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1. Introduction

The method of residues has been a powerful tool for investigating various problems in

algebra, analysis, and combinatorics [1-6]. This paper is a further example of the method

of residues the authors used in [7]. By focusing on residues, we are able to give a unified

approach to problems in the shift and g¢-shift cases while also identifying where these

cases differ.
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The general question considered in this paper was raised by Andrews and Paule in [8]:

“Is it possible to provide any algorithmic device for reducing multiple sums to single
ones?”

The single sums of hypergeometric terms are much more easily handled due to the cele-
brated Gopser algorithm [9], which decides whether a hypergeometric term 7'(n) is equal
to the difference of another hypergeometric term. If such a hypergeometric term exists,
we say that T'(n) is hypergeometric summable. Passing from univariate to multivariate,
the first step has been started in the work by Chen et al. in [10]. They presented necessary
conditions for hypergeometric summability of bivariate hypergeometric terms, and ap-
plications for proving many well-known hypergeometric identities. As a starting point,
we focus on the double sums of rational functions. With the help of the discrete and
g-discrete analogues of usual complex residues in analysis, we derive necessary and suf-
ficient conditions, which allow us to decide whether a rational function in two variables
can be written as a sum of two (g-)differences of rational functions.

For a precise description, let F be an algebraically closed field of characteristic zero
and F(z,y) be the field of rational functions in x and y over F. Let ¢ and ¢ be two
automorphisms of F(z,y). A rational function f € F(x,y) is said to be (¢, ¢)-summable
in F(z,y) if there exist g, h € F(z,y) such that f = ¢(g9) — g + @(h) — h. The problem
we study is the following.

Bivariate summability problem. Given a rational function f(x,y) in F(x,y), decide
whether or not f is (¢, ¢)-summable in F(z,y).

In this paper we will solve this problem for two cases that we now describe. We define
shift operators o, and o, in F(z,y) as

oo (f(2,y)) = fle+1y) and oy(f(z,y)) = f(z,y+1)
for all f € F(x,y). For ¢ € F\ {0}, we define g-shift operators 7, and 7, in F(z,y) as

o (f(z,y)) = flgz,y) and 7,(f(2,y)) = f(z,qy) forall f € F(z,y).

We will solve the bivariate summability problem in the shift case (when ¢ = o, and ¢ =
oy) and the g-shift case (when ¢ = 7, and ¢ = 7).

The continuous counterpart, namely bivariate integrability problem, traces back to
the works by Poincaré [11] and Picard [12]|. Let D, and D, denote the derivations with
respect to x and y, respectively. The problem is to decide whether a rational function f €
F(x,y) is equal to D,(g) + Dy (h) for some g,h € F(z,y). In [12, vol. 2, p. 220|, Picard
gave a necessary and sufficient condition, which says that such a pair (g, h) exists for f if
and only if all residues of f with respect to y as algebraic functions in I@ are equal to
derivatives of other algebraic functions. For a more elementary proof of Picard’s criterion
and many applications, one can see the paper [13]. So the criteria in this paper can be

viewed as a discrete and g-discrete analogue of Picard’s criterion.
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A gallery of all results can be illustrated by the rational function

1
=———, wh e N\ {0}.
f TS where n \ {0}

o The continuous case (Example 5 in [13]):
f=Dy(g9) + Dy(h) for some g,h € F(z,y) < n#2.
o The discrete case (Example 3.8 below):
f=o04(9) —g+oy(h)—h forsomeg,h€Flz,y) < n=1L

e The g-discrete case:
— ¢ is a root of unity with ¢™ = 1 and m minimal (Example 3.13 below):

f=17.(9) — g+1y(h) —h for some g,h € F(z,y) < n# 0 mod m.
— ¢ is not a root of unity (Example 3.19 below): For all n € N\ {0},
f=1(9) —g+7y(h) —h for some g,h € F(z,y).
Although f is a very simple function, we have not seen the conclusions in the discrete
and g¢-discrete cases before.

Using the (¢g)-summability criteria, we show some identities between double sums and
single sums. For instance,

and

 — 1 1 1 .
ZZ qan+qbn - 1_qn (_§+2L1<_1’1/q ))

where Lj(z, q) is the g-logarithm (see Example 3.19).

The rest of this paper is organized as follows. In Section 2, we recall the notion of
discrete residues and their g-analogues, introduced in [7]. In terms of these residues, we
review the necessary and sufficient conditions for the summability of univariate rational
functions. The importance of discrete residues and their g-analogues lies in reducing the
problem of summability of bivariate rational functions to that of summability of univari-
ate algebraic functions. In Section 3, we present a necessary and sufficient condition on
the summability of rational functions in two variables and also some examples.
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2. Summability problem: The univariate case

Let E be an algebraically closed field of characteristic zero. In the next section, we
will take E to be the algebraic closure of the field F(x). Let E(y) be the field of rational
functions in y over E. Let ¢ be an automorphism of E(y) that fixes E. A rational func-
tion f € E(y) is said to be ¢-summable in E(y) if f = ¢(g) — g for some g € E(y). The
goal of this section is to solve the following problem.

Univariate summability problem. For a given E-automorphism ¢ of E(y) and f €
E(y), decide whether f is ¢-summable in E(y) or not.

This problem will be reduced into two special summability problems, which have
been extensively studied in [14-18.7]. It is well-known that ¢ is the linear fractional
transformation (see [19, pp. 181-182]) uniquely determined by

b
P(y) = %, where a, b, c,d € E and ad — bc # 0.
Let A denote the matrix (i Z). Then the action of A on E(y) can be naturally defined
as

A(f(y) = f(zgifl)

Let A= BJB™! be the Jordan decomposition of A over E with B € GL(2,E) and J is
one of the following forms:

(i). The shift case:

Al
J—(O )\), where A € E\ {0}.

In this case, we have J(y) =y + % Furthermore, we decompose .J into the prod-
uct pop~t, where ¢(y) = 4 and o(y) =y + 1.
(ii). The g-shift case:

J

(6\ 2) ,  where \,u € E\ {0}.

