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Given a squarefree polynomial P ∈ k0[x, y], k0 a number field, we construct a linear

differential operator that allows one to calculate the genus of the complex curve defined
by P = 0 (when P is absolutely irreducible), the absolute factorization of P over the
algebraic closure of k0, and calculate information concerning the Galois group of P over
k0(x) as well as over k0(x).
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1. Introduction

The results of this paper spring from the elementary fact that an algebraic function
satisfies a linear differential equation.

Let k0 be a number field and k0 be its algebraic closure. Let P ∈ k0(x)[y] be a squarefree
polynomial of degree n in y. The derivation δ = d

dx extends uniquely to the algebraic
closure k0(x) of k0(x). We define the minimal operator associated with P to be the monic
differential operator LP = δt + at−1δ

t−1 + · · · + a0 with ai ∈ k0(x) of smallest positive
order such that LP (y) = 0 for all roots of P in k0(x). In Section 2, we give algorithms to
calculate this operator. In Section 3, we assume that P is absolutely irreducible, that is,
irreducible over k0(x). We show that information derived from the singular points of the
minimal operator allows one to give a simple formula (and direct method) to calculate
the genus of P = 0. In Section 4 we give two methods to factor a polynomial P ∈ k0(x)[y]
over k0(x). Together with the algorithm in Section 3, this yields a new polynomial time
algorithm for this task. In Section 5, we discuss how the minimal operator allows us to
find properties of the Galois groups of P over k0(x) and over k0(x). In the appendix we
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present some conjectures related to a problem that is solved in Section 2, that is, the
problem of finding a simple Tschirnhaus transformation that will ensure that the roots
of a polynomial over k0(x) become linearly independent over k0.

Although other methods are known to perform these tasks, our goal is to show that one
can approach all of these via differential operators. We note that differential operators
have been used to derive power and Puiseux series expansions of algebraic functions in
Comtet (1964) and Chudnovsky and Chudnovsky (1986, 1987) and, in a way different
from that described here, absolute factorization in Gao (2001). For simplicity, we have
assumed k0 to be a number field but all results are valid for a computable field of
characteristic zero over which one has an algorithm to factor polynomials.

2. From Polynomials to Linear Differential Equations

In this section we shall assume that P ∈ k0(x)[y] is a squarefree polynomial of degree
n and discuss methods to calculate the minimal operator LP associated with P .

We begin by describing the well known naive algorithm to do this. This algorithm is
motivated by the fact that if ỹ is a root of P in some differential extension of k0(x),
then δ(ỹ) = −Px(ỹ)

Py(ỹ) (where Px and Py are the partial derivatives of P with respect to
x and y) and this latter expression can be rewritten as a polynomial in ỹ. Since P and
Py are relatively prime, the Euclidean algorithm can be used to find polynomials R and
S of degrees at most n − 1 such that RP + SPy = −Px. We now generate a sequence
of polynomials Si ∈ k0(x)[y] of degree at most n − 1 such that for any root ỹ of P ,
δi(ỹ) = Si(ỹ). We define S0 = y, S1 = S, and, for i > 1, Si+1 to be (Si)x+(Si)yS1 mod P .
At each stage, one checks to see if the polynomials S0, . . . , Si are linearly dependent over
k0(x). If so, then a relation

∑i
j=0 ajSj = 0, ai = 1 yields an operator L =

∑i
j=0 ajδ

j . If
not, one continues. This process must stop after at most n steps, since n+1 polynomials
of degree at most n−1 must be linearly dependent. It remains to justify that this process
does yield an operator of minimal order that annihilates the roots of P .

Formally, the process above produces a linear differential operator L of smallest order
that annihilates the image y of y in the differential ring k0(x)[y]/(P ) where the derivation
is defined by y′ = −Px(y)/Py(y). Furthermore, if P = P1 · . . . · Pr is the factorization of
P into irreducible factors over k0(x), then the map

k0(x)[y]/(P ) → k0(x)[y]/(P1)⊕ · · · ⊕ k0(x)[y]/(Pr) (1)

given by y → (y mod P1, . . . , y mod Pr) is not only an isomorphism but a differential
isomorphism as well.

To show that L as constructed above is the minimal operator associated with P , we
will show that the solution space of L is spanned by the roots of P . The roots of P
span a vector space V that is precisely the solution space of a monic operator LP with
coefficients in k0(x). To see this, let y1, . . . , yt be a basis of V . The Galois group of P
acts as t× t matrices on V and leaves the coefficients of

LP (y) =
det(Wr(Y, y1, . . . , yt))
det(Wr(y1, . . . , yt))

fixed (Wr(· · ·) is the Wronskian matrix). We need to show LP = L. First of all, since
all roots of P satisfy L(y) = 0, we have that LP divides L on the right (see Lemma 2.1
of Singer (1996)). Since LP annihilates each of the y mod Pi in (1), the isomorphism
in (1) allow us to conclude that LP annihilates y. This implies that L divides LP on
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the right. Therefore L = LP . We note that we have also shown that the solution space
of the minimal operator is spanned by the roots of P .

The above procedure involves “only” linear algebra but one can encounter problems of
expression-swell when trying to carry this out. We will present an alternative algorithm
that first bounds the degrees of the numerators and denominators of the coefficients of
the minimal operator and then calculates these directly using Padé approximation. This
method will work well when the roots of P are linearly independent over k0. For this
reason and later use, we begin by discussing this condition.

2.1. linear independence of roots

In this section, we present a method for transforming a polynomial P (y) ∈ k0(x)[y]
into a new polynomial whose roots are linearly independent over the constants. In the
appendix, we will discuss other possible methods to perform this task.

There are well known efficient algorithms to give a squarefree decomposition of an
arbitrary polynomial so questions of factoring and calculating Galois groups can be
reduced to considering squarefree polynomials. Furthermore, given a polynomial P (y),
it is easy to write it as a product P (y) = P1(y)P2(y) where P1(y) ∈ k0[y] and P2(y) ∈
k0(x)[y] with no root of P2 in k̄0. To do this, multiply by a polynomial b(x) ∈ k0[x] to clear
denominators so P0 = b(x)P ∈ k0[x, y]. Rewrite P0 as a polynomial in x with coefficients
in k0[y] and let P1(y) be the greatest common divisor of the coefficients of powers of x.
Dividing again by b(x), we have that P = P1P2 for some P2 ∈ k0(x)[y] having no roots
in k̄0. These two observations allow us to reduce questions of factorization, computing
genera and computing Galois groups to squarefree polynomials, none of whose roots are
constants. For these polynomials, we have the following result (due to Bjorn Poonen).

Proposition 2.1. Let P ∈ k0(x)[y] be a squarefree polynomial none of whose roots
{y1, . . . , yn} ⊂ k0(x) lie in k̄0. Except for a set of at most n2 values of a ∈ k0, the
elements

1
y1 − a

, . . . ,
1

yn − a

are linearly independent over k0.

Proof. Let K = k̄0(x, y1, . . . , yn) ⊂ k0(x) and let c be an indeterminate. The derivation
d
dx on k0(x) extends naturally to k0(x) and the constant subfield of this latter field is k̄0.
For an indeterminate c, the field k0(x, c) can be given the structure of a differential field
with dc

dx = 0. The constant subfield to this latter field is then k̄0(c). We shall show that
the elements

1
y1 − c

, . . . ,
1

yn − c
(2)

are linearly independent over k̄0(c). Assume that there are q1(c), . . . , qn(c) ∈ k̄0(c) such
that

q1(c)
y1 − c

+ · · ·+ qn(c)
yn − c

= 0.

If we consider the left-hand side of this equality as an element of K(c), we can expand
this in partial fractions with respect to the indeterminate c. The coefficient of the term

1
yi−c will then be qi(yi), which, by assumption, cannot be zero unless qi is identically
zero. Therefore, the elements in (2) are linearly independent over k̄0(c).
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From the above, we can conclude that the Wronskian of the elements of (2) is nonzero.
Considering this as an element of K(c), we may assume that the denominator is

∏
i(yi−

c)n and that the numerator is a nonzero polynomial of degree at most n2 in c. Therefore
there are at most n2 values of a ∈ k0 such that the elements

1
y1 − a

, . . . ,
1

yn − a

are linearly independent over k0 and therefore over k̄0. 2

We note that the proof gives us a polynomial W (c) ∈ K[c] whose zeros include the
exceptional set of values of c. From the point of view of efficiency this is not very helpful.
Instead we shall give a test to determine directly if the roots of a squarefree polynomial
are linearly independent over the constants. Having such a test, one selects a value of
a and constructs a polynomial for which the 1

yi+a are roots (just multiply P ( 1
y − a) by

sufficiently high power of y). One then applies the test and the proposition guarantees
success after at most n2 + 1 choices.

The idea behind the test to determine linear dependence of roots of a polynomial
P ∈ k0(x)[y] is the following: there is a number M , depending on P , such that if a
k0-linear combination of roots of P vanishes to order M , then this linear combination
must be identically zero. Therefore, to test if the roots of P are linearly dependent, we
need only expand the roots as Taylor series at a point x0 ∈ k0 where the discriminant is
nonzero and test if the first M + 1 terms are linearly dependent. Doing this naively will
involve working in an algebraic extension of k0 but we shall also show how this blemish
may be removed to allow us to work directly in k0.

To show that the bound M exists and to show how one may calculate it, we will need
some well known concepts and facts concerning linear operators over k0(x) (see Poole,
1960, Chapter 5). We begin by reviewing these.

