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In this note, I give an explication of some results of Daniel Bertrand and in particular the
following

Theorem 1 Let k be an ordinary differential field with algebraically closed constants and let
K be a Picard-Vessiot extension of k. Assume that Gal(K/k) is reductive. Let y ∈ K
satisfy a homogeneous linear differential equation L(y) = 0 of order m with coefficients in
k. If y satisfies no homogeneous linear differential equation of smaller order (for example,
if L is irreducible), then there exists a u algebraic over K such that u′ = y if and only if
L∗(z) = 1 has a solution z ∈ k, where L∗(z) is the adjoint equation of L(y) = 0. In
this case, u = −π(y, z) is a solution of u′ = y where π(y, z) is the Lagrange bilinear
concomitant.

Note that if the operator L is irreducible over k, then Gal(K/k) is reductive and y satisfies
no homogeneous linear differential equation of smaller order

The above follows from Theorem 1 and Lemma 4 of Daniel Bertrand’s paper [3]. I will try to
unravel his proof and (I hope) make things more transparent. To motivate the proof of the
general result I will first explain in the next section what happens when L has order 1 and
K is the associated Picard-Vessiot extension. Following this I will give a proof of the full
theorem and finally apply this result to the Airy equation and Bessel functions. All fields in
this paper are of charactersitic zero.

1 Order 1 Equations

Let k be a differential field with algebraically closed constants C. Let

L(y) =
dy

dx
− ay = 0 (1)

∗Most of this appeared in a March 10, 2012 letter to Bruno Salvy
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be a first order linear differential equation with a ∈ k and (abusing notation) let K = k(y)
be the Picard-Vessiot extension corresponding to this equation. Let G ⊂ GL1(C) denote
the Galois group, where the action of σ ∈ G is given by σ(y) = cσy for some cσ ∈ C.

Assume that an integral of y, denoted by
∫
y, is algebraic over K. One first notes that

∫
y

must actually lie in k(y). Too see this, let P (z) = zn+an−1z
n−1+ . . .+a0 be the minimal

monic polynomial satisfied by z =
∫
y. Differentiating P (

∫
y) = 0 and using minimality one

sees that y = (an−1/nI)
′ and so

∫
y = an−1/n+ c for some constant c ∈ k.

The Galois group acts on
∫
y and, for any σ ∈ G we wish to see what σ does to

∫
y. We

would like to say that σ(
∫
y) = cσ

∫
y but this may not be true. Nonethless, we will see how

we can arrange for this to be true.

Differentiating σ(
∫
y), we have

(σ(

∫
y))′ = σ(y) (2)

= cσy (3)

so

σ(

∫
y)− cσ

∫
y = ξσ ∈ C. (4)

The map σ 7→ ξσ is not a homomorphism fromG to the additive group C but rather satisfies
the following identity for σ, τ ∈ G

ξστ = ξσ + cσξτ . (5)

Now assume the following lemma (which I will prove below).

Lemma 2 If σ 7→ ξσ is a map from a subgroup G ⊂ GL1(C) = C\{0} such that equation
(5) holds, then there exists a β ∈ C such that

ξσ = cσβ − β (6)

for all σ ∈ G.

Let β be as in the lemma and let z =
∫
y + β. For any σ ∈ G, we have

σ(z) = σ(

∫
y + β)

= cσ

∫
y + ξσ + β (by the definition of ξσ)

= cσ

∫
y + cσβ − β + β

= cσz.
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Therefore the action of σ ∈ G on y and on z are the same and so

σ(
z

y
) =

z

y
for any σ ∈ G.

The Galois theory implies that z
y
= v ∈ k. Therefore z = vy. Differentiating, we have

z′ = v′y + vy′ = v′y + vay.

Dividing the equality y = v′y + avy by y we get 1 = v′ + av, that is, L∗(v) = 1 where L∗

is, by the definition below the adjoint of L.

Conversely if there is a v ∈ k such that 1 = v′ + av, then vy is an integral of y. Therefore
the result above is proved in this case.

Let me now give a proof of Lemma 2.

Proof of Lemma 2. Regretably, this is just a calculation. We follow the proof of Lemma
10.2, Ch. VI§10 of [9]. First note that if G is the trivial group, then we may take β = 0.
Therefore we may assume that there is some element τ of the group such that cτ 6= 1. Note
that for id, the identity element, ξid·id = ξid + ξid so ξid = 0. Since

0 = ξid = ξττ−1 = ξτ + cτξτ−1

we have
cτξτ−1 = −ξτ .

Since G is commutative, we have for any σ ∈ G

ξσ = ξτστ−1 = ξτ + cτξστ−1

= ξτ + cτ (ξσ + cσξτ−1)

= ξτ + cτξσ + cσcτξτ−1

= ξτ + cτξσ − cσξτ

so

ξσ − cτξσ = ξτ − cσξτ

We therefore have
ξσ = cσ(−

ξτ

1− cτ
)− (−

ξτ

1− cτ
).