In this case, we have J(y) = qy with ¢ = A/ € E.

As in the introduction, we let o,,7, denote the shift and g-shift operators with
respect to y in E(y), respectively. Let ¢1,¢2 be two E-automorphisms of E(y) such
that ¢; = p@ap ! for some E-automorphisms ¢ of E(y). Then the problem of decid-
ing whether f € E(y) is ¢1-summable in E(y) or not is equivalent to that of deciding
whether ¢ ~1(f) is ¢o-summable in E(y) or not. According to the discussion above,
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any E-automorphism is similar to either the shift operator or the g¢-shift operator
over E. So the Univariate summability problem can be reduced to the usual summa-
bility and g-summability problems. We will discuss those two cases separately.

2.1. The shift case

In this case, we consider the problem of deciding whether a given rational function f €
E(y) is equal to the difference o,(g) — g for some g € E(y). We review a necessary and
sufficient condition in terms of the discrete analogue of the usual residues in complex
analysis from [7].

For an element o € E, we call the subset a + Z the Z-orbit of o in E, denoted by [a].
Two elements aq, s are said to be Z-equivalent if they are in the same Z-orbit, denoted
by a1 ~7z ay. For a polynomial p € E[y] \ E, the value

max{z’ ez } Jda, B € E such that i = a — 8 and p(«a) = p(B) = 0}

is called the dispersion of p with respect to y, denoted by disp, (p). A polynomial p € Ely]
is said to be shift-free with respect to y if disp,(p) = 0. Let f = a/b € E(y) be such
that a,b € E[y] and ged(a,b) = 1. Since the field E is algebraically closed, f can be
decomposed into the form

mn; z

Pepr LYY 2
KO v

1=1 5=1

where p € E[y]|, m,n;,d; j € N, o j ¢, 5; € E, and (;’s are in distinct Z-orbits. We intro-
duce a discrete analogue of the usual residues for rational functions, which is motivated
by the following fact.

Fact 2.1. Let ¢ be any E-automorphism of E(y) and «, 5 € E. Then for all m,n in N we
have

n—1
o « (0%

e g e A Y e

Definition 2.2 (Discrete residue). Let f € E(y) be of the form (1). The sum Z?;g Qe €
E is called the discrete residue of f at the Z-orbit [3;] of multiplicity j with respect to y,
denoted by dresy(f,[Bi], 7)-

We recall a criterion on the summability in E(y) via discrete residues.

Proposition 2.3. (Cf. Prop. 2.5 in [7].) Let f = a/b € E(y) be such that a,b € Ely]
and ged(a,b) = 1. Then f is oy-summable in E(y) if and only if the discrete residue
dres, (f,[B],J) is zero for any Z-orbit [5] with b(B) = 0 of any multiplicity j € N.
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In terms of discrete residues, we derive a normal form for a rational function in the
quotient space E(y)/((o, —1)(E(y))). Let f be of the form (1). Then we can decompose
it into f = 0,(g) — g+ r, where g, € E(y) and

d (A
r= Z Z resy f’ ﬁ 7) with ;’s being in distinct Z-orbits.

=1 j5=1

The condition above on r is equivalent to the condition that the rational function r is
proper and its denominator is shift-free with respect to y. Such an additive decomposition
can be computed by the algorithms in [14,20,16,15,21].

2.2. The g-shift case

Let ¢ be an element of E. We consider the problem of deciding whether a given rational
function f € E(y) is equal to the difference 7,(g) — g for some g € E(y).

We first study the case in which ¢ is a root of unity. Assume that m is the minimal
positive integer such that ¢ = 1. We do not assume that E is algebraically closed but
rather only assume that E contains all mth roots of unity. It is easy to show that 7,(f) =
f if and only if f € E(y™). Let p = 2™ — y™ € E(y™)[z]. By the assumption that E
contains all mth roots of unity, E(y) is the splitting field of p over E(y™). Since E is
of characteristic zero, E(y) is a Galois extension of E(y™) and its Galois group is cyclic
and generated by 7,. We now derive a normal form for rational functions in E(y) with
respect to 7.

Lemma 2.4. Let q be such that ¢ = 1 with m minimal and let f € E(y).

(a) f=rmy(g9) — g for some g € E(y) if and only if the trace TTE(y)/E(ym)(f) = 0.
(b) Any rational function f € E(y) can be decomposed into

f=1,(9)—g+c, wheregeE(y) andce E(ym). (2)
Moreover, f is T,-summable in E(y) if and only if ¢ = 0.
Proof. (a) This is just a restatement of the additive version of Hilbert’s Theorem 90 (see
[22, Thm. 6.3, p. 290]).
(b) Since f is algebraic over E(y™) and [E(y) : E(y"™)] = m, we can write f as

f=amy™ 4+ - +ag, whereag,...,am_1 € ]E(ym)

Since Trg(y)/Eym)(y") = 0 for i = 1,...,m — 1, the assertion in part (a) implies that
f=1y(9) —g+ao for some g € E(y) (alternatively, note that for each i € {1,...,m—1},

we have y' = 7,(¢;) — ¢; with g; = ). So f —ag is Ty-summable in E(y). For any

1 —1
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nonzero element ¢ € E(y™), the trace of ¢ is not zero. So f is 7,-summable if and only
if ag is zero. O

In this case, we see that it is quite easy to verify the g-summability of rational functions
in E(y).

Now we assume that ¢ is not a root of unity and return to the assumption that E
is algebraically closed. For an element o € E, we call the subset {a - ¢' | i € Z} of E
the gZ-orbit of a in E, denoted by [a],. We say a and 3 are ¢Z-equivalent if 3 € [a], and
we write o ~,z . For a polynomial b € E[y], b # A\y", A € E, n € N, the value

maX{i €7 ‘ 3 nonzero a, 8 € E such that o = ¢* - 8 and b(a) = b(3) = 0}

is called the g-dispersion of b with respect to y, denoted by qdispy(b). For b = A\y™
with A € E and n € N\ {0}, we define qdisp, (b) = +oc. The polynomial b is said
to be g-shift-free with respect to y if qdisp,(b) = 0. Let f = a/b € E(y) be such
that a,b € E[y] and ged(a,b) = 1. Over the field E, f can be uniquely decomposed into
the form

m (7 7,;

f—c+yp1+—+zzz az’ﬂﬁ) (3)

213160

where ¢ € E, p1,p2 € Ely], m,n; € N are nonzero, s,d; ; € N, a; j¢, 5; € E, and 5;’s
are nonzero and in distinct ¢%-orbits. Motivated by Fact 2.1, we introduce a g-discrete
analogue of the usual residues for rational functions.