Let L = bnδn +bn−1δ
n−1+ · · ·+b0 be a linear differential operator with δ = d

dx and the
bi ∈ k0[x] and GCD (b0, . . . , bn) = 1. At any point c ∈ k0 one can search for solutions of
y = 0 of the form y = tρ

∑
j≥0 cjt

j where ρ ∈ k0 and t = x−c. If we let bi =
∑

j>m bi,jc
j ,

δi,mj
6= 0 and substitute the expression for y into Ly we get Ly = I(ρ)xρ+N (

∑
j≥0 djt

j)
where N = mini(mi − i), d0 6= 0 and I(ρ) =

∑
{i|mi−i=N} bi,miρ

i (we use the notation
ρi = 1 if i = 0 and ρi = ρ(ρ−1) · · · (ρ− i+1) otherwise). The equation I(ρ) = 0 is called
the indicial equation at c and its roots are called the exponents at c. A calculation also
shows that if y =

∑∞
i=0 cit

ρi with ρ0 < ρ1 < · · · real numbers and c0 6= 0 then ρ0 is also
an exponent. If c is not a root of bn, we say that c is an ordinary point and the values
of c such that bn(c) = 0 are called the (finite) singular points. We also need to classify
the point at infinity. To do this we make the transformation x = 1

t ,
d
dx = −t2 d

dt and say
that ∞ is ordinary or singular according to whether 0 is an ordinary or singular point
of the transformed equation. The indicial equation at ∞ is defined to be the indicial
equation of the transformed equation at 0. If L has coefficients in k0(x), then the indicial
equations at points of k0 that are conjugate over k0 are the same and one can calculate
this equation using p-adic expansions where p is the minimal polynomial of the conjugate
singular points over k0. These can be found from a factorization of bn. We say a singular
point is regular if its indicial equation has degree n and is irregular if its indicial equation
has degree less than n. Therefore a singular point c is regular if and only if the order
of bn−i/bn at c is at least −i. We say L is Fuchsian if all of its singular points are
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regular singular points. Let L be a Fuchsian operator, let p1, . . . , pm be the singular
points (possibly including infinity) and for each i, let {ρi,j}n−1

j=0 be the exponents at pi.
Fuchs’s relation states that

m∑
i=1

n−1∑
j=0

ρi,j =
1
2
(m− 2)n(n− 1). (3)

This equation is proved in Poole (1960, p. 77). Finally, we say that a singularity c is an
apparent singularity if the equation Ly = 0 has n independent solutions that are analytic
at x = c.

We shall need the following facts about exponents.

Lemma 2.2. Let L be as above and p ∈ k0 ∪ {∞}.

1. If p is an ordinary point, then the exponents at p are {0, . . . , n− 1}.
2. If all solutions of Ly = 0 at p can be expressed as Puiseux series, then there are n

distinct exponents at p.
3. If p is an apparent singularity then there are n distinct integer exponents 0 ≤ ρ1

< · · · < ρn at p with ρn ≥ n.

Proof.

1. This claim follows from the existence theorem for differential equations.
2. For simplicity, let us assume that p = 0. Let {y1, . . . , yn} be a basis of the solution

space at p and assume we have ordered this set so that ordpy1 ≤ · · · ≤ ordpyn,
where ordpy is the exponent of the smallest power of x appearing in y. Since
each of these numbers must be an exponent, there are only a finite number
of n-tuples (ordpy1, . . . , ordpyn) that can be generated in this way. Order these
lexicographically and select the largest such n-tuple. We claim that the entries are
all distinct. If not, say ordpyi = ordpyi+1. For some c ∈ k0, yi+1 = yi − cyi+1 has
order larger than ordpyi+1. Replacing yi+1 with yi+1 we get a new basis with a
larger associated n-tuple of orders, a contradiction.

3. Again, assume that p = 0. From part 2 and the definition of an apparent singular
point, there will be n distinct positive integer exponents. We must show that the
set of exponents is not {0, 1, . . . , n − 1}. Assume that this latter set is the set of
exponents and let {y1, . . . , yn} be a set of solutions of Ly = 0 with ord0yi = i. If
w(x) = Wr(y1, . . . , yn) is the Wronskian matrix (y(j)

i (x)) then one sees that w(0)
is a lower triangular matrix none of whose diagonal entries is zero. In particular,
det(w(x)) is nonzero at x = 0 and the yi are linearly independent over the constants.
The equation

L̃(y) =
det(Wr(y, y1, . . . , yn))
det(Wr(y1, . . . , yn))

has rational coefficients that do not vanish at p. Clearing denominators gives us L
and shows that p is not a singular point, yielding a contradiction. 2

We now consider the minimal operator LP of order q ≤ n of a squarefree P (y) ∈ k[y],
k = k0(x) of degree n. At any point, the solutions of P (y) = 0 can be expressed as
Puiseux series and so the minimal operator will have a basis of solutions of this form.
Therefore, Lemma 2.2 applies to this operator.
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Using these concepts, we wish to prove the following proposition.

Proposition 2.3. Let P ∈ k0[x, y] be a squarefree polynomial of degree n in y and let
y1, . . . , yn be the roots of P = 0 in k0(x). Let LP be the minimal operator of P and let
its order be q, 1 ≤ q ≤ n. Let

M = q + q

(
1
2
(N − 2)(q − 1)−Nl

)
where

1. N is the number of points x0 (possibly including infinity) where either the degree of
P (x0, y) is less than n or P (x0, y) = 0 has a multiple root,

2. l ≤ 0 is a lower bound on the slopes of the sides of the Newton polygon of P at any
point on the projective line.

Then M is an upper bound on the exponents of LP at any point on the projective line.
Furthermore, the number of apparent singularities is bounded by q

(
1
2 (N−2)(q−1)−Nl

)
.

Proof. Let p1, . . . , pm be the singular points of LP (possibly including infinity) and let
p1, . . . , pN be the points where P (pi, y) = 0 has a repeated root or the degree drops. Note
that pN+1, . . . , pm are apparent singularities of LP .

At each pi, 1 ≤ i ≤ N , the exponents are of the form ρi,j = l + ni,j where ni,j is a
non-negative rational number. This is because at these points the Puiseux expansions
of the solutions {yj} have leading terms whose exponents are given by the slopes of the
Newton polygon.

At each pi, N + 1 ≤ i ≤ m, the exponents are distinct non-negative integers with
the largest one bigger than q − 1. Therefore, we may assume that they are of the form
ρi,j = j + ni,j with each ni,j a non-negative integer and at least one ni,j positive.

From Fuchs’s relation (equation (3)) we have

1
2
(m− 2)q(q − 1) =

N∑
i=1

q−1∑
j=0

ρi,j +
m∑

i=N+1

q−1∑
j=0

ρi,j

=
N∑

i=1

q−1∑
j=0

(l + ni,j) +
m∑

i=N+1

q−1∑
j=0

(j + ni,j)

= Nql +

(
N∑

i=1

q−1∑
j=0

ni,j

)
+

m−N

2
q(q − 1) +

m∑
i=N+1

q−1∑
j=0

ni,j .

Rewriting this, we have that

1
2
(N − 2)q(q − 1)−Nql =

N∑
i=1

q−1∑
j=0

ni,j +
m∑

i=N+1

q−1∑
j=0

ni,j . (4)

Note that
∑m

i=N+1

∑q−1
j=0 ni,j is larger than the number of apparent singularities since

for each j some ni,j is positive. Therefore the number of apparent singularities is at most
1
2 (N − 2)q(q − 1)−Nql.
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We also have that each ni,j ≤ 1
2 (N − 2)q(q − 1) − Nql. Since l ≤ 0, ρi,j ≤

1
2 (N − 2)q(q − 1)−Nql at each true singularity and ρi,j ≤ q + 1

2 (N − 2)q(q − 1)−Nql
at each apparent singularity. Note that at an ordinary point we have that the exponents
are less than q and so also satisfy this bound. 2

We note that if at some point on the projective line, the Newton polygon has n distinct
slopes then these slopes are precisely the exponents of LP and LP will have order n, i.e.
the roots of P will be linearly independent over constants. If there are fewer than n slopes
then the exponents can be larger than the slopes due to cancellation among the roots
of P . Furthermore, if we know the exponents at the true singular points, then we can
give a better bound on the number of apparent singular points than the one given in the
above proposition. Using the notation of the proof of Proposition 2.3, we have

1
2
(N − 2)q(q − 1)−

N∑
i=1

q−1∑
j=0

ρi,j =
m∑

i=N+1

q−1∑
j=0

ni,j ≥ m−N. (5)

We note that both l and N can be bounded in terms of the total degree d of P in x
and y and that this bound is a polynomial in d.

To decide linear dependence of the roots we will use the following corollary.

Corollary 2.4. Let P ∈ k0[x, y] be a squarefree polynomial of degree n in y and let
y1, . . . , yn be the roots of P = 0 in k0(x). Let

M ′ = max
1≤q≤n

{
q + q

(
1
2
(N − 2)(q − 1)−Nl

)}
.

Let t = x− a for a ∈ k0 or t = 1
x , let c1, . . . , cn ∈ k0 and let∑

ρ0<ρ1<···
ait

ρi

be the expansion of c1y1 + · · · + cnyn in fractional powers of t. If ρ0 > M ′, then
c1y1 + · · ·+ cnyn = 0.

Proof. Note that the number M ′ bounds the exponents at any point of the minimal
operator of P . Any linear combination as above must be a solution of this operator. If it
vanishes to an order larger than any exponent then it must be identically zero. 2

To apply the above corollary, we will want to expand the roots of P at a point x = c
and compare the first few terms. To minimize working over an algebraic extension of k0,
we shall introduce the following series.

Let x = c be a point where the discriminant of P , Resultanty(P, dP
dy ), is not zero. For

simplicity, we shall assume that c = 0. Let S = k0[y]/(P (0, y)) and let α be the image of
y in S. Since P (0, y) is squarefree, dP

dy (0, α) is invertible in S. One can apply Newton’s
Method (see Lemma 9.2.1 of von zur Gathen and Gerhard, 1999, p. 253) and conclude
that there exist si ∈ k0[[x]] such that y(x) = s1 + αs2 + · · · + αn−1sn is a solution
of P (x, y) = 0 in S[[x]]. Note that Newton’s Method allows one to calculate the si to
any prescribed power of x. Furthermore, specializing α to any root αi of P (0, y) in the
algebraic closure k0 of k0 yields a solution yi(x) = s1 + αis2 + · · ·+ αn−1

i sn of P (x, y) in
k0[[x]]. Note that {y1, . . . , yn} are linearly independent over constants if and only if the
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same is true for {s1, . . . , sn} since the transformation matrix from one set to the other
is a Vandermonde matrix.

