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properties of almost simple groups and, in the ordinary differential
case, classify almost simple linear differential algebraic groups.
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1. Introduction

Let (k, δ) be a differential field of characteristic zero with derivation δ and let k[δ] be the ring
of linear differential operators with coefficients in k. It has been known for a long time (see [40]
for a brief history and [2,34,46] for more recent algorithmic results) that one has a form of unique
factorization for this ring:

Given L ∈ k[δ], L /∈ k, there exist irreducible Li ∈ k[δ], i = 1, . . . , r, such that L = L1 · · · Lr . Further-
more, if L = L̃1, . . . , L̃s , L̃i ∈ k[δ], L̃i irreducible, then r = s and, for some permutation σ of the
subscripts, there exist nonzero Ri, Si ∈ k[δ] with deg(Ri) < deg(L̃i) such that Lσ(i)Ri = Si L̃i for
i = 1, . . . , r.
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A direct generalization of this to partial differential operators fails as the following example shows.
In [6], Blumberg considered the following third order linear partial differential operator (which he
attributes to E. Landau)

L = δ3
x + xδ2

x δy + 2δ2
x + 2(x + 1)δxδy + δx + (x + 2)δy

over the differential field C(x, y) where δx = ∂
∂x and δy = ∂

∂ y . He showed that this operator has two
factorizations

L = (δx + 1)(δx + 1)(δx + xδy)

= (
δ2

x + xδxδy + δx + (x + 2)δy
)
(δx + 1)

and that the operator δ2
x + xδxδy + δx + (x + 2)δy could not be further factored in any differential

extension of C(x, y) (this example is also discussed in [17]).
To confront this situation one must recast the factorization problem in other terms. For ordi-

nary differential operators, the factorization result is best restated in terms of k[δ]-modules. If one
considers the k[δ]-module ML = k[δ]/k[δ]L, then the above factorization result can be stated as a
Jordan–Hölder type theorem: ML has a composition series ML = M0 ⊃ M1 ⊃ · · · ⊃ Mr = {0} where
successive quotients Mi−1/Mi are simple and any two such series have the same length and, after
a possible renumbering, isomorphic quotients. Casting questions in terms of ideals and modules in
the partial differential case yields many interesting results (cf., [17–19,16,15,32]). Other approaches
to factoring linear operators are contained in [4,39,38,44]. In [45], Tsarev alludes to an approach to
factorization through the theory of certain abelian categories that has points of contact with the ap-
proach presented here.

We will take an alternate approach—via differential algebraic groups. This stems from the seem-
ingly trivial observation that the solutions of a linear differential equation form a group under
addition. In fact, this is an example of a linear differential algebraic group, that is, a group of ma-
trices whose entries lie in a differential field and satisfy some fixed set of differential equations (here

we identify {y ∈ k | L(y) = 0} with the group {
(

1 y
0 1

)
| L(y) = 0}). We shall prove a Jordan–Hölder type

theorem for differential algebraic groups (of which linear differential algebraic groups are a special
case). This will encompass the factorization result for linear ordinary differential equations, allow us
to give a “factorization” result for linear partial differential equations and allow us to reduce the study
of general differential algebraic groups to the study of almost simple groups (to be defined below) and
their extensions.

The rest of the paper is organized as follows. In the remainder of this section we review some
basic definitions and facts from differential algebra. In Section 2, we shall review some definitions
and facts from differential algebra and the theory of linear differential algebraic groups. We will state
and prove a Jordan–Hölder Theorem for linear differential algebraic groups and show how it applies
to the example of Landau above. In Section 3, we will discuss the structure of almost simple groups
in more detail.

The authors would like to acknowledge the influence of Ellis Kolchin. The first author discussed her
notions of solid and the core (what we call strongly connected and the strong identity component)
with him in the 1980’s and he suggested a version of the Jordan–Hölder Theorem below. In addition,
we would like to thank William Sit for explaining the connection between Gröbner bases of left
ideals in the ring of differential operators and characteristic sets of linear differential ideals (see the
discussion in Example 2.31).

1.1. Differential algebra preliminaries

Throughout, we let Z = the ring of integers, Q = the field of rational numbers, C = the field of
complex numbers.



Author's personal copy

192 P.J. Cassidy, M.F. Singer / Journal of Algebra 328 (2011) 190–217

We refer to [9–13,24,25] for the basic concepts of differential algebraic geometry and differen-
tial algebraic groups. All rings have characteristic zero. We fix a set � = {δ1, . . . , δm} of commuting
derivation operators. We often use the prefix �- to indicate the �-differential structure on a ring,
field, group, etc. If k is a �-field, and R and S are �-k-algebras, a k-homomorphism ϕ : R → S is a
�-k-homomorphism if ϕ ◦ δ = δ ◦ ϕ , δ ∈ �. Let k be a �-field. The k-algebra of differential operators
generated by � is denoted by k[�], and the set of monomials θ = δ

e1
1 · · · δem

m in k[�] by Θ . The order
of θ is the degree of θ .

If η = (η1, . . . , ηn) is a family of elements of a �-k-algebra, the �-k-algebra k{η} is the k-
algebra k[Θη], where Θη is the family of derivatives (θη j)θ∈Θ,1� j�n of the coordinates of η. Thus,
if z1, . . . , zn are elements of a �-k-algebra such that the family (θ z j)θ∈Θ,1� j�n is algebraically inde-
pendent over k, the �-k-algebra k{z} = k{z1, . . . , zn} is called the �-polynomial algebra. Suppose k{η}
is an integral domain. Set k〈η〉 equal to its quotient field. We say that k{η} (resp. k〈η〉) is a finitely
generated �-k-algebra (resp. �-k-field). The quotient field k〈z〉 of the �-polynomial ring is called the
field of �-rational functions. Let (Pi)i∈I be a family of �-polynomials in k{z1, . . . , zn}. The �-ideal
[(Pi)i∈I ] equals the ideal ((Θ Pi)i∈I ).

Fix a �-field k. A �-k-field K is differentially closed if given a prime �-ideal I in K {z1, . . . , zn} and
differential polynomial Q /∈ I , there exists η = (η1, . . . , ηn) ∈ K n , with

Q (η) 	= 0 and P (η) = 0 for all P ∈ I.

Equivalently, K is differentially closed if every system of differential polynomial equations and inequa-
tions that has a solution with coordinates in a �-K -field has a solution with coordinates in K (see
[23,27,28,31]). We say that a �-k-field U is k-universal if, in addition to being differentially closed,
U satisfies the useful property that if I is a prime �-ideal in k{z1, . . . , zn}, there is in Un a generic
zero of I . A generic zero η is a zero of I that has the property that if P is in k{z1, . . . , zn} and P (η) = 0,
then P is in I . We fix k and U.

We define on affine n-space Un both the Zariski and Kolchin topologies. The Kolchin topology, which
is finer than the Zariski topology, is also Noetherian. A subset X of Un is a �-variety if it is Kolchin
closed, i.e., X is the set of zeros of a set of �-polynomials with coefficients in U. By the Ritt Basis The-
orem, there is a finite set P1, . . . , Pr of �-polynomials with coefficients in U such that X is the set of
zeros of P1, . . . , Pr . Call P1, . . . , Pr defining �-polynomials of X . The radical �-ideal I = √[P1, . . . , Pr]
in U{y} generated by P1, . . . , Pr , is called the defining �-ideal of X . If P1, . . . , Pr have coefficients in k,
we say that X is defined over k, and call it a �-k-variety. Let Y be a �-subvariety of a �-k-variety X .
We do not assume that Y is defined over k. However, there is a finitely generated delta-field exten-
sion K of k such that Y is a �-K -variety. X is irreducible if and only if I is prime. The Ritt Basis
Theorem implies that X is a finite union of maximal irreducible �-subvarieties. This implies that the
Kolchin topology is Noetherian. In this paper, we will usually assume that X is irreducible, with defin-
ing �-ideal I . The residue class ring U{z1, . . . , zn}/I is a �-U-algebra and an integral domain, which
we denote by U{X}. As in algebraic geometry, we regard the residue classes of the �-indeterminates
as coordinates on X , and call the elements of U{X} �-polynomial functions on X . If X is a �-k-variety,
the �-k-subalgebra k{X}, consisting of the elements of U{X} that have coefficients in k, is �-k-
isomorphic to k{z1, . . . , zn}/(I ∩ k{z1, . . . , zn}). If X is irreducible, the elements of the quotient field
U〈X〉 of U{X} (resp. k〈X〉 of k{X}) are called �-rational functions (resp. �-k-rational functions) on X .
A �-rational function f in U〈X〉 is everywhere defined if for every η ∈ X , there exist p,q ∈ U{X} such
that q(η) 	= 0, and f (η) = p(η)

q(η)
. In contrast with rational functions on algebraic varieties, an every-

where defined �-rational function need not be in the ring of �-polynomial functions on X . Indeed, it
may not have a global denominator. Let η = (η1, . . . , ηn) be in Un , and let σ be a �-k-automorphism
of U. We define ση = (ση1, . . . , σηn). σ(X) is a �-variety. A necessary and sufficient condition that
X be defined over k is that σ(X) ⊆ X (equivalently, σ(X) = X ) for every �-k-automorphism of U.

If X is an irreducible �-k-variety, an element η = (η1, . . . , ηn) is generic over k for X if η is
a generic zero of I ∩ k{z1, . . . , zn}, where I is the defining �-ideal of X . The �-field k〈η〉 is �-k-
isomorphic to k〈X〉. It represents in U the field of rational functions on X .
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If X ⊆ Un and Y ⊆ Up are irreducible �-k-varieties, a �-morphism f : X → Y is a map whose p
coordinate functions are everywhere defined �-rational functions. If they are �-k-rational, we call
f a �-k-morphism. We should note that if f is a �-morphism, f (X) and its Kolchin closure are
irreducible, and are defined over k if f is a �-k-morphism. A �-morphism f : X → Y is dominant
if the Kolchin closure of f (X) is Y . In this case, f (X) contains a Kolchin dense open subset of Y
( f (X) is constructible). If X is an arbitrary �-k-variety with components X1, . . . , Xs , and Y is a �-k-
variety with components Y1, . . . , Yt , we can define a �-morphism to be an s-tuple of �-morphisms
f i : Xi → Y ji , i = 1, . . . , s.

If X ⊆ Un and Y ⊂ Up are �-varieties, then the Cartesion product X × Y is a �-subvariety of Un+p ,
and the projection maps are �-morphisms.

An affine �-group is a group G whose underlying set is a �-subvariety of Un for some n, and
whose group laws are �-morphisms. A �-homomorphism of affine �-groups is a homomorphism
that is also a �-morphism of �-varieties. As in algebraic group theory, G has a finite number of
connected components. We call G a �-k-group if its group laws and components are defined over k
and its identity element has coordinates in k. Note that a �-subgroup of G is not necessarily a �-k-
subgroup, but is defined over a finitely generated �-k-field in U. Not all affine �-groups are linear
(that is, isomorphic to a �-subgroup of GLn(U) for some n). In this paper, we will assume that a
linear �-group is embedded in GLn(U), for some n.

In [25], Kolchin develops axiomatically a theory of �-k-groups and �-k-varieties, extending the
affine theory. In Chapter V.3 of [25], Kolchin proves that a �-k-variety X has a k-affine open dense
subset U . In the corollary, p. 140, he shows that by extending k perhaps to a finitely generated �-
extension field, we may assume that there is a covering of X by open dense subsets, each of which
is defined over k and k-affine. Although we will state and prove our results in the general con-
text of [25], readers who wish to restrict themselves to linear �-groups, or just to the solution sets
of linear homogeneous differential equations, will find almost all that is needed (with one notable
exception which we will discuss later) in the papers [10,11]. Another source is Anand Pillay’s founda-
tional paper [31], which treats �-groups as definable groups in differentially closed fields. The theory
of definable groups is particularly well-suited to interpret Kolchin’s axiomatic approach.

2. Jordan–Hölder Theorem

2.1. Differential type and typical differential transcendence degree

The key concepts used in this paper are differential type and typical differential transcendence de-
gree (typical differential dimension). We briefly review their definitions. Let k be a �-field finitely
generated over Q.