Definition 2.5 (q-Discrete residue). Let f € E(y) be of the form (3). The sum Ze TRV
is called the g-discrete residue of f at the ¢Z-orbit [3;], of multiplicity j (with respect
to y), denoted by qres,(f,[Bilq,7).- In addition, we call the constant ¢ the g-discrete
residue of f at infinity, denoted by qres, (f, o).

Remark 2.6. One should notice that the definition of g-discrete residues in [7] is defined
via the decomposition

m Mg dz]

f—c+yp1+—+zzz al’” (4)

'Ll]léO

and qres,(f,[Bi]q,7) = Ze ~YJq; ;0. But it is easy to see that a; ¢ = ¢ I ;.
Therefore, the two deﬁmtlons coincide. This adjustment will allow us treat discrete
residues and their g-analogue in a more similar way.
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The following proposition is a g-analogue of Proposition 2.3.

Proposition 2.7. (Cf. Prop. 2.10 in [7].) Let f = a/b € E(y) be such that a,b € E[y]
and ged(a,b) = 1. Then f is rational T,-summable in E(y) if and only if the g-discrete
residues qres,(f,00) and qres,(f,[8]q,7) are all zero for any qZ-orbit [8), with 8 # 0
and b(B) = 0 of any multiplicity j € N.

In terms of g-discrete residues, we derive a normal form for a rational function in the
quotient space E(y)/((7, — 1)(E(y))). Let f be of the form (3). Then we can decompose
it into f = 7,(9) — g + r, where g,r € E(y) and

res ) (2 7 . . . . . .
r=c+ Z Z d f B a 7) with $;’s being in distinct gZ-orbits.

=1 j5=1

The condition above on r is equivalent to that the rational function r» — ¢ is proper and
its denominator is g-shift-free with respect to y. Such an additive decomposition can be
computed by the algorithms in [14,20].

3. Summability problem: The bivariate case
In this section, we will view rational functions in F(x,y) as univariate rational func-

tions in y over the field F(x). To this end, we need to extend the summability in F(x,y)
to its algebraic closure F(z,y). Let ¢, ¢ be two automorphisms of F(x,y). Abusing no-

tation, we still let ¢, denote the arbitrary extensions of ¢, ¢ to F(z,y). An algebraic
function f € F(z,y), is said to be (¢, p)-summable in F(z,y) if there exist g, h € F(z,y)
such that f = ¢(g) — g+ ¢(h) — h. For a rational function f € F(z,y), we will show that
the summability in F(z,y) and that in F(z,y) are equivalent. To this end, we will need

the following lemma.

Lemma 3.1. Let k be a field of characteristic zero and let k be its algebraic closure and
let 0 : k — k be an automorphism such that (k) = k. Let « € k and let K,k C K C k,
be a finite normal extension of k containing o and 6(cv). If Trg/y, denotes the trace, then
forae K

Proof. Let P(z) = 2™ + p12™ 1 + ... + p € k[2] be the minimum polynomial of «
over k. Note that Trg /(o) = —npi, where n = [K : k(a)]. Furthermore note that
the minimum polynomial of 6(a) is P%(2) = 2™ + 0(p1)z™ ! + ... 4+ 0(pm). Therefore

Tr/p(0(a)) = —nb(p1) = 0(—np1) = 0(Trg /(). O

Theorem 3.2. Let f € F(x,y) and assume that ¢, be two F-automorphisms of F(x,y).
Then f is (¢, p)-summable in F(x,y) if and only if f is (¢, )-summable in F(z,y).
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Proof. The sufficiency is obvious. Conversely, assume that f is (¢, )-summable
in F(z,y), that is there exist g,h € F(zx,y) such that

f=9¢(g) —g+¢(h)—h.

Let k = F(x,y) and k =
containing g, h, ¢(g), ¢(h).

F(z,y). Let K,k C K C k be a finite normal extension of k
pplying Lemma 3.1 to 6 = ¢, a« = g yields

Trie/k(6(9) = 6(Tri/r(9)).

Similarly we deduce that Trg/,(o(h)) = @(Trg/k(h)). Therefore, for the integer N =
[K : k], a computation shows that

Nf=¢(Trgn(9)) — Trisi(9) + ¢(Trryi(h)) — Tryi(g)-
Therefore f is (¢, ¢)-summable in k. O

The following fact, together with Fact 2.1, will be used to simplify the summability
problem.

Fact 3.3. Let ¢ be an automorphism of F(z)(y) such that ¢(y) = y and let o, 5 € F(z).
Then for all m,n € N we have

o) I o S C)
R A R v S D Y vtk

3.1. The shift case

In this case, we consider the problem of deciding whether a given rational function f €
F(x,y) is equal to o,(9) — g + oy(h) — h for some g,h € F(z,y). By Theorem 3.2, this
problem is equivalent to that of deciding whether f is (o4, 0y)-summable in F(z)(y).

