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Abstract

Sparse interpolation refers to the exact recovery of a function as a short linear com-
bination of basis functions from a limited number of evaluations. For multivariate
functions, the case of the monomial basis is well studied, as is now the basis of expo-
nential functions. Beyond the multivariate Chebyshev polynomial obtained as tensor
products of univariate Chebyshev polynomials, the theory of root systems allows to
define a variety of generalized multivariate Chebyshev polynomials that have con-
nections to topics such as Fourier analysis and representations of Lie algebras. We
present a deterministic algorithm to recover a function that is the linear combination
of at most r such polynomials from the knowledge of » and an explicitly bounded
number of evaluations of this function.
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1 Introduction

The goal of sparse interpolation is the exact recovery of a function as a short linear
combination of elements in a specific set of functions, usually of infinite cardinality,
from a limited number of evaluations, or other functional values. The function to
recover is sometimes referred to as a blackbox: it can be evaluated, but its expression
is unknown. We consider the case of a multivariate function f(xi,..., x,) thatis a
sum of generalized Chebyshev polynomials and present an algorithm to retrieve the
summands. We assume we know the number of summands, or an upper bound for this
number, and the values of the function at a finite set of well-chosen points.

Beside their strong impact in analysis, Chebyshev polynomials arise in the rep-
resentation theory of simple Lie algebras. In particular, the Chebyshev polynomials
of the first kind may be identified with orbit sums of weights of the Lie algebra sl
and the Chebyshev polynomials of the second kind may be identified with characters
of this Lie algebra. Both types of polynomials are invariant under the action of the
symmetric group {1, —1}, the associated Weyl group, on the exponents of the mono-
mials. In presentations of the theory of Lie algebras [10, Ch.5,§3], this identification
is often discussed in the context of the associated root systems, and we will take this
approach. In particular, we define the generalized Chebyshev polynomials associated
with a root system, as similarly done in [26,38,40,43,44,51]. Several authors have
already exploited the connection between Chebyshev polynomials and the theory of
Lie algebras or root systems (e.g., [17,45,56]) and successfully used this in the context
of quadrature problems [35,39,41,44] or differential equations [51].

A forebear of our algorithm is Prony’s method to retrieve a univariate function as
a linear combination of exponential functions from its values at equally spaced points
[49]. In exact computation 5, mostly over finite fields, some of the algorithms for the
sparse interpolation of multivariate polynomial functions in terms of monomials bear
similarities to Prony’s method and have connections with linear codes [2,7]. General
frameworks for sparse interpolation were proposed in terms of sums of characters of
Abelian groups and sums of eigenfunctions of linear operators [18,24]. The algorithm
in [33] for the recovery of a linear combination of univariate Chebyshev polynomials
does not fit in these frameworks though. Yet, as observed in [4], a simple change
of variables turns Chebyshev polynomials into Laurent polynomials with a simple
symmetry in the exponents. This symmetry is most naturally explained in the context
of root systems and Weyl groups and leads to a multivariate generalization.

Previous algorithms [4,21,33,47] for sparse interpolation in terms of Chebyshev
polynomials of one variable depend heavily on the relations for the products, an iden-
tification property, and the commutation of composition. We show in this paper how
analogous results hold for generalized Chebyshev polynomials of several variables
and stem from the underlying root system. As already known, expressing the multipli-
cation of generalized Chebyshev polynomials in terms of other generalized Chebyshev
polynomials is presided over by the Weyl group. As a first original result, we show how
to select n points in Q" so that each n-variable generalized Chebyshev polynomial is
determined by its values at these n points (Lemma 2.25 or 2.30, and Theorem 2.27).
A second original observation permits to generalize the commutation property in that
we identify points where commutation is available (Proposition 3.4).

Elol:;ﬂ
@ Springer Lﬁjog



Foundations of Computational Mathematics (2022) 22:1801-1862 1803

To provide a full algorithm, we revisit sparse interpolation in an intrinsically multi-
variate approach that allows one to preserve and exploit symmetry. For the interpolation
of sparse sums of Laurent monomials, the algorithm presented (Sect. 3.1) has strong
ties with a multivariate Prony method [32,42,54].

It associates with each sum of r monomials f(x) = ), a,x®, wherex® =
)c‘l)‘1 ...xy" and a, in a field K, a linear form  : Kx,x" '] > K given by
Q(p) = Y, aap(Ly) wWhere &, = (%1, ..., &%) for suitable £. This linear form

allows us to define a Hankel operator from K[x, x ! to its dual (see Sect. 4.1) whose
kernel is an ideal I having precisely the ¢, as its zeroes. The ¢, can be recovered as
eigenvalues of multiplication maps on K[x, x~!]//. The matrices of these multipli-
cation maps can actually be calculated directly in terms of the matrices of a Hankel
operator, without explicitly calculating /. One can then find the ¢, and the a, using
only linear algebra and evaluation of the original polynomial f(x) at well-chosen
points. The calculation of the («1, ..., o) is then reduced to the calculation of log-
arithms. In fact, a reader can get a taste for some of our methods in the context of
sparse interpolation in terms of monomials by reading Sects. 3.1, 4.1, and 4.2.

The usual Hankel or mixed Hankel-Toepliz matrices that appeared in the litera-
ture on sparse interpolation [7,33] are actually the matrices of the Hankel operator
mentioned above in different univariate polynomial bases considered. The recovery of
the support of a linear form with this type of technique also appears in optimization,
tensor decomposition, and cubature [1,8,13,34]. We present new developments to take
advantage of the invariance or semi-invariance of the linear form. This allows us to
reduce the size of the matrices involved by a factor equal to the order of the Weyl
group (Sect. 4.3).

For sparse interpolation in terms of Chebyshev polynomials (Sects. 3.2 and 3.3),
one again recasts this problem in terms of a linear form on a Laurent polynomial ring.
We define an action of the Weyl group on this ring and note that the linear form is
invariant or semi-invariant according to whether we consider generalized Chebyshev
polynomials of the first or second kind. Evaluations, at specific points, of the function
to interpolate provide the knowledge of the linear form on a linear basis of the invariant
subring or semi-invariant module. In the case of interpolation of sparse sums of Laurent
monomials, the seemingly trivial yet important fact that (§#)% = (£*)# is crucial to
the algorithm. In the multivariate Chebyshev case, we identify a family of evaluation
points that provides a similar commutation property in the Chebyshev polynomials
(Lemma 3.4).