Definition 2.5. We shall refer to the si constructed as above as an adapted spanning
set of the solution space of LP y = 0 at x = c. If they are linearly independent over
the constants then we shall refer to this set as an adapted basis of the solution space of
LP y = 0 at x = c.

Using an adapted spanning set at a point where the discriminant of P is nonzero, we
can give a procedure to decide if the roots of P = 0 are linearly independent over the
constants. Let M ′ be the number defined in Corollary 2.4. Calculate polynomials Si(x)
such that si(x) = Si(x)+O(xM

′′
+1) where M

′′
is the first integer at least as large as M ′.

Corollary 2.4 implies that the si are linearly independent over constants if and only if
the Si are and this can be decided using linear algebra over k0. We note that the method
presented here for finding an element c ∈ k0 such that P

(
c + 1

y

)
= 0 has k0-linearly

independent roots has complexity given by a polynomial in the total degree of P and
the size of the numbers appearing in P (bit size if k0 = Q and a similar measure for
algebraic numbers).

We illustrate the method with the following example.

Example 2.6. Consider the polynomial P (x, y) = y2(y2 + 3)2 + 4x (from Malle and
Matzat, 1999, p. 404, f6,3). In order to find a transformation such that the roots of the
new polynomial are independent over Q we proceed in the following way:

• Consider P0 = y6P (x, 1
y ). Since the coefficient of y5 is zero, the roots must be

linearly dependent. In order to prove the linear dependence using the above we
would proceed as follows. Using the notation of Corollary 2.4, we get N = 3
(corresponding to x = 0, 1,∞). We choose to work at the regular point c = 2
and consider the polynomial

P̃0 = P0(x− 2, y) = 1 + 6y2 + 9y4 + 4(x− 2)y6.

By computing the Newton polygon of P̃0 we get l = − 1
6 and so M ′ = 24. Computing

an adapted spanning set up to order M ′+1 we get that the Si are linearly dependent
over Q and thus by Corollary 2.4 we get that the roots are linearly dependent
over Q .

• Now we consider the polynomial P1 = y6P (x, 1
y + 1). Following the notation of

Corollary 2.4, we get N = 4 (corresponding to x = 0, 1,−4,∞). We choose to work
at the regular point c = 2 and consider the polynomial

P̃1 = P1(x− 2, y) = 4(2 + x)y6 + 48y5 + 60y4 + 44y3 + 21y2 + 6y + 1.

By computing the Newton polygon of P̃1 we get l = − 1
6 and so M ′ = 40, which

means that in order to guarantee a possible linear dependence of the coefficients
Si of a spanning set we have to compute until order 41. Note that in this case an
adapted spanning set computed up to order 6 is(

− 1
486

x3 − 35
46656

x4 − 1069
1679616

x5 + O(x6)
)

α5

+
(

1
9
x +

5
216

x2 − 25
23328

x3 − 295
124416

x4 − 81289
40310784

x5 + O(x6)
)

α4
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+
(

5
9
x +

5
36

x2 − 817
23328

x3 +
5525

559872
x4 +

102061
40310784

x5 + O(x6)
)

α3

+
(

7
18

x +
19
216

x2 +
977

46656
x3 +

229
41472

x4 +
106337

80621568
x5 + O(x6)

)
α2

+
(

1 +
7
36

x +
37
864

x2 +
1007
93312

x3 +
13753

4478976
x4 +

141923
161243136

x5 + O(x6)
)

α

+
(

1
36

x +
5

864
x2 +

125
93312

x3 +
515

1492992
x4 +

13313
161243136

x5 + O(x6)
)

where P̃1(0, α) = 0. Since the corresponding Si are linear independent over Q, the
roots of P̃1 are independent over Q. This ensures that LP̃1

(and thus LP1) has
maximal order 6 (see Example 2.7 for its computation). 2

2.2. calculating the minimal operator

We now turn to the problem of finding the minimal operator associated with a
polynomial P (y) whose roots are linearly independent over k0. The previous paragraphs
have shown how one can ensure that this happens. Clearing denominators, we shall
furthermore assume that P (x, y) ∈ k0[x, y] and for simplicity that P is monic as a
polynomial in y (this can always be achieved by making a linear transformation of the
variables). Since the minimal differential operator is Fuchsian, it will be of the form

LP = δn +
an−1(x)

A(x)
δn−1 + · · ·+ a0(x)

A(x)n

where A(x) is a squarefree polynomial (Poole, 1960, Chapter V.20). We can write
A(x) = A1(x)A2(x) where the zeros of A1(x) are the finite “true” singular points and
the zeros of A2(x) are the apparent singular points. We can let A1(x) be the product
of the irreducible factors of the discriminant since outside the zeros of this polynomial
we have n analytic solutions of P = 0. Proposition 2.3 allows us to bound the degree of
A2(x). Since ∞ is at worst a regular singular point we have that deg(an−i) ≤ deg(Ai)− i
(Poole, 1960, Chapter V.20). Therefore, once one has a bound on the degree of A(x), one
can bound the degree of the ai. To determine the an−i/A

i, we proceed as follows.
Let x = c be a point that is not the zero of the discriminant of P and let {si} be an

adapted basis of LP at x = c. We note that

LP (y) =
det(Wr(y, s1, . . . , sn))
det(Wr(s1, . . . , sn))

where Wr is Wronskian matrix. Therefore, each coefficient an−i/A
i is the ratio of power

series that we can compute. Since Ni = ideg(A) is a bound on the degrees of the
numerator and denominator of an−i/A

i, we can determine this rational function from
the first 2Ni + 1 coefficients of the corresponding ratio of power series.

The following example shows that one can sometimes do better than using the rough
bounds of Proposition 2.3. In this example there are n distinct slopes at some of the
singular points and so we know that the Puiseux series must be linearly independent
over the constants. Furthermore, these slopes must be the exponents. We are therefore
able to use Fuchs’s relation (equation (3)) and its consequence (equation (5)) directly to
bound the number of apparent singularities.
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Example 2.7. (Example 2.6 Continued) We will compute the differential operator
(which is of maximal order) associated to the polynomial P̃1 of Example 2.6 using the
above method.

The singularities of P̃1 are −2, 2, 3 and ∞. We can give lower bounds on the exponents
of LP̃1

at these points by looking at the Puiseux series of P̃1. For instance, at x = 3 using
the command “puiseux” in Maple with the option “minimal” we obtain the following
representation using a formal parameter T after translating 3 to 0:

{[x = −1/12T 2, y = −β/12T + · · ·], [x = T, y = α + · · ·]}

where 5α2 + 2α + 1 = 0 and 2β2 + 2β + 1 = 0. Therefore, since the exponents are all
distinct, the sum of exponents at x = 3 is at least 0 + 1

2 + 1 + 3
2 + 2 + 5

2 = 15
2 . Doing the

same with the other singularities, we obtain respectively the lower bounds 15
2 at x = 2, 9

at x = −4 and 7
2 at x = ∞. The sum of the exponents at the singularities is therefore at

least 55
2 and equation (5) implies that

m−N ≤ 1
2
(4− 2)6(5− 1)− 55

2
=

5
2

and so LP̃1
admits at most two apparent singularities.

Writing A(x) = (x− 2)(x− 3)(x + 2)(x2 + ax + b), LP̃1
is of the form

LP̃1
= y(6) +

6∑
i=1

a6−i(x)
A(x)i

where a6−i is a polynomial of degree at most 4i. Using the adapted basis at x = 0 we
have already computed in Example 2.6 and the previous expression of LP̃1

as a quotient
of Wronskian determinants, this leads, when expanding the coefficient a5(x)

A(x) , to a system
in the coefficients of a5 and the variables a and b whose solution gives

a5(x)
A(x)

=
444x4 − 105939x3 − 325750x2 + 1112451x + 987286

2(x− 3)(12x2 − 2697x− 12467)(x2 − 4)

so LP̃1
admits exactly two apparent singularities that are conjugate over Q (and we can

also deduce directly from Fuchs’s relation that the exponents at these points are {0, 1, 2,
3, 4, 6}). The other coefficients can be computed in the same way but we don’t reproduce
the equation LP̃1

because of rather huge expressions. 2

Note that the algorithm for computing LP is again of complexity bounded by a
polynomial in the total degree of P and the size of the coefficients.

3. A Formula for the Genus of P = 0

In this section we will give a formula that gives the genus of an algebraic curve in
terms of the exponents of the associated minimal differential operator. Throughout the
section P ∈ k0[x, y] will denote an absolutely irreducible polynomial of degree n in y.
Furthermore, we shall assume that the roots of P in the algebraic closure of k0(x) are
linearly independent over k0. If this is not the case, we have shown in Section 2 that
we can transform P into a polynomial having this property. It is easy to see that the
transformed polynomial is absolutely irreducible if and only if the original one is.

Although there are many ways to define the genus g of the curve P = 0 (e.g. the
topological genus of the nonsingular model), for the purposes of this paper it will suffice
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to define this number to be the integer that satisfies the Hurwitz formula given below.
In order to state this formula we need to give some well known definitions and facts (see
Walker, 1962).