Letting β = − ξτ
1−cτ

yields the conclusion of the Lemma.

2 Equations of any order.

There were two key parts to the above proof. The first was changing the given integral
∫
y

into z =
∫
y + β on which the Galois group acted in the same way as it acts on y. This
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is the point of Lemma 2. This lemma is a statement from group cohomology. In particular,
it says something about the first cohomology group. The first cohomology group measures
“extensions” of groups and naturally arises here because when we adjoin an integral of an
element, we are possibly extended the Galois group by a copy of (C,+). I do not want to
make this precise but this is the heart of Bertrand’s argument in his paper [3]. I will state
the generalization of Lemma 2 without proof but use this in a way similar to the way I used
it above. The second part was noticing that since the Galois group acted on z and y in the
same way we could write z in terms of y and then easily deduce the conclusion. This also
needs to be generalized but one can easily do this.

2.1 A Little Bit of Group Theory.

In the case of order 1 equations, the Galois group is a subgroup of GL1(C) = C\{0}. Such
groups have very special properties but the one that is most relevant is that if we represent
such a group as matrices acting on a (possibly) larger vector space V and U is a subspace
of W that is left invariant under the action of these matrices, then there is a complementary
invariant subspace V such that V = U ⊕W . In general, we have the following definition.

Definition 3 A linear algebraic group G ⊂ GLn(C) (i.e. a Zariski closed subgroup of
GLn(C)) is said to be reductive if for any G-invariant subspace U of Cn, then there exists
another G-invariant subspace W ⊂ Cn such that Cn = U ⊕W .

Note that if G acts irreducibly on Cn (i.e., no invariant subspaces) then G is reductive. This
is not the usual definition but, in characteristic zero, it is equivalent to the usual definition
(see p.216, ex. 14 of [6]). For such groups we have an analog of Lemma 2. We need some
definitions to state this.

Let G be a group and V a G−module, that is a finite dimensional vector space on which
G acts as linear transformations. A map ξ : G → V where ξ(σ) = ξσ is a 1-cocyle if
ξστ = σ(ξτ ) + ξσ. A 1-cocycle is called a 1-coboundary if there exists a v ∈ V such that
ξσ = σ(v) − v. The 1-cocycles form a group (under addition) designated by Z1(G,V )
and the 1-coboundaries form a subgroup designated by B1(G,V ). Let H1(G,V ) =
Z1(G,V )/B1(G,V ). The following is proved in [5], p. 194. An elementary proof may
be deduced from Proposition 2 of [3].

Lemma 4 Let G be a reductive group. Then for any G−module V , H1(G,V ) = 0.

The following is the generalization of Lemma 2 that we need.

Corollary 5 Let G be a reductive group. Assume G ⊂ GL(V ) where V is a finite dimen-
sional vector space and write [σ] for the matrix representing σ ∈ G. Let ξ : G→ V where
ξ(σ) = ξσ. If ξστ = ξσ · [τ ] + ξτ , then there exists a v ∈ V such that ξσ = v · [τ ]− v.

Proof: ξ does not satisfy the cocycle condition so we cannot apply Lemma 4 immediately.
Let Gopp be the opposite group of G, that is the group defined on the elements of G using
the multiplication σ?τ = τσ. G is isomorphic toGopp via the map σ 7→ σ−1. ξ is a cocycle
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for Gopp and now the result follows from Lemma 4.

In Lemma 2, the group was a commutative group so we did not need to worry about left or
right multiplication, but in the above we do.

2.2 A Little Bit of Galois Theory.

I will now prove the result which corresponds the fact used above allowing us to write z = vy
in Section 1.

Lemma 6 LetK be a Picard-Vessiot extension of k with constantsC. Let V ⊂ K andW ⊂
K be finite dimensional Gal(K/k)-invariant vector spaces over C. If {v1, . . . , vn} and
{w1, . . . , wn} are bases of V and W such that for any σ ∈ Gal(K/k) the matrices of σ
with respect to {v1, . . . , vn} and {w1, . . . , wn} are the same, then there existα0, . . . , αn−1

in k such that ui =
∑n−1
j=0 αjv

(j)
i for i = 1, . . . , n.