Since the linear form is invariant, or semi-invariant, the support consists of points
grouped into orbits of the action of the Weyl group. Using tools developed in analogy to
the Hankel formulation above, we show how to recover the values of the fundamental
invariants (Algorithm 4.16) on each of these orbits and, from these, the values of the
Chebyshev polynomials that appear in the sparse sum. Furthermore, we show how
to recover each Chebyshev polynomial from its values at n carefully selected points
(Lemmas 2.25 or 2.30, and Theorem 2.27).

The relative cost of our algorithms depends on the linear algebra operations used
in recovering the support of the linear form and the number of evaluations needed.
Recovering the support of a linear form on the Laurent polynomial ring is solved
with linear algebra after introducing the appropriate Hankel operators. Symmetry
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reduces the size of matrices, as expected, by a factor equal to the order of the group.
Concerning evaluations of the function to recover, we need evaluations to determine
certain submatrices of maximum rank used in the linear algebra component of the
algorithms. To bound the number of evaluations needed, we rely on the interpolation
property of sets of polynomials indexed by the hyperbolic cross (Proposition 4.5,
Corollary 4.13), a result generalizing the case of monomials in [54]. We show that our
method uses fewer evaluations than when one expands the Chebyshev polynomials into
Laurent polynomials and determines the total support of a r-sparse sum of Chebyshev
polynomials now considered as a sum of r times the order of the group Laurent
monomials (see Sect. 5). One stricking result is that for multivariate Chebyshev
polynomials associated with .4, the number of evaluations needed to recover the
support of a sum of r such polynomials is the same as the number of evaluations to
recover the support of a sum of  Laurent monomials (see Examples 3.5 and 3.9).

The paper is organized as follows. In Sect. 2, we begin by describing the connection
between univariate Chebyshev polynomials and the representation theory of traceless
2 x 2 matrices. We then turn to the multivariate case and review the theory of root
systems needed to define and work with generalized Chebyshev polynomials. The
section concludes with the first original contribution: we show how an n-variable
Chebyshev polynomial, of the first or second kind, is determined by its values on
n special points. In Sect. 3, we show how multivariate sparse interpolation can be
reduced to retrieving the support of certain linear forms on a Laurent polynomial ring.
For sparse interpolation in terms of multivariate Chebyshev polynomials of the first
and second kind, we show how we can consider the restriction of the linear form to the
ring of invariants of the Weyl group or the module of semi-invariants. In Sect. 4, we
introduce Hankel operators and their use in determining algorithmically the support
of a linear form through linear algebra operations. After reviewing the definitions
of Hankel operators and multiplication matrices in the context of linear forms on a
Laurent polynomial ring, we extend these tools to apply to linear forms invariant under
a Weyl group and show how these developments allow one to scale down the size of
the matrices by a factor equal to the order of this group. Throughout these sections we
provide examples to illustrate the theory and the algorithms. In Sect. 5, we discuss
the relative costs of the algorithms, and in Sect. 6 we discuss the global algorithm and
point out some directions of further improvement.

2 Chebyshev Polynomials

In this section, we first discuss how the usual Chebyshev polynomials arise from con-
siderations concerning root systems and their Weyl group. This approach allows us to
give higher dimensional generalizations of these polynomials [26,44]. We review the
results about root systems and representation theory allowing us to define the general-
ized Chebyshev polynomials of the first and second kind. This section concludes with
the first original result in this article necessary to our purpose: we show how one can
determine the degree of a Chebyshev polynomial from its values at few well-chosen
points.
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2.1 Univariate Chebyshev Polynomials

The univariate Chebyshev polynomials of the first and second kind arise in many
contexts; approximation theory, polynomial interpolation, and quadrature formulas
are examples. A direct and simple way to define these polynomials is as follows.

Definition 2.1 1. The Chebyshev polynomials of the first kind, (T,(x) | n =
0, 1,2, ...}, are the unique monic polynomials satisfying

-1 n —n
T,(cos(f)) =cos(nf) or T, (x—i—x ) alin .

2 )

2. The Chebyshev polynomials of the second kind, {(7,, x)|n=0,1,2,...}, are the
unique monic polynomials satisfying

sin((n +1)6)

U, 0)) =
n(cos(0)) Sn@)
g x4+ x! _ x @+ _ —=04D R S SR
2 x—x—1

The second set of equalities for Tn and f/n are familiar when written in terms of x = ¢‘?

sincecosnf = % (¢’ + e~"%) andsin(nf) = % (¢ — e~"%). We introduced these
equalities in terms of x for a clearer connection with the following sections.

These polynomials also arise naturally when one studies the representation theory of
the Lie algebra sl; (C) of 2 x 2-matrices with zero trace [17,56]. Any representation v :
sl (C) — gl,,(C) is a direct sum of irreducible representations. For each nonnegative
integer n, there is a unique irreducible representation 7, : sl(C) — gl ;(C) of
dimension n 4 1 (see [55, Capitre IV] for a precise description). Restricting this
representation to the diagonal matrices {diag(a, —a) | a € C}, this map is given by
m, (diag(a, —a)) = diag(na, (n —2)a, ..., (2 —n)a, —na). Each of the maps
diag(a, —a) — ma,form =n,n—2, ..., 2 —n, —n is called a weight of this
representation. The set of weights appearing in the representations of sl (C) may
therefore be identified with the lattice of integers in the one-dimensional vector space
R. The group of automorphisms of this vector space that preserves this lattice is
precisely the two element group {id, o'} where id(m) = m and o (m) = —m. This
group is called the Weyl group W.