Let η = (η1, . . . , ηn) be in Un and let Θ(s) be the set of monomial operators in Θ of order � s.
In Section II.12 of [24], Kolchin shows that there is a numerical polynomial ωη/k(s) (i.e., a polynomial
taking on integer values on Z), called the differential dimension polynomial, of degree � m, such that for
large values of s, ωη/k(s) is the transcendence degree over k of k((θηi))θ∈Θ(s),1�i�n for all sufficiently
large values of s. See Example 2.31 for further discussion about the computation of the differential
dimension polynomial, and also [24] for further information, and algorithms, as well as references.
We may write

ωη/k(s) =
m∑

i=0

ai

(
s + i

i

)
, ai ∈ Z.

If I is a prime �-ideal in the differential polynomial ring U{z1, . . . , zn}, and k is a differential field of
definition of I , we may define the differential dimension polynomial of I to be ωη/k(s), where η is a
generic zero of I ∩ k{z1, . . . , zn}. ωη/k(s) is independent of the choice of k and η. If X is the Kolchin
closed subset of Un defined by I , and η is generic for X over a field k of definition, we define the
dimension polynomial ω(X) to be ωη/k(s).
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The dimension polynomial ω(X) is not, however, a differential birational invariant. This means
that it makes no sense to speak of the dimension polynomial of an arbitrary irreducible �-k-variety.
There are, however, two important differential birational invariants singled out by Kolchin: the degree
τ and theleading coefficient aτ of ω(X). If X is any irreducible �-k-subvariety of Un , we call the
degree of ω(X) the differential type (or �-type) τ (X) of X , and the leading coefficient the typical
differential dimension (or �-dimension) aτ (X) of X . Let X be a �-k-variety. As we mentioned in
Section 1.1, we may assume that k is such that there is a finite set of Kolchin open k-affine subsets
U of X covering X . There exists a positive integer n such that each open set U in the covering is
�-k-rationally isomorphic to a �-k-subvariety Y of Un . If X is irreducible, so are U and Y . In this
case, we define τ (U ) to be τ (Y ), and aτ (U ) to be aτ (Y ). Since �-type and typical �-dimension
are differential birational invariants, all the open sets in the covering have the same �-type τ and
typical �-dimension aτ . So, we can define τ (X) = τ and aτ (X) = aτ . We should note that a point of
X is generic for X over k if and only if whenever U is a k-affine k-open subset of X containing the
point, and Y is a �-k-subvariety of Un that is �-k-rationally isomorphic to U , the coordinate n-tuple
η = (η1, . . . , ηn) is generic over k for Y . By abuse of language, we will call the generic point η. Thus,
τ (X) is the degree and aτ (X) is the leading coefficient of ωη/k(s). If X is not irreducible, we define
τ = τ (X) to be the maximum of the differential type of its irreducible components, and aτ (X) to be
the maximum of their typical differential dimensions. The connected components of a �-k-group G
all have the same �-type and typical �-dimension. We should also mention that if X is an irreducible
�-subvariety of a �-k-group or �-k-homogeneous space and σ is a �-automorphism of U over k,
then τ (σ (X)) = τ (X) and aτ (σ (X)) = aτ (X).

Grigoriev and Schwarz, [16–19], have made extensive use of differential type τ and typical differ-
ential dimension aτ in their studies of systems of linear homogeneous partial differential equations.
Following Grigoriev and Schwarz, we will call the pair (τ (X),aτ (X)) the gauge of X .

Let Ck be the field of �-constants of k. A transformation of � is a set of derivation operators on k,
denoted by the symbol �c , where c = (ci j)1�i, j�m ∈ GLm(Ck) and �c is the set

δ′
i =

m∑
j=1

ci jδ j, i = 1, . . . ,m.

Every �-field extension of k is also a �c-extension of k. Suppose L = k〈η〉, with η = (η1, . . . , ηn) a
finite family of elements of L. In Theorem 7 of [24], Kolchin established the significance of �-type
and typical �-transcendence degree by showing that if τ = τη/k is the �-type of η/k, then there
is a transformation �c of � and a subset �′ of cardinality τ such that L is a finitely generated
�′-field extension of k of �′-differential transcendence degree aτ . In fact, there is a Zariski open
dense subset of GLm(Ck) with this property. Since every �-extension field is a �c-field extension and
conversely, and �-dimension polynomials of �-k-varieties are invariant under such transformations,
we may assume that �c = �, and, thus, �′ ⊂ �. Let K be a �-subfield of L containing k. Then, K is
a �′-finitely generated �′-extension field of k (Proposition 14, p. 112 of [24]).

Since the �-type of η/k and the typical �-transcendence degree of η/k are differential birational
invariants, we can refer to them as the �-type of L over k and the typical �-transcendence degree
of L over k.

From the classical interpretation of �-type and typical �-dimension, one expects the truth of the
following lemma.

Lemma 2.1. Let L be a �-finitely generated �-extension field of k, and let K be a �-subfield of L containing k.
Then, the �-type of K/k is less than or equal to the �-type of L/k, and the typical �-transcendence degree of
K/k is less than or equal to the typical �-transcendence degree of L/k.

Proof. Let �′ ⊂ � be such that L/k is a �′-finitely generated extension field. Then, since K/k is also
�′-finitely generated, if �′′ is any subset of � of larger cardinality than �′ , K is �′′-algebraic over k
(see [24], Proposition 12, p. 109. See also [42], Proposition 2.4, p. 478). It follows that the �-type
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of K/k is less than or equal to the �-type of L/k. If the inequality of �-types is strict, so is the
inequality of �-transcendence degrees. So, suppose �-type (K/k) = �-type (L/k). Then, the typical
�-transcendence degree of K/k is the cardinality of a �′-transcendence basis of K/k. Since it can
be extended to a �′-transcendence basis of L/k (Theorem 4(d), p. 105 of [24]), it follows that the
�-transcendence degree of K/k must be less than or equal to that of L/k. �
Corollary 2.2. Let X and Y be �-k-varieties, and let f : X → Y be a dominant �-k-morphism. Then, τ (X) �
τ (Y ) and aτ (X) � aτ (Y ).

Proof. Let η be generic for X over k. Then, ζ = f (η) is generic for Y over k. Therefore, k〈ζ 〉 is a
�-subfield of k〈η〉. The conclusion then follows from the preceding lemma. �
Lemma 2.3. Let X and Y be irreducible �-k-varieties and f : X → Y be an injective dominant �-k-morphism.
Then τ (X) = τ (Y ).

Proof. Let η = (η1, . . . , ηn) be a generic point of X over k. By assumption ζ = f (η) is a generic
point of Y over k and, since f is differentially rational, k〈ζ 〉 ⊂ k〈η〉. Note that U is universal over
k〈ζ 〉 as well. We will show that k〈ζ 〉 = k〈η〉. Let σ be a differential isomorphism of k〈η〉 over k〈ζ 〉
into U. Since σ(ζ ) = ζ and σ(ζ ) = σ( f (η)) = f (σ (η)) we have that f (σ (η)) = f (η). Since f is
injective, we have that σ(η) = η. If some coordinate ηi of η were not in k〈ζ 〉, there would be an
isomorphism of k〈η〉 over k〈ζ 〉 into U which would move ηi . Therefore we can conclude that k〈η〉 =
k〈ζ 〉. Proposition 15(b), p. 117 of [24] implies the conclusion. �
Corollary 2.4. Let X and Y be irreducible �-k-varieties and f : X → Y be an injective �-k-morphism. Then
τ (X) � τ (Y ).

Proof. Let V be the closure of f (Y ). The map f : X → V is injective and dominant so τ (X) = τ (V ).
Proposition 15(b), p. 117 of [24] implies that τ (V ) � τ (Y ). �

Let G be a �-k-group and H a �-k-subgroup of G . Kolchin showed (see [25], Chapter IV.4) that
the coset space G/H has the structure of a �-k-variety (in fact, a �-k-homogeneous space for G) and
showed that

τ (G) = max
(
τ (H), τ (G/H)

)
. (1)

Furthermore, he showed that if τ = τ (G), then

aτ (G) = aτ (H) + aτ (G/H) (2)

where aτ (H) = 0 if τ (G) > τ(H) with a similar convention for aτ (G/H).

Remarks 2.5. 1. The fact that G/H has the structure of a �-k-variety also follows from the model-
theoretic concept of elimination of imaginaries which holds for differentially closed fields (see [28],
p. 57).

2. The simplest (to define, not necessarily to understand) examples of differential algebraic groups
are zero sets of systems of linear homogeneous differential equations in one indeterminate. Cassidy
[10] has shown that these are the only �-subgroups of Ga(U) = (U,+). In this case, quotients are
easy to construct. If H ⊂ G ⊂ Ga(U) and H is defined by the vanishing of L1, . . . , Lt , then the image
in Ut of G under the map y �→ (L1(y), . . . , Lt(y)) is a �-subgroup of Un isomorphic to G/H .

3. As we mentioned earlier, if one restricts one’s attention to linear differential algebraic groups
(as defined by Cassidy [10]), one will find all needed facts in the works of Cassidy and [24] except for
Eqs. (1) and (2), which one can just assume when reading the following results and proofs.
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2.2. Strongly connected groups, almost simple groups and isogeny

2.2.1. Strongly connected groups
We now define the strong identity component of a �-k-group G . Let S be the set of all �-subgroups

H ⊂ G such that τ (H) = τ (G) and aτ (H) = aτ (G). Note that from (1) and (2), this is the same as
the set of �-subgroups H ⊂ G such that τ (G/H) < τ(G). We claim that if H1, H2 ∈ S , then H1 ∩
H2 ∈ S . To see this, note that we have an injection of H1/H1 ∩ H2 into G/H2, so by (1) we have
τ (H1/H1 ∩ H2) < τ(G). Again by (1), we have that τ (G/H1 ∩ H2) = max(τ (G/H1), τ (H1/H1 ∩ H2)) <

τ(G). Therefore H1 ∩ H2 ∈ S .
Since the Kolchin topology is Noetherian, the set S has minimal elements. The above argument

shows that there is a unique minimal element and justifies the following definition.

Definition 2.6. Let G be a �-k-group. The strong identity component G0 of G is defined to be the
smallest �-U-subgroup H of G such that τ (G/H) < τ(G). We say that G is strongly connected if
G0 = G .

Note that G0 is contained in the identity component G0. Therefore, every strongly connected �-
group is connected.

Remarks 2.7. 1. In the usual theory of algebraic groups, one can define the identity component of
a group G to be the smallest subgroup G0 such that G/G0 is finite and define a group to be con-
nected if G = G0. The notions of strong identity component and strongly connected are meant to be
refinements in the context of �-groups of these former concepts.

2. If σ is a �-k-automorphism of U, then σ(G0) is again a minimal element of S and so must
coincide with G0. Therefore, Corollary 2, p. 77 of [25] implies that G0 is defined over k. Note that
if φ : G → G is a �-automorphism of G , then φ(G0) is again a minimal element of S and so must
equal G0. Therefore G0 is a characteristic subgroup of G . In particular G0 is a normal subgroup of G
and if H is a normal �-subgroup of G , the strong identity component of H is again normal in G .

3. The analogue of the fact that if G is an algebraic group, every connected algebraic subgroup is
contained in the identity component of G is the following: If G is a �-group of type τ , then every
strongly connected �-subgroup H of type τ is contained in the strong identity component of G . To
see this, first note that the usual isomorphism theorems hold for �-groups (see [25], Chapter IV).
Since G0 is normal in G , HG0 is a �-subgroup of G and HG0/G0 is isomorphic to H/G ∩ G0 as
�-groups. Since the canonical inclusion H/H ∩ G0 ↪→ G/G0 is injective, Corollary 2.4 implies that
τ (H/H ∩ G0) < τ(G) = τ (H). Since H is strongly connected, H ∩ G0 = H .

4. The analogue of the fact that if G , G ′ are algebraic groups, and φ : G → G ′ is a homomorphism,
then, the image of the identity component is contained in the identity component of G ′ is the follow-
ing: If G , G ′ are �-groups of the same type, and φ : G → G ′ is a homomorphism, then, the image of
the strong identity component of G is contained in the strong identity component of G ′ . This follows
immediately from the preceding remark.

5. Let G be a strongly connected �-group. Let G ′ be a nontrivial �-group, and let ϕ : G → G ′ be
a surjective �-homomorphism. Then, G ′ is strongly connected and the type τ (G ′) equals the type τ
of G . For, Corollary 2.2 says that τ (G ′) � τ (G) = τ . Therefore, the strong connectivity of G implies
that τ (G ′) = τ . Suppose G ′ is not strongly connected. Then, there exists a nontrivial �-group G ′′ such
that τ (G ′′) is less than τ , and a surjective �-homomorphism ϕ′ : G ′ → G ′′ . Then, ϕ′ ◦ϕ is a surjective
�-homomorphism from G onto G ′′ , contradicting the strong connectivity of G .

