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In 1968, Maxwell Rosenlicht [Ros68] published the first purely algebraic proof of
Liouville’s Theorem on Integration in Finite Terms (which we will simply refer to
as “Liouville’s Theorem”) . This paper, together with Robert Risch’s paper [Ris69],
stimulated renewed interest in both the mathematical and algorithmic aspects of this
area. The paper Integration in Finite Terms [Ros72] appearing in this volume presents
the material of [Ros68] in a simplified form, suitable for an advanced undergraduate. It
is a beautiful paper and is the best introduction to the subject. In this commentary, I will
review the history of Liouville’s Theorem prior to these papers, discuss Rosenlicht’s
and Risch’s contributions and then describe the related results that have appeared
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subsequently. I will focus mainly on the theoretical aspects since the algorithmic
aspects are well described in Clemens Raab’s and Barry Trager’s commentaries to
this volume. Although I will almost exclusively describe results related to elementary
functions, I will occasionally mention results related to Liouvillian functions (those
built up using exponentials, arbitrary integrals and algebraic functions) when this
appears in the work of researchers concerned with elementary functions but I will
not delve deeper into the problem of solving differential equations in terms of these.

Several books and articles present the history of Liouville’s Theorem and related
topics. In particular Jesper Lützen’s thoughtful and detailed book [Lüt90] thoroughly
discusses the contributions of Laplace, Abel, Liouville and others and I have relied
heavily on this book in my summaries below. Anyone interested in the subject should
go directly to [Lüt90] to get a much more complete picture. Hardy has also given
a pleasantly excursive presentation of these contributions in [Har71]. Much of the
theoretical and computational aspects of this subject and related results are to be found
in Bronstein’s book [Bro97]. Finally, the articles of Kasper [Kas80] and Marchisotto
and Zakeri [MZ94] give concise histories of some aspects of these results as well.

I will assume the reader is familiar with [Ros72] and will not restate the definitions
of differential field, elementary extension, etc.

1 Before Rosenlicht and Risch
Initial glimmerings of phenomena related to Liouville’s Theorem can be found in the
writings of Fontaine and Condorcet (cf. [Lüt90, pp. 352–357]). A clear statement
of the principle underlying Liouville’s Theorem was given by Laplace in [Lap12,
pp. 4–5]:

Thus, since the differentiation lets the exponential and the radical quantities subsist and only
makes the logarithmic quantities disappear when they are multiplied by constants, one may
conclude that the integral of a differential function cannot include any other exponentials and
radicals than those already included in this function.2

but no rigorous proof seems to have been published by him [Lüt90, p. 358].

1.1 Abel
Abel stated several results related to Liouville’s Theorem and stated that he had a
general theory of integration of algebraic functions aimed at reducing these objects
using algebraic and logarithmic functions (cf. [Lüt90, pp. 358–369], [Rit48, pp. 28–
31]). Part of Abel’s research has reached modern times as half of the Abel–Jacobi
Theorem (see [Gri76, Gri04]) and part has a direct bearing on the subject of this
volume. First of all, Abel stated Liouville’s Theorem, although any proof that he had
now seems lost. He showed that certain elliptic integrals could not be expressed in
the form prescribed by this theorem (as did Chebyshev, Zolotarev and others [Lüt90,
pp. 367, 415–417]). Concerning Liouville’s Theorem, Abel presented an argument

2 I am using the translation that appears in [Lüt90, p. 358].
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that if an algebraic function ! has an integral of the form " +∑!
"=1 #" log"" , where "

and the $" are algebraic functions and the #" are complex numbers, then " and the
$" may be taken to be rational functions of % and ! (cf. [Lüt90, pp. 363–364] and
[Rit48, pp. 28–31]; note that Littlewood criticized this proof [Lüt90, p. 365] and
[Har71, Preface, pp. 38–43 ]). In Rosenlicht’s paper [Ros68] this fact results from
taking norms and traces. An even more precise statement of where the #" , ", and $"
lie can be found in [Ris69, p. 171] or [Bro97, p. 141].

Abel also stated generalizations of Liouville’s Theorem. For example, he stated
that if one has a relation of the form & (%,

∫
!1d%,

∫
!2d%, . . . ,

∫
!!d%) = 0, where &

is an elementary function of '+1 variables and !1, . . . , !! are algebraic functions,
then some constant linear combination of the

∫
!"d% is of the form $ +∑#

"=1 log""
with #" constants and $,"" algebraic functions. We do not have Abel’s proof but a
modern statement and proof of this result appears in [PS83, Corollary 2].

Another generalization of Liouville’s Theorem stated by Abel is: if the integral of
an algebraic function can be expressed in terms of implicitly or explicitly defined
elementary functions then it is elementary and so satisfies the conclusion of Liouville’s
Theorem. Lützen remarks that it is not clear what Abel meant by implicit elementary
functions as no proof survives, but Ritt [Rit48, pp. 71–98] and Risch [Ris76] proved
precise versions of this result.