We now make the connection between Lie theory and Chebyshev polynomials.
Identify the weight corresponding to the integer m with the weight monomial x™ in
the Laurent polynomial ring Z[x, x~'] and let the generator o of the group W act on
this ring via the map o - x"" = x° _ For each weight monomial x™, m > 0, we can
define the orbit polynomial

On(x)=x"+x7"T
FoCT
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71 Springer |05



1806 Foundations of Computational Mathematics (2022) 22:1801-1862

and the character polynomial
EBp(x) = x4+ x" 24X,

Note that for each m, both of these polynomials lie in the ring of invariants
Zix, x 1Y = Z[x + x1] of the Weyl group. Therefore, there exist polynomials
T,(X) and U,(X) such that ©,(x) = T,(x + x~!) and E,(x) = U,(x + x71).
The Chebyshev polynomials of the first and second kind can be recovered using the
formulas

T,(X) = %TH(ZX) and U, (X) = U,(2X).

The previous discussion shows how the classical Chebyshev polynomials arise
from representation of a semisimple Lie algebra and the action of the Weyl group on a
Laurent polynomial ring. As noted above, this discussion could have started just with
the associated root system and its Weyl group and weights. This is precisely what we
do in Sects. 2.3 and 2.4 where we define a generalization of these polynomials for any
(reduced) root system.

2.2 Root Systems and Weyl Groups

We review the definition and results on root systems that are needed to define gener-
alized Chebyshev polynomials. These are taken from [10, Ch.VI], [25, Ch.8] or [55,
Ch.V] where complete expositions can be found.

Definition 2.2 Let V be a finite dimensional real vector space with an inner product
(-, -) and R a finite subset of V. We say R is a root system in V if

1. R spans V and does not contain 0.
2. If p,p € R, then s,(p) € R, where s, is the reflection defined by s,(y) =

(0, p) 5
3. Forall p, p €R, ZM eZ.
(0, o)

4. If p e R,and c € R, then cp € R if and only if ¢ = £1.

The definition of s, above implies that (s, (1), s,(v)) = (u, v) forany u,v € V.

In many texts, a root system is defined only using the first three of the above
conditions and the last condition is used to define a reduced root system. All root
systems in this paper are reduced so we include this last condition in our definition and
dispense with the adjective “reduced.” Furthermore, some texts define a root system
without reference to an inner product (c.f. [10, Ch.VI], [55, Ch.V]) and only introduce
an inner product later in their exposition. The inner product allows one to identify V
with its dual V* in a canonical way and this helps us with many computations.

Definition 2.3 The Wey! group W of a root system R in V is the subgroup of the
orthogonal group, with respect to the inner product (-, -), generated by the reflections
Sp, p €R.

Elol:;ﬂ
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One can find a useful basis of the ambient vector space V sitting inside the set of
roots :

Definition 2.4 Let R be a root system.
1. Asubset B ={pq,..., p,} of Ris abase if

(a) B is a basis of the vector space V.
(b) Every root ;t € R can be written as u = «1p1 + - + o pp OF L = —1 0] —
...— o, p, for some o € N”.

2. If B is a base, the roots of the form u© = a1p1 + - - - + a;, p, for some o € N" are
called the positive roots and the set of positive roots is denoted by R™.

A standard way to show bases exist (c.f. [25, Ch 8.4], [55, Ch.V,§8]) is to start by
selecting a hyperplane H that does not contain any of the roots and letting v be an
element perpendicular to H. One defines Rt = {p € R | (v, p) > 0} and then shows
that B = {p € R* | p # p’ + p” for any pair p’, p” € RY}, the indecomposable
positive roots, forms a base. For any two bases B and B’ there exists a ¢ € W such
that o (B) = B’. We fix once and for all a base B of R.

The base can be used to define the following important cone in V.

Definition 2.5 The closed fundamental Weyl chamber in V relative to the base B =
{p1,..., on}is M = {v € V | (v, pi) = 0}. The interior of AA is called the open
fundamental Weyl chamber.

Of course, different bases have different open fundamental Weyl chambers. If L; is
the hyperplane perpendicular to an element p; in the base B, then the connected com-
ponents of V —|J7_, L; correspond to the possible open fundamental Weyl chambers.
Furthermore, the Weyl group acts transitively on these components.

The element

that appears in the definition of s, is called the coroot of p. The set of all coroots is
denoted by RY and this set is again a root system called the dual root system with the
same Weyl group as R [10, Ch.VI, § 1.1], [25, Proposition 8.11]. If B is a base of R
then BY is a base of RV.

A root system defines the following lattice in V, called the lattice of weights. This
lattice and related concepts play an important role in the representation theory of
semisimple Lie algebras.

Definition 2.6 Let B = {p1, ..., p,} the base of R and BY = {p’, ..., p,’} its dual.
1. Anelement p of V is called a weight if

(1, pi)
(w,p) =2-—"—L €Z
(pis pi)
fori =1, ..., n. The set of weights forms a lattice called the weight lattice A.
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2. The fundamental weights are elements {wi,...,w,} such that (w;, pjv) =
(Sl‘,j,l',j = 1,...,n.

3. A weight u is strongly dominant if (u, p;) > 0 for all p; € B. A weight u is
dominant if (u, p;) > 0forall p; € B, i.e., u € M.

Weights are occasionally referred to as integral elements, [25, Ch.8.7]. In describing
the properties of their lattice it is useful to first define the following partial order on
elements of V [28, Ch.10.1].

Definition 2.7 For vy, v; € V, we define v; > v; if v; — v; is a sum of positive roots
or vy = vy, thatis, vy — vy =) 7_, n;p; for some n; € N.

The following proposition states three key properties of weights and of dominant
weights which we will use later.

Proposition 2.8 [. The weight lattice A is invariant under the action of the Weyl group
W.

2. Let B = {p1, ..., pn} be a base. If u is a dominant weight and ¢ € W, then
w > o (). If u is a strongly dominant weight, then o () = p if and only if o is
the identity.

1 n
3. 5= 3 Z p is a strongly dominant weight equal to Z w;.
peRT i=1
4. If w1 and 1y are dominant weights, then (1, (1z) > 0.

Proof The proofs of items 1., 2., and 3. may be found in [28, Section 13.2 and 13.3].
For item 4. it is enough to show this when 1 and p, are fundamental weights since
dominant weights are nonnegative integer combinations of these. The fact for funda-
mental weights follows from Lemma 10.1 and Exercise 7 of Section 13 of [28] (see
also [25, Proposition 8.13, Lemma 8.14]). O

Example 2.9 The (reduced) root systems have been classified and presentations of
these can be found in many texts. We give three examples, Ay, A3, B>, here. In most
texts, these examples are given so that the inner product is the usual inner product
on Euclidean space. We have chosen the following representations because we want
the associated weight lattices (defined below) to be the integer lattices in the ambient
vector spaces. Nonetheless there is an isomorphism of the underlying inner product
spaces identifying these representations.