The following lemma is useful in showing a group is strongly connected.

Lemma 2.8. Let G be a �-group and let H and N be strongly connected subgroups, with N � G and
τ (H) = τ (N). Then, the �-subgroup H N of G is strongly connected and τ (H N) = τ (H) = τ (N). Further-
more, aτ (H N) = aτ (H) + aτ (N) − aτ (H ∩ N).



Author's personal copy

P.J. Cassidy, M.F. Singer / Journal of Algebra 328 (2011) 190–217 197

Proof. Without loss of generality, we may assume that H 	⊂ N . We have τ (H N) = max{τ (H N/N),

τ (N)} = max{τ (H/H ∩ N), τ (N)}. Since H is strongly connected and H ∩ N 	= H , we have τ (H/H ∩
N) = τ (H). Therefore τ (H N) = τ (H) = τ (N). Remark 2.7.3 implies that H and N are contained
in (H N)0. This implies that H N ⊂ (H N)0 so H N is strongly connected. The final statement concerning
the typical dimension (as well as the statement concerning differential type) is contained in (see [42],
Cor. 4.3, p. 485; see also [25], Cor. 4, p. 109). �
Examples 2.9. Let U be an ordinary universal differential field with derivation δ.

1. Let G be the additive group Ga(U). G has type 1 and typical differential dimension 1. Cassidy
[10] showed that any proper �-subgroup H is of the form H = {a ∈ k | L(a) = 0} for some linear
differential operator L. The type of such a group is 0 and its typical differential dimension is d where
d is the order of L. Therefore the type of G/H for any proper H is equal to the type of G and so G is
strongly connected.

2. Let G1 = G as above and G2 = Ga(C) where C = {c ∈ k | δ(c) = 0}. The type of G2 is 0
and the typical differential dimension is 1. Using Eqs. (1) and (2), we see that τ (G1 × G2) =
max(τ (G1), τ (G2)) = 1 and aτ (G1 × G2) = aτ (G1) = 1. The group G1 is minimal with respect to
having the same type and typical differential dimension as G1 × G2 and so is the strong identity
component of this group. Note that G1 × G2 is connected.

To state the analogue of the Jordan–Hölder Theorem, we need two more definitions: the first is
the appropriate notion of “simple” and the second is the relevant notion of “equivalent”. The next two
subsections deal with these notions.

2.2.2. Almost simple groups
Definition 2.10. An infinite �-group G is almost simple if for any normal proper �-subgroup H of G
we have τ (H) < τ(G). A �-k-group is almost k-simple if for any normal �-k-subgroup H of G we
have τ (H) < τ(G).

If G is almost simple, then G is almost k-simple. Note that an almost simple group is strongly
connected. We shall use the term simple to denote a group (resp., algebraic group, �-group) whose
only proper normal subgroup (resp., normal algebraic subgroup, normal �-subgroup) is the trivial
group, and the term quasisimple to denote a group (resp., algebraic group, �-group) G such that
G/Z(G) is simple and Z(G) is finite, where Z(G) is the center of G . If G is an algebraic k-group (resp.
�-k-group), we will call G k-simple (k-quasisimple) if every proper normal algebraic k-subgroup (resp.
�-k-subgroup) is trivial (resp. finite).

Examples 2.11. Let U be as in Example 2.9 and CU its field of constants.
1. The group Ga(CU) has type 0 with only the trivial group as a proper subgroup so it is simple

(and so almost simple).
2. The group Gm(CU) has type 0 with only finite subgroups as proper algebraic (or δ-) subgroups

so it is quasisimple.
3. The group Ga(U) has type 1 and any proper subgroup has type 0 or −1 (if it is {0}). The

proper δ-subgroups of G = Ga(U) are the kernels of nonzero linear differential operators L ∈ U[δ].
It follows, as E. Cartan noted in [8], that every nontrivial δ-homomorphic image of G is isomorphic
to G . Therefore Ga(U) is almost simple.

4. If G is a quasisimple linear algebraic group defined over CU , then, as we shall show in Section 3
that G(U) and G(CU) are quasisimple δ-groups.

In Section 3, we shall show that for ordinary differential fields, these are essentially the only
almost simple linear δ-groups.

Example 2.12. Let � = {δt , δx}, U be a universal �-field and z a differential indeterminate. Let G ⊂
Ga(U) be the additive group of solutions of δt y = f (y), f ∈ U[δx]. Following Proposition 2.45 of [43],
we show that G is almost simple. The type of G is 1 (see also Example 2.31). If H ⊂ G is a proper
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�-subgroup of G , then there would exist a linear operator g ∈ U[�] such that g(z) is not in the
differential ideal [δt z − f (z)] generated by δt z − f (z) in U{z} and such that H ⊂ {y ∈ G | g(y) = 0}.
We may assume that g ∈ U[δx]. If g has order d, then for any y ∈ H , we have k(y, δx y, δ2

x y, . . .) =
k(y, δx y, . . . , δd−1

x y). Since δt y ∈ k(y, δx y, . . . , δd−1
x y), this field equals k〈y〉 which must therefore be

of finite transcendence degree over k. Therefore H has type 0 and G is almost simple.

It is not hard to see that a finite normal subgroup of a connected algebraic group must be central.
The next proposition is an analogous result for strongly connected �-groups.

Proposition 2.13. Let G be a strongly connected �-group. Then every normal �-subgroup of smaller type is
central.

We immediately have the following corollaries.

Corollary 2.14. Let G be an almost simple �-group. Any proper normal �-subgroup is central.

Proof. For any �-group G , the strong identity component, G0, is a normal �-subgroup of the same
type, and so G = G0, that is, G is strongly connected. By definition any proper normal �-subgroup is
of smaller type. �

If G is an almost k-simple �-k-group, the strong identity component is a normal �-k-subgroup of
the same type, and so, G = G0. By definition, any proper normal �-k-subgroup has smaller type, and
hence is central.

Corollary 2.15. Let G be an almost simple �-group. Then G/Z(G) is a simple �-group.

Proof of Proposition 2.13. Let N be a normal �-subgroup of G . We define a �-rational map

α : G × N → N

by the formula

α(g,a) = gag−1, g ∈ G, a ∈ N.

One checks that α(gh,a) = α(g,α(h,a)) and α(1,a) = a and so α defines an action of the �-group
G on N . For fixed a ∈ N , the map αa(g) = gag−1 is a �-rational map from G to N that is constant
on the left cosets of ZG(a) = {g ∈ G | gag−1 = a}. Note that ZG(a) is a �-subgroup of G (see [25],
Section IV.4, Cor. 2(b)).

Theorem 3, p. 105 of [25] implies that there is a �-morphism β : G/ZG(a) → N such that π ◦ β =
αa , where π is the canonical quotient map. The image of G/ZG(a) under β is the same as the image
of G under αa , namely Ga. Let V be the �-closure of Ga.

Note that αa(g) = αa(h) implies that gag−1 = hah−1 so h−1 g ∈ ZG(z). Therefore β is an injective
�-map. Corollary 2.4 implies that τ (G/ZG(a)) � τ (N) < τ(G). Since G is strongly connected, we have
ZG(a) = G . �
2.2.3. Isogeny
Definition 2.16. (1) Let G , H be strongly connected �-k-groups. A �-k-morphism φ : G → H is an
isogeny if it is surjective and τ (kerφ) < τ(G).

(2) Two strongly connected �-k-groups H1, H2 are �-k-isogenous if there exists a strongly con-
nected �-k-group G and isogenies φi : G → Hi for i = 1,2.
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The notion of isogenous in the present context generalizes the notion of isogenous in the theory
of algebraic groups (cf., [37]) where two connected algebraic groups H1, H2 are isogenous if there is
an algebraic group G and morphisms φi : G → Hi for i = 1,2 with finite kernel.

Example 2.17. Let G = SL6(C). The center of G is isomorphic to the cyclic group of order 6. Let
C2 and C3 be cyclic subgroups of this center of orders 2 and 3 respectively. Let H1 = SL6(C)/C2
and H2 = SL6(C)/C3 and let φi : G → Hi be the obvious projections. These show H1 and H2 are
isogenous in both the category of algebraic groups and the category of �-groups. Note that they are
not isomorphic since their centers are finite groups of different orders.

Remarks 2.18. 1. If G1 and G2 are strongly connected �-groups and there is an isogeny φ : G1 → G2,
then G1 and G2 are isogenous. However, the converse is false, as the above example shows.

2. If φ : G1 → G2 is an isogeny then Eqs. (1) and (2) imply that τ (G1) = τ (G2) and aτ (G1) =
aτ (G2).

3. The composite of isogenies of strongly connected �-groups is an isogeny.
4. If G1 and G2 are strongly connected of the same type, then it is easy to see that G1 × G2 is

strongly connected. Suppose G ′
1 and G ′

2 are strongly connected and φi : Gi → G ′
i is an isogeny, i = 1,2.

Then, φ1 × φ2 : G1 × G2 → G ′
1 × G ′

2, with kernel kerφ1 × kerφ2 is an isogeny.

Proposition 2.19. Let G1 and G2 be strongly connected �-k-groups. The following are equivalent:

1. There exists a strongly connected �-k-group H and isogenies φ1 : H → G1 and φ2 : H → G2:

H
φ1 φ2

G1 G2

.

2. There exists a strongly connected �-k-group K and isogenies ψ1 : G1 → K and ψ2 : G2 → K :

G1

ψ1

G2

ψ2

K

.

Proof. Note that all the �-groups and �-homomorphisms are defined over k. Assume the first
statement. Put H1 = φ1(kerφ2), and H2 = φ2(kerφ1). Clearly, H1 = φ1(kerφ1 kerφ2), and H2 =
φ2(kerφ1 kerφ2). Therefore,

G1/H1 = φ1(H)/φ1(kerφ2) = φ1(H)/φ1(kerφ1 kerφ2) = H/(kerφ1 kerφ2),

G2/H2 = φ2(H)/φ2(kerφ2) = φ2(H)/φ2(kerφ1 kerφ2) = H/(kerφ1 kerφ2).

Set K = H/(kerφ1 kerφ2). Since K is the image of the strongly connected group H , it is strongly
connected. Since τ (kerφ1 kerφ2) < τ(H), the projections ψi : Gi → Gi/Hi � K are isogenies.

Now assume the second statement. Let G = {(g1, g2) ∈ G1 × G2 | ψ1(g1) = ψ2(g2)}, that is, the
pull-back or fiber product. One sees that the natural projections φ1 : G → G1 and φ2 : G → G2 are
surjective. This implies that τ (G) � τ (G1). The kernel of the φi ’s is contained in kerψ1 × kerψ2 and
so τ (kerφ1) � τ (kerψ1 × kerψ2) < τ(G1). Since G1 � G/ker(φ1) we have τ (G) = τ (G1) and φ1 is an
isogeny. Similar reasoning shows that φ2 is an isogeny. �
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The following result is a reworking of Theorem 6, [37] in the context of �-k-groups.

Proposition 2.20. Isogeny is an equivalence relation on the set of strongly connected �-k-groups. If G1 and
G2 are isogenous strongly connected �-k-groups, with τ = τ (G1) = τ (G2), then there is a bijective corre-
spondence between the strongly connected �-k-subgroups of G1 with type τ and those of G2 with type τ .
Let J1 and K1 be �-k-subgroups of G1 corresponding to the �-k-subgroups J2 and K2 of G2 . Then, J1 ⊆ K1
if and only if J2 ⊆ K2 , and J1 � K1 if and only if J2 � K2 . In this case, the strongly connected �-k-groups
K1/ J1 and K2/ J2 are isogenous and have type τ . If G1, G2 , and G ′

1, G ′
2 are pairs of isogenous �-k-groups,

then the �-k-groups G1 × G ′
1 and G2 × G ′

2 are isogenous and have type τ .