Let K be the quotient field of k0[x, y]/(P ) where (P ) is the ideal generated in k0[x, y]
by P . For each c ∈ k0, let t = x − c and let k0((t)) be the quotient field of the ring
of formal power series in t. Expanding any f ∈ k0(xδ) as a Laurent series in t gives an
embedding of k0(x) → k0((t)). Therefore, we can consider k0(x) as a subfield of k0((t))
and there exist n roots y1, . . . , yn of P = 0 in the algebraic closure k0((t)) of k0((t)). It
is known that the field k0((t)) is the union of all fields of the form k0((t1/m)), m ≥ 1
(Walker, 1962, Chapter IV, Section 3). For each yi there is a smallest positive integer e
such that yi ∈ k0((t1/e)) which we refer to as the ramification index of yi. The Galois
group of k0((t1/e)) over k0((t)) is cyclic of order e and is generated by t1/e 7−→ ζt1/e

where ζ is a primitive eth root of unity. We say two solutions of P = 0 are equivalent if
they have the same ramification e and are conjugate under the Galois group of k0((t1/e))
over k0((t)). If yi has ramification e then it is equivalent to e solutions of P = 0. Each
equivalence class is called a place. The elements of each place have a common ramification
which we refer to as the ramification index of the place. Therefore, to each element c ∈ k0

we can associate the list of ramification indices of the places e1,c, . . . , eh,c. We note that∑
i ei,c = n and that an integer can appear more than once in this list. Letting t = 1

x ,
one can embed k0(x) into k0((t)) and define the ramification indices e1,∞, . . . , el,∞ in a
similar way. Let S = k0 ∪{∞}. It is known that there is a smallest finite set R ⊂ S such
that for c /∈ R all ramification indices at c are 1. We have the Hurwitz formula:

g = 1− n +
∑
α∈S

∑
i

ei,α − 1
2

where g is the genus and the sum
∑

i
ei,α−1

2 is over all ramification indices at α.
We now switch our attention to the minimal operator of P . At each point α ∈ S there

exist n exponents ρi,α, . . . , ρn,α. We note that the ρi,α are distinct rational numbers. For
each i let ri,α ∈ k0 satisfy: 0 ≤ ri,α < 1 and ρi,α − ri,α is an integer. We shall refer to
ri,α as the fractional part of the exponent ρi,α. We then have the following proposition.

Proposition 3.1. Using the above notation

g = 1− n +
∑
α∈S

n∑
j=1

rj,α.

Proof. Let α ∈ S and y ∈ k0((t)) be a solution of P = 0 of ramification e, where
t is a local parameter. We may write y = p0(t) + t

1
e p1(t) + · · · + t

e−1
e pe−1(t) where

the pi(t) are in k0((t)). Therefore the place containing y consists of y0, . . . , ye−1 where
yi = p0(t) + ζit

1
e p1(t) + · · · + ζi(e−1)t

e−1
e pe−1(t) and ζ is a primitive eth root of unity.

We may therefore write 
y0

y1
...

ye−1

 = M


w0,e

w1,e

...
we−1,e


where M is the Vandermonde matrix of 1, ζ, ζ2, . . . , ζe−1 and wi,e = t

i
e pi. Since M is
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invertible and, by assumption, the yi are linearly independent, we see that the k0-span of
each place of P = 0 has a basis of the form {wi,e}. This implies that there are exponents
of the form n0, n1+ 1

e , . . . , ne−1+ e−1
e where the ni are integers. The sum of the fractional

parts of these exponents is
∑e−1

i=0
i
e = e−1

2 .
Let P1, . . . , Pm be the places at α and let e1, . . . , em be the corresponding ramification

indices. We have just shown that for each j = 1, . . . ,m there are linearly independent
elements wi,ej

= t
i

ej pi,j as above. Let ρi,j ∈ Q be the lowest power of t that appears
in wi,ej

. Each ρi,j is an exponent of α. If all the ρi,j are distinct then we have all the
exponents at α and from the above we get that

n∑
j=1

rj,α =
∑

i

ei,α − 1
2

and the formula of this proposition follows now from the Hurwitz formula.
We therefore must consider the situation when two ρi,j are equal. Consider all linearly

independent families of solutions {wi,ej
} of LP where wi,ej

= t
i

ej pi,j and associate to
such a family the vector of lowest powers (ρi,j). Since there are only a finite number of
possibilities for the ρi,j there exists a maximal vector (using the lexicographical order)
with associated family {wi,ej}. If two ρi,j are equal we can replace one of the wi,ej with
a combination of two of these and ensure that we get a family having a larger associated
vector (ρi,j). Therefore, the powers appearing in the lowest-order terms must all be
distinct and the previous argument applies. 2

One can use the Hurwitz formula to calculate the genus of a curve but in order to do
so one must calculate the ramification indices. Newton polygon methods allow one to do
this but it can happen that one must generate many terms of the Puiseux expansions
before one sees the ramification index appear in the denominator of an exponent of t.
The formula of Proposition 3.1 just requires one to calculate the indicial equation at
singularities of the minimal operator. One does not need to calculate the exponents at
the apparent singularities (since these will be integers) so one only needs to look at those
α such that x − α divides the discriminant of the polynomial (and possibly infinity).
Furthermore, assuming that P is monic as a polynomial in y (which can be guaranteed
by a Tschirnhaus transform) we do not need to calculate the exponents for all such α.
If α has the property that all points (α, β) above α on the curve are nonsingular points,
we have that

∑
i(ei,α− 1) is precisely the multiplicity of x−α dividing the discriminant:

see the Dedekind Discriminant Theorem (Eichler, 1966, p. 77).
To see this, recall that the discriminant is the product of the differences of the roots.

Let t = x − α and assume that y = β + d1t
1/e + · · · is a root of P belonging to a

place with ramification index e > 1. In particular, x− α has order e and so y − β must
have order 1 since the local ring corresponding to this place is nonsingular. Therefore
d1 6= 0. The product of the e(e − 1) differences of elements in this place is therefore
d

e(e−1)
1 d(w)te(e−1)/e + · · · where d(w) is the discriminant of the polynomial ze − 1, (a

nonzero constant). Thus, we get a series of the form constant (x− α)e−1+ higher-order
terms. Each place contributes a factor of this form. A difference of roots from distinct
places does not vanish, so we have our claim concerning the multiplicity nα of x − α
dividing the discriminant. Therefore, we may replace the term

∑
i

ei,α−1
2 in the Hurwitz

formula (or the term
∑n

j=1 rj,α in the formula of Proposition 3.1) with nα

2 .
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Example 3.2. Let P (x, y) be the polynomial

y2 − 2yx− 4yx2 + x2 + 4x3 + 4x4 − x7 + x5.

Its minimal operator is

LP = δ2 − 1
2

(35x4 − 54x2 + 15 + 54x5 − 76x3 + 14x)
x(x2 − 1)(5x2 − 3 + 6x3 − 2x)

δ

+
1
2

84x5 − 120x3 + 20x + 35x4 − 54x2 + 15
x2(x2 − 1)(5x2 − 3 + 6x3 − 2x)

.

The only true singular points are 0, 1, −1, ∞. The discriminant is 4x5(x − 1)(x + 1).
We note that the curve is nonsingular above the points 1 and −1 and the order of the
discriminant at these values is 1. The exponents of LP at 0 are {1, 5

2} and at ∞ are
{−2,− 7

2}. Therefore, the genus is 1− 2 + 1
2 + 1

2 + 1
2 + 1

2 = 1.
Note that the roots of P can be written as x + 2x2 + x5/2

√
x2 − 1 and x + 2x2 −

x5/2
√

x2 − 1 so the ramification does not appear until the third term in the Puiseux
series at 0. 2

Remark. An implementation of a method to calculate the genus of a curve based on
the formula of Proposition 3.1 and using first-order systems of differential equations is
described in Dottax (2001). We also note that there are efficient methods to calculate
the genus of a curve based on calculating an integral basis of the associated function field
(see Trager, 1984; van Hoeij, 1994). In addition there are geometric methods based on
the resolution of singularities (see Henry and Merle, 1989; Teitelbaum, 1990).

4. Absolute Factorization

Let P ∈ k0(x)[y] be a squarefree polynomial of degree n. We will give two algorithms
that use differential equations to determine the absolutely irreducible factors of P in
k0(x)[y]; the first relies on properties of the linear representation of the Galois group
arising from the associated minimal operator and the second is a modification of the
algorithm of Duval (1991). There are several polynomial time algorithms that find the
absolutely irreducible factors of a polynomial and we refer the reader to Gao (2001),
Kaltofen (1995) and Ragot (1997) for a history of this problem. Other approaches to
absolute factorization are given in Bajaj et al. (1993), Corless et al. (2002) and Galligo
and Watt (1997).

4.1. algorithm 1

For the first algorithm, we will assume that the roots of P in the algebraic closure of
k0(x)[y] are linearly independent over k0. With this assumption, the algorithm presented
here has running time that is a polynomial function of the degrees of x and y and the bit
size of the numbers appearing in P (i.e. the bit size if k0 = Q or a similar measure for
algebraic numbers). Combining this with the algorithms of Section 2 yields a polynomial
time algorithm for finding the absolute factorization of any P . Most recently, Gao (2001)
has presented a deterministic algorithm that uses systems of partial differential equations
to find absolutely irreducible factors in polynomial time (this algorithm also works over
fields of sufficiently large prime characteristic). We note that the underlying ideas of
Gao’s algorithm and ours are different.
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We begin by showing how one can determine the number of irreducible factors of P in
k0(x)[y]. Let K be the splitting field of P over k0(x)[y]. The Galois group G of K over
k0(x) has a natural representation as a permutation group on the n roots y1, . . . , yn of
P . The key fact that we use is that each orbit of the action of G on y1, . . . , yn is the set
of roots of a monic absolutely irreducible factor of P . The field K is a differential field
with a unique derivation extending d

dx . The elements of the Galois group commute with
this derivation and so form the group of differential automorphisms of K over k0(x) as
well. Since K is generated by a fundamental set of solutions of the minimal operator LP

associated with P and has no new constants, it is the Picard–Vessiot extension of this
operator (Kaplansky, 1976 or van der Put and Singer, 2001). Since the roots of P are
linearly independent over k0, they form a basis of the solution space V of the minimal
operator LP . The Galois group of K therefore acts as linear transformations on V and
has a representation as a group of n × n permutation matrices. We refer to this as the
permutation representation of G. The key to counting the number of factors of P in
k0(x)[y] is the following lemma and proposition.

Lemma 4.1. (see Huppert, 1967, V. Satz 20.2a) Let G ⊂ GL(V ) be a permutation
representation and V0 = {v ∈ V | σ(v) = v for all σ ∈ G}. The number of orbits of G
acting on {y1, . . . , yn} equals the dimension of V0.

