponential constant.

It is an open problem whether there is an algorithm for the equality problem
between exponential constants. Let us denote this decision problem by EQ. Most
decision problems about restricted exponential terms contain EQ, and thus it is
natural to consider these problems relative to an oracle for EQ. For example. there
is an algorithm relative to EQ which produces, for each restricted exponential term,
the term which is its normal form (as in Theorem 1.1). This permits us to decide,
relative to EQ, whether two terms represent the same function. (This is true iff they
have the same normal form.) In the same way we can decide, relative to EQ, whether
the function defined by a given restricted exponential term has a root. (It has no
root exactly when its normal form equals a non-zero constant multiplied by an
exponential.)

QUESTION 5 Do there exist algorithms, relative to EQ, which () decide whether the
function defined by a given restricted exponential term is irreducible, (b) decide whether
a given such function is infinitely divisible, (c) produce the factorization of a given such
function, (d) determine whether a given finite sequence of such functions are linearly

wch

independent over Q, (e) determine whether or not a given finite sequence of such
functions have a common factor in the appropriate ring A,?

Adler [1] has shown that there is no absolute algorithm for deciding whether a
given finite set of restricted exponential terms (in several variables) define functions
which have a common zero. (This is equivalent to saying that the existential theory
of the exponential field (C, +, -, exp) is undecidable. Adler’s proof shows that this
undecidability result remains true even if exp(z) is replaced by 27, a modification
which would seem to lead to a smaller collection of exponential constants and to a
perhaps “simpler™ class of decision problems.) It seems unlikely that the introduction
of an oracle for the equality problem EQ (which is itself likely to be decidable) would
change this state of affairs. However, it seems interesting to consider such decision
problems in restricted settings, such as when functions of just one variable are

concerned.

QUESTION 6 Is there an algorithm (possibly relative to an oracle for the equality
problem EQ) which will determine whether the finite sequence of functions, defined by
a given sequence of restricted exponential terms involving only the single variable z,
have a common zero? Indeed. is there an algorithm (possibly relative to an oracle for
some portion of EQ) which decides whether two simple exponential polynomials
f=S pi-e* and g =Y q;-¢b* have a common zero in C? (Here the p;’s and q;'s are
polynomials in z with Gaussian integer coefficients and the a;’s and B;’s are Gaussian
integers.)
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