Proof. Since reflexivity and symmetry follow immediately from the definition, we need only show
that isogeny is transitive. So, let G1, G2, H, G2, G3, H ′ be strongly connected �-k-groups with type τ ,
and let φi : H → Gi , i = 1,2, φ′

i : H ′ → Gi , i = 2,3, be isogenies. Then, the �-k-group H × H ′ is
strongly connected, and φ2 ×φ′

2 : H × H ′ → G2 ×G2 is surjective. Let K = ((φ2 ×φ′
2)

−1(Diag G2 ×G2))0,
where (. . .)0 denotes the strong identity component. Then, K is a strongly connected �-k-group. Let
πH ,πH ′ , be the projections from H × H ′ to H , and to H ′ . We have the following diagram

K
πH πH ′

H
φ1

φ2

H ′
φ′

2

φ′
3

G1 G2 G3

.

We claim that the restrictions of the �-k homomorphisms πH and πH ′ to K are isogenies. Since the
composition of isogenies is an isogenies, our claim implies that G1 and G3 are isogenous and so the
isogeny relation is an equivalence relation.

To prove our claim, first note that (1) implies that τ (H × H ′) = τ (H) = τ (H ′) = τ (G2 × G2),
and τ (ker(φ2 × φ′

2)) = τ (kerφ2 × kerφ′
2) < τ(H × H ′). If (h,h′) ∈ K ∩ kerπH then h = 1 and, since

φ2(h) = φ′
2(h

′), we have h′ ∈ kerφ′
2. Therefore kerπH = 1 × kerφ′

2 and so τ (kerπH ) < τ(H). Sim-
ilarly, τ (kerπH ′ ) < τ(H ′). We know that τ (K ) = τ (G2) = τ (H). Since τ (kerπH ) < τ(H), it follows
that aτ (πH (K )) = aτ (H). Since H is strongly connected, πH (K ) = H , and, therefore, πH is an isogeny.
Similarly, πH ′ is an isogeny and this shows that the isogeny relation is an equivalence relation on the
set of strongly connected �-k-groups.

Suppose we have the following isogeny diagram of strongly connected �-k-groups:

H
φ1 φ2

G1 G2

.

We define the following correspondence between strongly connected �-k-subgroups of G1 of type
τ = τ (G1) and strongly connected �-k-subgroups of G2 of type τ = τ (G2): Subgroups J1 of G1 and
J2 of G2 correspond if there exists a strongly connected �-k-subgroup P of H such that φi |P maps
P to J i and is an isogeny, i = 1,2. We claim that given J1, there is a unique choice for P , namely,
the strong identity component of φ−1

1 ( J1), which is, of course, a strongly connected �-k-subgroup
of H . First note that for any such P , Remark 2.18.2 implies that τ (P ) = τ and aτ (P ) = aτ ( J1) =
aτ ( J2). Furthermore any such P must lie in φ−1

1 ( J1) and, since it is assumed to be strongly connected,
it must be contained in the strong identity component (φ−1

1 ( J1))0 of φ−1
1 ( J1). Since τ (kerφ1) < τ
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we have that τ (kerφ1 ∩ φ−1( J1)) < τ and so φ restricted to (φ−1
1 ( J1))0 is an isogeny. In particular

τ ((φ−1
1 ( J1))0) = τ and aτ ((φ−1

1 ( J1))0) = aτ (G1). Since P ⊂ (φ−1
1 ( J1))0 and both of these groups are

strongly connected we have P = (φ−1
1 ( J1))0. A similar argument shows that P = (φ−1

2 ( J2))0. If follows
easily that the correspondence is unique.

Now, we shall show that if J i, Ki , i = 1,2, are corresponding strongly connected �-k-subgroups
of Gi of type τ , then

J1 ⊆ K1 ⇐⇒ J2 ⊆ K2.

Let P , Q , i = 1,2, be the unique strongly connected �-k-subgroups of H of type τ such that
φi(P ) = J i and φi(Q ) = Ki . P is the strong identity component of φ−1

i ( J i) and Q is the strong iden-

tity component of φ−1
i (Ki). J i ⊆ Ki implies that φ−1

i ( J i) ⊆ φ−1
i (Ki), τ (P ) = τ (Q ) = τ . Since P is

a strongly connected �-k-subgroup of φ−1
i (Ki) of the same type as the latter, it follows, as above,

that P is contained in its strong identity component Q . The reverse implication is proved the same
way. Now suppose that J1 is normal in K1. Then, φ−1

1 ( J1) is normal in φ−1
1 (K1) and has the same

type. By Remark 2.7.2, P is normal in φ−1
1 (K1). Therefore, P is normal in Q . Since φ2 is surjective,

J2 is normal in K2. To finish the proof, we need only show that the �-k-groups K1/ J1 and K2/ J2
are isogenous and have the same type τ . First, note that Remark 2.7.5 says that Ki/ J i are strongly
connected and have type τ . We now define a map φ : Q /P → K1/ J1 by φ(q mod P ) = φ1(q) mod J1
for any q ∈ Q . To see that this is well defined, let q1,q′

1 ∈ Q , and suppose q1 mod P = q′
1 mod P .

Then, φ1(q1 − q′
1) ∈ J1. Therefore, φ1(q1) mod J1 = φ1(q′

1) mod J1. So, the map φ : Q /P → K1/ J1
is well defined. It is clearly a homomorphism. We claim that it is surjective. Let k1 ∈ K1. There
exists q ∈ Q such that φ1(q) = k1 and so φ(q mod P ) = k1 mod J1. A calculation shows that
the kernel of φ is [Q ∩ φ−1

1 ( J1)]/P . The strong identity component P of φ−1
1 ( J1) is contained in

Q ∩ φ−1
1 ( J1). Thus, τ ([Q ∩ φ−1

1 ( J1)]/P ) < τ(φ−1
1 ( J1)) = τ (Q ) = τ (Q /P ) since Q is strongly con-

nected. So, φ : Q /P → K1/ J1 is an isogeny. Similar reasoning shows that one can define a map
ψ : Q /P → K2/ J2 and that it too is an isogeny. The above proof also shows that J1 is defined over k
if and only if J2 is defined over k. �

An immediate corollary is:

Corollary 2.21. Let G1 and G2 be isogenous strongly connected �-k-groups. Either both are almost simple or
neither is.

Proof. Suppose G1 is almost simple. Let N be a normal �-subgroup of G2. There exists a finitely
generated �-k-subfield k′ of U such that N is defined over k′ . Since k′ is finitely �-generated over k,
U is universal over k′ . Moreover, as we remarked in Section 2.1, the type of G2 is invariant under the
choice of field of definition. If the type of N is τ = τ (G2) = τ (G1), Proposition 2.20 gives us a proper
normal �-k′-subgroup of G1 of type τ , contradicting the almost simplicity of G1. �

Another corollary is:

Corollary 2.22. Let G1 and G2 be isogenous strongly connected �-groups. Either both are commutative or
neither is.

The proof of Corollary 2.22 depends on the following concept and lemma.

Definition 2.23. Let G be a �-k-group. The differential commutator group D�(G) is the smallest �-
subgroup of G containing the commutator subgroup of G . It is defined over k.

An example of Cassidy (cf., p. 111 of [25]) shows that D�(G) may be strictly larger than the
commutator subgroup of G .
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Lemma 2.24. Let G be a �-k-group. If G is strongly connected and not commutative, then τ (D�(G)) = τ (G).

Proof. Let a be in G . Let ca : G → G be the �-map that sends x to axa−1x−1. If D�(G) has smaller
type than G , then Proposition 2.13 implies that D�(G) is contained in the center Z(G). In this
case we have axya−1 y−1x−1 = axa−1(aya−1 y−1)x−1 = (axa−1x−1)(aya−1 y−1) and therefore ca is a
�-homomorphism of G into D�(G). Since G is strongly connected, ca(G) = {1}. Thus, a ∈ Z(G). It
follows that G is commutative. �
Proof of Corollary 2.22. Let K be a �-k-group such that for G1, G2, and K we have the commutative
diagram:

G1

ψ1

G2

ψ2

K

with isogenies ψi . Assume G1 is commutative. Then, K is commutative. Suppose G2 is not commu-
tative. Lemma 2.24 implies that τ (D(G2)) = τ (G2) = τ (K ). Since ψ2 is an isogeny, τ (ψ2(D�(G2))) =
τ (K ) as well. Since ψ2(D�(G2)) ⊂ D�(K ) we have that D�(K ) 	= {1}, a contradiction. �

We give two examples of infinite families of isogenous, pairwise non-isomorphic �-groups.

Example 2.25. Let � = {δ} and U be a �-universal field with �-constants C . We shall exhibit an infi-
nite number of almost simple �-groups that are isogenous to Ga(U) but are pairwise non-isomorphic.
For each n ∈ N, let

Gn =
⎧⎨
⎩g(a,b) =

⎛
⎝ a 0 0

0 1 b
0 0 1

⎞
⎠ ∣∣∣ a ∈ Gm(U), b ∈ Ga(U), (δa)a−1 = δn(b)

⎫⎬
⎭ .

The map α : Gn → Ga(U) given by α(g(a,b)) = (δa)a−1 is a surjective homomorphism with kernel

Kn = {
g(a,b)

∣∣ δa = 0, δn(b) = 0
}
.

Note that Gn has differential type 1 and that Kn has differential type 0; so α is an isogeny and
therefore Gn is isogenous to Ga(U).

We shall now show that Gn is strongly connected. Let (Gn)0 be the strong identity component
of Gn and let π1(g(a,b)) = a and π2(g(a,b)) = b be the projections of Gn onto Gm(U) and Ga(U)

respectively. Since these latter groups are strongly connected, these projections are surjective when
restricted to (Gn)0 as well. Using π1 we see that for any g(a,b) ∈ Gn there exists b1 ∈ Ga(U) such
that g(a,b1) ∈ (Gn)0 and therefore g(a,b) = g(1,b −b1)g(a,b1). Note that δn(b −b1) = 0. This implies
that the group Hn = {b ∈ Ga(U) | δn(b) = 0} is mapped surjectively onto Gn/(Gn)0 via the map b �→
g(1,b) mod (Gn)0. Using π2, a similar argument shows that the map c �→ g(c,0) mod (Gn)0 maps
Gm(C) = {c ∈ U | c 	= 0, δ(c) = 0} surjectively onto Gn/(Gn)0. Therefore Gn/(Gn)0 is isomorphic to a
quotient of Hn and a quotient of Gm(C). Taking a fundamental system of solutions of the differential
equation δn = 0, we see that Hn is isomorphic as a �-group to (Cn,+). Therefore, any quotient �-
group is torsion-free. This implies that Gn/(Gn)0 is torsion-free. But, the �-group Gn/(Gn)0 is also
a quotient of Gm(C), whose torsion group is Kolchin dense. Therefore, either the torsion group of
Gn/(Gn)0 is Kolchin dense, or Gn/(Gn)0 is trivial. Since the latter must hold, Gn is strongly connected.

Since Ga(U) is almost simple, Corollary 2.21 implies that Gn is almost simple.
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We now claim that for n 	= m,n,m ∈ N, Gn and Gm are not �-isomorphic. To see this, note first
that the set of unipotent matrices in any Gn is precisely {g(1,b) | δn(b) = 0}. This is a �-group of
differential type 0 and typical differential dimension equal to n. The property of being unipotent is
preserved under �-isomorphism (see [10], Proposition 35) so our claim is proved. Note also that
there does not exist an isogeny from Ga(U) onto Gn , and, therefore, this example does not contradict
Example 2.11.3.

Example 2.26. Let C be the field of complex numbers, and let k be the subfield C(x, t, {ec2t , eicx}c∈C)

of the field M of functions meromorphic on C2. Let � = {δx, δt}, where δx acts on M as ∂
∂x and δt

acts as ∂
∂t . Then, M is a �-field, and k is a �-subfield of M. Let U be a �-field universal over k, and

with field C of constants, as usual. We do not assume that M is a subfield of U. Let

H = {
u ∈ Ga(U)

∣∣ δt u − δ2
x u = 0

}

be the subgroup of Ga(U) defined by the Heat Equation. We shall exhibit an infinite family of almost
simple �-groups that are isogenous to H but not �-isomorphic to H . In particular, we shall show
that if λ ∈ U is any nonzero solution of δtλ + δ2

x λ = 0, then H is isogenous to

Hλ =
{

u ∈ Ga(U)

∣∣∣ δt u − δ2
x u + 2

δxλ

λ
δxu = 0

}

and that there are an infinite number of λ ∈ k whose corresponding groups are pairwise not �-
isomorphic.