1.2 Liouville
Lützen [Lüt90, Chapter IV] and Ritt [Rit48] give detailed analyses of Liouville’s
papers and methods, so I will only give an overview.

Liouville’s first paper on integration in finite terms appeared in 1832 (when he was
23!) and by 1840 he had essentially finished his work on the subject. Liouville began
by considering the question of integrating an algebraic function in terms of algebraic
functions, obtaining many of Abel’s results. Liouville then turned to the problem
of expressing integrals of algebraic functions in terms of more general elementary
functions. He began by examining when such an integral is of a special form (e.g.,
when the integral of an expression involving a square root is the sum of a similar
expression and logarithms of similar expressions). He then turned to prove what
we now know as Liouville’s Theorem in the special case when the integrand is an
algebraic function and published this result in 1834.

To prove this result, Liouville first gave a classification of elementary functions.
Briefly, algebraic functions are called functions of order zero. A function is elementary
of order at most ' if it is an algebraic function of elementary functions of order at
most '−1 and logarithms and exponentials of elementary functions of order at most
'−1. The smallest ' such that an elementary function is of order at most ' is called
its order. Since Liouville dealt with actual functions, one needs to take into account
branches of these functions and this led to criticisms of imprecision, especially by
Ritt (see below). Nonetheless, the concept of order is key to Liouville’s proofs. He
relies heavily on the following observation (called Liouville’s principle by Lützen
[Lüt90, p. 387] and Ritt [Rit48, p. 16]):
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Let $ be an elementary function of order ! and assume that the number %! of logarithms
and exponentials of order ! appearing in its definition is as small as possible. Any algebraic
relations among these %! quantities and elementary functions of order at most !−1 must
hold when any quantity is substituted for any of these %! quantities.

Liouville then proceeds as follows. Assume that one expresses the integral of an
algebraic function as an elementary function of order ' with (! as above minimal.
Differentiating one then has a relation as in the statement of Liouville’s principle.
Liouville then uses this principle to show that exponentials cannot appear and
logarithms must only appear linearly in the expression of the integral. To get a feeling
of Liouville’s techniques (following closely Lützen’s exposition [Lüt90, p. 388]),
assume ' = 1 and ∫

!d% = )(%, *),

where ! is algebraic, ) is an elementary function of order ' and * = log$ is a logarithm
of order '. Differentiating, we have

! =
+)(%, *)
+%

+ +)(%, *)
+*

(
d$
d% /$

)
.

From Liouville’s principle, this expression remains unchanged when we replace *
with * + # and equating the two expressions for !, we get

+)(%, * + #)
+%

+ +)(%, * + #)
+*

(
d$
d% /$

)
=
+)(%, *)
+%

+ +)(%, *)
+*

(
d$
d% /$

)
.

Therefore
)(%, * + #) = )(%, *) + constant

so
+)(%, *)
+*

= ,,

where , is a constant. Liouville’s principle implies we can replace * with a variable
- in this equation. Doing this and solving the resulting differential equation we have

)(%, -) = ,- +)(%, -0)− ,-0,

where -0 is some arbitrary value of - . We then have
∫

!d% = ,* +)(%, -0)− ,-0,

so * = log$ appears linearly. Arguing analogously, Liouville showed that for ' = 1
and * = e&, ) will be independent of *. When ' > 1, an induction and similar use of
Liouville’s principle yields the result.

In 1835, Liouville published the general version of his theorem, allowing ! to
be an algebraic function of $1 (%), . . . ,$! (%), where each $" satisfies an equation of
the form d&"

d' = ." ($1, . . . ,$!), ." an algebraic function (in modern terms, ! belongs
to a differential of finite transcendence degree over the constants; a precursor of
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Ostrowski’s approach [Ost46b]). In this paper he also proved the result concerning the
elementary integrability of / e( proven in Rosenlicht’s paper. In 1837 he published a
paper continuing his research into the structure of elementary functions. He was able
to show that e' cannot be expressed in terms of logarithms and algebraic functions
and log% cannot be expressed in terms of exponential and algebraic functions and that
Kepler’s equation % = !−0 sin !, 0 ∈ C, has no elementary solution ! (a modern proof
is given in [Ros69]). Furthermore, Lützen cites some unpublished 1840 notes where
Liouville claims to show that if the integral of an algebraic function is among a set
of functions that are defined implicitly by elementary functions of several variables,
then it must be elementary. Lützen outlines Liouville’s argument but concludes that
it does not represent a proof in the modern sense. Such a result has been proven by
Risch [Ris76] and in a slightly weaker form in [PS83].

Liouville also considered solving differential equations in terms of (what we now
call) Liouvillian functions, that is, functions expressible in terms of exponentials,
arbitrary integrals and algebraic functions (cf. [Lüt90, pp. 401–411]). His main result
is that if a second-order linear differential equation !′′ − 1! = 0, 1 a polynomial,
has a Liouvillian solution then the associated Riccati equation $′ + $2 = 1 has an
algebraic solution. He was able to use this to show for which parameters the Bessel
equation has Liouvillian solutions. Questions of this nature can now be handled using
differential Galois theory [vdPS03] and I will not describe this further.