Proof. Let O1, . . . ,Ot be the orbits of G in {y1, . . . , yn}. If v =
∑

ciyi ∈ V0, then any
two yi in the same orbit must have the same coefficient ci. Therefore we may write

v =
t∑

i=1

ci

( ∑
yj∈Oi

yj

)
.

Since the elements wi =
∑

yj∈Oi
yj lie in V0 and are linearly independent, we have the

conclusion of the lemma. 2

Proposition 4.2. Let P and LP be as above. The number of irreducible factors of P
over k0(x) is precisely dimk0{y ∈ k0(x) | LP (y) = 0}. In particular, f ∈ k0(x)[y] is
irreducible if and only if the space of rational solutions of LP (y) = 0 is of dimension one
and generated by the coefficient of yn−1 in P .

Proof. Let K and G be as above, and let V be the solution space of LP in K. Let
V0 = {v ∈ V | σ(v) = v for all σ ∈ G}. Lemma 4.1 implies that the number of
irreducible factors of P over k0(x) equals dimk0

V0. The Galois theory implies that
V0 = {y ∈ k0(x) | LP (y) = 0}. It is well known (see Theorem 9.1 of Bronstein, 1992 or
Proposition 4.3 of van der Put and Singer, 2001) that, since LP has coefficient in k0(x),
this later vector space has a basis in k0(x). Therefore dimk0

{y ∈ k0(x) | LP (y) = 0} =
dimk0{y ∈ k0(x) | LP (y) = 0}. 2

Proposition 4.2 allows one to determine the number of factors by determining the size
of a k0-basis of {y ∈ k0(x) | LP (y) = 0}. To do this one can use one of the standard
algorithms to find rational solutions of a linear differential equation (see Bronstein, 1992
or van der Put and Singer, 2001). Since we have the polynomial P as well as LP , we can
proceed more directly. One can multiply P by a suitable polynomial in x and produce a
squarefree polynomial in k0[x, y]. If q(x) is the coefficient of yn in this polynomial, then



Linear Differential Operators for Polynomial Equations 369

the (multivalued) functions qy1, . . . , qyn have no poles in the finite plane because the qyi

satisfy a polynomial in k0[x, y] that is monic in y. Therefore, any linear combination of
these that is rational must be a polynomial. This implies that any rational solution of
LP (y) = 0 is of the form p

q for some polynomial p. The number degx(p) − degx(q) is
bounded by the possible order of a pole of any yi at infinity and these can be bounded
in terms of the slopes of the Newton polygon of P at infinity (or one can determine the
possible values of degx(q)−degx(p) from the indicial polynomial of LP at infinity). There-
fore, from the slopes of the Newton polygons of P we can find an upper bound N for the
possible degree of p. If we let y = cN xN+···+c0

q where the ci are indeterminates, substitute
this expression in LP (y) = 0, clear denominators, compare powers of x and determine
a system of linear equations whose solution space has dimension equal to the space
{y ∈ k0(x) | LP (y) = 0}. Note that we can also determine a basis of this latter space.

We now turn to the problem of finding the irreducible factors of P in k0(x)[y]. If P
is irreducible over k0(x) then these factors are conjugate under the action of the Galois
group Gal(k0/k0) of k0 over k0. Therefore, once we have found an extension k of k0

such that k(x) contains the coefficients of such a factor and have found this factor, we
have “found” all factors. In the case where P is just assumed to be squarefree, the set
of absolutely irreducible factors is the union of Gal(k0/k0) orbits, one orbit for each
irreducible factor of P in k0(x)[y]. We will present an algorithm that produces a γ ∈ k0

and an absolutely irreducible P ∈ k0(γ, x)[y] that is a factor of P . To find all absolutely
irreducible factors one can proceed in several ways. The first is to factor P over k0(x)
and apply the algorithm to each irreducible factor. One will then produce an absolutely
irreducible factor in each Gal(k0/k0) orbit. A second approach is to find an absolutely
irreducible factor P1 of P , replace P by P/P1 and apply the algorithm again. This will
yield a list of all absolutely irreducible factors. A third approach is to apply the algorithm
and produce an absolutely irreducible factor P1 ∈ k0(γ, x)[y]. One then calculates the
norm N(P1) =

∏
σ Pσ

1 where the product is over all embeddings of k0(α) into k0. The
coefficients of N(P1) can be calculated from the coefficients of the minimal polynomial of
γ (see Winkler, 1996, p. 141). Furthermore, N(P1) is the power of an irreducible factor
of P in k̄0(x)[y]. One then replaces P by P/GCD(P,N(P1)) and repeats the process.
This will give a list of absolutely irreducible factors, one from each Gal(k0/k0) orbit.

We now show that to calculate a factor of P it is enough to calculate the term of
second highest degree in this factor. Recall, from the introduction to Section 2, that
we have defined a sequence of polynomials Si of degrees at most n − 1 in y such that
δi(y) = Si(y) for any root y of P . The assumption that the roots of P are linearly
independent over k0 implies that 0 is not a root of P . Therefore we can use P = 0
to write 1 as a linear combination of y, . . . , yn and so write δi(y) = Si(y) where
each Si is a k0(x)-linear combination of y, . . . , yn. We conclude that there is matrix
M ∈ GLn(k0(x)) such that (y, δ(y), . . . , δn−1(y))T = M(y, . . . , yn)T for any root y
of P ; the ith row of this matrix is the vector of coefficients of Si. We therefore have
that (y, . . . , yn)T = A(y, δ(y), . . . , δn−1(y))T where A = M−1. This implies that for any
integer s, and roots y1, . . . , ys of P , we have


y1 + · · ·+ ys

y2
1 + · · ·+ y2

s
...

yn
1 + · · ·+ yn

s

 = A


y1 + · · ·+ ys

δ(y1 + · · ·+ ys)
...

δn−1(y1 + · · ·+ ys)

 .
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Using this equality and the Newton identities, we can write the first s elementary
symmetric functions of y1, . . . , ys as differential polynomials in y1 + · · · + ys and its
derivatives up to order n − 1. In particular, if y1, . . . , ys are the roots of an irreducible
factor ys + bs−1y

s−1 + · · · + b0 of P , then we can determine bs−2, . . . , b0 once we have
found bs−1. We shall show below how to determine this coefficient. To do this we will need
the following lemma that gives the structure of the inverse of the Vandermonde matrix.
Although it is known (Zippel, 1993, Chapter 13.1) that the inverse of the Vandermonde
matrix has a special form, we thank Hoon Hong for the explicit formulae given in this
lemma as well as a proof of their correctness.

Lemma 4.3. Let K be a field x, y, x1, . . . , xn indeterminates and let

h(y) =
n∏

i=1

(y − xi)

q(x, y) =
h(y)− h(x)

y − x
=

n∑
j=1

yj−1qj(x)

r(x) =
q(x, x)Dy(q(x, y))

Dy(h(y))
pj(x) = qj(x)r(x)

where Dy(f(y)) denotes the discriminant Resy(f(y), fy(y)). Then the matrix

M =

 1 x1 . . . xn−1
1

...
...

1 xn . . . xn−1
n


 p1(x1) p1(x2) . . . p1(xn)

...
...

pn(x1) pn(x2) . . . pn(xn)


is the identity matrix.

Proof. Note

Mij =
n∑

k=1

xk−1
i pk(xj) =

n∑
k=1

xk−1
i qk(xj)r(xj) = r(xj)

n∑
k=1

xk−1
i qk(xj)

= r(xj)q(xj , xi).

Case i 6= j:

Mij = r(xj)
h(xi)− h(xj)

xi − xj
= r(xj)

0− 0
xi − xj

= 0.

Case i = j:

Mij =
q(xj , xj)Dy(q(xj , y))

Dy(h(y))
q(xj , xj) =

q(xj , xj)2Dy(q(xj , y))
Dy(h(y))

.

Note that

q(xj , y) =
h(y)− h(xj)

y − xj
=

h(y)
y − xj

=
∏
i 6=j

(y − xi).
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Thus

q(xj , xj)2Dy(q(xj , y)) =

(∏
i 6=j

(xj − xi)
∏
µ>ν

µ6=j,ν 6=j

(xµ − xν)

)2

=

(∏
µ>ν

(xµ − xν)

)2

= Dy(h(y)).

Hence

Mij = 1.

Thus M is an identify matrix. 2

If H(y) ∈ F [y] is a squarefree polynomial with coefficients in a field F and γ1, . . . , γn

are its roots in the algebraic closure of F , then we can specialize xi 7−→ γi in the above
result. We denote by pH

i (y) the result of specializing the xi in the polynomial pi(y). Note
that the coefficients of pi are rational symmetric functions in the xi with denominators
that do not vanish under this specialization. Therefore pH

i (y) ∈ F [y] and the coefficients
of these polynomials can be easily calculated from the coefficients of H.

Algorithm 1.

Input: A squarefree polynomial P ∈ k0(x)[y] whose roots are linearly independent
over k0.
Output: An element γ ∈ k0 (given by its minimal polynomial) and an absolutely
irreducible factor P ∈ k0(γ, x)[y].
Step 1: Calculate the minimal operator LP associated with P and find a basis
w1, . . . , wt ∈ k0(x) of {w ∈ k0(x) | LP (w) = 0}. If t = 1 the polynomial is absolutely
irreducible and we can stop.
Step 2: Let β ∈ k0 be an ordinary point of LP and calculate the first n + 1 terms
of an adapted basis {s1, . . . , sn} ⊂ k0[[x− β]] at x = β (see Definition 2.5).†

Step 3: Calculate the t× n matrix B with entries in k0 such that (w1, . . . , wt)T =
B(s1, . . . , sn)T . This can be achieved by expanding the wi at x = β and solving the
resulting linear system determined by equating the coefficients of the first n powers
of x− β.
Step 4: Let H(y) = P (β, y) ∈ k0[y] and define polynomials ri ∈ k0[y] by the
equation (r1, . . . , rt)T = B(pH

1 , . . . , pH
n )T , where the pH

i are as defined following
Lemma 4.3.
Step 5: Let γ ∈ k0 be a root of H(y) (determined by some irreducible factor
of H). Calculate the greatest common divisor g(y) of the polynomials H(y), r1(y)−
r1(γ), . . . , rt(y)− rt(γ) in k0(γ)[y]. Calculate (using the Newton identities and the
coefficients of g(y)) the elements Ci =

∑
ci−1 ∈ k0(γ) where the sum is over the

roots of g.
Step 6: Find di ∈ k0(γ) such that (d1, . . . , dt)B = (C1, . . . , Cn). Let s = degy g
and let bs−1 = d1w1 + · · ·+ dtwt.
Step 7: Calculate bs−2, . . . , b0 as in the paragraph preceding Lemma 4.3. The
polynomial y3 + bs−1y

s−1 + · · ·+ b0 ∈ k0(γ, x)[y] is an absolutely irreducible factor
of P .