The groups H and Hλ have differential type 1 and, from Example 2.12, we know that they are
almost simple. An elementary calculation shows that the map φ(u) = (1/λ)δxu is a homomorphism
from Hλ onto H . The kernel of φ is Ga(C). Therefore these groups are isogenous.

For any nonzero c ∈ C,

λc = ec2t cos cx

is a solution in k of δtλ + δ2
x λ = 0. We define

Hc = Hλc = {
u ∈ Ga(U)

∣∣ δt u = δ2
x u + 2(c tan cx)δxu

}
.

Each of these groups is isogenous to H so they are all pairwise isogenous. We shall show that for
nonzero c,d ∈ C with c/d /∈ Q, the groups Hc and Hd are not isomorphic. The proof of this claim
follows from the special nature of the differential coordinate rings U{Hc}� and U{Hd}� of the groups.

U{Hc}� = U{z}�, where δt z = δ2
x z + 2(c tan cx)δxz,

U{Hd}� = U{y}�, where δt y = δ2
x y + 2(d tan dx)δx y.

Note that both groups are defined over k. The form of the defining differential equations imply that

U{Hc}� = U{Hc}{δx} = U
[
z, δxz, . . . , δn

x z, . . .
]

and

U{Hd}� = U{Hd}{δx} = U
[

y, δx y, . . . , δn
x y, . . .

]
,

where y and its δx-derivatives are algebraically independent over U and a similar statement is true
for z. As δx-rings these two rings are δx-isomorphic to a δx-differential polynomial ring U{Y }δx and
this will be a key fact in the proof of our claim. What distinguishes these rings is their δt -structure,
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which is given by the defining equations of the groups. The derivation operator δt acts as an “evolu-
tionary derivation” on the δx-differential ring.

Let us assume (with the aim of arriving at a contradiction) that Hc and Hd are isomorphic
as �-groups and let ψ : Hd → Hc be a differential isomorphism. This isomorphism induces a �-
isomorphism ψ∗ : U{Hc}� → U{Hd}� , defined by the formula ψ∗( f ) = f composed with ψ . Note
that ψ∗ restricted to U is the identity automorphism. Identifying both U{Hc} and U{Hd}� with the
δx-ring U{Y }{δx} , the map ψ∗ induces a δx-automorphism of U{Y }{δx} and a fortiori of the quotient field
U〈Y 〉{δx} . The δx-U-automorphisms of U〈Y 〉δx have been classified by Ritt (as part of his differential
Lüroth theorem) in his book (see [36], p. 56). He shows that any δx-automorphism σ of this latter
field must be of the form

σ(Y ) = aY + b

cY + d

where a,b ∈ U. It is not hard to see that if σ furthermore maps U{Y }{δx} to itself, we must have that
σ(Y ) = aY + b for some a,b ∈ U. In particular, ψ∗ must be of the form ψ∗(z) = ay + b for some
a,b ∈ U and, since ψ is assumed to be a homomorphism of additive groups as well, we must have
b = 0 and so ψ∗(z) = ay. The following calculation will show that this leads to a contradiction.

We have that

δt z = δ2
x z + 2(c tan cx)δxz,

δt y = δ2
x y + 2(d tan dx)δx y.

Note that c goes with the domain of the comorphism and d with its range. Calculating δt(ψ
∗(z)) and

ψ∗(δt z) we have

δt
(
ψ∗(z)

) = aδ2
x y + (

2ad(tan dx)
)
δx y + δtay,

ψ∗(δt z) = aδ2
x y + (

2δxa + 2ac(tan cx)
)
δx y + (

δ2
x a + 2c(tan cx)δxa

)
y.

Since δt(ψ
∗(z)) = ψ∗(δt z) and y, δx y, δ2

x y are algebraically independent, we must have

ad(tan dx) = δxa + ac(tan cx), (3)

δta = δ2
x a + 2c(tan cx)δxa. (4)

Eq. (3) implies that

a = α
cos cx

cos dx

where α is in the field of constants of δx in U. Inserting this expression into Eq. (4) we have

δtα

α
= c2 + 2d2

cos2 dx
− d2 − 2c2

cos2 cx
. (5)

Since δx(
δtα
α ) = 0, we must have that the right-hand side of Eq. (5) is some constant γ ∈ C . A linear

disjointness argument implies that γ is in the field of constants of k. In particular, it is a complex
number. So, the terms of Eqs. (6) and (7) are complex functions. Evaluating the right-hand side at
x = 0 and x = 2π

c , we have
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d2 − c2 = γ , (6)(
2

cos2(2dπ/c)
− 1

)
d2 − c2 = γ . (7)

Note that cos(2dπ/c) 	= 0 since we are assuming that d/c is neither an integer nor half an integer.
From these equations, we can conclude that cos2(2dπ/c) = 1. Therefore, cos(2dπ/c) = 1 or −1. So,
properties of the complex cosine function tell us that 2πd/c equals 2nπ or (2n + 1)π . So, d/c is
either an integer or d/c is half an integer, a contradiction. Therefore, for any set of constants S ,
whose members are pairwise independent over the integers, this yields a family {Hc}c∈S of isogenous
�-subgroups of Ga that are pairwise non-isomorphic.

We now turn to another choice of λ: λ = x. This situation was already considered by Cartan (see
[8], pp. 145–146). Letting

Hx =
{

u ∈ Ga(U) | δt u = δ2
x u − 2

x
δxu

}
,

Cartan states (without proof) that H and Hx are not “isomorphes holoédriques”. We shall show that
H and Hx are not �-isomorphic.

Let us assume that H and Hx are isomorphic as �-groups and let ψ : H → Hx be a differential
isomorphism. Let

U{H}� = U
[

y, δx y, . . . , δn
x y, . . .

]
and U{Hx}� = U

[
z, δxz, . . . , δn

x z, . . .
]

where y and its δx-derivatives are algebraically independent over U and a similar statement is true
for z. As above, we have a differential isomorphism ψ∗ : U{Hx}� → U{H}� and we may assume that
ψ∗(z) = ay. The following calculation will show that this leads to a contradiction.

Since ψ∗ is also a �-U-isomorphism, we must have that ψ∗(δt z) = δt(ψ
∗(z)). We have

ψ∗(δt z) = aδ2
x y +

(
2δxa − 2

x
a

)
δx y +

(
δ2

x a − 2

x
δxa

)
y, (8)

δt
(
ψ∗(z)

) = aδ2
x y + (δta)y. (9)

Since δ2
x y, δx y and y are algebraically independent over U, comparing coefficients of like terms in (8)

and (9), we have

xδxa − a = 0, (10)

xδ2
x a − 2δxa − xδta = 0. (11)

Eq. (10) implies that a = cx where c is a δx-constant in U, δxc = 0. Therefore xδ2
x a = 0. This, combined

with Eq. (11), implies that 0 = 2δxa + xδta = 2c + (δtc)x2. Therefore 0 = δx(2c + (δt c)x2) = 2δtcx, so
δtc = c = 0. We therefore have that a = 0. This contradicts the fact that ψ∗ is an isomorphism and
completes the proof that H and Hx are not �-isomorphic.

The Heat Equation δt y = δ2
x y and the related equations δt z = δ2

x z − δtλ
λ

δxz arise from the study
of conservation laws and generalized symmetries (cf., [5,33]), which we now briefly describe. Let
L be a homogeneous linear �-polynomial. A vector F = (T (y), X(y)) of differential polynomials is
called a conserved vector if ∇F(u) = δt T (u) + δx X(u) = 0 for all solutions of L(y) = 0. The equation
δt T (u) + δx X(u) = 0 is called a conservation law for L(y) = 0. If L is the Heat Equation, then it follows
from [33] that the conservation laws for L(y) = 0 are generated (as a C-vector space) by conservation
laws corresponding to conserved vectors of the form
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F = (
λy,−λδx y + (δxλ)y

)
(12)

where λ satisfies δyλ + δ2
x λ = 0. In [5], Bluman and Kumei introduce the notion of a potential symme-

try corresponding to each conservation law. The potential symmetry corresponding to the conserved
vector (12) is given by the system

δxz = λy,

δt z = λδx y − (δxλ)y.

This latter system defines a �-group G ⊂ Ga × Ga that has been extensively studied for λ = 1 and
λ = x. Letting π1 and π2 be the projections of Ga ×Ga onto the first and second coordinates of (y, z),
one can show that π1(G) = H , π2(G) = Hλ and the πi are isogenies. This gives another proof that the
groups H and Hλ are isogenous.

Further studies of the algebraic and model-theoretic structure of the solutions of the Heat Equation
and related differential algebraic groups can be found in the thesis [43] of Sonat Suer.

2.3. Jordan–Hölder Theorem

We can now state and prove the following analogue of the Jordan–Hölder Theorem (cf., Theorem 6,
[37]).

Theorem 2.27. Let G be a strongly connected �-group with τ (G) = τ 	= −1 (i.e., G 	= {1}). There exists a
normal sequence G = G0 � G1 � · · · � Gr = {1} of �-subgroups such that for each i = 0, . . . , r − 1:

1. Gi is a strongly connected group with τ (Gi) = τ ,
2. aτ (G0) > aτ (G1) > · · · > aτ (Gr−1), and
3. Gi/Gi+1 is almost simple of type τ and typical differential dimension aτ (Gi) − aτ (Gi+1).

If G = H0 � H1 � · · · � Hs = {1} is another normal sequence as above, then r = s and there exists a permuta-
tion π of {0, . . . , r} such that Gπ(i)/Gπ(i)+1 is k-isogenous to Hi/Hi+1 .

Proof. If G is not almost simple, there exists a normal proper �-subgroup H with τ (H) = τ (G) = τ .
Since G is strongly connected, we have that aτ (H) < aτ (G). Among such subgroups let H have largest
aτ (H) and let G1 be the strong identity component of H . Note that, by definition, τ (G1) = τ (H). Since
G1 is a characteristic subgroup of H , it is normal in G . We have that aτ (G) = aτ (G/G1) + aτ (G1) so
aτ (G/G1) 	= 0. Therefore τ (G/G1) = τ . For any normal �-subgroup K of G with K ⊃ G1, maximality
of aτ (H) = aτ (G1) implies that aτ (K ) = aτ (G1) so τ (K/G1) < τ . Therefore G/G1 is almost simple.
The type of G/G1 is τ and its typical dimension is aτ (G)−aτ (G1). Proceeding by induction on aτ (Gi)

yields the required sequence of �-subgroups.
To prove the last sentence in the theorem we proceed as in the proof of the Jordan–Hölder Theo-

rem as given in (see [26], Chapter 1, §3). For each i = 0, . . . , r − 1, j = 0, . . . , s − 1 let

Gi, j = Gi+1(H j ∩ Gi).

The Gij give a refinement of the sequence of Gi ’s:

G = G0,0 � G0,1 � · · · � G0,s−1 � G1 = G1,0 � G1,1 � · · · � {0}.
Similarly, define for each j = 0, . . . , s − 1, i = 0, . . . , r,

H j,i = H j+1(Gi ∩ H j).
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This yields a refinement of the H j . By Lemma 3.3 of [26] we have that

Gi, j/Gi, j+1 is isomorphic to H j,i/H j,i+1

(the isomorphism obviously being an isomorphism of �-k-groups). We now claim that for any i =
0, . . . , r − 1 there is at exactly one j,0 � j � s − 1 such that τ (Gi, j/Gi, j+1) = τ and that for this
value of j we have that Gi, j/Gi, j+1 is isogenous to Gi/Gi+1 (and a similar statement will hold for the
sequence of H j,i ). This and the previous sentence then imply that r = s and the final statement of the
theorem is true.

For each i = 0, . . . , r − 1, have that

aτ (Gi) = aτ (Gi,0/Gi,1) + · · · + aτ (Gi,s−1/Gi+1,0) + aτ (Gi+1)

(recall that Gi+1,0 = Gi+1). Since aτ (Gi) > aτ (Gi+1) we have that some aτ (Gi, j/Gi, j+1) 	= 0 and so
τ (Gi, j/Gi, j+1) = τ . Eq. (1) furthermore implies that τ (Gi, j/Gi+1) = τ . Let j be the smallest integer
such that aτ (Gi, j/Gi, j+1) 	= 0.