1.3 The Russian School
As already noted, Chebyshev and Zolotarev considered the question of elementary
integrability of elliptic integrals and this, together with work of Ostrogradsky and
Dolbnia, is discussed in [Lüt90, pp. 414–418].

Mordukhai-Boltovskoi produced a significant body of work around the problem
of integration in finite terms. Most of his papers are not easily available. The book
[MB10] is available online and the library at the Research Institute for Symbolic
Computation, Johannes Kepler University Linz has photocopies (due to Robert Risch)
of several of Mordukhai-Boltovskoi’s articles. In addition [MB09] is a translation of
a much cited article and [DLS98] also mentions the work of Mordukhai-Boltovskoi
and related works. Regrettably, I do not read Russian and so most of what I know of
this author is what is explained in [Rit48].

In [MB13] (cf. [Rit48, p. 52]) Mordukhai-Boltovskoi describes methods for
deciding if elementary functions have elementary integrals, although no general
algorithm is given. In [MB10] (cf. [Rit48, p. 76]) Mordukhai-Boltovskoi describes
methods for solving linear differential equations in terms of Liouvillian functions.
These are only briefly mentioned in [Rit48] but Ritt does go into greater detail
concerning two other works of Mordukhai-Boltovskoi in [Rit48, Ch. VII].

Ritt first presents a result of [MB09] concerning elementary first integrals of
first-order differential equations !′ = / (%, !), / an algebraic function. Mordukhai-
Boltovskoi showed, using analytic techniques in the spirit of Liouville, that if there
exists an elementary function 2(%, !) of two variables such that 2(%, !) is constant
on solutions of this equation (i.e., 2 is a first integral) then there is a first integral of
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the form )0 (%, !) +
∑#

"=1 #" log)" (%, !), where the #" and )" are algebraic functions
of two variables. This result is given a modern, purely algebraic proof in [PS83]. A
result dealing with Liouvillian first integrals appears in [Sin92]. There is a very large
literature concerning elementary and Liouvillian first integrals and this deserves its
own survey, but that will not be given here.

The second result of Mordukhai-Boltovskoi presented by Ritt is from [MB37] and
concerns explicit elementary solutions of first-order differential equations & (%, !, !′) =
0, & a polynomial. Mordukhai-Boltovskoi showed, again using analytic techniques,
that if such a differential equation has a nonalgebraic elementary solution, then it has
a one-parameter family of solutions of the form

! = 3 (%,
#∑
"=1

#" log()" (%)) + #) or ! = 3 (%,e)0 (')+
∑#

"=1 *" log()" ('))+*),

where 3 is an algebraic function of two variables, # is the parameter, #" are fixed
constants and the )" are algebraic functions. This follows from a result characterizing
differential subfields of elementary extensions presented and proven algebraically
in [Sin75],[RS77] and [Ris79] (a result anticipating these results can be found in
[Koe87]). A result characterizing differential subfields of Liouvillian extensions is
given in [Sri20] (see also [Sri17, Sri18]).

1.4 Hardy
Hardy’s book [Har71, pp. 38–44] contains a proof of Abel’s Theorem on the algebraic
integrability of algebraic functions. In addition, he describes techniques for integrating
various kinds of elementary functions and outlines a method to determine if the
integral of an algebraic function is algebraic. A large part of the book is devoted
to integrals of algebraic functions and how the theory of algebraic curves informs
this. Hardy also gives an exposition of Liouville’s theorem (without proof) and
some of its consequences. He also mentions two problems [Har71, p. 7]: (i) if f(x)
is an elementary function, how can one determine whether its integral is also an
elementary function? and (ii) if the integral is an elementary function, how can we
find it?. He then makes the regrettable prognostication Complete answers to these
questions have not and probably never will be given.

1.5 Ostrowski
In [Ost46b], Ostrowski introduced what he called a corps liouvillien (and what is
now called a differential field) into the study of integration in finite terms. He showed
that Liouville’s Theorem holds for functions / (%) lying in such a field and

∫
/ (%)d%

lying in an elementary extension of this field. Outside of this formalism, Ostrowski’s
approach is still analytic and follows Liouville’s general approach, making several
simplifications and clarifications. Ostrowski also published [Ost46a] in which he
showed if the integrals of elements of a differential field are algebraically dependent
over this field then a constant linear combination of these will lie in the field. This,
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together with a statement concerning algebraic dependence among exponentials, is
now known as the Kolchin–Ostrowski Theorem [Kol68] (cf. [Ax71, Theorem 4],
[Ros76, Corollary])).

1.6 Ritt
In [Rit48], Ritt describes the work of Abel, Liouville, Mordukhai-Boltovskoi and
his own contributions. A main feature of his presentation is his emphasis on dealing
with the function-theoretic properties of elementary functions. As he says in his
introduction.