Lemma 3.4. Let f be a rational function in F(x,y). Then f can be decomposed into f =
0x(9) — g+ oy(h) —h+r, where g,h € F(z)(y) and r is of the form

m ez o
l,] 5
LAy ?
with o, 5, B; € F(x), a; ; # 0, and for all i,i" with 1 <i<i <m

Bi—on(By) € Z for any n € Z. (6)

Moreover, the rational function f is (0s,0y)-summable in F(x)(y) if and only if the
function r € F(x)(y) is (04, 0,)-summable in F(x)(y).
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Proof. Let E = F(z). According to the discussion in Section 2.1, there exist g,7 € E(y)
such that f = 0,(g) — g+ 7, where 7 is of the form

S

1=1 5=1

with o_zzj,ﬁZ € E and 5;’s being in distinct Z-orbits. Assume that for some 7,4’ with 1 <
i <1 < m, we have 3; — ol (By) = s € Z. Since B; and By are in distinct Z-orbits, we
have ¢ # 0. By Facts 2.1 and 3.3, there exist g; j, h; ; € E(y) such that

— — —t(= —

Q; j Q5 o, (Qij) — i
- — - = 0,(9i5) — gi,j +oy(hij) — hij+ —

=By = pey W) gt o) —hes + 20 T

This allows us to eliminate a term and we can repeat this process until the ;s satisfy
the condition (6). The remaining equivalence is obvious. O

Lemma 3.5. Let o, 8 € () B =3ix+cwithsecZ, tecN\{0} andccF and a =
ol (v) — v for some v € F(x), then the fraction o257 is (0z,0y)-summable in F(z)(y).
Proof. Let

Then

o R S S o(v)  q
r= oy - -0 = o - (e )

a4y al(7)

CW-B (- ok(B)
Note that ¢’ (3) — 8 = s € Z. Since a = 7’.(7) — v, we have the discrete residue of r at

of multiplicity j is zero. Then Proposition 2.3 implies that there exists h € F(z)(y) such
that

«

m = 0.(9)

which completes the proof. O

_9+Uy(h) _h7

We recall a lemma from [7].

Lemma 3.6. (Cf. Lemma 3.7 in [7].) Let a(x) be an element in the algebraic closure
of F(z). If there exists a nonzero n € Z such that ol(a) — o = m for some m € Z,
then a(x) = Zx + ¢ for some c € F.
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Note that the shift operators o, and o, preserve the multiplicities of irreducible factors
in the denominators of rational functions. Therefore the rational function r in (5) is

(04,0y)-summable in F(x)(y) if and only if for each j, the rational function

L Mo "

=1

is (04, 0,)-summable in F(z)(y).

Theorem 3.7. Let f € F(z)(y) be of the form (7) with o ;, B in F(z), o;; # 0, and
the ;’s satisfying the condition (6). Then f is (0, 0,)-summable in F(x)(y) if and only
if for each i € {1,2,...,m}, we have

B = %x +¢;, where s; € Z, t; € N\ {0}, and ¢; € F,

K3

and a; j = oli(v;) — i for some v; € F(z).

Proof. The sufficiency follows from Lemma 3.5. For the necessity, we assume that f is

(04,0y)-summable in F(x)(y), i.e., there exist g, h € F(x)(y) such that

f=0.(9) —g+0y(h)—h. (8)

We decompose the rational function g into the form

(1) — g1t gt oy
g=0ylg1) — g1 T 92 - o
Y (y — p1)? (y — pn)?

where g1, 92 € F(x,y), g2 is a rational function having no terms of the form 1/(y — v)’

in its partial fraction decomposition with respect to y, Ag, ur € F(x), and the uy’s are
in distinct Z-orbits.

Claim 1. For each i € {1,2,...,m}, at least one element of the set

A = {’ul,...,Mn,o-m(,ull)a"‘?o-x(un)}

is in the same Z-orbit as B;. For each n € A, there is one element of A\{n}U{B1,..., Bm}
that is Z-equivalent to 7.

Proof. Suppose no element of A is in the same Z-orbit as [3;. Taking the discrete residues
on both sides of (8), we get dres,(f,8i,7) = a;; # 0 and dresy(0,(9) — g + oy(h) —
h, Bi,7) = 0, which is a contradiction. The second assertion follows from the same argu-
ment. O



S. Chen, M.F. Singer / Journal of Algebra 409 (2014) 820-843 331

Claim 1 implies that either 5; ~z p} or 5; ~z o, (u}) for some p} € {u1,..., pnt We
shall deal with each case separately.

Claim 2. Assume [3; ~z }.
(a) Fix B; and 7 € N, j > 2 and assume that (fﬁﬁi wy By for 1 <€ < j—1. Then
there exist py, ... 15 € {1, ..., fin} such that

05 (Bi) ~z 1y, and (9)

on(1h) ~o s on(ph) ~z s, s on(r) ~o (10)

(b) There exists t; € N, t; # 0 such that t; < n and o (B;) — B; € Z. For the smallest
such t;, there exist py,...pw, 1 € {p1,..., n} such that

oo (1) ~z pa ou(ph) ~z s, s ou(py 1) ~z o, 0w (i) ~z B (1)

Proof. (a) Let us first assume that j = 2. From the second part of Claim 1, we have
that o,(p)) is Z-equivalent to an element of A\{o,(u})} U {B1,...,Bm} If o(p)) is
Z-equivalent to some [y for ¢ # i, then 0,(6¢) ~z i, contradicting (6). If o, (u}) is
Z-equivalent to (;, then we would have o,(8;) ~z o0.(u;) ~z Bi, contradicting the
assumption of Claim 2(a). If o,(u}) ~z 0.(ue) for some pp # pf, then pp ~z uj,
contradiction our assumption that the p; are in distinct Z-orbits. Therefore we are left
with only one possibility — that o, (u)) ~z ph for some ph and (9) and (10) hold for
this choice. Now assume that (9) and (10) hold for 7 > 2. Arguing as in the case when
j = 2, we can verify that there exists a p;,; such that (9) and (10) hold in this case as
well.