Aj1. This system has two elements [2],[-2]in V = R!. The inner product given by
(u,v) = %uv. A base is given by p; = [2]. The Weyl group has two elements,
given by the matrices [1] and [—1].

Aj. This system has 6 elements +[2 —I]T, +[-1 Z]T, +[1 I]T € R? when the inner
product is given by (i, v) = u"S v where

121
5=3 [1 2} '
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s
@Sprmger L0



Foundations of Computational Mathematics (2022) 22:1801-1862 1809

A base is given by p = [2 —I]T and pp = [—1 2]T. We have (p;, p;) = 2 so that
p; = p; fori ={1,2}.
The Weyl group is of order 6 and represented by the matrices

U u Ena e e

where A1 and A, are the reflections associated with p; and pp. We implicitly
made choices so that the fundamental weights are w; = [1 O]T and wy = [O l]T.
The lattice of weights is thus the integer lattice in R?, and orbits of weights are
represented in Fig. 1.

B,. This system has 8 elements £[2 —2]", £[—12]", £[02]", £[1 0] when the
inner product is given by (u, v) = u'S v where

121
525[11]'

A base is given by p; = [2 —2]" and p» = [~12]". We have (p, p1) = 2 and
(p2, p2) = 1. Hence, p; = p1 and p,’ = 2 po. The Weyl group is of order 8 and
represented by the matrices

i e A B e
LA A

We implicitly made choices so that the fundamental weights are w1 = [1 O]T and

wy = [O l]T. The lattice of weights is thus the integer lattice in R?, and orbits of
weights are represented in Fig. 1.

Convention: We will always assume that the root systems are presented in such
a way that the associated weight lattices are the integer lattice. This implies that the
associated Weyl group lies in GL, (Z).

We may assume that there is a matrix S with rational entries such that < v, w >=
v'Sw. This is not obvious from the definition of a root system but follows from
the classification of irreducible root systems. Any root system is the direct sum of
orthogonal irreducible root systems ( [28, Section 10.4]) and these are isomorphic to
root systems given by vectors with rational coordinates where the inner product is the
usual inner product on affine space [10, Ch.VI, Planches I-IX]. Taking the direct sum
of these inner product spaces one gets an inner product on the ambient space with S
having rational entries. For the examples we furthermore choose S so as to have the
longest roots to be of norm 2.

Elol:';”
@ Springer Lﬁjog



1810 Foundations of Computational Mathematics (2022) 22:1801-1862

[ ]
oo
[ ]

oooo 15
|} [ ] ]
oooooo
EEEROEREDRN
o oo o
EEEEmEOEENN
o oooooao
EeoeENEEOEEREDR n
o oo
EEEeOR o n L
ooo opooon o o
L3R 2R 2 LR 2R 2K 2 [ °
L NG 2R 28 2N B 2 oo o
L 2R JNORX 2R 2% 4 * L 2R 2
L 2R 2 o 69 & *
L 2R 2R 2K 2 LR 2K 2 2R 2K 2K 2
L IR 2K 2 BNOIR 2 | [ IR 2
L 2R 4 LB 2K SR 2% X L 2R 2
* ¢ m &0 M9 L 2R 2R 2% 4 s u
oo u] u]
’ ’ EEEeENONEON
D - D o oo °
98y d 2 8 EeEEENOENEENON
. O * ooooooodo
PP -0{EEEEOeEEENHN
oooooao
¢n ¢ EEEoOoEETR
LI A 4 oo noooooo
L 2 ] * * Enenm
R R Oe e -15 mooo
s 0 . °
oo
-9 ¢ ¢ * . °

Fig. 1 Ay-orbits and B;-orbits of all @ € N2 with || < 9. Elements of an orbit have the same shape
and color. The orbits with 3, or 4, elements are represented by circles, the orbits with 6, or 8, elements by
diamonds or squares. Squares and solid disc symbols are on the sublattice generated by the roots (color
figure online)

2.3 Generalized Chebyshev Polynomials of the First Kind

As seen in Sect. 2.1, the usual Chebyshev polynomials can be defined by considering
a Weyl group acting on the exponents of monomials in a ring of Laurent polynomials.
We shall use this approach to define Chebyshev polynomials of several variables as in
[26,44]. This section defines the generalized Chebyshev polynomials of the first kind.
The next section presents how those of the second kind appear in the representations
of simple Lie algebras.

Let A and W be the weight lattice and the Weyl group associated with a root
system. With wy, ..., @, the fundamental weights, we identify A with Z" through
w— o =]|ay,...,a,]" where w = qjw; + - - - + apwp.

An arbitrary weight ® = ajw] + -+ + oy, € A is associated with the weight
monomial x* = x{" ... x,". In this way one sees that the group algebra Z[A] can be
identified with the Laurent polynomial ring Z[x1, ..., X, xl_l, A x;]] = Z[x*].
The action of W on A makes us identify WV with a subgroup of GL,(Z).

Let K be a field of characteristic 0 and denote K \ {0} by K*. The linear action of
Won K[x*] = K[x1, ..., Xy, x] ', ..., x; ']is defined by

W x Kx®] — K[x*], where 2.1
(A, x%) > A-x% = x4,
FolCT
s
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Wehave (A- f)(x) = f (xA). One can see the above action on K[x*] as induced by
the (nonlinear) action on (K*)" defined by the monomial maps:

Wx (K" — (K*)" 2.2)
(A7 ;) |—>A*é'=[{1,...,;’n]Ailzl:;'Ajl’ _.'7€-A;1:|

where A;l is the i-th column vector of A~!. Such actions are sometimes called
multiplicative actions [36, Section 3].
For a group morphism x : W — {—1, 1}, a, B € Z" we define

wr= " x(B hHxPe (2.3)
BeWw
One sees that
A WX =W = x(A) WL 2.4)

W is generated by reflections, which have order 2. Hence, any group morphism y :
W — K*, ie., a linear character of the group, satisfies X(A)2 = 1 and has thus
values in {—1, 1}. Two such morphisms are of particular interest: x(A) = 1 and
x (A) = det(A). In the former case we define the orbit polynomial ®,. In the latter
case we use the notation Y.