There are, however, certain questions connected with the many-valued character of the
elementary functions which could be pressed back behind the symbols in Liouville’s time
but which have since learned to assert their rights. Such matters are mulled over in the first
chapter. The mulling is inescapable. It might be great fun to talk just as if the elementary
functions were one-valued. I might even sound convincing to some readers; I certainly could
not fool the functions. [Rit48, p. vi]

The first three chapters of [Rit48] focus on giving rigorous foundations to the
functional properties of elementary function and presenting Liouville’s Theorem
taking this (and Ostrowski’s work) into account. Askold Khovanskii discusses some
of these issues and also generalizes this approach in his appreciation of Ritt and Ritt’s
book in his article in this volume.

In Chapter IV, Ritt shows that Kepler’s Equation (mentioned above) has no
elementary solution and briefly alludes to two of his papers, [Rit25] and [Rit29]. In
[Rit25], Ritt shows: if a function & (4) and its inverse are both elementary, then there
exist ' functions )1 (4), . . . ,)! (4) where each )" (4) with odd index is algebraic, and
each )" (4) with even index is either e' or log% such that & (%) = )!)!−1 . . .)2)1 (%)
each )" (4), (5 < '), being substituted for 4 in )"+1 (4). To prove this, Ritt gives a careful
analysis (very much in the spirit of Liouville) as to how the order of a composite of
two elementary functions depends on the orders of each of these functions. A modern
algebraic proof of this result is given in [Ris79].

The paper [Rit29] briefly alluded to in [Rit48, p. 59] describes the interaction
of analytic and algebraic properties of finite exponential sums #1e+1' + · · · + #%e+$ ' ,
where the #" and the 0" are complex numbers. Using properties of Dirichlet series,
Ritt shows that if 6 is a solution of a polynomial equation 0!6! + · · · + 016 + 00 = 0,
where the 0" are finite exponential sums and 6 is analytic in a sector of angle greater
than 7, then 6 is a finite exponential sum. He also shows that if the quotient of two
finite exponential sums is analytic in such a sector, then this quotient equals a finite
exponential sum. In an earlier paper [Rit27a], Ritt gave a factorization theorem for
finite exponential sums. Finite exponential sums form a C-algebra and one can talk
about division, irreducibility, etc in this ring. Ritt showed that any finite exponential
sum can be written uniquely as a product of irreducible finite exponential sums and
simple finite exponential sums, where these latter objects have the property that
their exponents are integer multiples of a fixed complex number. A recent proof and
generalization can be found in [EvdP97]. Other properties of finite exponential sums
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can be found in [HRS89]. Ritt’s Factorization Theorem also relates to the model
theory of fields with exponentiation (cf. [Mac16, p. 921]).

In Chapter V, Ritt develops properties of fractional power series and uses these
to prove, in Chapter VI, Liouville’s result that if the equation !′ + !2 = 1(%) has a
Liouvillian solution then it has an algebraic solution. In particular, if a second-order
homogeneous linear differential equation with algebraic function coefficients has a
Liouvillian solution, it will have a solution ! such that !′/! is algebraic. This result
(in fact for a homogeneous linear differential equation of arbitrary order) can now
be derived using differential Galois theory. A proof of this and related results using
power series techniques (in the guise of valuation theory) can be found in [Ros73]
and [Sin76].

In Chapter VII, Ritt presents the results of Mordukhai-Boltovskoi mentioned above
and in Chapter VIII he presents the results from his papers [Rit23] and [Rit27b].
In [Rit23], Ritt proves that if the integral of an elementary function satisfies an
elementary relation, then the integral is actually elementary. As mentioned above,
Risch proved algebraically a generalization of this result in [Ris76]. In [Rit27b],
Ritt proved that if a solution of a second-order homogeneous linear differential
equation satisfies a Liouvillian relation then all solutions of the linear equation are
Liouvillian. This latter result is proven algebraically in [Sin92]. Ritt’s proofs of these
results depend on analytic considerations and proceed using an induction on the
elementary order or Liouvillian order of the functions used in building the elementary
or Liouvillian relations.

2 The Fundamental Papers of Rosenlicht and Risch
2.1 Rosenlicht
In [Ros68], Rosenlicht gave the first purely algebraic statement and proof of Liouville’s
Theorem. The proof relies on little more than a knowledge of partial fraction
decomposition and a few simple facts from Galois theory. This is reproduced in
[Ros72], the paper presented in this volume, with an even simpler presentation and
additional comments. A proof of Abel’s Theorem concerning algebraic integrals is
embedded in the proof of Liouville’s Theorem (see the argument on lines 2–15 on
page 969). Using an induction argument, the proof is then reduced to showing that if
8 is a differential field, 9 ∈ 8 and

9 =
!∑
"=1

#"
$′"
$"

+ "′, (1)

where the #" are constants and $" ," ∈ 8 (:), : transcendental over8 and : an exponential
or a logarithm of an element in 8 , then one can find a similar expression with $" ," ∈ 8 .
The underlying idea is to compare the partial fraction decompositions of the $′"/$"
and "′ and to understand what cancelations occur in order for the right-hand side of
(1) to be an element of 8 . Rosenlicht explains this clearly and I have nothing to add.
Besides proving Liouville’s Theorem, Rosenlicht reproves another result of Liouville:
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If / and 2 are algebraic functions, then
∫
/ e(d% is an elementary function if and

only if there is an 0 ∈ C(%) such that / = 0′+ 02′. Using this he can easily show that∫
e'2d% is not elementary. Rosenlicht’s other papers concerning elementary functions

will be discussed in Section 3.2.