We will show that Gi = Gi,0 = Gi,1 = · · · = Gi, j . Note that τ = τ (Gi, j/Gi, j+1) � τ (Gi, j/Gi+1) �
τ (Gi/Gi+1) = τ . Therefore τ (Gi, j/Gi+1) = τ . Furthermore, τ = τ (Gi/Gi+1) � τ (Gi,t/Gi+1) � τ (Gi, j/

Gi+1) = τ so τ (Gi,t/Gi+1) = τ for any t = 0,1, . . . , j − 1. Since aτ (Gi,t/Gi,t+1) = 0 for t = 0,1, . . . ,

j − 1, we have τ (Gi,t/Gi,t+1) < τ . Since Gi/Gi+1 is strongly connected, Gi,1/Gi+1 � Gi/Gi+1 and
τ ((Gi,0/Gi+1)/(Gi,1/Gi+1)) = τ (Gi,0/Gi,1) < τ , we have Gi,0 = Gi,1. Continuing in a similar fashion,
we see Gi,0 = · · · = Gi, j .

From this discussion we can conclude that Gi, j = Gi and Gi, j+1 � Gi . Let π : Gi/Gi+1 → Gi, j/Gi, j+1
be the canonical projection. The kernel is a proper normal subgroup so, again by almost simplicity, it
must have smaller type. Therefore Gi/Gi+1 is isogenous to Gi, j/Gi, j+1.

We now turn to the uniqueness claim. Assume that τ (Gi,t/Gi,t+1) = τ for some t > j. We would
then have τ (Gi,t/Gi+1) = τ and so τ (Gi, j+1/Gi+1) = τ . Since Gi/Gi+1 is almost simple and Gi, j+1 �
Gi, j = Gi , we must have Gi, j+1 = Gi, j , contradicting aτ (Gi, j/Gi, j+1) 	= 0. �
Remarks 2.28. 1. As is clear from the above proof the analogue of the results of Zassenhaus and
Schreier (cf., [26], Chapter I, §3, Lemma 3.3 and Theorem 3.4) stating that two normal sequences
have isomorphic refinements is true in the context of �-groups. This follows from the fact that the
isomorphism theorems are true in this context.

2. A parallel theorem, in which the groups in the subnormal series and the quotients are �-k-
groups, and the quotients are almost k-simple, holds for strongly connected �-k-groups.

Corollary 2.29. Let G and H be isogenous strongly connected �-groups with normal sequences G = G0 �
G1 � · · · � Gr = {1} and H = H0 � H1 � · · · � Hs = {1} as in Theorem 2.27. Then r = s and there exists a
permutation π of {0, . . . , r} such that Gπ(i)/Gπ(i)+1 is k-isogenous to Hi/Hi+1 .

Proof. Immediate from Theorem 2.27 and Proposition 2.20. �
Remarks 2.30. 1. One can consider groups G that are not strongly connected and apply Theorem 2.27
first to the strong identity component G0, then to the strong identity component of G/G0, etc. This
will yield a more complete Jordan–Hölder Theorem.

2. In Example 2.32 below, we show that the uniqueness up to isogeny in Theorem 2.27 cannot be
strengthened to give uniqueness up to isomorphism.

3. In [3], Baudisch presents a Jordan–Hölder Theorem for superstable groups G . He shows that
such a group has a sequence of definable subgroups (1) � H0 � H1 � · · · � Hr � G such that Hi+1/Hi
is infinite and either abelian or simple modulo a finite center and Hr is of finite index in G . Although
this is of a similar nature as our result, his result does not address the structure of abelian groups nor
does he address the question of uniqueness. A key step in understanding the relationship between
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Baudisch’s result and ours would be to understand the relationship between U -rank and the type and
typical differential transcendence degree (cf., [43]).

Example 2.31. We now return to the example of Landau mentioned in the Introduction:

L = δ3
x + xδ2

x δy + 2δ2
x + 2(x + 1)δxδy + δx + (x + 2)δy (13)

= (δx + 1)(δx + 1)(δx + xδy) (14)

= (
δ2

x + xδxδy + δx + (x + 2)δy
)
(δx + 1). (15)

We shall show how this example fits into the above discussion.
Let � = {δx, δy} and k a differentially closed �-field. Recall from Section 2.1 that the gauge of a

�-k-variety X is the pair (τ (X),aτ (X)) and order these lexicographically. Let R be any nonzero homo-
geneous linear differential polynomial in δx and δy of order d and let G R ⊂ k be the solutions of R = 0.
In [24], Kolchin gives a general method for computing differential dimension polynomials ωη/k(s) in
terms of a characteristic set for the defining ideal I of η over k. When this ideal is generated by linear
homogeneous differential polynomials {L1(z), . . . , Lr(z)} in one variable, one does not need this full
machinery. In this restricted case, if G1, . . . , Gs is a reduced Gröbner basis (with respect to a graded
monomial order) of the left ideal 〈L1, . . . , Lr〉 in k[δ1, . . . , δm], then G1(z), . . . , Gs(z) is a characteristic
set of I .2 The differential dimension polynomial can be computed from the leading terms of this set
(with respect to the same monomial order, which is orderly; see Lemma 16, Chapter 0.17 and Theo-
rem 6, Chapter II.12 of [24]). For � = {δx, δy} and k a differentially closed �-field, this can be made

explicit. Identifying the monomial δi
xδ

j
y , we use the order (i, j) > (i′, j′) if i + j > i′ + j′ or i + j = i′ + j′

and i > i′ . If E = {(i1, j1), . . . , (it , jt)} represent the leading terms of a reduced Gröbner basis of a left
ideal of k[δx, δy], we can assume that i1 < i2 < · · · < it and j1 > j2 > · · · > jt . Let

W =
{
(i, j) ∈ N2

∣∣∣ i � i1, j � jt, (i, j) /∈
⋃

(i′, j′)∈E

((
i′, j′

) + N2)}

and let d = i1 + jt . Geometrically, W is the set of points in the quarter-plane (i1, jt) + N2 below the
“stairs”

⋃
(i′, j′)∈E((i′, j′) + N2). Lemma 16, Chapter 0.17 and Theorem 6, Chapter II.12 of [24], imply

that

ω(s) =
(

s + 2

2

)
−

(
s − d + 2

2

)
+ |W | = ds + 3d − d2

2
+ |W |.

For example, if the leading monomial of an operator R is δi
xδ

j
y with i + j = d, then the differential

dimension polynomial of the differential ideal [R(z)] generated by R(z) is ω(s) = (s+2
2

) − (s−d+2
2

) =
ds + 3d−d2

2 . Therefore the gauge of G R is (1,d). If H ⊂ G R is a proper �-subgroup, then the defining
differential ideal J contains a linear differential polynomial such that the leading term of its associ-
ated operator is not divisible by the leading term of R . The stairs corresponding to leading terms of
a characteristic set of the ideal J strictly contain (1,d) + Z2. One sees from this that the associated
differential dimension polynomial either has degree 0 or leading coefficient less than d. This implies

2 In [22,30], the authors define and prove the existence of Gröbner bases for a wide class of rings. For left ideals J in
k[δ1, . . . , δm] their definition reduces to a set {G1, . . . , Gm} ⊂ J such that the leading term of each element of J be divisible by
the leading term of some Gi . This guarantees that {G1(z), . . . , Gm(z)} is coherent. If {G1, . . . , Gm} is reduced in the usual sense
of Gröbner bases, then {G1(z), . . . , Gm(z)} is autoreduced. Using the criterion of (see [24], Lemma 2, p. 167 or [41], Ex. 8.17)
and the fact that the condition of [22,30] guarantees that {G1(z), . . . , Gm(z)} generates I ∩k{z}1 where I is the differential ideal
generated by the Li(z) and k{z}1 is the set of homogeneous linear differential polynomials, one can see that {G1(z), . . . , Gm(z)}
is a characteristic set of I . We thank William Sit for these references and explanations.
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that either the type of H is smaller than the type of G R or the typical transcendence degree of H is
smaller than d. In particular, this implies that G R is strongly connected.

The factorization in (14) yields a sequence of subgroups of G L as follows. Let G1 be the solutions
of (δx + 1)(δx + xδy)(z) = 0 and let G2 be the solutions of (δx + xδy)(z) = 0. As noted above, each of
these groups is strongly connected. The quotients G/G1 and G1/G2 are both isomorphic to the group
defined by (δx + 1)(z) = 0. Therefore each quotient in the sequences G ⊃ G1 ⊃ G2 ⊃ {0} is strongly
connected and has gauge (1,1). Let H be one of these quotients and K a proper subgroup of H . If the
gauge of H is (1,1), then τ (K/H) = 0, contradicting the fact that H is strongly connected. Therefore
a1(K ) = 0 and so τ (K ) = 0. Therefore these quotients are almost simple and so the sequence satisfies
the conclusion of the theorem.

The factorization in (15) yields a sequence of groups as follows. Let H2 be the group defined by
(δx + 1)(z) = 0. We then have the sequence G ⊃ H2 ⊃ {0}. The theorem implies that the group G/H2
cannot be almost simple. In fact the proof of the theorem tells us how to refine this sequence. Let
H1 = H2 + G2 (note that this sum is direct since the groups have a trivial intersection). Lemma 2.8
implies this group is strongly connected. The ideal defining this group is the intersection of the ideals
defining each of the summands, i.e.,

〈
(δx + 1)(z)

〉 ∩ 〈
(δx + xδy)(z)

〉 = 〈
L1(z), L2(z)

〉

where

L1 = xδ2
x δy + x2δxδ

2
y − δ2

x − δxδy + x2δ2
y − δx − δy − xδy,

L2 = δ3
x − x2δxδ

2
y + 3δ2

x + 2xδxδy + 3δxδy − x2δ2
y + 2δx + 2xδy + 3δy

form a Gröbner basis (with respect to an orderly ranking with δx > δy) of this left ideal (cf., Example 5
of [17]. The above polynomials were calculated using the Ore_algebra and Groebner packages
in Maple and differ slightly from those presented in [17]). One can use this representation to see
directly that H1 is strongly connected. Looking at leading terms and using Lemma 16 of Chapter 0.17
of [24], we see that the gauge is (1,2). Furthermore, we see that if this ideal is contained in a
larger ideal J of the same gauge, then J must be generated by a single operator of order 2. Using
the techniques of [17] one can show that L1 and L2 do not have a common right factor of order 2
so this is impossible. Therefore H1 is strongly connected of gauge (1,2). This yields the sequence
G ⊃ H1 ⊃ H2 ⊃ {0} where successive quotients are almost simple. We will now compare successive
quotients of the two sequences:

H2: We will construct an isogeny between G/G1 and H2. Consider the operator T =
(δx + 1)(δx + xδy). This operator maps G onto G/G1, which is naturally isomorphic to the solution
space of (δx + 1)(z) = 0, an almost simple (and therefore strongly connected) group. The group T (H2)

must therefore be either all of G/G1 or of rank less than 1 (and therefore {0} since H2 is strongly
connected). If T (H2) = 0, then H2 would be annihilated by both (δx + 1)(δx + xδy) and (δx + 1), but
this is impossible since the ideal 〈(δx +1)(δx + xδy), (δx +1)〉 contains δy and so is of rank 0. Therefore
T (H2) = G/G1 and T defines an isogeny. In fact, since H2 = { f e−x | fx = 0} one can show that T is
an isomorphism of H2 onto G/G1.

H1/H2: This group is (H2 + G2)/H2 which is isomorphic to G2/(H2 ∩ G2). The group H2 ∩ G2
is precisely the common zeroes of (δx + 1)(z) = 0 and (δx + xδy)(z) = 0, that is, just the element 0.
Therefore G2 is isogenous (in fact, isomorphic) to H1/H2.

G/H1: We will show that G/H1 is isogenous to G1/G2. To see this, consider the map G1 ↪→ G →
G/H1. The kernel of this map is G1 ∩ H1, that is those solutions of (δx +1)(δx +xδy)(z) = 0 that are the
sum of a solution of (δx + 1)(z) = 0 and a solution of (δx + xδy)(z) = 0. This clearly contains G2 but is
not all of G1, so we have a homomorphism G1/G2 → G/H1, that is not the zero map. Since G1/G2 is
almost simple, the image of this map has gauge (1,1) and the kernel has rank at most 0. Since G/H1
is almost simple, the image must be all of G/H1. Therefore we have an isogeny of G1/G2 onto G/H1.
This isogeny has a nontrivial kernel; it is the solutions of (δx + 1)(z) = 0, δy(z) = 0. Although this
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isogeny has a nontrivial kernel, we claim that G1/G2 is nonetheless isomorphic to G/H1. To show this
it is enough to show the following. Let K1 be the solutions of (δx + 1)(z) = 0 and K2 be the solutions
of (δx +1)(z) = 0, δy(z) = 0. We have that G1/G2 is isomorphic to K1 and G/H1 is isomorphic (by the
above) to K1/K2. The homomorphism δy : Ga → Ga maps K1 surjectively to K1 and its kernel in K1
is K2. Therefore K1/K2 is isomorphic to K1 and our claim is proved.