Oy = Z xB¢  and Y, = Z det(B) x5, (2.5)
BeW BeWw

where we used the simplification det(B~!) = det(B). Then (2.4) becomes

A-Oy=0, and A-Yy=det(A) Yy, Vo ecZ. (2.6)

Proposition 2.10 We have

OuOp =Y Ourpp, YuOp=Y Yuynp, YuYp= ) det(B)Ouipp.
BeW BeW BeWw

Proof This follows in a straightforward manner from the definitions. O

Note that ®, is invariant under the Weyl group action: ®y = A - 4 = © 44, for
all A € W. The ring of all invariant Laurent polynomials is denoted Z[x*]"V. This
ring is isomorphic to a polynomial ring for which generators are known [10, Ch.VI,
§3.4 Théoreme 1].

Proposition 2.11 Let {wy, ..., w,} be the fundamental weights.
Elol:';”
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1. {Oy,,...,0,} is an algebraically independent set of invariant Laurent polyno-
mials.
2. ZIxFY = Z[@,,,, ..., Oy, ]

We can now define the multivariate generalization of the Chebyshev polynomials
of the first kind (cf. [26,38,40,44]). Note that since any ®, is invariant under the Weyl
group action, Proposition 2.11 implies that ®, may be written as a polynomial in
{Ou,, ..., O, } Furthermore, since these latter Laurent polynomials are algebraically
independent, this polynomial expression is unique.

Definition 2.12 Let « € N” be a dominant weight. The Chebyshev polynomial of the
first kind associated with « is the unique polynomial 7, in K[X] = K[X1, ... X,]
such that Oy = T4 (O, . .., Opy,).

We shall usually drop the phrase “associated with «” and just refer to Chebyshev
polynomials of the first kind with the understanding that we have fixed a root system
and each of these polynomials is associated with a dominant weight of this root system.

Example 2.13 Following up on Example 2.9.

A1 : As we have seen in Sect. 2.1, these are not the classical Chebyshev polynomials
strictly speaking, but become these after a scaling.

A : We can deduce from Proposition 2.10, as done in the proof of Proposition 2.23,
the following recurrence formulas that allow us to write the multivariate Cheby-
shev polynomials associated with .4, in the monomial basis of K[X, Y]. We
have

Too=6; Tio=X, Tox=Y; 4T11=XY—12;
and fora,b > 0

2Tg42,0 = X Tav1,0 — 4741,
2Top+2 = Y Topr1 — 4T1p;
2Tgt16 = X Ty p — 2Ty b1 — 270 p—1,
2Tap+1 =Y Tap —2T4416 — 2Ta—1b-

For instance,

To=31X2-2Y, Ti1=4YX-3 To=1ir>-2x;
_ 1 3 3 _ 1 y2 1 y2 1 _ 1 2 1 2 1
I3o=3X"—5YX+6 T =g XY —5Y"—5X, T1p=gXY " —5X"—>
Y, Tos=1r-3rx+e6
Tyo= 3 X* = X2V + Y2 +4X, Toa=4Y*—Xr2+Xx%+4v,
=1 XY —3XY2-1X2+3v, Ti3=4Vx-3x2v-1r2+3x,
o= X2¥2-1x3-1y34+rx -3

FoCT
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B; : Similarly, we determine

Topo=8 Tio=X, Ton=Y;
Do=3X2—Y2+4X+8, T =1YX-Y, Too=1r>-2x-8
T30=3X3—3Xy2+3X2+9X, To3=1v3 -3 Xy -3v,
=g XY+ 3 XY —1Y343Y, T o= g Xx¥2 - S x2-3X;
Tyo=g X* -5 X2r242X3 +10X% —2XY2 + L r* —4¥? + 16X +38
Toa=gV*—XY?-2Y2+ X2 +8X +8,

T3 =1 X3V — Zxv3+ 3 X2y + 13+ 3 xy -3y,
Ti3=1 VX -3 X?Y — XY +7,

To=XY2+ L x2y2 v+ 3v2 - 1x3-3x2- 10X -38.

2.4 Generalized Chebyshev Polynomials of the Second Kind

We now describe the role that root systems play in the representation theory of semisim-
ple Lie algebras and how the Chebyshev polynomials of the second kind arise in this
context [11, Ch.VIII, §2,6,7], [19, Ch.14], [25, Ch.9].

Definition 2.14 Let g C gl,(C) be a semisimple Lie algebra and let h be a Cartan
subalgebra, that is, a maximal diagonalizable subalgebra of g. Let 7 : g — gl(W) be
a representation of g.

1. Anelementv € bh*,the dual of b, is called aweight of T if W), = {w € W |r(h)w =
v(h)w for all & € b} is different from {0}.

2. The subspace W, of W is a weight space and the dimension of W, is called the
multiplicity of v in 7.

3. v € h* is called a weight if it appears as the weight of some representation.

An important representation of g is the adjoint representation ad : g — gl(g) given
by ad(g)(h) = [g,h] = gh — hg. For the adjoint representation, f is the weight
space of 0. The nonzero weights of this representation are called roots and the set of
roots is denoted by R. Let V be the real vector space spanned by R in h*. One can
show that there is a unique (up to constant multiple) inner product on V such that R
is a root system for V in the sense of Sect. 2.2. The weights of this root system are
the weights defined above coming from representations of g so there should be no
confusion in using the same term for both concepts. In particular, the weights coming
from representations form a lattice. The following is an important result concerning
weights and representation.

Proposition 2.15 [55, §VII-5,Théoreme 1;§VII-12, Remarques] Let g C gl,(C) be
a semisimple Lie algebra and m : g — gl(W) be a representation of g. Let E =
{1, ..., ur} be the weights of w and let n; be the multiplicity of ;.

-
1. The sum Z niu; € A is invariant under the action of the Weyl group.
i=1
FolCT
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2. Ifm is an irreducible representation then there is a unique i € E such that 1 > W;
fori =1,...,r. This weight is called the highest weight of 7 and is a dominant
weight for R. Two irreducible representations are isomorphic if and only if they
have the same highest weight.