(b) If such a ¢; does not exist, then one could find {yf,...,u;, ,} satisfying (9) and
(10). In this case, we must have u!. = pl for some r > s implying that o 8; ~z o3 0;.
This implies o..~°3; ~z B; a contradiction. Therefore the first part of (b) is verified. To
verify the second part, apply part (a) to j =¢;. O

Claim 3. Assume 3; ~z 0. (1}).
(a) Fiz B; and j € N,j > 2 and assume that o’ B; =z B; for 1 <€ < j—1. Then there
exist juy, ..., py € {p1, ..., fin} such that

Bi ~z ol (1)), and (12)
:u,l ~7 Ox (M/2)7 /1’/2 ~7 Ox (,U/é)a SRR :u;‘—l ~7 Og (M;) (13)

(b) There exists t; € N such that t; < n and o' (8;) — B; € Z. For the smallest such t;,
there exist yuy, ...y, € {1, ., pn} such that

W~z on(y),  py~zow(ps), oo o1~z oe(y), o, ~z B (14)
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Proof. (a) Let us first assume that j = 2. Again from the second part of Claim 1, we
have that pf is Z-equivalent to an element of A\{p}}U{B1,..., Bm}. If 1} is Z-equivalent
to some [y for ¢ # i, then 0,(8¢) ~z B;, contradicting (6). If u} is Z-equivalent to f;,
we contradict the assumption of Claim 2. If p} ~z pe for some py # p}, we contradict
our assumption that the p; are in distinct Z-orbits. Therefore we are left with only one
possibility — that p} ~z o, (uh) for some p,. Therefore (12) and (13) hold in this case
as well. Now assume that (12) and (13) hold for j > 2. Arguing as in the case when
j = 2, we can verify that there exists a p,; such that (12) and (13) hold in this case as
well.

(b) If such a t; does not exist, then one could find {4, ..., u;, ;} satisfying (12) and
(13). In this case, we must have p,. = u’, for some r > s implying that o " 5; ~z o, °f;.
This implies 0.~ °B; ~z i a contradiction. Therefore the first part of (b) is verified. To
verify the second part, apply part (a) to j = t;.

Using these claims, we now complete the proof. From Claims 2(b) and 3(b), we have
that for each 4 there exists a positive integer ¢; such that o (3;) — 8; € Z. This implies
that 8; = j—zx + ¢; for some s; € Z and ¢; € F by Lemma 3.6. We now turn to verifying
the claim of the theorem concerning the «; ;.

Fix some (; and assume, as in Claim 2, that ; — yj € Z. We wish to compare the
discrete residues at f3; on the left side of (8) with the discrete residues at the elements
of A on the right side of (8). The equivalences of (11) give the Z-orbits in A. In the
following table, the first column lists the Z-orbits of elements in A. The second column
equates the discrete residue of this orbit on the left of (8) with the discrete residue of
the same orbit on the right of (8). Note that the orbit listed on the first line corresponds
to ; and that the other orbits have zero residue on the left of (8).

Z-orbit Comparison of two sides of (8)
//170'96(/1;7:) aj ;= 0z(At;) — A1

Wi 0wy, ) 0=0z(At;—1) — Ay,

Hy, 1502 (1, —2) 0=0z(At,~2) = A, -1

ps; 02 (1) 0=0s(X2) — A3

1y, oa (1) 0=0z(A1) = A2

Using the equations in the last column, to eliminate all intermediate terms one can show
that a; j = oki(A\1) — A1. Since B; € F(z), 1 — B; € Z, and Ay € F(p1), the element )\
is actually in F(x).

We now turn to the situation of Claim 3, that is, assume that ; — o, (u}) € Z. As
in the previous paragraph, we will compare the discrete residues at the 3; on the left
side of (8) with the discrete residues at the elements of A on the right side of (8). The
equivalences of (14) give the Z-orbits. The following table summarizes the comparison.
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Z-orbit Comparison of two sides of (8)
Uw(.u/l)a.u‘;l [T :Ux(Al)_Am

Ux(ulz)aui 020m(>‘2)_>\1

az(“;’,)m“é 0:U$(>\3)_

az(”::z—ﬂvﬂ;z—z 0=0x(At;—1) — Ap,—2
Um(ﬂ;l)alifgl_1 0=0z(At;) — At,—1

Using the equations in the last column, to eliminate all intermediate terms one can show
that a; ; = 0% (\e,) — A,. Since 3; € F(x), u1 — B; € Z, and Ay € F(uq), the element A\
is actually in F(z). O

Example 3.8. Let f = 1/(z" + y") with n € N\ {0}. Over the field F(z), we can
decompose f into

where [; = w;x with w; varying over the roots of 2z = —1 and a; = W By
Theorem 3.7, f is (04, 0y)-summable in F(z, y) if and only if for all i € {1,...,n}, w; =
s;/t; for some s; € Z, t; € N\ {0}, and o; = ol (7;) —; for some ~; € F(x). When n > 1,
at least one w; is not a rational number, which implies that f is not (o, o, )-summable
in F(z,y). When n = 1, the discrete residue of f at —x is 1 and 1 = 0, (x) —x. Therefore,

f=1/(z+y) is (64,0y)-summable in F(x,y). In fact, we have

1 x x —r—1 —r—1
= 0y — + oy — .
Tty Tty Tty Tty rT+y
Example 3.9. Let f = 1/zy. The discrete residue of f at 0 of multiplicity one is 1/zx.
Since 1/x # o,(\) — A for any A € F(z), f is not (0, 0y)-summable in F(x,y).

Example 3.10. The harmonic double sums

oo oo
T(r,s,t) ZZ n+m)
n=1m=1

were studied by Tornheim [23,24] and Mordell [25] and many elegant identities have been
established between them [26-29]|. Tornheim [23, Thm. 5] proved that

T(0,0,t) = C(t —1) — ¢(t), where t > 2 and ((s Z — (16)

We give another proof as follows. Let f = 1/(n+ m)'. Let o, o, be the shift operators
with respect to n and m, respectively. Set A,, = 0,,—1 and A,,, = 0,,, — 1. By Lemma 3.5,
f is (op, 0 )-summable in Q(n,m). In fact, we have
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Since
égA”QnSm)t) :;<2A”<<nfm>t)>
:g T = L
and

This completes the proof of the identity (16).