Example 2.32. We shall use the groups defined in Example 2.26 to construct an example of a �-group
having two normal sequences with isogenous but non-isomorphic quotients.

Let � = {δx, δt} and k = U and C be the �-constants of U. Let K1 be the solutions of (δ2
x − δt)(z) =

0 and K2 be the solutions of (δx − xδt)(z) = 0. Let G = K1 + K2. Lemma 2.8 implies that this group
is strongly connected. In fact its annihilating ideal is the intersection of 〈δ2

x − δt〉 and 〈δx − xδt〉 in
k{δx, δt} which is 〈L〉 where

L = xδ3
x − x2δ2

x δt − 2δ2
x − xδxδt + x2δ2

t + 2δt

= (
xδx − x2δt − 2

)(
δ2

x − δt
)

= (
xδ2

x − xδt − 2δx
)
(δx − xδt). (16)

One sees directly that G is strongly connected since a subgroup defined by the vanishing of a single
operator must be strongly connected. Consider the two sequences of subgroups: G ⊃ K1 ⊃ {0} and
G ⊃ K2 ⊃ {0}. We claim that each quotient in either of these sequences is almost simple and, while
K1 is isogenous to G/K2, it is not isomorphic to either G/K2 or K2.

The almost simplicity of K1 and K2 follows from the observation in Example 2.12. In particular
any quotient of K1 or K2 by a �-subgroup of smaller type will also be almost simple. Therefore
G/K1 � K2/(K1 ∩ K2) and G/K2 � K1/(K1 ∩ K2) are almost simple. Clearly K1 is isogenous to G/K2
and K2 is isogenous to G/K1.

We now claim that K1 is not isomorphic to either G/K2 or K2. Note that K2 has typical differential
transcendence degree 2 while K2 has typical differential transcendence degree 1, so these two groups
cannot be isogenous. From (16), one sees that G/K2 is isomorphic to the group of solutions of (xδ2

x −
xδt − 2δx)z = 0. This is the group Hx of Example 2.26 and K1 is the group H of the Heat Equation in
this latter example. As we have shown in Example 2.26 these groups are not isomorphic.

3. Almost simple �-groups

In this section we will develop some facts concerning almost simple �-groups. We will use the
terms �-group, �-subgroup, etc., to mean that the objects are all defined over U. Similarly almost
simple, irreducible, etc., refer to these properties with respect to U, a differentially closed �-field.

3.1. Quasisimple linear algebraic groups are almost simple �-groups

We begin with the following lemma.

Lemma 3.1. Let (U,�) be a differentially closed differential field, �′ ⊂ � and G a non-commutative connected
algebraic subgroup of GLn(U) with finite center, that is defined over the field C ′ of �′-constants of U. Then the
�′-subgroup G(C ′) of G equals its own normalizer in G.

Proof. First note that since C ′ is algebraically closed, G(C ′) is Zariski dense in G and is non-
commutative and connected. Let N be the normalizer of G(C ′) in G . For g ∈ N and c ∈ G(C ′), we
have that g−1cg = c1 ∈ G(C ′). For any δ′ ∈ �′ , differentiating this latter equation yields −g−1δ′ g ·
g−1cg + g−1cδ′ g = 0 and therefore

c−1�δ′gc = �δ′g
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where �δ′ g = δ′ g · g−1 is called the logarithmic derivative of g . It is well known that �δ′ g ∈ g, the lie
algebra of G (see [24], Chapter V.22 or [29], Section 5, for an exposition of properties of the logarith-
mic derivative in the linear case). Since G(C ′) is Zariski dense in G , this latter equation implies that
every element of the U-span W of �δ′ g is invariant under the adjoint action of G on g. Corollary 3.2
of [20] implies that W is annihilated by the adjoint action of g on g, that is W lies in the center of g.
Theorems 3.2 and 4.2 in Chapter 4 of [20] imply that the center of g is the lie algebra of the center
of G . Since the center of G is finite, we must have that �δ′ g = 0, that is δ′ g = 0 and so g ∈ G(C ′). �
Proposition 3.2. Let (U,�) be a differentially closed differential field with �-constants C and let G ⊂ GLn(U)

be a non-commutative quasisimple linear algebraic group defined over C . If N is a proper normal �-subgroup
of G, then N is finite. In particular, if G is quasisimple (resp., simple) as an algebraic group, then it is quasisimple
(resp., simple) as a �-group and therefore in either case is almost simple.

Proof. Let N be a proper normal �-subgroup of G and N0 its identity component (in the Kolchin
topology). N0 is again normal in G . Let H ⊂ G be the Zarski closure of N0. One sees that H is
connected in the Zariski topology and is again normal in G . We wish to show that H is finite. If not,
then, since G is quasisimple as an algebraic group, we must have that H = G . This implies that N0

is a Zariski dense �-subgroup of G , connected in the Kolchin topology. Theorem 19 of [13] states
that there exists a finite set of derivations �′ that are U-linear combinations of the elements of �

such that N0 is conjugate in GLn(U) to G(C ′) where C ′ = {c ∈ U | δ′(c) = 0, ∀δ′ ∈ �′}. Expanding � if
necessary we may assume �′ ⊂ � (this does not change the hypotheses or conclusions). Lemma 3.1
implies that N0 is its own normalizer so N0 = G , contradicting the fact that N is a proper subgroup
of G . �
3.2. Almost simple linear �-groups

We now restrict ourselves to linear differential algebraic groups. In this situation, we are able to
derive additional properties of almost simple groups and, in the case of ordinary differential fields,
give a strong classification of almost simple linear �-groups.

Proposition 3.3. Let G be a nontrivial commutative simple linear �-group. Then either G is finite of prime
order or is isomorphic to Ga(C).

Proof. Assume G ⊂ GLn(U) for some positive integer n. If G is finite then it clearly must be of
prime order. Let us now assume that G is infinite. Since the identity component G0 is a normal
�-subgroup of finite index, we must have that G = G0 so G is connected. Therefore G , the Zariski
closure of G in GLn(U), is also connected and commutative. Since U is algebraically closed, we
may assume that G = Gp

m(U) × Gq
a(U) for some non-negative integers p,q. Assume that p > 0 and

let π be the projection of G onto some factor of Gp
m(U). We have that π(G(U)) is Zariski dense

in Gm(U) and so by Proposition 31 of [10], π(G(U)) contains Gm(C). This would imply that G
would have a proper nontrivial normal �-subgroup. Therefore p = 0 and G = Gq

a(U) for some p.
Let 0 	= a = (a1, . . . ,aq) ∈ G . The subgroup Ca is �-closed and �-isomorphic to Ga(C). Therefore G
must be isomorphic to Ga(C). �

If we assume that k is algebraically closed and G is a commutative k-simple �-k-group, then, we
can only say that G is either finite or isomorphic to a proper �-k-subgroup of Ga(U). For, if G is
Zariski dense in Gq

a(U), let π be the projection of Gq
a(U) onto Ga(U). Then, G is delta-isomorphic

to π(G), but, we do not know that the latter group contains a point rational over k.
In the theory of linear algebraic groups, one knows that the commutator subgroup of a linear

algebraic group is closed in the Zariski topology and therefore that a quasisimple linear algebraic
group is perfect, that is, it equals its commutator subgroup (in fact, every element of a semisimple
algebraic group is a commutator [35]). As we have already mentioned following Definition 2.23, in
contrast to the algebraic case, the commutator subgroup of a differential algebraic group need not be
closed in the Kolchin topology (Chapter IV.5 of [25]). Nonetheless, we have the following proposition
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Proposition 3.4. Let G be an infinite almost simple linear �-group. Then either G is commutative or
D�(G) = G.

Proof. Assume G is not commutative and suppose that D�(G) 	= G . Since D�(G) is a normal �-
subgroup of G , Corollary 2.14 implies that D�(G) lies in the center Z(G) of G . Therefore G/Z(G) is
commutative. Since every proper normal �-subgroup of G is central, the group G/Z(G) is simple.
Proposition 3.3 implies that G/Z(G) is isomorphic to Ga(C). In particular, 0 = τ (G/Z(G)) = τ (G).
This implies that τ (Z(G)) = −1, that is, Z(G) is finite. Since D�(G) is connected we must have that
D�(G) is trivial, so G is commutative, a contradiction. �

Suppose G is an infinite almost simple linear �-group. An argument based on the proof of Propo-
sition 3.4 breaks down at the last step. We do not know a priori that a simple �-subgroup of Ga(U)

has type 0 unless U is an ordinary differential field. We also do not have an example of a non-
commutative almost simple linear differential algebraic group whose commutator subgroup is not
closed in the Kolchin topology. In fact, as we show below in Proposition 3.8, non-commutative almost
simple linear �-groups of type at most 1 are perfect.

We derive one more property of the center. Let G ⊂ GLn be a �-group and G its Zariski closure.
Let Gu be the unipotent radical and Gr be the solvable radical of G . One can easily show that Gu ∩ G
is the unique maximal normal unipotent differential algebraic subgroup of G and (Gr ∩ G)0 is the
unique maximal connected solvable �-subgroup of G . We shall denote Gu ∩ G by Gu and (Gr ∩ G)0

by Gr and refer to these as the unipotent radical and radical respectively. If G is defined over k, so
are Gu and Gr .

Proposition 3.5. Let G be an infinite almost simple linear �-group.

1. If G is non-commutative, then the unipotent radical Gu of G equals the identity component (Z(G))0 of the
center of G.

2. If G is commutative then either G is isomorphic to Gm(C) or G is isogenous to an almost simple subgroup
of Ga(U).

Proof. Let G ⊂ GLn and let G be the Zariski closure of G .
1. Assume that G is a non-commutative group. The commutator subgroup (G, G) of G is a Zariski

closed subgroup of G and, a fortiori, is Kolchin closed. Therefore it contains D�(G) = G . Since (G, G)

is Zariski closed, it must also contain G . Therefore G = (G, G) is perfect.
The group G has a Levi decomposition

G = Gu � P

where P is a reductive algebraic group. Since G is perfect, P is perfect. The solvable radical Pr of
P has finite intersection with (P , P ) (Lemma, p. 125 of [21]) so Pr is finite. Therefore P must be
semisimple. This implies that the radical Gr of G equals Gu . Therefore, Gr = Gu . This implies that
Z(G)0 ⊂ Gu . Since D�(G) = G , we have that Gu is a proper normal �-subgroup of G and so is
central. Therefore Z(G)0 = Gu .

2. Assume G is commutative so G is also commutative. Therefore G � (Gm(U))s × (Ga(U))t for
some integers s, t . The map l� : Gm(U) → (Ga(U))m given by l�(u) = (δ1(u)u−1, . . . , δm(u)u−1) is a
�-homomorphism so we have a �-homomorphism

φ = (
l�s, idt) : G → (

Ga(U)ms) × (
Ga(U)

)t
.

The kernel of this map is G ∩ (Gm(C))s ⊂ (Gm(U))s ⊂ (Gm(U))s × (Ga(U))t . Let π : (Ga(U)ms) ×
(Ga(U))t → Ga(U) be a projection onto one of the Ga(U) factors. Since G is almost simple, the group
π ◦ φ(G) ⊂ Ga(U) is a nontrivial almost simple �-group or is the trivial group. If it is a nontrivial
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almost simple group, then the map π ◦ φ is an isogeny since its kernel in G is a proper subgroup.
If this group is trivial for all projections π , then G must be a subgroup of Gm(C)s . This implies that
G is a connected algebraic subgroup of Gm(C)s . Such groups are isomorphic to Gm(C)� for some �.
Since G is almost simple, we have that � = 1. �
Remarks 3.6. 1. We cannot strengthen the conclusion of part 2 above. Let (U, δ) be an ordinary
differential field and let G ⊂ Gm(U)×Ga(U) be the graph of the homomorphism lδ : Gm(U) → Ga(U).
G contains the group Gm(C) × 0 and so cannot be unipotent. Therefore G is isogenous to Ga(U) (via
the projection onto the second factor) but is not isomorphic to any subgroup of Ga(U).