Proof: It is well known ([7], p. 21) that elements z1, . . . , zn of K are linearly independent
over C if and only if the determinant of the wronskian matrix det(Wr(z1, . . . , zn)) 6= 0,
where Wr(z1, . . . , zn) is the n × n matrix (z

(j)
i ). Let {v1, . . . , vn} and {w1, . . . , wn} be

as above and let [σ] be the matrix of σ ∈ Gal(K/k). We then have σ(Wr(v1, . . . , vn)) =
Wr(v1, . . . , vn) · [σ] and σ(Wr(w1, . . . , wn)) = Wr(w1, . . . , wn) · [σ] so
A = Wr(v1, . . . , vn)·Wr(w1, . . . , wn)

−1 is left invariant byGal(K/k). Therefore the en-
tries of A are left invariant by Gal(K/k). The first column of A gives the desired elements
αi.

2.3 Integrals in Picard-Vessiot Extensions

We now combine Lemma 6 and Corollary 5 to show:

Proposition 7 Let K be a Picard-Vessiot extension of k. Assume that Gal(K/k) is a
reductive group. Let y ∈ K satisfy a homogeneous linear differential equation

L(y) = a0y
(m) + a1y

(m−1) + . . .+ amy = 0 (7)

with coefficients in k.

1. If there exists a u ∈ K such that u′ = y, then there exist αi ∈ k and c ∈ C such that

u = c+ α0y + α1y
′ + . . .+ αm−1y

(m−1) (8)

2. If, in addition, y satisfies no linear homogeneous differential equation of order smaller
than m, then L∗((−1)(m+1)(1/a0)αm−1) = 1, where L∗ is the adjoint equation of L.
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Proof: (1) Let V be the C−span of {σ(y) | σ ∈ Gal(K/k)}. Since y satisfies a homo-
geneous linear differential equation of order m, the dimension of V is at most m. V has
a basis of the form y1 = y, y2 = σ2(y), . . . , yt = σt(y) for some σi ∈ Gal(K/k). For
σ ∈ Gal(K/k), let [σ] be the matrix such that σ(y1, . . . , yt) = (y1, . . . , yt)[σ]. We first
note that σi(u)′ = σi(u

′) = σi(y) = yi. Let ui = σi(u). Using this notation, we have for
any σ ∈ Gal(K/k),

(σ(u1), . . . , σ(ut))
′ = (σ(y1), . . . , σ(yt))

= (y1, . . . , yt) · [σ]
= ((σ(u1), . . . , σ(ut)) · [σ])′

Therefore, ξσ = (σ(u1), . . . , σ(ut))− (σ(u1), . . . , σ(ut)) · [σ] ∈ Cn. Since

(σ(τ (u1)), . . . , σ(τ (ut))) = σ((y1, . . . , yt) · [τ ] + ξτ )

= ((y1, . . . , yt) · [σ] + ξσ) · [τ ] + ξτ )

= ((y1, . . . , yt) · [σ][τ ] + ξσ · [τ ] + ξτ

we have ξστ = ξσ · [τ ] + ξτ . Therefore, Corollary 5 implies that there exists a c =
(c1, . . . , ct) ∈ Ct such that ξσ = c[σ] − c. Let (z1, . . . , zt) = (σ(u1), . . . , σ(ut)) + c.
One easilly checks that σ((z1, . . . , zt)) = (z1, . . . , zt) · [σ]. Therefore Lemma 6 implies
that there exist α0, . . . , αt−1 ∈ k such that z1 = u+ c1 = α0y+ . . .+αt−1y

(t−1) and the
conclusion of part (1) follows.

(2) Before we can prove assertion (2), we need to review certain facts about the adjoint
equation (c.f., [10, Section 10]). Recall that the adjoint equation of L(y) = 0 is defined as:

L∗(y) = (−1)m(a0y)
(m) + (−1)m−1(a1y)

(m−1) + . . .+ amy (9)

One can write equation (2) in matrix form as Y ′ = AY , where

A =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
. . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1
−am

a0
−am−1

a0
−am−2

a0
. . . −a2

a0
−a1

a0


We now write equation (8) as u− c = α · Y , where

α = (α0, . . . , αm−1), and Y =


y
y′

.

.
y(m−1)


Differentiating u − c = α · Y , we get y = u′ = α′ · Y + α · Y ′ = (α′ + α · A) · Y .
Writing y = (1, 0, . . . , 0) · Y and noting that y, y′, . . . , y(n−1) are linearly independent
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over k (since y satisfies no linear differential equation of order lower than n), we have that
(α′)T = −A∗ · αT + (1, 0, . . . , 0)T . This implies

α′m−1 = −αm−2 +
a1

a0

αm−1

α′m−2 = −αm−3 +
a2

a0

αm−1

. . . . . . . . .

α′1 = −α0 +
am−1

a0

αm−1

α′0 = 1 +
am

a0

αm−1

Eliminating the αi, 0 ≤ i ≤ m− 1, we get

α
(m)
m−1 − (

a1

a0

αm−1)
′ + · · ·+ (−1)m−1

am

a0

αm−1 = (−1)m−1

Letting z = (−1)m+1(1/a0)αm−1, we get L∗(z) = 1.