Example 3.11. We show the identity

By Lemma 3.5, we have

1 B n/2 (n+1)/2 —1—n/2
(s 2 A"<<m+n/2>s HCEaCE 1)/2)8) +A”"L(<m+n/z>s)' (17)

Summing both sides of (17) with respect to n and m yields

x© X 1 © _9s—1 -1 el 9s—1
S o e ) e
i (m+n/2)s S\ (@2m+1)s (m+1) ) A (n+2)5!
Note that
= 1 A | <1 25— 1
o 1 —1- = s) —1,
which implies
o o 1 28 . 1
= — C(s) 42571 =((s)+1+2°71(¢(s = 1)—2°71 1
2 ey 2
o 2% +1
=2"1((s = 1) - ¢(s)-

2
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3.2. The g-shift case

In this case, we consider the problem of deciding whether a given rational function f €
F(x,y) is equal to 7,(g9) — g + 7, (h) — h for some g,h € F(x,y). By Theorem 3.2, this

problem is equivalent to that of deciding whether f is (7, 7,)-summable in F(z)(y).

We first consider the case in which ¢ is a root of unity. Let m be the minimal positive
integer such that ¢"* = 1. One can show that 7,(f) = 7,(f) = f if and only if f €
F(z™, y™). Furthermore, [F(z,y) : F(x,y™)] = m and [F(x,y™) : F(z™,y™)] = m and
therefore [F(x,y) : F(z™,y™)] = m?. The field F(x,y) is a Galois extension of F(z™,y™)
whose Galois group is the product of the cyclic group generated by 7, and the cyclic
group generated by 7,,. We now derive a normal form for functions in F(x, y) with respect
to 7, and 7.

Lemma 3.12. Let q € F be such that ¢ = 1 with m minimal. Let f € F(x,y).

(a) f=r1x(9)—g+7y(h)—h for some g,h € F(x,y) if and only ifTr]F(m’y)/lF(xm’ym)(f) =0.
(b) Any rational function f € F(x,y) can be decomposed into

f=1(9) —g+7y(h) —h+c, whereg,heF(z,y) and c € F(z™,y™). (18)
Moreover, f is (14, T,)-summable if and only if ¢ = 0.

Proof. (a) Assume f = 7,(g9) — g + 7,(h) — h. Applying Lemma 2.4(a) to f — 7,(9) — g
we have

0 = Trr(z ) /Faym) (f = (T2(9) — 9))
= Trr(e ) /Faym) (F) = T(,y) /B ym) (T2(9) — 9)-

Lemma 3.1 implies

TrR(2,) /() (Te(9) = 9) = Ta (Tr8( ) /B @) (9)) = TrR(.y) /P (2ym) (9)-

Therefore

Trp(e ) /F(eym) () = To (T0r(2.y) /F@ym) (9)) — Trr ) /Fym) (9)-

Applying Lemma 2.4(a), we have Trgey ym)/Fam ym)(Trtr(z,y) /F@,ym)(f)) = 0. Since
TrIF(a:,y)/IF(ac,y) = Tr]];‘(x’ym)/[ﬁ‘(xm’ym) @) TrF(m7y)/IF(x’ym) (see [227 Thm. 5.1, p. 285]), we have

Trp(z,y) /B (2m,ym) (f) = 0.
Now assume that

0 = Tre(e,y)/e@m ym) (F) = Trr@ym) e@m ym) (Tre,y) /B @y (F))-
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Lemma 2.4(a) implies that Trr(y ) /F(z,ym)(f) = T2(g9) — g for some g € F(x,y™). Note
that

TrF (2 ) /B ym) (NS — Tor(2,y) /E@ym) ()
== mTrF(x,y)/F(x,ym)(f) —m TrF(a:,y)/IE‘(a:7ym)(f) = 0.

Therefore, Lemma 2.4(a) implies mf — Trp(q,y)/F(z,ym)(f) = Ty(h) — h for some h €
F(z,y). Therefore,

f= %(Tx(g) —g+7y(h) = h).

(b) We can write

I= ( Z ai,jfﬁiyj> + a0,0,

where all a; ; € F(z2™,y™). A calculation shows that TrF(x,y)/F($m7ym)(xiyj) = 0 when
0<1i,j<m—1,(i,7) # (0,0). Therefore part (a) implies that f = 7,(9) —g+7,(h) —h+
ao,0. Therefore f is (7., 7,)-summable if and only if the trace Trr(y y) /F(zm ym)(@0,0) = 0
but this is true if and only if ap o =0. O

Similar to the comment following Lemma 2.4(a), one sees that it is easy to verify
the (75, 7y)-summability of any f € F(x,y).

Example 3.13. Let f = 1/(2™ + y") with n € N\ {0}. Recall that m is the minimal
positive integer such that ¢ = 1. Write n = ¢gm + r with 0 < r < m. Then 2" + y" =
z"(z™)? 4+ y"(y™)4. This implies that f € F(2™,y™) if and only if » = 0. Since f is
nonzero, we have f is not (7, 7,)-summable in F(z,y) when » = 0 by Lemma 3.12. In
the case when r # 0, we have

1 Cp, Cp, Cn, Cn
n =Ty - + Ty - s

where ¢, = ¢"/(1—q¢") = ¢"/(1—¢"), which means that f is (7, 7,)-summable in F(x, y)

in this case.
From now on, we assume that ¢ is not a root of unity.

Lemma 3.14. Let f be a rational function in F(x,y). Then f can be decomposed into f =
7:(9) — g+ 7y(h) — h+ 1, where g,h € F(z)(y) and r is of the form

r—c—i—zz y%’éz (19)

=1 j5=1
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with ¢ € F(z), o, j,0; € F(x), a;; #0, B; # 0 and for all i,i" with 1 <i<i <m

Bi

Z
W ¢ q” for anyn € 7. (20)

Moreover, the rational function f is (7z,T,)-summable in F(x)(y) if and only if the
function r € F(x)(y) is (7., 7,)-summable in F(z)(y).