3. Any dominant weight w for R appears as the highest weight of an irreducible
representation of g.

Note that property 1. implies that all weights in the same Weyl group orbit appear
with the same multiplicity and so this sum is an integer combination of Weyl group
orbits.

In the usual expositions one denotes a basis of the group ring Z[A] by {e" | u €
A} [11, Ch.VIIL §9.1] or {e(n) | 1 € A} ([28, §24.3]) where e* - ¢! = e#**+* or
e(n) - e(r) = e( + A). With the conventions introduced in the previous section, we
define the character polynomial and state Weyl’s character formula.

Definition 2.16 Let w be a dominant weight. The character polynomial associated
with w is the polynomial in Z[xE]

o]

o= mx

reAy

where A, is the set of weights for the irreducible representation associated with w
and n;, is the multiplicity of A in this representation.

From Proposition 2.15 and the comment following it, one sees that E, =
>_p<a 1pOp. Here we abuse notation and include all ®g with B < o evenif B ¢ Aq
in which case we let ng = 0.

Theorem 2.17 (Weyl character formula) § = %Z per+ P IS a strongly dominant
weight and

Y5 Bo = Yots where Ty = Y det(B)x"*.
BeWw

The Weyl character formula is usually written as E,, = Y45/ s (c.f. [25, Theo-
rem 10.14]) and the formulas in Definition 2.1 are a manifestation of this latter form
(see Example 2.20.1). Nonetheless, this formula is most useful to us in the former
form as will become apparent in Sect. 3.3

The earlier cited [ 10, Ch. VI, §3.4 Théoréme 1] that provided Proposition 2.11 allows
the following definition of the generalized Chebyshev polynomials of the second kind.
Furthermore, as for Chebyshev polynomials of the first kind, the polynomials defined
below exist and are unique.

Definition 2.18 Let « € N" be a dominant weight. The Chebyshev polynomial of the
second kind associated with « is the unique polynomial U, in K[X] = K[ X1, ... X, ]
such that B4 = Uy (O, ..., Oy,).
FolCT
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This is the definition proposed in [44]. In [38], the Chebyshev polynomial of the
second kind are defined as the polynomial Ua such that 2, = Ua(Ewl, ooy By
This is made possible thanks to [10, Ch.VI, §3.3 Théoreme 1] that also provides the
following result.

Proposition 2.19 Let {wy, ..., w,} be the fundamental weights.
1. {4, ..., Bw,} is an algebraically independent set of invariant Laurent polyno-
mials.

2. ZIx* = Z[B,,, ..., B

on -

One sees from [10, Ch.VI, §3.3 Théoreme 1] that an invertible affine map takes
the basis {O,, ..., O, } to the basis {E,, ..., Ey,} so results using one definition
can easily be applied to situations using the other definition. The sparse interpolation
algorithms to be presented in this article can also be directly modified to work for this
latter definition as well. The only change is in Algorithm 3.10 where the evaluation
points should be

(Ewl (faTs), ..., Bo, (faTS)) instead of (®w1 (g“TS), O, (éaTS)) ‘

As with Chebyshev polynomials of the first kind, we shall usually drop the phrase
“associated with @” and just refer to Chebyshev polynomials of the second kind with
the understanding that we have fixed a root systems and each of these polynomials is
associated with a dominant weight of this root system.

Example 2.20 Following up on Example 2.9

Ajp: As we have seen in Sect. 2.1, the Chebyshev polynomials of the second kind
associated with A; are the classical Chebyshev polynomials of the second kind
after a scaling. Indeed, in Definition 2.1 we have E, = x" + xtl oy,
Ys =x —x"land Yoyus = x"H1 —x71

Ay : We can deduce from Proposition 2.10 (as done in the proof of Proposition 2.23)
the following recurrence formulas that allow us to write the multivariate Cheby-
shev polynomials associated with .4; in the monomial basis of K[ X, Y]. We have
Upo=1and, fora,b > 1,

2Uq41,0 = XUq,0 —2Uq—1,1, 2Uo,p+1 =YUo,p —2Ug+1,6—1
2Ugy1,6 = XUy p —2Uq—1,p+1 —2Ug b1, 2Ug b1 =YUs b —2Uqy1,0—1 —2Ua—1

For instance

Uo=3X. Upi=3Y:
Uro=4X2-1y. vi=4xy-1 vp=5r2-1x
Uso=4X3-Lxv+1, vps=1Lvi-Lxr+n,
Upi=4x2v=Ly2-1x v ,=1xr2-1x2-1y
Uso=t x4 =3 x2y +1v2 4 X, Upa=kvi-3xv2+1x2+v,
Usi=g X3y —Lxy2 - Lx24v. v 3=Lxv3-ix?r-Lly2ix
Uzpp=1 X2r2 -1 x3 - Lv3
FoC Tl
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B, : Similarly we determine

Uoo=1 Uo=1ix-1 Up1=1vr
Uro=4X2-1x-1y2 v =3xv-v, v=ir2-1x
Uso=3%3 Ups=Lv3-txr+ly
Upi=4 X2y =1v3—vy, vp=4xy2-Ly2-Lx24lxiq,

Uso= s Xt =13 - 2 x2v24 Ixy2 - Lx24 Lyt i+ Lx, vga=Lrt-3xy?

+ir24ix?on,
Usi=5 X3y - Lxy3 - Sxy+ i3+ ix?r—v, vs=Lxrdi-Lyd_Lx%

+1xr+ay,

L y2y2_ Lyd 12 1y3 1 y2  Lyy2 1y_
Upp= e X2v2— kvt ly2 I3+ I X2+ fxv2+ lx—1

We note that the elements Y, appearing in Theorem 2.17 are not invariant
polynomials but are skew-symmetric polynomials, that is, polynomials p such that
A - p = det(A)p. The K-span of all such polynomials form a module over K[x*]"
which has a nice description.

Theorem 2.21 [10, Ch.VL,§3,Proposition 2] With § = % ZpeR+ o, the map

KxE1W > K[x¥]
p Tsp

is a K[xE1Y-module isomorphism between K[x*1 and the K[x=1"Y-module of skew-
symmetric polynomials.