Before we state our main result, we need to recall one more fact concerning adjoint
equations. One defines the Lagrange bilinear concomitant as:

π(u, v) =
m∑
i=0

i−1∑
j=0

(−1)j(vam−i)(j)ui−1−j

One then gets Lagrange’s identity, (c.f., [10, Section 10]):

vL(u)− uL∗(v) = (π(u, v))′

Proof of Theorem 1: Proposition 7 implies that if there exists a u ∈ K such that u′ = y
then L∗(z) = 1 has a solution z ∈ k. Conversely, if L∗(z) = 1 has a solution z ∈ k, then
Lagrange’s identity gives the other implication.

Note that Proposition 7 and Theorem 1 are not true without the assumption thatGal(K/k)
is reductive. For example, let k = C and L(y) = y′′ = 0. The corresponding Picard-
Vessiot extension of C is C(x), x′ = 1. Note that (x2)′ = 2x is a solution of L(y) = 0, but
x2 6= α0x + α11 for any α0, α1 ∈ C. Furthermore, L∗(y) = y′′ = 1 has no solution in
k = C.

3 Examples

Let k = C(x). As mentioned following the statementof Theorem 1, this theorem applies if
the operator L is irreducible over k.
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The Airy Equation L(y) = y′′ − xy.

Let K be the Picard-Vessiot extension corresponding to this equation. This equation is
irreducible over k so we can apply our results. In this case L∗(y) = y′′ − xy. If z ∈ k
is a solution of L∗(z) = 1, then z would have no poles and so would be a polynomial.
Comparing the degrees of z′′ and xz shows that this is impossible. It is known that if y1 and
y2 are linearly independent solutions of the Airy equation, then y1, y2, y′1 are algebraically
independent [4, p. 180]. Therefore we can conclude that these latter elements and the
integral of any nonzero solution of the Airy equation are algebraically independent over C(x).

The Bessel Equations Lν(y) = y′′ + 1
x
y′ + (1− ν2

x2 )y

The standard basis for the solution space of Lν(y) = 0 is usually denoted by {Jν, Yν}.
Let K = k(J0, Y0, J

′
0, Y

′
0 ) be the Picard-Vessiot extension associated with L0(y). The

recursion formulas for Bessel functions [2, p. 361] imply that for any integer ν, we have
Jν, Yν ∈ K. In [8], Kolchin showed (among other things) that the Galois group of Lν(y) = 0
is SL2(C) if ν − 1/2 /∈ Z. In particular, the Galois group of K over k is reductive. and we
can apply the Theorem. Here are two simple examples:

L0(y) = y′′+ 1
x
y′+y: The adjoint of this equation is L∗0 = y′′− 1

x
y′+(1+ 1

x2 )y. A rational
function solution of L∗(y) = 1 can only have finite poles at x = 0 and a local computation
shows this is impossible. Furthermore, L∗(y) = 1 has no polynomial solutions so

∫
J0(x)

is transcendental over K.

L1(y) = y′′ + 1
x
y′ + (1 − 1

x
)y: The adjoint of this equation is L∗1(y) = y′′ − 1

x
y′ + y.

The equation L∗1(y) = 1 has a solution y = 1 so
∫
J1(x) = −π(J1(x), 1) = −(J ′1(x) +

1
x
J1(x)).

A more complicated example is given when one considers
∫
J3
1 (x). This function satisfies

L©s 3
1 (y) = y(iv) +

6

x
y′′′ +

10x2 − 3

x2
y′′ +

30x2 − 9

x3
y′ +

9x4 − 6x2 + 9

x4
y = 0

and no equation of smaller order. The adjoint of this equation is

(L©s 3
1 )∗(y) = y(iv) −

6

x
y′′′ +

10x2 + 15

x2
y′′ −

30x2 + 15

x3
y′ +

9x2 + 24

x2
y.

Considering local expansions, one sees that (L©s 3
1 )∗(y) = 1 has no solution in k.

In [1], Abramov and van Hoeij consider the problem of finding the integral (or sum, in the
difference case) of a solution of an Ore equation. They show that if the integral/sum satisfies
an Oe equation of the same order, then one can find it using a Ore-generalization of the
adjoint operator.

8



References

[1] Sergei A. Abramov and Mark van Hoeij. Integration of solutions of linear functional
equations. Integral Transform. Spec. Funct., 8(1-2):3–12, 1999.

[2] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions with for-
mulas, graphs, and mathematical tables. National Bureau of Standards Applied Math-
ematics Series, No. 55. U. S. Government Printing Office, Washington, DC, 1964. For
sale by the Superintendent of Documents.

[3] D. Bertrand. Extensions de D-modules et groupes de Galois différentiels. In F. Baldas-
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