Proof. Let E = F(z). According to the discussion in Section 2.2, there exist g,7 € E(y)
such that f = 7,(g) — g + 7, where 7 is of the form

e D=y

=1 5=1

with ¢ € F(z), &;;, Bi € E and $3;’s being in distinct ¢Z-orbits. Assume that for some i, i’

with 1 <i < i <m andt € Z, we have % = ¢° € ¢%. Since 3; and B; are in distinct

q”-orbits, we then have t # 0. By Facts 2.1 and 3.3, there exist g; ;, h; ; € E(y) such that
a; j Qir j Ty (a™% quy) —

- — - = T2(9i,5) — 9i,j hij) — hij+ = .
(y_ﬂz)j (y_/Bz’)j T. (g 7]) g7J+Ty( 7.]) :J+ (y_ﬁz’)‘j

This allows us to eliminate a term and we can repeat this process until the ;s satisfy

the condition (20). The remaining equivalence is obvious. O

Lemma 3.15. Let o, 3 € F(z). If B = cx®/* with s € Z, t e N\ {0} and ¢ € F and o =

q SI7t(y)—~ for somey € F(x), then the fraction g7 s (T, 7y )-summable in F(z)(y).

Proof. Let
= T
a ; (v — 7E(B)7
Then
R S S o) 7
=y - -0 = - (e )
a4y 74 (%)

T -8y (y-TiB)

Note that 72 (8) = ¢°. Since a = ¢~*I7L(7) — 7, we have the g-discrete residue of r at
of multiplicity j is zero. Applying Proposition 2.7, we have that there exists h € F(x)(y)
such that

«

w=py "

which completes the proof. O

_9+Ty(h) _ha
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We recall a lemma from [7], which is a g-analogue of Lemma 3.6.

Lemma 3.16. (Cf. Lemma 3.8 in [7].) Let a(x) be an element in the algebraic closure
of F(x). If there exists a nonzero n € Z such that T)(a) = ¢"«a for some m € Z,
then a(t) = cx™™ for some c € F.

Note that the g-shift operators 7, and 7, preserve the polynomial part and the mul-
tiplicities of irreducible factors in the denominators of rational functions. Therefore,

the rational function r in (19) is (7, 7, )-summable in F(z)(y) if and only if ¢ € F(z)
is 7,-summable in F(z) and for each j, the rational function

Yo ; (y — B:)7 2

is (74, Ty)-summable in F(z)(y).

Theorem 3.17. Let f € F(z)(y) be of the form (21) with «; ;,B; in F(x), a;; # 0, and
the B;’s satisfying the condition (20). Then f is (14, 7,)-summable in F(z)(y) if and only
if for each i € {1,2,...,m}, we have

Bi = ca®t,  where s; € Z, t; € N\ {0}, and ¢; € F,
and a; j = q %7 (v;) — i for some 7; € F(z'/%).

Proof. The sufficiency follows from Lemma 3.15. The proof of necessity follows the same
general lines as the proof of necessity in Theorem 3.7. For the necessity, we assume that f

is (7, Ty)-summable in F(x)(y), i.e., there exist g, h € F(x)(y) such that

f=17:(9) —g+T1y(h) — h. (22)

We decompose the rational function g into the form

(@) — gt gt — g
9=Ty91) — 1 t 92+ 7 -t "t 7T
! (y — 1)’ (y — pin)’

where ¢1,90 € F(z,y), g2 is a rational function with poles having order different

from j, Ax, ux € F(z), and the py’s are in distinct ¢Z-orbits.
Claim 1. For each i € {1,2,...,m}, at least one element of the set

A= {lu,l,...,,LLn,Ta;(,UJl)a"'7T$(Mn)}

is in the same q%-orbit as 3;. For each element n € A, there is one element of A\ {n} U
{B1,...,Bm} that is q“-equivalent to 7.
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Proof. The argument is the same as the proof of Claim 1 in the proof of Theorem 3.7,
replacing o, with 7, and dres,(f, 3, j) with qres,(f,,7). O

According to Claim 1, we have either 3; ~,z pj or B; ~g 7,(uy) for some p)
in {1,...,un}. We shall deal with each case separately. The proofs of the next two
claims are essentially the same proofs of the corresponding claims in the proof of Theo-
rem 3.7 after one replaces o, with 7.

Claim 2. Assume [3; ~,z i} .
(a) Fiz B; and j € N j > 2 and assume that T'3; ~ g Bi for 1 <L < j—1. Then
there exist uf, . .. uj € {p1,..., un} such that

T2 (Bi) ~g iy, and (23)

Tx (Mll) ~q ,UJ/2> Tz (//2) ~qZ ,U,é, ceey Tg (,u;'—l) ~qt ,u; (24)

(b) There exists t; € N, t; # 0 such that t; < n and 75 (B;)/B; € q%. For the smallest
such t;, there exist py,...p. 1 € {p1,... ,un} such that

To(i1) g tay Te(pz) g sy s Ta(ptoa) gt e (1) g B (25)

Claim 3. Assume 3; ~g T, (u7).
(a) Fiz B; and j € N, j > 2 and assume that 73; o Bi for 1 <€ < j—1. Then
there exist py, ... w5 € {p1,..., pin} such that

povge To(pn), Ha v Te(ps)s s Wy g Te (1) (27)

(b) There exists t; € N such that t; < n and 75 (8;) — B; € Z. For the smallest such t;,
there exist yuy, ...y, € {pt1,..., n} such that

P~ To(ih)s iy ~ge Ta(ps), oy b on g Tw(pe,) e, g B (28)

Using these claims, we now complete the proof. Although the remainder of the proof is
similar to the proof of Theorem 3.7, there are a few differences so we will give the details.

Fix some 3; and assume, as in Claim 2, that f; ~.z p, that is §; = ¢*“°p}. From
Claim 2(b) we have that 7,(u) = ¢**uy,, for k= 1,...,¢; — 1 and 7, (u3,) = ¢“% f;.
We can conclude that 7% (3;)/8; = ¢* € ¢%, where s; = wg +wy + - - - +wy,. This implies
that 8; = ¢;z%/% for some ¢; € F by Lemma 3.16.