2.2 Risch
Risch published his first contribution to the algorithmic aspects of Liouville’s
Theorem in [Ris69]. Risch’s algorithm will be more fully discussed in Clemens
Raab’s commentary in this volume but I want to discuss his more theoretical
contributions here. In [Ris69], Risch gave a refinement of Liouville’s Theorem. In
Rosenlicht’s version, it was assumed that the constants were algebraically closed
and that the elementary tower containing the integral had no new constants. Risch
did away with these two restrictions and showed that if the integral of an element
9 lies in an elementary extension of a differential field ; containing 9 then there
are " ∈ ; , #" ∈ < (the algebraic closure of the constants < of ;), "" ∈ <; such that
9 = "′ +∑!

"=1 #""
′
"/"" and every automorphism of <; over ; permutes the terms of

the sum. Further results concerning the precise subfield of < needed in the above
refinement are due to Lazard, Riboo, Rothstein and Trager and are described in
[Bro97, Chapter 5.6]. A finer description of the $,"" that can appear is also given in
[Bro07].

The preprint [Ris67] (contemporaneous with the preprint version of [Ris69])
contains a treatment of elementary integrals of real functions. Risch showed that
if an element 9 in a real differential field ; has an elementary integral then 9 =
6′
0 +

∑,
"=1 #"6

′
"/6" +

∑!
"=,+1 #"6

′
"/(62

" + 1), where 60 ∈ ; , the #" are in the real
closure <̃ of the constant field < (with respect to some fixed order on <) of ; and
61, . . . ,6! ∈ <̃; , that is, the integral of 9 can be expressed as an element of ; and a
sum of logarithms and arctangents of elements of <̃; . Risch also discusses related
algorithmic questions.

3 The Aftermath
Two interrelated themes have dominated the topic of expressing integrals in finite
terms after the papers of Rosenlicht and Risch: generalizations of Liouville’s Theorem
and understanding the algebraic relations that can occur among elementary functions
and other special functions.

3.1 Generalizations of Liouville’s Theorem
A multivariate generalization of Liouville’s Theorem was presented by Caviness and
Rothstein in [CR75]. Its proof is very much in the spirit of [Ros68]. Another proof of
this result was presented by Rosenlicht in [Ros76, Theorem 3] based on his reworking
of techniques introduced by Ax [Ax71] (more about this in Section 3.2).
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In [Ris76], Risch presented a geometric approach to Liouville’s Theorem and in
the process showed that if the integral of a function is among a set of functions that
are defined implicitly by elementary functions of several variables, then it must be
elementary. As mentioned above, this generalizes Liouville’s and Ritt’s results of a
similar nature.

An early generalization of Liouville’s Theorem appears in [MZ79] (see also
[ND79]). The authors consider the problem of expressing the antiderivative of an
elementary function in terms of elementary functions and special functions defined
by indefinite integrals, such as the Spence function or error function. The natural
conjecture to make is that if an integral can be expressed in this way, the special
functions must appear linearly. The authors show that this conjecture is false in
general. They also show that if the special functions involved are integrals of elements
in the field of definition of the integrand and functional composition is not allowed,
then this conjecture is true.

The paper [SSC85] begins to consider what happens when one expresses integrals
in terms of compositions of algebraic functions, elementary functions, and special
functions. The authors define a class of special functions, the so-called EL-elementary
functions, which include the error function

erf(%) = 2√
7

∫ '

0
e−-2d:

and the logarithmic integral

li(%) =
∫ '

0

1
log : d:

but does not include the dilogarithm

ℓ2 (%) = −
∫ '

0

log(1− :)
:

d:

or the exponential integral

Ei(%) = −
∫ ∞

'

e−-
:
d:

(the form of these functions is slightly different in [SSC85] but differ from these by
additive or multiplicative constants and so the results still hold). The authors give a
Liouville-type Theorem for integration in terms of these special functions. Rather
than state the general result, I will restrict myself to the question of integration in terms
of error functions. One then defines an erf-elementary extension of a differential field
; as a differential field 8 such that there is a tower ; = 80 ⊂ . . . ⊂ 8! = > where each
8" = 8"−1 (*") and *" is either algebraic over 8"−1, or there exist $" ,"" ∈ 8"−1 such that
* ′" = $

′
"/$" , * ′"/*" = $′" , or * ′" = $′""" where "′"/"" = −2$"$′" . One says that an element

9 ∈ ; is erf-elementary integrable if there is an element ! in an erf-elementary
extension of ; such that !′ = 9. The main result of [SSC85] is that, assuming the
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constants < of ; are algebraically closed, then such an 9 has an erf-elementary
integral if and only if there are constants 0" ,?" ∈ <, 6" ∈ ; and $" ,"" algebraic over
; such that