This theorem allows us to denote the module of skew-symmetric polynomials by
YsKxEPV.

2.5 Orders

In this section we gather properties about generalized Chebyshev polynomials that
relate to orders on N”. They are needed in some of the proofs that underlie the sparse
interpolation algorithms developed in this article.

Proposition 2.22 For any a, B € N" there exist some a, € N with ayyg # 0 such
that

OuOp= Y a®, YuOp= Y aT.

veN" veN"
v=<a+p v=<a+p

and the cardinality of the supports {v € N" |v < a + B, and a, # 0} is at most |W)|.

Proof From Proposition 2.10, we have Oy Og = 3 5oy Outpps, YaOp =
Y gew Ya+np. If © € N" is the unique dominant weight in the orbit of « + Bf
then Oy pg = O, and Yo pg = Y. We next prove that 4 < o + B.

Elol:;ﬂ
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Let A € Whe such that A(o + BB) = u. Since A, AB € VWwe have Aa < « and
ABpB < B (Proposition 2.8.2). Therefore, Ao = o — Y m;p; an ABB =B —> n;p;
for some m;, n; € N. This implies

A(+BB) =Aa+ABB=a—Y mipi+B— Y nipi
=a+pB—) (mi+n)p

sou=A(a+ Bp) <a+ B. m]

Proposition 2.23 Foralla € N*, T, = Z t,c;Xfj and Uy = Z uﬂX’3 where ty, # 0
B<a B=<a

anduy # 0.

Proof Note that the (w;, w;) are nonnegative rational numbers by Proposition 2.8.
Therefore, the set of nonnegative integer combinations of these rational numbers forms
a well-ordered subset of the rational numbers. This allows us to proceed by induction
on (8, ) to prove the first statement of the above proposition.

Consider § = % > peR+ P = Y i_, w; (Proposition 2.8). As a strongly dominant
weight § satisfies (8, p) > 0 for all p € R™. Furthermore, for any dominant weight
o # 0, (8, w) > Osince (p, w) > 0 forall p € R, with at least one inequality being
a strict inequality. Hence, (§, ¢ — w;) < (§, a).

The property is true for Tp and Up. Assume it is true for all 8 € N" such that
(6, B) < (8, a),x € N". Thereexists | <i < nsuchthate; > 1. By Proposition 2.22,
Ow Ou—w; = Y e @Oy With a, # 0. Hence, aq Ty = XiTy—w; — Z:);;g a,T,.
Since v < a, v # «, implies that (§, v) < (§, «), the property thus holds by recurrence
for {To Joen-

By Proposition 2.15, &, is invariant under the action of the Weyl group. Further-
more, any orbit of the Weyl group will contain a unique highest weight. Therefore,
Eq = Zﬁ<a ng®pg with ny # 0. Hence, Uy = Zﬂ<a ng Ty and so the result follows
from the above. The property holds for {Uy },cn as it holds for {7y} en- O

The following result shows that the partial order < can be extended to an admissible
orders on N”. Admissible order on N" define term orders on the polynomial ring
K[X{, ..., X, ] upon which Grobner bases can be defined [6,14]. In the proofs of
Sects. 3 and 4 some arguments stem from there.

Proposition2.24 Let B = {p1,..., p,} be the base for R and consider § =
% ZpeR+ 0. Define the relation < on N"* by

(6,a)<(8,B) or
(8, ) =(8, B) and {p2, a) <(p2, B) or
a<f &
(8,)=(8, B) and {pp, ) =(p2, B), - .., (on—1, @) ={pu—1, B), {pn, @) < {pn, B) or
a=p

Then < is an admissible order on N", that is, for any o, 8,y € N"

[0...0]T§y, anda < B = a+y <B+y.
Elol:';”
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Furthermore, « < f = o < B.

Proof We have that (p,a) > 0 for all p € B and @« € N". Hence, since § =
% Zp€R+ p, {8, a) > Ofor all dominant weights . Furthermore, since {p1, 02 ..., pn}
is a basis for V = K", so is {6, p2, ..., pn}. Hence, < is an admissible order.

We have already seen that § is a strongly dominant weight (Proposition 2.8). As
such (8, p) > O for all p € R*. Hence, if ¢ < B, witho # B, then 8 = o — mip1 —
...—myup, withm; € N, at least one positive, so that (3, ) < (§, B) and thus @ < .

O

2.6 Determining Chebyshev Polynomials from Their Values

The algorithms for recovering the support of a linear combination of generalized
Chebyshev polynomials will first determine the values ©®,, é"‘TS for certain « but

for unknown w. To complete the determination, we will need to determine w. We will
show below thatif {1, ..., u,} are strongly dominant weights that form a basis of the
ambient vector space V, then one can choose an integer £ that allows one to effectively
determine o from the values

(©u(6“") 11=i<n)

or from the values

(Ew(éf’“TS) |1§i§n>.

We begin with two facts concerning strongly dominant weights which are crucial
in what follows.

e If 11 and u; are dominant weights, then (w1, w2) > 0 (Proposition 2.8).

e If B is a base of the roots, p € B and p is a strongly dominant weight, then
(i, p) > 0. This follows from the facts that (i, p*) > 0 by definition and that p*
is a positive multiple of p.

Also recall our convention (stated at the end of Sect. 2.2) that the entries of S are in
Q. We shall denote by D their least common denominator. Note that with this notation
we have that D(u, v) is an integer for any weights u, v.