†This may have already been computed in Step 1 depending on the method used to compute LP .
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Before we show that this algorithm is correct, we will make some comments concerning
several of the steps. In Step 3, the matrix B is uniquely determined since the si form
a basis of the solution space of LP . Since β is an ordinary point of LP any solution is
determined by the first n terms of its Taylor series at this point. Therefore B can be
calculated as described. Note that B will have rank t since the wi are linearly independent.
Because of this, once we have shown that the linear system in Step 5 can be solved, the
solution will be unique. We now turn to showing that the algorithm is correct.

Since x = β is an ordinary point of LP it will be a nonsingular point of P . The
equation P (β, y) = 0 has n distinct solutions γ1, . . . , γn and for each γi we have a root
yi of P such that yi(β) = γi. By definition, the si satisfy (y1, . . . , yn)T = V (s1, . . . , sn)T

where V is the Vandermonde matrix of γ1, . . . , γn. We therefore have (w1, . . . , wt)T =
BV −1(y1, . . . , yn)T . Lemma 4.3 implies that BV −1 = R where R = (ri(γj)) is the
t × n matrix whose ith row is (ri(γ1), . . . , ri(γn)) where the ri are defined as in Step
4. Notice that the matrix R is uniquely determined by the equation (w1, . . . , wt)T =
R(y1, . . . , yn)T . Let G be the Galois group of the splitting field of P over k0(x). We
think of G as a group of permutations on the yi. The orbits of G correspond to the
irreducible factors of P over k0(x) and we know that there are precisely t of these. For
any σ ∈ G we have (w1, . . . , wt)T = (σ(w1), . . . , σ(wt))T = (ri(γj))(yσ(1), . . . , yσ(n))T =
(ri(γσ(j)))(y1, . . . , yn)T . The last equality is due to the fact that permuting the rows
of (y1, . . . , yn)T is the same as permuting the columns of (ri(αj)) in the product. By
uniqueness, we have that (ri(γj)) = (ri(γσ(j))). Fix some value of i and for simplicity we
will let i = 1. The set of j such that yj is in the G-orbit of y1 is therefore the set of j
such that (r1(γ1), . . . , rt(γ1)) = (r1(γj), . . . , rt(γj)). Letting γ = γ1 in Step 4, we see that
the roots c of the polynomial g(y) are precisely the set of γi such that yj =

∑n
j=1 γj−1

i sj

is in the orbit O of y1. The sum

w =
∑
i∈O

yi =
n∑

i=1

( ∑
{c|g(c)=0}

ci−1

)
si =

n∑
i=1

Cisi

is therefore in k0(x) and is the coefficient of ys−1 in the absolutely irreducible factor
corresponding to this orbit (N.B. s = degy g). We furthermore have that w is a rational
solution of LP and so there exist d1, . . . , dt such that d1w1+· · ·+dtwt = C1s1+· · ·+Cnsn.
Since (w1, . . . , wt)T = B(s1, . . . , sn)T and the si are linearly independent over k0, we have
that (d1, . . . , dt)B = (C1, . . . , Cn). Therefore Step 6 can be completed and the claim of
Step 7 is true.

Note that the γ we find may generate a field that is larger than necessary.

Example 4.4. We illustrate the above algorithm with k0 = Q and the polynomial

P = y4 − 4y3 + (6x2 + 6)y2 + (−4− 8x2 − 4x4)y + 1 + 3x4 + 3x2 + x6.

We compute that P (2, y) = (y2 − 4y + 5)(y2 + 25). In order to compute series at x = 0
later, we consider the transformed polynomial P̃ = P (x + 2, y) and find a factor for P̃ .
Step 1: The minimal operator associated to P̃ is

LP̃ = δ4 +
3

x + 2
δ3 +

3
4(x + 2)2

δ2

and a basis of rational solutions is {w1 = 1, w2 = x}. This shows that P̃ (and thus P ) is
reducible and factors into two irreducible factors over Q(x).
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Step 2: The first five terms of an adapted basis of LP̃ = 0 at x = 0 are

s1 = − 1
64

x3 +
3

512
x4 − 9

4096
x5

s2 = 1 +
11
20

x +
3
32

x2 − 1
640

x3 − 9
10240

x4 +
21

40960
x5

s3 =
1
20

x +
7

800
x2 − 1

640
x3 − 23

51200
x4 +

31
204800

x5

s4 =
1

400
x2 − 1

25600
x4 +

1
51200

x5.

Step 3: The 2× 4 matrix B such that (w1, w2)T = B(s1, s2, s3, s4)T is

B =
(

1 1 −11 1
−2 0 20 −70

)
.

Step 4: Let H(y) = P̃ (0, y) = (y2 − 4y + 5)(y2 + 25). The polynomials ri are
r1 = − 1

4000000 (10825− 4590y + 1383y2 − 332y3 + 63y4 − 6y5 + y6)(y3 − 3y2 + 15y− 25)2

and r2 = 1
2000000 (10825 − 4590y + 1383y2 − 332y3 + 63y4 − 6y5 + y6)(y3 − 4y2 + 20y −

25)(y3 − 3y2 + 15y − 25).
Step 5: Let γ be a root of y2 + 25 = 0. Then the greatest common divisor of
H(y), r1(y)− r1(γ) and r2(y)− r2(γ) is

g(y) = y2 − (2 + 4/5γ)y + 5 + 2γ.

And we have C1 = 2, C2 = 2 + 4/5γ, C3 = −4/5γ − 22 and C4 = −136/5γ + 2.
Step 6: For d1 = 2 + 4/5γ and d2 = 2/5γ we have (d1, d2)B = (C1, C2, C3, C4). Then
−b1 = −(d1w1 + d2w2) = −(d1 + d2x) is the coefficient of degree 1 of an absolutely
irreducible factor of degree 2 of P̃ .
Step 7: An absolutely irreducible factor of P̃ is therefore

y2 − (2/5γx + 2 + 4/5γ)y + 1/5γx3 + (6/5γ + 1)x2 + (13/5γ + 4)x + 2γ + 5

and so an absolutely irreducible factor of P is

y2 + (−2/5γx− 2)y + 1/5γx3 + x2 + 1/5γx + 1

where γ2 = −25.

4.2. algorithm 2

In this section we no longer assume that the roots of P are linearly independent over
k0 and we show how one can modify the algorithm of Duval (1991) (see also Ragot,
1997) using differential equations. This idea already appears in Rybowicz (1990) but we
shall recapitulate this approach and give the precise needed bounds and a more detailed
discussion.

Duval’s algorithm is based on the fact that the number of absolutely irreducible factors
of P over k0(x) is the k0-dimension of the subring B of A = k0(x)[y]/(P ) consisting of
elements of A that are algebraic over k0. In particular, this dimension is 1 if and only if
the polynomial is absolutely irreducible. The subring B is, in geometric terms, the vector
space of functions on the curve having no poles on the curve. One can calculate a basis
for B using techniques similar to those used to calculate the integral closure of k0[x] in
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A. As Duval notes, given an element c ∈ B \k0, if we write c = a0 +a1y + · · ·+an−1y
n−1

then the GCD of P (y) and c − (a0 + a1y + · · · + an−1y
n−1) gives a non-trivial factor

P1 of P having coefficients in an algebraic extension k1 of k0. One then can proceed by
induction to find an absolutely irreducible factor of P .

Our modification is based on the observation that the ring B is precisely the ring
of constants of the extension of d

dx from k0(x) to A. To see this note that since P is
squarefree, there exist R, S ∈ k0(x)[y] such that RP + SPy = −Px as in Section 2 and
that the equation δ(y) = S defines a derivation on k0(x)[y] that induces a derivation
on A. Any element of a ∈ A is the root of a monic polynomial pa(y) of minimal degree
with coefficients in k0(x). If a is a constant, then one sees that dpa

dx (a) = 0. This would
imply that a satisfies a monic polynomial of smaller degree unless dpa

dx ≡ 0. Therefore a
is algebraic over k0. A similar calculation shows that if a is algebraic over k0 then a is a
constant.

We now show how differential equations can be used to find a k0-basis for the ring B
(the remaining steps in Duval’s algorithm remain unchanged). We wish to find a k0-basis
for V = {(a0, . . . , an−1) ∈ k0(x)n | δ(a0 + a1y + · · · + an−1y

n−1) = 0}. Expanding the
expression δ(a0 + a1y + · · ·+ an−1y

n−1), replacing δ(y) with S(y) and reducing modP ,
we get an expression b0 + b1y + · · · + bn−1y

n−1 where the bi are of the form δ(ai)+ a
k0(x)-linear combination of the aj . Therefore, there exists an n× n matrix M such that
(a0, . . . , an−1) ∈ V if and only if δ((a0, . . . , an−1)T ) = M(a0, . . . , an−1)T . We therefore
need to calculate a basis of the solutions in k0(x)n of δ(Y ) = MY . Although there
are standard algorithms to find such a basis (see Barkatou, 1999), one can again take
advantage of the special origin of this system. The elements of V are trivially integral
over k0[x]. Therefore, we can assume that the ai are of the form ci/d where d is the largest
squared factor of the discriminant. The degrees of the ci can furthermore be bounded
from a calculation at infinity and once this is done the problem is reduced to solving a
system of linear equations for the coefficients of the numerator polynomials.