2. For information concerning commutative unipotent differential algebraic groups, see [12].
Nonetheless, we have no general classification of almost simple proper �-subgroups of Ga(U) (ex-
cept in the ordinary differential case; see below).

The above propositions yield the following theorem. We shall denote by U · � the U span of �.
The elements of U · � are derivations on U.

Theorem 3.7. Let G be an almost simple linear �-group of type τ .

1. If G is non-commutative, then:
(a) G = D�(G).
(b) Gu = (Z(G))0 .
(c) There exists a finite commuting subset �′ ⊂ U · �, |�′| = m − τ , such that G/Z(G) � H(C�′ ) where

H is a simple algebraic group defined over Q and C�′ ⊂ U is the field of �′-constants.
2. If G is commutative, then G is either isogenous to a �-subgroup of Ga(U) or is isomorphic to Gm(C).

Proof. Statement 1(a) follows from Proposition 3.4. Statement 1(b) follows from Proposition 3.5.1.
Statement 2 follows from Proposition 3.5.2. To verify statement 1(c), note that Corollary 2.15 states
that G/Z(G) is a simple �-group. Its Zariski closure must be a simple linear algebraic group. The
main result of [13] gives the conclusion of 1(c). �
3.3. Almost simple linear �-groups of differential type � 1

We note that this includes ordinary linear �-groups. Restricting ourselves to �-groups of differen-
tial type at most 1 allows us to sharpen Proposition 3.4.

Proposition 3.8. Let G be an infinite almost simple linear �-group with τ (G) � 1. Then either G is commu-
tative or perfect.

Proof. Assume that G is not commutative. Corollary 2.15 states that G/Z(G) is a simple linear dif-
ferential algebraic group. Theorem 17 of [13] implies that G/Z(G) is differentially isomorphic to a
group G ′(F ) where G ′ is a simple non-commutative algebraic group and F is a field of constants
with respect to a set of U-linear combinations of elements of �. For an arbitrary group H , let
Cm(H) = {x1 y1x−1

1 y−1
1 · · · xm ymx−1

m y−1
m | xi, yi ∈ H}. Since G ′ is simple, we know that G ′ = C1(G ′)

(cf., [35]). We will show that G = Cs(G) for some s.
Let Xm be the Kolchin closure of Cm(G) in G . Let π : G → G/Z(G) be the canonical projection.

Since G ′ = C1(G ′), we have that π(C1(G)) = π(G). Therefore π(X1) = G/Z(G). Since the group Z(G)

has smaller type than G , we have that τ (G) = τ (G/Z(G)) and aτ (G) = aτ (G/Z(G)). Therefore τ (X1) =
τ (G) and furthermore aτ (X1) = aτ (G).

For each i = 1,2, . . . let ωi(s) = ai
(s+1

1

) + bi be the differential dimension polynomial of a generic

point of Xi and ω(s) = a
(s+1

1

) + b be the differential dimension polynomial of G (we include the
possibility that a = 0). Since X1 ⊂ X2 ⊂ · · · ⊂ G , we have that ω1(s) � ω2(s) � · · · � ω(s). As we have
just shown, a1 = a so we must have a1 = a2 = · · · = a. Therefore, b1 � b2 � · · · � b. Since these are all
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integers, we must have that br = br+1 = · · · for some r. This implies that ωr(s) = ωr+1(s) = · · · and so
Xr = Xr+1 = · · · (cf., Proposition 2, Chapter III.5 of [24]).

We will now show (following a similar proof for algebraic sets) that G = C2r . For any c ∈ Cr(G) the
map d �→ dc sends Cr(G) to C2r(G) and therefore sends Xr to Xr . A similar argument shows that for
any c ∈ Xr , we have that multiplication by c on the left sends Xr to Xr . Therefore Xr is a �-subgroup
of G . Since Cr(G) is invariant under conjugation by elements of G , we have that Xr is a normal
subgroup of G of the same type and so must equal G . Since Cr is constructible, it contains an open
subset of its closure, that is an open subset of G . For any g ∈ G , we have that gC−1

r intersects Cr .
Therefore g ∈ Cr · Cr = C2r . �

We can also strengthen Theorem 3.7.

Theorem 3.9. Let G be an infinite almost simple linear �-group with τ (G) � 1. Let |�| = m.

1. If G is non-commutative, then there exists a quasisimple algebraic group H defined over Q and a commut-
ing linearly independent set of m − 1 derivations �′ ⊂ U� such that G is �-isomorphic to either H(C)

or H(C ′) where C are the �-constants and C ′ are the �′ constants of U.
2. If G is commutative, then G is either isogenous to an almost simple �-subgroup G ′ ⊂ Ga(U) with

τ (G ′) = 1 or is �-isomorphic to Ga(C) or Gm(C).

Proof. 1. Let G be a non-commutative almost simple �-group with τ (G) � 1. We shall first show that
Z(G) is finite.

If τ (G) = 0, then τ (Z) = −1 and so Z(G) is finite. Now assume τ (G) = 1. We shall rely heavily on
the results of [1]. Theorem 3.7.1(c) implies that G/Z(G) � H(F ), where H is a simple algebraic group
defined over Q and F is an ordinary differentially closed field with respect some derivation δ that is
a U-linear combination of elements of �. The field of constants of F is the field C of �-constants
of U. Therefore there is an exact sequence

1 −→ Z(G)
incl.−→ G

α−→ H −→ 1,

where α is a �-homomorphism. Let G̃ = α−1(H(C)). We then have the exact sequence

1 −→ Z(G)
incl.−→ G̃

α−→ H(C) −→ 1.

Since the type of Z(G) is at most 0 and the type of H(C) is 0, we must have that the type of G̃
is 0, that is, G̃ is a group of finite Morley rank. The group H(C) is a simple algebraic group of con-
stant matrices and so is a simple δ-group as well. Therefore every normal subgroup of G̃ is in Z(G).
Proposition 3.8 implies that G̃ is perfect. Therefore the results of [1] imply that Z(G) is finite.

Since Z(G) is finite and G/Z(G) is a simple group, we have that G is a quasisimple �-group.
Theorem A.1 in Appendix A states that there exists a quasisimple algebraic group H defined over Q
and a commuting linearly independent set of derivations �′ ⊂ U� such that G is �-isomorphic H(C ′)
where C ′ are the �′ constants of U. Since the type of G is at most 1, we have that either �′ has m
or m − 1 elements. If �′ has m elements, then the �′ constants and the �-constants coincide so G is
�-isomorphic to H(C), where C is the field of �-constants.

2. From Theorem 3.7, we know that a commutative almost simple �-group G is either isogenous
to a subgroup G ′ of Ga(U) or isomorphic to Gm(C). If τ (G) = 0, let u be a nonzero element of G ′ .
The group H = C · u is a �-subgroup of G ′ with τ (G ′) = 0. Since G ′ is also almost simple, we must
have G ′ = H and so G ′ is isomorphic to Ga(C). Therefore G is isogenous to Ga(C).

We will now show that any almost simple group G that is isogenous to Ga(C) is isomorphic
to Ga(C). Since G is isogenous to Ga(C), there exists a strongly connected �-group G ′ and surjective
�-homomorphisms α1 : G ′ → G , α2 : G ′ → Ga(C) where α1 and α2 have finite kernels. If we can
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show that α2 has trivial kernel, then G ′ would be isomorphic to Ga(C) and so α1 would have trivial
kernel as well. This would further imply that α1 is an isomorphism.

Therefore we must show the following: If there is a surjective �-homomorphism α : G → Ga(C)

with finite kernel H then H is trivial. Since G is also isogenous to Ga(C), G is commutative (Corol-
lary 2.22).

Let |H| = n. Since Ga is torsion free, we have that the torsion subgroup of G is H . Therefore, H is
the kernel of the homomorphism γ : G → G , γ (g) = gn . The differential type of γ (G) must therefore
be the same as the type of G . Since G is strongly connected, we have γ (G) = G . This implies that
if h ∈ H , h 	= 1, there exists a g ∈ G\H such that gn = h. This element g would then be a torsion
element not in H , a contradiction. Therefore H is trivial. �
Corollary 3.10. Assume that |�| = 1, that is, U is an ordinary differential field. Let G be an almost simple
�-group.

1. If G is non-commutative, then there exists a quasisimple algebraic group H defined over Q such that G is
�-isomorphic to H(U) or H(C).

2. If G is commutative, then either G is isogenous to Ga(U) or �-isomorphic to Ga(C) or Gm(C).

Proof. Corollary 3.10.1 follows immediately from Theorem 3.9.1. Corollary 3.10.2 follows from Theo-
rem 3.9.2 once one notes that any proper �-subgroup of Ga(U) has type 0. Note that 2 is no longer
true for almost k-simple �-groups. �

Example 2.25 shows that even in the case of ordinary differential fields, there are many non-
isomorphic almost simple �-groups that are isogenous to Ga(U).

Appendix A. Quasisimple linear �-groups

In this appendix we show how the results of [13]3 give the following result that was needed in
the proof of Theorem 3.9.

Theorem A.1. Let G be a quasisimple linear �-group. There exists a quasisimple algebraic group H defined
over Q, a commuting basis �̃ of U� such that G is �-isomorphic to H(C ′) where C ′ are the �′ constants of U
for some �′ ⊂ �̃.

This result will follow from the following three propositions. The first two appear in [13]. Note that
in this latter paper, the author uses the term simple to mean quasisimple (cf., [13], p. 222). We use
the same notation as in Theorem A.1.

Proposition A.2. (See [13], Corollary 1, p. 228.) Let G be a connected Zariski dense �-subgroup of a semisimple
algebraic subgroup H of GLn(U). Then, G is quasisimple if and only if H is quasisimple.

Proposition A.3. (See [13], Theorem 19, p. 232.) Let G be a connected Zariski dense �-subgroup of a quasisim-
ple algebraic group H where H is defined over the constants of �. Then, G is conjugate to H(C ′) where C ′ are
the �′ constants of some commuting linearly independent set of derivations of U�.

Proposition A.4. Let G be a quasisimple �-subgroup of GLn(U). Then, there exists a �-rational isomorphism
φ from G onto a Zariski dense �-subgroup of a quasisimple algebraic group H.

Proof. From Theorem 4.3, Chapter VIII of [21] we have that the Zariski closure G of G can be written
as a semidirect product

3 See also [9] for a useful discussion of the results of [13].
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Gu � H,

where Gu is the unipotent radical of G and H is a reductive algebraic subgroup of G and is H is
connected.

We claim that H is semisimple. First note that G is perfect, that is, G = (G, G). To see this, The-
orem 3.7 implies that G = D�(G). The group (G, G) is Zariski closed and so is Kolchin closed. Since
(G, G) ⊂ G contains (G, G), it contains D�(G) = G and therefore must equal G . Let φ : G → H be the
projection with kernel Gu . We have H = φ(G) = φ((G, G)) = (H, H), that is, H is perfect. The solvable
radical Hr has finite intersection with (H, H) (Lemma, p. 125 of [21]), so Hr is finite. Therefore H is
semisimple.

We now claim that φ restricted to G is an isomorphism of G onto a Zariski dense subgroup of H .
The group φ(G) is Zariski closed, from which it follows that H = φ(G) is the Zariski closure of φ(G).
To see that φ is injective on G , note that, since G is quasisimple, kerφ|G is either finite or all of G .
If G = kerφ|G , we would have G ⊂ Gu , and so G would not be quasisimple. Therefore kerφ|G ⊂ Gu is
a finite unipotent group and so must be trivial.

Since φ(G) is a connected quasisimple Zariski dense �-subgroup of the semisimple group H ,
Proposition A.2 implies that H is quasisimple. �
Proof of Theorem A.1. From Proposition A.4, we may assume that G is a connected Zariski dense
�-subgroup of a quasisimple algebraic group H defined over U. A fundamental theorem of Cheval-
ley (see [14]4), states that H is isomorphic to an algebraic group defined over Q. Therefore, we may
further assume that H itself is a quasisimple group defined over Q ⊂ C , the constants of �. Proposi-
tion A.3 implies that G is �-isomorphic to H(C ′) where C ′ are the �′ constants of some commuting
linearly independent set of derivations of U�. Proposition 7, Chapter 0 of [25] states that we may
extend �′ to a basis �̃ of U�. �
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