
Errors in Chapter 3 of

“Galois Theory of Difference Equations”

In Chapter 3 of [PS97], we claim to give a proof of

Theorem 3.1Let C be an algebraically closed field of characteristic zero and k = C(x), φ(x) = x+1.
Any connected linear algebraic group G defined over k is the difference Galois group of a difference equation
φ(Y ) = AY over k = C(x).

The purported proof of this result depends on

Proposition 3.2. Consider the difference equation φ(Y ) = AY with A ∈ GLd(k) where k = C(x)
and let G ⊂ GLd(C) be the Galois group of φ(Y ) = AY . Let T denote the smallest algebraic subgroup
of GLd(C) such that A ∈ T (k). Then:

1. Let Udenote the open subset of P1(C) consisting of the elements a with A(a) ∈ GLd(C). Then
T is generated as an algebraic subgroup by {A(a) | a ∈ U}.

2. G is (after conjugation) a subgroup of T and dim T ≤ 1 + dimG.

Ruyong Feng sent me two examples, presented below, showing that Proposition 3.2(2) of this book is
incorrect. This invalidates the proof of Theorem 3.1 presented in Chapter 3.

Nonetheless, in [Feng21] Feng shows that Theorem 3.1 is true. He does this by noting that Theorem 8.11 of
[PS97] (whose proof uses analytic techniques) states that Theorem 3.1 is true when C = C, the complex
numbers, and then applying the powerful techniques of his paper which allow one to specialize linear
difference equations defined over a field to yield difference equations over a smaller field while preserving
the Galois groups.

Finally, before presenting Feng’s examples, we note that the alleged proof of Theorem 3.1 in [PS97]
proceeds by reducing the general case to the case when G = Hm where H is a simple and simply
connected noncommutstive algebraic group over C. The proof of this reduction does not use Proposition
3.2(2) and is correct. The authors use Proposition 3.2(2) in their fallacious proof of this special case. It
would be of interest to present a correct purely algebraic proof of this special case.

The following are the two examples as Feng presented them (with small changs in notation to match the
notation of [PS97]).

Example 1 Let C, k = C(x), and φ(x) = x+ 1 as above. Consider the difference equation

φ(Y ) = diag(x+ 2, x+ 1, x)Y.

Then (C∗)3 is the smallest algebraic subgroup T such that diag(x+2, x+1, x) ∈ T (k) for if htere
are integers z0, z1, z2 such that (x+ 2)z2(x+ 1)z1xz0 = 1 then z0 = z1 = z2 = 0. On the other
hand, the Galois group G of the above equation over k is

{(c, c, c)} | c ∈ C∗},

because the above equation is equivalent to φ(Y ) = diag(x, x, x)Y under the transformation diag(x(x+
1), x, 1). So G is a subgroup of codimension 2 in T .
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In Feng’s note to me, he presented the following more detailed investigation of Example 1 by following the
proof of Proposition 3.2(2) step-by-step. Let B0 = diag(x(x + 1), x, 1). Then Z = B0G(k) is a
minimal τ -invariant Zariski-closed subset of GL3(k). Consider the morphism π : (C∗)3 → (C∗)2 given
by

(c1, c2, c3) 7→
(
c1

c3
,
c2

c3

)
.

The map π is surjective and the kernel of π is G. Hence T/G is isomprhic to (C∗)3. τ operates on
T/G in the following way:

τ ((b1, b2)) =

(
xφ(b1)

x+ 2
,
xφ(b2)

x+ 1

)
.

Note that π(B0) = (x(x+ 1), x) and τ (π(B0)) = π(B0). Let Y denote the smallest Zariski-closed
subset such that π(B0) ∈ Y (k). One then sees that Y is defined by the equation t1 − t22 − t2 = 0
where (t1, t2) are the coordinates on (C∗)2. Let W = π−1(Y ). Then W is defined by the equation

y22 + y2y3 − y1y3 = 0

where (y1, y2, y3) are the coordiantes on T . One sees that Z ⊂W (k) but W (k) does not seem to be
τ -invariant. Let B = (1/2, 1, 1) and W = WB. Then 1 ∈W and W is defined by the equation

y22 + y2y3 − 2y1y3 = 0.

One sees that (x+ 2, x+ 1, x) /∈W (k).

Example 2. Consider the difference equation φ(Y ) = AY where

A =

(
0 A1

A2 0

)
, A1 =

(
0 −1
1 x

)
, A2 =

(
0 −1
1 x2

)
.

A similar argument as in the proof of Lemma 3.9 of [PS97] implies that the smallest algebraic subgroup
T such that A ∈ T (k) is{(

B1 0
0 B2

) ∣∣∣∣ Bi ∈ SL2(C)

}⋃{(
0 B1

B2 0

) ∣∣∣∣ Bi ∈ SL2(C)

}
.

Set Z = diag(A2, 1)Y . Then

φ(Z) =

(
0 φ(A2)A1

I2 0

)
Z and φ2(Z) =

(
φ2(A2)φ(A1) 0

0 φ(A2)A1

)
Z.

Note that the Galois group of the second equation is the Galois group of φ2(Y ) = φ(A2)A1Y which
is of dimension at most 4. Hence the Galois group of φ(Y ) = AY is of dimension at most 4 while
dim(T ) = 6.
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