To bound the degrees of the ci, replace x by 1/z in P and study the local behaviour
at 0. We first (using the Newton polygon) determine a minimum power of z such that
zsy is integral above z = 0. Now compute the minimal polynomial of w = zsy and its
discriminant. If we let m be the power of z dividing this discriminant, then any locally
integral element can be expressed using powers of w with zk as a common denominator
where k is the largest integer less than m/2. Sending 0 back to infinity we have now
bounded the degrees of our polynomial coefficients.

One can give a more efficient version of the previous construction which avoids
computing the polynomial for w and its discriminant. If we let n be the degree of P in
y, then the power of z dividing the discriminant can be computed in the following way.

We have found s such that w = y/xs is integral at all places over infinity. We also have
P (y, x) the minimal polynomial for y, which we assume to be monic in y; then the minimal
polynomial for w is simply P (wxs, x). If we let x = 1/z and normalize to be monic,
we get that the monic minimal polynomial for w is Q(w, z) = znsP (w/zs, 1/z) where
n = degy P (y, x). By assumption, w is integral at 0, so its monic minimal polynomial does
not contain negative powers of z, i.e. Q(w, z) is a polynomial in w and in z. We need to
compute the discriminant of Q. Here we need two discriminant identities which can easily
be derived from the basic definition of discriminants, i.e. disc(cP (y)) = c2n−2disc(P (y))
and disc(P (cy)) = cn(n−1)disc(P (y)). If we let discP (x) be the discriminant of P with
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respect to y, we have that disQ(z) = zn(n−1)sdiscP (1/z). So if we let m be the exact
power of z dividing discQ(z) we have that m = n(n− 1)s− degx discP (x).

To finish the degree bounding job, we are assuming that coefficients of our constant
function are of the form ci/d, our degree constraint at infinity is that ord∞(xisci/d) ≥
−m/2. Since the order at infinity of a rational function is the degree of the denominator
minus the degree of the numerator, this implies that deg ci ≤ m/2 + deg d− is. We shall
illustrate these bounds in the following example.

Example 4.5. If we let k0 = Q and P1 = y2 − 2x2 then the element y/x is the
constant

√
2. If we make the substitution y → y + x2 we produce a new polynomial

P = y2 + 2x2y + x4 − 2x2 and
√

2 = (x2 + y)/x. We shall calculate the bounds as above
with respect to P . The discriminant of P is 8x2 so the basic denominator is d = x, that
is, we may write any constant as c0/x + (c1/x)y where the ci are polynomials in x. If
we follow through the degree analysis above, we see that s = 2 so y/x2 is integral at
infinity. Substituting we find that m = 2 and so degx c0 ≤ 2 and degx c1 ≤ 0, precisely
the minimal degrees that will work. 2

Example 4.6. We illustrate Algorithm 2 with the same example as used in Algorithm 1:

P = y4 − 4y3 + (6x2 + 6)y2 + (−4− 8x2 − 4x4)y + 1 + 3x4 + 3x2 + x6.

The associated matrix M is

M =


0 0 0 3(x2+1)2

2x

0 1−3x2

2x(x2+1) 0 −6(x2+1)
x

0 −1
2x(x2+1)

1−3x2

x(x2+1)
9
x

0 0 −1
x(x2+1) − 9

2x


and we find that a basis of rational solutions of the system δ(Y ) = MY is spanned by
w1 = (1, 0, 0, 0) and

w2 =
(
− 3

x
,

8
x(x2 + 1)

,
x2 − 7

x(x2 + 1)2
,

2
x(x2 + 1)2

)
.

Let γ be a root of x2 + 25 = 0. By evaluating at x = 2 (a nonsingular point),
one finds that the number a = w2(1) + w2(2)y + w2(3)y2 + w2(4)y3, where y is
a root of P , is equal to −1/5γ. Computing the greatest common divisor of P and
−1/5γ − (w2(1) + w2(2)y + w2(3)y2 + w2(4)y3), one gets a nontrivial factor of P :

y2 + (−2/5γx− 2)y + 1/5γx3 + x2 + 1/5γx + 1. 2

In the previous example, we avoided the calculation of Puiseux series by evaluating at
a point. Another way to avoid the calculation of the Puiseux expansion is the following.
Once we have found a constant element in our function field, c = g(x, y), we can determine
the minimal polynomial of c by computing an irreducible factor of the resultant, with
respect to y, of c− g(x, y) and P (x, y) (if P is irreducible, then the primitive part of this
resultant will be a power of the minimal polynomial of c). Working over the field k0(c),
one then takes the GCD of c− g(x, y) and P to get a nontrivial factor of P .
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5. Galois Groups

In this section we will show how differential equations can be used to help calculate
the Galois groups of a polynomial P ∈ k0(x)[y] over k0(x) and k0(x).

5.1. Galois groups over k0(x)

It is well known that the computation of the Galois group of a polynomial can be
reduced to the factorization of polynomials (see Matzat et al., 2000; van der Waerden,
1953†). A weaker but similar result holds for differential equations (Singer and Ulmer,
1993). In the following we want to consider differential operators

L =
n∑

i=0

aiδ
i

(corresponding to differential equations Ly =
∑n

i=0 aiy
(i)) as a polynomial in δ over

k0(x). The set D of differential operators over the field k0(x) forms a non-commutative
ring where addition is the usual addition of polynomials and multiplication is the
composition of operators defined by the rule ∀a ∈ k0(x), δa = aδ + a′. A differential
operator L is reducible over k0(x) if and only if L = L1L2 in D where the Li have
positive order (i.e. positive degree in δ). We say that an equation L(y) = 0 is reducible if
the associated operator L is reducible. We refer to Singer (1996) for the properties of D.
In particular, the non-commutative ring D is a left and right Euclidean ring. The ring D
is not a unique factorization domain, but if L = L1L2 · · ·Ls and L = L̃1L̃2 · · · L̃t are two
decompositions of an operator L ∈ D into irreducible factors, then s = t and there is a
permutation σ ∈ St such that D/DLi

∼= D/DL̃σ(i). In particular, the representations of
the differential Galois group G on the solution space of Li(y) = 0 and L̃σ(i)(y) = 0 are
isomorphic G-modules. In classical Galois theory a polynomial is reducible if and only if
its Galois group is intransitive. The differential analogue is the following theorem.

Theorem 5.1. (Singer, 1996) Let L be a linear differential operator over k0(x) and
let V be its solution space in a Picard–Vessiot extension. The operator L factors over
k0(x) if and only if its differential Galois group G leaves a proper, nonzero subspace
{0} ⊂ W ⊂ V invariant, i.e. G ⊂ GLn(k0) is a reducible linear group.

The factorization of differential operators is, in general, a difficult task but if the group
is reductive, there are special techniques that make the task simpler. We recall that a
group is reductive if, for any representation of G as a group of linear transformations on a
vector space V and any G-invariant subspace W ⊂ V there exists a G-invariant subspace
W0 ⊂ V such that V = W ⊕ W0. The groups considered here are all finite and so are
reductive (Maschke’s Theorem; Lang, 1993, Theorem 1.2, Chapter XVIII, Section 1).
When the group is reductive a factorization can be found using the Eigenring (Singer,
1996; van Hoeij, 1997). This object is defined as

E(L) = {R ∈ D|ord(R) < ord(L) and LR is divisible on the right by L}.

An element R ∈ E(L) of order greater or equal to 1 gives a nontrivial factor of L. Indeed
for z in the solution space V of L we have that L(R)(z)) = 0 which shows that z 7−→ R(z)

†An implementation of Deconinck and van Hoeij, which is part of the algcurves package in Maple 7,
computes the monodromy of P by analytic continuation methods (see Matzat et al., 2000).



Linear Differential Operators for Polynomial Equations 377

is a k0-linear map of V to itself. If c ∈ k0 is an eigenvalue of this linear map, then R− c
and L will have a nontrivial common factor which can be found by computing a right gcd.
The coefficients of R ∈ E(L) are rational solutions of a linear differential operator, they
can be found using linear algebra. Furthermore, for reductive groups the character of the
representation of G on the solution space of L(y) = 0 will be the sum of the characters
on the solution space of the irreducible factors of L.

We now turn to operators that arise as the minimal operator of a polynomial. Given
a permutation group G on n letters, there is a natural linear representation of order
n, the permutation representation, associated with G. This is obtained by letting G
act on a vector space of dimension n by permuting the basis elements. Let LP be the
minimal operator of the polynomial P ∈ k0(x)[y] and let G be its Galois group over k0(x)
(note that the usual Galois group and the differential Galois group coincide). If LP is of
maximal order then the representation of G on the solution space of LP is the permutation
representation. If LP has smaller order then the solution space will be a quotient of the
permutation representation (and so can be identified with a subrepresentation). The
factorization of LP gives information about G (we do not assume here that the minimal
operator LP is of maximal order).

Proposition 5.2. Let P ∈ k0(x)[y] be of degree n.