9 = 6′
0 +

!∑
"=1

0"
6′
"

6"
+

#∑
"=1

?"$
′
""" ,

where "′"/"" =−2$"$′" and $2" ,"2" and $′""" are in &. In otherwords, if9 is erf-elementary
integrable then its integral can be expressed as a constant linear combination of an
element in ; , logarithms of elements in ; and error functions of elements algebraic
over ; . The authors give an example to show that one cannot strengthen the conclusion
to conclude that the $" ,"" are actually in ; . They also give an example to show that
such a result guaranteeing that the logarithms appear linearly in the integral does not
hold when one integrates in terms of the dilogarithm. They present a procedure to
decide if an element in a purely exponential extension of < (%) has an erf-elementary
integral and find this if it does. The procedure proceeds by induction on the defining
tower of the integrand and an interesting aspect of this is that one must rewrite
this tower (if necessary) so that the elements at each stage are selected so as to be
independent in a certain way from the previous ones.

A similar result for logarithmic integrals can be deduced from the general result
of [SSC85] and Cherry gave in [Che85] a procedure to determine if an element
of a transcendental elementary extension of < (%), % ′ = 1, < algebraically closed,
can be integrated in terms of logarithmic integrals. In [Che86] the procedure of
[SSC85] is extended to apply to a more general class of elementary functions. In
[Kno92, Kno93], Knowles gives a procedure dealing with an even further extended
class of elementary functions that allows one to decide if they are erf-elementary
integrable. Cherry [Che89] also gave a procedure to determine if / e(, / ,2 ∈ < (%),
can be expressed in terms of a class of special functions called the special incomplete
gamma functions. This class of special functions includes the exponential integral,
the error function, the sine and cosine integrals, and the Fresnel integrals.

The results of [SSC85] do not apply to integration in terms of the exponential
integral Ei(%) and elementary functions. In [LL02] the authors sharpen the results
of [Ros76] and extend the results of [SSC85] to include these functions as well as
the exponential integrals and special cases of incomplete gamma functions. The
conclusion is, as in [SSC85], if an integral can be expressed in terms of these
functions, then they will appear in the integral in constant linear combinations
composed with algebraic functions. In [Heb15], the author considers integration in
terms of elementary functions, exponential integrals and general incomplete gamma
functions and derives a similar result together with more precise structural information
aimed at efficient algorithms and implementations which have been included in the
CAS computer algebra system (see also [KS19]). In [Heb21], the author extends
Liouville’s Theorem to include integration in terms of elementary functions and
elliptic integrals.

The results of [SSC85] also do not apply to integration in terms of dilogarithms and
elementary functions. This case of dilogarithms was taken up by Baddoura [Bad94,
Bad11]. A key element in these results is a characterization of the algebraic identities
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among the dilogarithm and elementary functions. More formally, a transcendental-
dilogarithmic-elementary-extension of a differential field ; is a field > for which
there exists a tower of fields ; = 80 ⊂ . . . ⊂ 8! where for each 5 > 0, 8" = 8"−1 (*"),
*" transcendental over 8"−1 and there exist $" ,"" ∈ 8"−1 such that either * ′" = $′"/$" ,
* ′" = $

′
"*" , or * ′" =−""/$" , where "′" =−$′"/(1−$"), that is *" is a logarithm, exponential

or dilogarithm of an element in 8"−1. Baddoura shows that if ; is a Liouvillian
extension of an algebraically closed field of constants < and 9 ∈ ; and there exists an
element ! in a transcendental-dilogarithmic-elementary-extension such that !′ = 9
then there exist #0, . . . , ##,"0, . . . ,"#,61, . . . ,6! ∈ ; and constants @1, . . . ,@! ∈ <
such that in a suitable extension of ; we have

∫
9 = "0 +

#∑
"=1

#" log("") +
!∑
"=1

@" (ℓ2 (6") +
1
2 log(6") log(1−6")).

Notice that, although the dilogarithms appear linearly, we have introduced products
of logarithms into the expression. Reworkings, refinements, and extensions of these
results appear in [KS19, KS21] and [Heb18].

The dilogarithm is one of a sequence of functions referred to as polylogarithms
ℓ! (%), which are defined inductively for ' > 2 as

ℓ! (%) =
∫ '

0

ℓ!−1 (:)
:

d:.

In [Bad94], Baddoura considers integration in terms of polylogarithms and elementary
functions and made a conjecture concerning the form that such an integral must take.
In [Bad11], an argument is presented to verify this conjecture in a special case.