We now wish to compare the g-discrete residues at the 3; on the left side of (22) with
the g-discrete residues at the elements of A on the right side of (22). The equivalences
of (25) yield
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qZ-orbit Comparison of two sides of (22)
ws e (k) i =q 7T (M) — 70N
pip To (M, 1) 0=q 717, (Ae,—1) — Ae,

Kt 1> Ta (K, o) 0=q 7% 27, (Ag,—2) — At,—1
1, T (K) 0=q727,(X2) — A3

P2, To (1) 0=g 71m.(A1) = Ao

Using the equations in the last column to eliminate all intermediate terms, one can show
that a; ; = ¢ 7% 7Li(\) — X\ where A = ¢7%0 ).

We now turn to the situation of Claim 3, that is we assume that §; = ¢~ “°7,(u}).
From Claim 3(b), we have that pj = ¢~ “*7, () fork =1,... t;—1and p;, = q~“* 3;.
We can conclude that 71 (3;)/8; = ¢* € ¢%, where s; = wg +wy + - - - + wy,. This implies
that 8; = ¢;z%/% for some ¢; € F by Lemma 3.16.

We now wish to compare the g-discrete residues at the §; on the left side of (22) with
the g-discrete residues at the elements of A on the right side of (22). The equivalences
of (28) yield

q“-orbit Comparison of two sides of (22)
Méi,Tac(Hi) i =q 107 (A1) — @7 Ay,
1, o (1) 0=q 7" 12(X2) = A1

/*L/Qa T:v()u'g) 0= q_jszz(AZS) - )\2
M;ifszw(Hglfﬂ qu_jwt1727—x(>\ti_1)_Ati_Q
Wy, —1s T (11,) 0=q 79 75 (Ae,) — A, -1

Using the equations in the last column to eliminate all intermediate terms, one can
show that a;; = ¢ 7%7t(\) — X\ where A = ¢/“* \;,. Since A, € F(z)(5;) and j; €

x

F(x'/%), we have \;, € F(x'/*). This completes the proof. 0O

Remark 3.18. Let a € F(x'/?) with t € N\ {0} and m € Z. We show how to reduce the
problem of deciding whether there exists 8 € F(z/?) such that

a=q"m(8) - B, (29)

t

Ut and 75 = 7¢.

to the usual g-summability problem as in Section 2.2. First, set © = x
Then 7z(Z) = qz, a € F(Z) and (29) is equivalent to

a=q"7z(8) — p for some B € F(z).

Let 8 = 2™ and & = ™ a. By a direct calculation, we have that ¢™7;(8) = ¢"1.(8/z™)
= 73(B) /2™, which implies that

& =13(8) - B.
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Therefore, we can use the criterion on the g-summability in F(Z) in Section 2.2 to solve
this problem.

Example 3.19. Let f = 1/(2" 4+ y") with n € N\ {0}. Over the field F(z), we can

decompose f into the form (15). By Theorem 3.17, f is (7, 7,)-summable in F(x,y) if
and only if for all i € {1,...,n},

1
()1 q 7 (i) =i for some 7; € F(x). (30)

By Remark 3.18, Eq. (30) is equivalent to

1

nw?flx”

=7.(%) — 7 for some 7; € F(x).

By the g-summability criterion in Section 2.2, we have nw"+” is 7,-summable in F(x)

for all i € {1,...,n}. Therefore, f is (7, 7,)-summable in IF(:B y). In fact, we have

1
() St (o) - 6

where ¢, = ¢"/(1—¢"). In order to translate the identity (31) into that of usual sums, we

define the transformation p : F(z,y) — F(q%, ¢%) by p(z) = ¢%, p(y) = ¢® and p(c) = c for
any ¢ € F. Since ¢ is not a root of unity, p is an isomorphism between two fields F(x, y)
and F(q%, q"). Let o, and o}, denote the shift operators with respect to a and b, respec-

tively. Then p(7,(f)) = oa(p(f)) and p(1y(f)) = op(7y(f)) for all f € F(z,y). Assume
that F = C and |g| > 1. Now the identity (31) leads to the identity

q" -1 -1
ZZ an+qbn - 1_qn<zqn+qbn+;m)

a>1b>1 b>1
B —1
- " q T+ @t on
1
- ( ”Ll( : —))’
q" 2 q"
where Ly (x; o lx| <|p|, p= gt
a= 1

The function L (z; q) is called the g-logarithm (see [30]| and the references in this paper).
Moreover, P. Borwein has proved in [31] that L; (—1; ql ) is irrational, which implies that
the double sum above is also irrational.

In this way, we reduce double sums into single ones and then evaluate these in terms
of values of special functions.



342 S. Chen, M.F. Singer / Journal of Algebra 409 (2014) 320-343

Example 3.20. A g-analogue of Tornheim’s double sums is presented by Zhou et al. in
132], which is of the form

e m (r+t—1)n+(s+t—1)m
Tir s, ti0.7] = Z qi —i—ts) +( +tt ) ’
W= [ndgmigin 4 mlg
where 0,7 € {—1,1} and [n], := Z?;Ol = L= =1 We consider the special case when o =

7 =1and r = s = 0. By setting z = ¢" and y = ¢, the summand of T[0,0,¢;1,1] is
the rational function

_ (@)t a1
(xy — 1)

where t € N\ {0}.

We show that f is not (7, 7,)-summable in F(z, y) for all t € N\ {0}. The partial fraction
decomposition of f with respect to y is

t—1
t—1 ,
wh i = —1 t 7(t71).
f= ZE:O —l/ajt s ere a; = (q )( ; )x

By Theorem 3.17, f is (74, 7y)-summable in F(z, y) if and only if for all : € {0,1,...,t—1},
we have

o = qt_iTx(%) —y; for some v; € F(x). (32)

By Remark 3.18, (32) is equivalent to

(g — 1)t (t B 1) =7.(%) —*%; for some 7; € F(x).
i

By the criterion for the g-summability in Section 2.2, the nonzero constant (¢g—1)* (tzl) €

[ is not 7,-summable in F(z), which implies that f is not (7, 7,)-summable in F(z,y).
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