Lemma 2.25 Let u be a strongly dominant weight and let & = EOD where & € N
satisfies

3 2
§o > G
1. If w be is a dominant weight, then

D - (1, @) = [logg, (O, (E""5))]

where |-] is the usual floor function.
FoC'T
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2. If w is a strongly dominant weight, then
. T
D - (i, ») = nint[log (T, (" %)]

where nint denotes the nearest integer'

Proof 1. Let Stab(w) denote the stabilizer of w in W, that is the subgroup of elements
of W leaving w fixed, and let s denote its cardinality. We have the following

Ou («f;'MTS) = Z S“TS(’(‘”) = Z gm0 @)

oew oeW
== Z EODW’ 7@) Wwhere C is a set of coset representatives of W/Stab(w).

oeC

— SE(?W'(U)(l + Z g(?(ﬂwa(w)_(U)).
o#l,0eC

We now use the fact that foroc € W, o(0) — o = =Y peB ng p for some nonnegative
integers ng. Ifo € C, 0 # 1 we have that not all the ng are zero. Therefore, we have

Dl — Y o5 1
0, (7) =sgl0 a4 Y g TR
o#l,oeC

=s& A+ Y &M,

o#l,oeC
where each m,, is a positive integer. This follows from the fact that D (i, p) is always

a positive integer for u a strongly dominant weight and p € B. It is now immediate
that

sgPme < @, (sMTS) . 2.7)

Since £ > (3|W)? > /W] we have

3

1 —Ms —1 =

+ E § =<1+, < 3
o#l,o0eC

and so

_ 3
sé N+ Y so’”“)<§sg(?<“*“’>. (2.8)
o#l,0eC

! in the proof we show that the distance to the nearest integer is less than % so this is well defined.
FolCT
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To prove the final claim, apply log, to (2.7) and (2.8) to yield

TS 3
D(u, ) +log; s < logg (O, <E(§L )) < D{u,w)+ logso(zs).
Using the hypothesis on the lower bound for &), we have
s =M < 2 () 2= logg,(59) < -
Therefore,

1
Diu, ) < loge (0, (§"'°)) < Di. @) + 3

which yields the final claim.

2. Since w is a strongly dominant weight, we have that forany 0 € W, w < o (w)
and o (w) = w if and only if ¢ is the identity (c.f. Proposition 2.8). In particular, the
stabilizer of w is trivial. The proof begins in a similar manner as above.

We have

» (g:MTS> — Z det(or)%‘“TSG(w) - Z det(o)g M@

ogeW ocewW

— %—ODUL(U)(] + Z det(o,)%-oD“lvU(w)_w))‘
o#l,oeW

We now use the fact that foro € W, o (w) —w = — ) peB ng p for some nonnegative

integers n‘;. Ifo € W, 0 # 1 we have that not all the n‘; are zero. Therefore, we have

Yo (S"TS) =ElO+ Y det(o)g T Zoen i)

o#l,oeW

=& "0+ Y det(o)g ™),

o#l,oeW|

where each m, is a positive integer. This again follows from the fact that D{u, p) is
always a positive integer for p a strongly dominant weight and p € B. At this point
the proof diverges from the proof of 1. Since for any o € W, det(o0) = £1, we have

I-Vg < 1= 30 &™ <1+ Y det(0)g "™
o#l,oceW o#l,oeW
= R DR NS T 147
o#l,oeW
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Therefore,

=g D =T, (87) = & ar g @9)

_1 1
We will now show that 1 — |VV|‘§0_1 > &, *and 1+ |VV|$0_1 <& .
_1 3 _1

1- |)/V|f;‘0_1 > &, * : This is equivalent to & — §; = & (1 — &, *) > [W|. Since

_1
& > (%|W|)2, itis enough to show that 1 —§, s g|W|’1.T0 achieve this it suffices
to show 1 — (%|W|)’% > ‘§‘|VV|’1 or equivalently, that f(x) = x — (%x)% — g >0

when x > 2. Observing that f(2) > 0 and that f/(x) = 1 — %(%x)_% > 0 for all
x > 2 yields this latter conclusion.

1 5 1
1+ |W|§0_1 < &, :Thisis equivalent to £} — & = &0(5§; —1) > [W|. In a similar

1 1
manner as before, it suffices to show ‘2‘|VV|2($O4 - >Worg —1> %|W|’1.

1
To achieve this it suffices to show %2 |W|% -1 > ‘§1|VV|_1 or equivalently, f(x) =
1

% x% —x—‘9—‘>0f0rx > 2. Observing that f(2) > O and f/(x) > O forall x > 2

yields the latter conclusions.
Combining these last two inequalities, we have

(S}

B B T
%.()D(M,w)g_.o 74 _ SOD(“"")(I — (W 1) <Yy (%-M S)

<& A+ VET < g Mg

Taking logarithms base &y, we have

1 T 1
Dip, @) = 7 < logg, (T, (87%)) < Dlu. @) + 5

which yields the conclusion of 2. O

The restriction in 2. that @ be a strongly dominant weight is necessary as Y, = 0
when o belongs to the walls of the Weyl chamber [10, Ch.VL§3]. Furthermore, the
proof of Lemma 2.25.2 yields the following result which is needed in Algorithm 3.10.

Corollary 2.26 If 8 is a dominant weight and & = EOD with & € Nand &y > |W), then
Ts(ECHITS) £ 0.

Proof Note that both § and § + B are strongly dominant weights. As in the proof of
Lemma 2.25.2, we have

s (E((S—HS)TS) _ Z det(c)gG+PTSI®) Z det(o)& +B- o)
ocew oceWw
_ SOD(5+5,5)(1 + Z det(o)§£<5+ﬂ’g(5)_a))
o#l,oeW
Elol:;ﬂ
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We now use the fact that foroc € W, 0(§) =3 =—)_ peB ng p for some nonnegative
integers n7. If o € W, o # 1 we have that not all the n7 are zero. Therefore, we have

Ty (§TS) = g0 4 Y det(o)E T Zoen o))
o#l,oeW

=5 P00+ Y det(o)g, ™),

o#l,oeW|

where each m, is a positive integer. This follows from the fact that D(§ + 8, p) is
always a positive integer p € B since é 4 B is a strongly dominant weight. Therefore,
we have

T —m _
Ty (0PS) =20 Y derogg ™) = 6 A - g = 0,
o#l,oelW|

O

Theorem 2.27 Let {u1, ..., un} be a basis of strongly dominant weights and let & =
(&0)P with & > (% |W|)2. One can effectively determine the dominant weight w from
either of the sets of the numbers

{®w<g“iT5) li=1,....n} or {Ea,(f;””TS) li=1,....,n} (2.10)

Proof Lemma 2.25.1 allows us to determine the rational numbers {{u;, ) | i =
1,...,n} from {®, (E“iTS) |i =1,...,n.}. Since the y; are linearly independent,
this allows us to determine w.

To determine the rational numbers {(;, w) |i = 1