A problem that arises when one deals with integration in terms of nonelementary
functions is the following: Given !1, . . . , !! in a differential field 8 determine the set
of constants #1, . . . , #! such that #1!1 + · · · + #!!! has an integral elementary over
8. Risch solved3 the related question of determining the set of constants #1, . . . , #!
such that #1!1 + · · · + #!!! has an integral in 8 , when 8 is an elementary extension of
< (%),< algebraically closed and % ′ = 1. He showed how one can construct a system
of linear equations over < such that the #" satisfy these equations if and only if
this expression has an integral in 8. In [Bro97, Chapter 7], the author considers a
similar question concerning determining if #1!1 + · · · + #!!! has an integral in 8
when 8 is a transcendental Liouvillian extension of the constants (or even a more
general extension), as well as related problems. When 8 is a purely transcendental
Liouvillian extension of an algebraically closed field of constants, Mack ([Mac76];
see also [SSC85, Appendix] and [Raa12, Chapters 3 and 4]) showed that one could
effectively find a system of linear equations with constant coefficients such #1, . . . , #!
such that #1!1 + · · · + #!!! has an integral elementary over 8 if and only if the
#" satisfy this system This leads to the general question of describing the set of

3 Setting $ = 0 in Theorem 1(b) of On the Integration of Elementary Functions which are Built Up
Using Algebraic Operations in this volume yields this result. When . is a purely transcendental
elementary extension of / (') , this already appears in [Ris69].
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parameters for which a parameterized expression has an elementary integral. The
first case of this question is Let / (%, :) be an element of an algebraic extension
of < (%, :) where < is algebraically closed, : ′ = 0 and % ′ = 1. Describe the set
{# ∈ < | / (%,#) has an integral elementary over < (%)}. In [Dav81, p. 90] Davenport
asserted that if / (%, :) is not generically integrable in elementary terms then there are
only finitely many values of # ∈ < such that / (%,#) has an elementary integral over
< (%). Recently, Masser and Zannier [MZ20] (see [Zan14] for earlier results) have
shown that this assertion is false (see [Mas17] for an elementary introduction to their
results). For example, the function

%

(%2− :2)
√
%3− %

is not generically integrable but is integrable for infinitely many algebraic values of :.
Furthermore, in [MZ20] they can characterize those algebraic functions which satisfy
Davenport’s assertion. From the paper of Risch and the thesis and commentary of
Trager in this volume, one sees that integration of algebraic functions is intimately
connected with the question of whether integer multiples of certain divisors on a
curve are principal or not, that is, whether points on the associated Jacobian are
torsion or not. In [MZ20] the authors study how points on a Jacobian become torsion
under specialization in the parameterized case and this allows them to deduce their
results on elementary integrability in this case.

Another generalization of Liouville’s Theorem appears in [DS86].One can consider
Liouville’s Theorem as describing elementary solutions of first-order inhomogeneous
linear differential equations of the form !′ = 0. In [DS86, Theorem 2], the authors
show that if an '-ℎ order linear differential equation A (!) = ?, with coefficients in
a differential field ; , has a solution elementary over ; , then it has a solution of the
form 1(log$1, . . . , log$!) , where 1 is a polynomial with coefficients algebraic over
; whose degree is at most equal to ', and the $" are algebraic over ; . Furthermore,
if 1! is the homogeneous term of 1 of degree ' and A has no order zero term,
then the coefficients of 1! are constant. References to other papers and other results
concerning elementary and Liouvillian solutions of linear differential equations also
appear in [DS86].

Finally, as mentioned in Section 1.3, the result of Mordukhai-Boltovskoi on
elementary first integrals has given rise to a large field aimed at understanding
rational, algebraic, elementary and Liouvillian first integrals, a field too large to be
surveyed here.

3.2 Structure Theorems
In algorithmic considerations, it is useful to know when two expressions represent the
same object. For elementary functions this question was considered in [Cav70] and
the references given in this paper (see also [Eps79]). Key to this is an understanding
the algebraic relations that can occur among a set of elementary functions. The
structure theorems developed by Epstein, Caviness, Risch, Rosenlicht, and Rothstein
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address this issue. These results now follow from results of Rosenlicht based on ideas
of Ax and I will begin by describing these.

A fundamental conjecture in transcendental number theory is Schanuel’s
Conjecture: Let 91, . . . ,9! be Q-linearly independent complex numbers. Then
tr.degQQ(91, . . . ,9!,e11 , . . . ,e1! ) ≥ '. This conjecture implies many of the known
transcendence facts (the transcendence of 7, Lindemann’s Theorem, . . . ). In [Ax71],
Ax proved function-theoretic and differential algebraic analogues of this conjec-
ture. Among other results, he gave a new proof of the Kolchin–Ostrowski Theo-
rem [Kol68, Ost46a]: Let ; ⊂ 8 be differential fields with commuting derivations
{B}2∈Δ of characteristic 0 with the same field of constants < = ∩2∈ΔKerB and let
!1, . . . , !!, 41, . . . , 4! ∈ 8∗ satisfy B!" ,B4"/4" ∈ ; for 1 ≤ 5 ≤ ' and B ∈ Δ. If the !"
are <-linearly independent modulo ; and no non-trivial power product of the 4" is in
; , then !1, . . . , !!, 41, . . . , 4! are algebraically independent over ; . Ax’s approach to
this problem is to linearize the property of algebraic dependence. This is done by
considering the module of differentials Ω./3 (see [Ros76] or [Bro97, Chapter 9.1]
for an exposition of this object aimed at its use in these kinds of questions). Ax’s
proof technique for his general results depends on the fact that if ; ⊂ 8 are fields then
$1, . . . ,$# ∈ 8 are algebraically dependent over ; if and only if their differentials
d$1, . . . ,d$# are ;-linearly dependent in Ω./3 . In addition, following earlier results
of Johnson [Joh69a, Joh69b], one can put a differential structure on Ω./3 to take
into account the differential relations among elements in a differential field 8 . Finally
residue calculations allow Ax to restrict the kind of algebraic relations that can occur.
The earlier work of Kolchin is based on his differential Galois theory and general
criteria for solutions of differential equations to be algebraically dependent. He can
additionally deduce a statement about dependence among integrals, exponentials and
Weierstrass functions as well as criteria for Bessel functions. Algebraic independence
statements for Weierstrass functions, using refinements of Ax’s techniques, are also
shown in [BK77].

In [Ros76], Rosenlicht gives a simplified presentation of some of the basic results
of [Ax71]. He proves results concerning algebraic dependence among elementary and
Liouvillian functions. From these he not only deduces the multivariate generalization
of Liouville’s Theorem mentioned above but can use these new techniques to recover
and generalize work from his earlier paper [Ros69]. In this latter paper Rosenlicht
uses valuation theory and the associated power series techniques to show that if ; is
a differential field and !1, . . . , !!, 41, . . . , 4! are elements of a Liouvillian extension of
; such that !′"/!" = 4′" , 5 = 1, . . . ,' and that ; (!1, . . . , !!, 41, . . . , 4!) is algebraic over
each of ; (!1, . . . , !!) and ; (41, . . . , 4!) then !1, . . . , !!, 41, . . . , 4! are all algebraic
over ; . Using this he can show that ! = e4/' and Kepler’s equation have no Liouvillian
solutions. Rosenlicht’s results were also used in [BCDJ08] to show that the Lambert
C-function is not Liouvillian.

The results of [Ros76] can be used to prove the structure theorems of Epstein–
Caviness [EC79], Risch [Ris79] and Rothstein–Caviness [RC79]. These structure
theorems describe the relations that occur between an exponential or integral in an
elementary or Liouvillian extension and the elements used to build the tower defining
such an extension. For example, the Risch Structure Theorem is formulated in the
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following way. Let 8 be an elementary extension of ; = < (%), % ′ = 1, with the same
field of constants <. We may write 8 = ; (:1, . . . , :!) where, for each 5, :" is algebraic
over 8"−1 = ; (:1, . . . , :"−1), or there exists a $" ∈ 8"−1 such that : ′" = $′":" or : ′" = $′"/$" .
Let >./3 = {5 ∈ {1, . . . ,'} | :" transcendental over 8"−1 and : ′" = $′":" ,$" ∈ 8"−1} and
A./3 = {5 ∈ {1, . . . ,'} | :" transcendental over 8"−1 and : ′" = $′"/$" ,$" ∈ 8"−1}. The
Risch Structure Theorem states that for $," ∈ 8 , if "′ = $′/$ then there are (" ∈ Q
such that

" +
∑

"∈5%/&

(":" +
∑

"∈6%/&

("$" ∈ <,

where : ′" = $′":" for 5 ∈ >./3 . The results of Epstein–Caviness give a more precise
special version of this latter result and the result of Rothstein–Caviness generalizes
Risch’s result to include Liouvillian extensions. The importance of these results
lies in the fact that they lead to algorithms to determine the structure of elemen-
tary/Liouvillian towers as one builds these towers. An excellent exposition of the
various structure theorems is given in [Bro97, Chapter 9]. Related questions are
considered in [CDL18], where the authors define a canonical decomposition of an
element in an extension field generated by an integral. This is useful in determining
if the integral of an element already lies in this field.

Structure theorems also play a key role in the ongoing work concerning a parallel
approach to algorithms determining if an elementary function has an elementary
integral. The original algorithm of Risch proceeded in a recursive manner, working
down the elementary tower that defines the given elementary function. Let us restrict
to functions defined by elementary towers of the form 8 = < (%, *1, . . . , *!), where
% ′ = 1 and, for each 5, *" is transcendental over 8"−1 = < (%, *1, . . . , *"−1) and either
* ′" = $

′
"/$" or * ′" = $′"*" for some $" ∈ 8"−1. The parallel approaches to determining if

an element ! ∈ 8 has an elementary integral proceed by determining, all at once, the
rational functions of %, *1, . . . , *! ",$1, . . . ,$# that can occur in the expression

! = "′+
#∑
7=1

# 7
$′7
$ 7

predicted by Liouville’s Theorem. This approach is clearly described in [Bro07] where
references to previous work is given. At present the parallel approach still contains
heuristic elements but results concerning degree bounds and other information about
the possible " and $" are given in this latter work.
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