1. The group G is Abelian if and only if LP is a product of operators of order one.
2. The group G ⊂ Sn is doubly transitive if and only if LP has an irreducible factor

of order n− 1.
3. The group G is trivial if and only if all solutions of LP are in k0(x) (which can be

computed using linear algebra (Abramov, 1989; Bronstein, 1992; van der Put and
Singer, 2001))

Proof. The first result follows from the fact that a finite group is Abelian if and only
if all its irreducible representations are of degree 1. Let χP denote the character of the
permutation representation of G associated with the action of G on the roots of P and
let χLP

denote the character of the representation of G acting on the solution space of
LP . If the action of G on the roots of P is doubly transitive, then χP = 1 + φ, where
φ is an irreducible character of G (Huppert, 1967, V Satz 20.2). We have that χLP

can be identified with a summand of χP . Therefore if χLP
does not have a summand

corresponding to an irreducible representation of degree n − 1, then χLP
= 1. This

implies that G is trivial and so cannot be doubly transitive. Therefore, the solution
space of L(y) = 0 has summand that is an irreducible G-module of dimension n − 1
and so Assertion 2 follows. The last assertion follows from the Galois correspondence in
differential Galois theory. 2

As noted, the last statement of this proposition can be checked using linear algebra.
To test if the Galois group is doubly transitive, one can proceed as follows. Let
P (y) = yn + an−1y

n−1 + . . .. We make a Tschirnhaus transformation T (y) = y − 1
nan−1

of the polynomial P and get a new polynomial P having a sum of roots that is zero (note
that if we decide to do this we cannot use the algorithm of Section 2 to calculate LP ). The
minimal operator of this new polynomial P will then be irreducible of order n− 1 if and
only if the Galois group is doubly transitive. Note that this operator is irreducible if and
only if the Eigenring has dimension 1 and this can be checked by searching for rational
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solutions of an appropriate system. The fact that G is Abelian can also be checked using
the Eigenring. This follows from the next two lemmas. We begin with a simple group
theoretic fact (see Huppert, 1967, I. Satz 5.3).

Lemma 5.3. Let G ⊂ Sn be a transitive permutation group and let V be the n-dimen-
sional vector space on which G acts via the permutation representation. The group G is
Abelian if and only if V = V1⊕· · ·⊕Vn where the Vi are non-isomorphic one-dimensional
G-modules.

Proof. If V has the decomposition of the lemma, then G ⊂ GL(V ) is diagonalizable and
so is Abelian. Conversely, if G is Abelian, then we can write V = V1⊕· · ·⊕Vn where the
Vi are one-dimensional G-modules. We must show that they are pairwise non-isomorphic.

Let {e1, . . . , en} be the set on which G acts transitively and consider these as basis
elements of V . Since G acts transitively on this set, the span of the orbit of e1 has
dimension n. Now assume that two of the Vi are isomorphic as G-modules. We can then
write e1 =

∑t
i=1 wi where t < n and for any i there is a character χi of G such that

g(wi) = χi(g)wi for all g ∈ G. This implies that the orbit of e1 lies in the span of
{wi, . . . , wt}. Since this span has dimension less than n, we have a contradiction. 2

Proposition 5.4. Suppose that P ∈ k0(x)[y] is irreducible of degree n and let the order
of LP be m ≤ n. The Galois group G of P over k0(x) is Abelian if and only if

1. dim(E(LP )) = m, and
2. there exists a basis R1, . . . , Rm of E(LP ), each of order m− 1 such that LP = SiRi

for i ∈ {1, . . . ,m} for some Si ∈ D.

Proof. Let V be the solution space of LP . Note that we can identify V with a direct
summand of the vector space on which G acts via the permutation representation. We
then have that G is Abelian if and only if V = V1 ⊕ V2 ⊕ · · · ⊕ Vm as a G-module, where
dim(Vi) = 1 for all i ∈ {1, . . . ,m}. We shall use the fact that E(LP ) is naturally isomor-
phic to EndG(V ) = HomG(V, V ) where we consider V as a G-module (Singer, 1996).

Assume that G is Abelian. From the previous lemma, we have that the permutation
representation is a direct sum of pairwise non-isomorphic one-dimensional G-modules.
Therefore we may write V = V1 ⊕ V2 ⊕ · · · ⊕ Vm, with the Vi pairwise non-isomorphic.
Thus EndG(V ) = ⊕m

i=1EndG(Vi). Since each EndG(Vi) is one-dimensional, we have that
the maps πi : V → Vi form a basis of EndG(V ). Let Ri ∈ E(LP ) correspond to πi. Since
Ri has an m − 1 dimensional kernel, the order or Ri is m − 1. Since ker Ri ⊂ ker(LP ),
the operator Ri must divide LP on the right, i.e. LP = SiRi.

We now prove the converse. Let W be the sum of the one-dimensional subspaces
im(Ri) ⊂ V . If W 6= V , then V = W ⊕ W̃ . Consider the projection π : V → W̃ and
R ∈ E(LP ) be corresponding operator. Since the Ri form a basis of E(LP ) we have
R =

∑m
i=1 ciRi, showing that im(R) = W̃ ⊂ W . Thus W is a direct sum of the one-

dimensional subspaces im(Ri), showing that G is diagonalizable and thus Abelian. 2

Although the above result can be made effective, it is not apparent that this approach
leads to a polynomial time algorithm to decide if the Galois group is Abelian. Such an
algorithm is known using other techniques (Lenstra, 1992, Corollary 3.3).
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To compute the differential Galois group in our situation, we proceed using the idea
of Singer and Ulmer (1993) and we use the fact that a finite group G is determined by
its action on “constructions”: symmetric and alternating products of the solution space,
which are also G-modules.

1. One can construct a differential equation Lss = 0 (resp. L∧s = 0) whose solution
space corresponds to the symmetric product Syms(V ) (resp. the alternating product
∧s(V )).

2. The corresponding characters of G are denoted χss
L and χ∧s

L and can be computed
directly from χL.

3. Factorization of Lss (resp. L∧s) gives us the degrees of the irreducible characters
of χL that appear in the decompositions of χss

L and χ∧s
L . Computing exponential

solutions allows us to find the order of the one-dimensional characters that appear
in these decompositions.

4. Comparing the result with the tables below allows us to determine the group.

Tables 1–4 give the decomposition into irreducible characters of χP − 1, where χP is
the permutation character, for all the transitive permutation groups of degree 3 to 11
given in Conway et al. (1998). Similar tables can be constructed for every degree.

Some notation: a linear character of order i is denoted by 1i and a character of degree
n simply by n. In order to distinguish non-equivalent irreducible characters of the same
degree n, we use the notation na, nb, . . . and if the decompositions of the ith symmetric
(resp. alternating) product of na and nb are the same we simply write nsi (resp. n∧i).
For example, the second exterior power of the irreducible character 6 (of degree 6)
appearing in the decomposition of the permutation character of F42(7) is the sum of
a linear character of order 2, two non-equivalent linear characters of order 6 and two
copies of (the character) 6.

We see that we can distinguish each of the transitive groups from the decomposition
of their permutation character χP and from decompositions of symmetric or alternating
powers of irreducible characters appearing in χP − 1. This approach will work for any
degree: using a theorem due to Chevalley, for any finite subgroup H of GLn(C), C
an algebraically closed field, there is a faithful representation Φ : GLn(C) → GLm(C)
for some m such that Φ(H) is uniquely determined by its set of invariant subspaces
in Cm and any representation can be constructed from a given faithful representation
using the tools of linear algebra, i.e. tensor product, duals, direct sums and subspaces
(see Singer and Ulmer, 1993). Given a polynomial P irreducible over k0(x), we first
compute the differential equation LP = 0 associated to it and determine the degrees
of the irreducible factors of LP . If the order of LP is too small, we may not directly
determine the Galois group of P using above tables, but after a transformation of the
type described in Section 2, the order will become maximal.

Example 5.5. Consider the polynomial P = y4(y4 − 8y2 + 18) + 81x2 (from Malle and
Matzat, 1999, p. 405, f8,32) which is irreducible over Q(x). Although the corresponding
differential equation could have order 8, a calculation shows that it is

LP (y) = y(4) +
2(12x4 − 15x2 − 1)
x(x2 − 1)(3x2 + 1)

y(3) +
2997x6 − 4600x4 − 995x2 + 6

24x2(x2 − 1)(3x2 + 1)2
y′′

+
810x6 − 1863x4 − 97x2 − 6

24x3(x2 − 1)(3x2 + 1)2
y′ − 27(5x2 − 21)

256(x2 − 1)(3x2 + 1)2
y = 0.



380 O. Cormier et al.

T
a
b
le

1
.
D

eg
re

e
3

to
6
.

D
eg

re
e

3
G

C
(3

)
=

A
(3

)
S
(3

)
χ

P
−

1
1
3
a
,1

3
b

2

D
eg

re
e

4

G
C

(4
)

E
(4

)
D

(4
)

A
(4

)
S
(4

)
χ

P
−

1
1
2
,1

4
a
,1

4
b

1
2
a
,1

2
b
,1

2
c

1
2
,2

3
3

3
∧

3
1

1
2

D
eg

re
e

5

G
C

(5
)

D
(5

)
F

(5
)

A
(5

)
S
(5

)
χ

P
−

1
1
5
a
,1

5
b
,1

5
c
,1

5
d

2
a
,2

b
4

4
4

4
∧

4
1
2

1
1
2

4
∧

2
1
4
a
,1

4
b
,4

6

D
eg

re
e

6

G
C

(6
)

D
6
(6

)
D

(6
)

F
1
8
(6

)
S

4
(6

d
)

S
4
(6

c)
2
S

4
(6

)
A

4
(6

)
2
A

4
(6

)
χ

P
−

1
1
2
,1

3
a
,1

3
b
,1

6
a
,1

6
b

1
2
,2

,2
1
2
,2

a
,2

b
1
2
,2

a
,2

b
2
,
3

2
,
3

2
,
3

1
3
a
,1

3
b
,3

1
3
a
,1

3
b
,3

2
s

2
1
,2

1
3
,2

3
∧

3
1
2

1
1
2

1
1
2

3
s

2
1
,2

,3
1
,2

,3
1
,2

,3
1
,1

3
a
,1

3
b
,3

1
,1

3
a
,1

3
b
,3

3
s

3
1
,3

a
,3

a
,3

b
1
2
,3

a
,3

a
,3

b

G
F

1
8
(6

)
:
2

F
3
6
(6

)
F

3
6
(6

)
:
2

A
5
(6

)
S

5
(6

)
A

(6
)

S
(6

)
χ

P
−

1
1
2
,4

1
2
,4

1
2
,4

5
5

5
5

4
∧

4
1

1
2

1
2

4
∧

2
1
4
a
,1

4
b
,4

2
,
4

5
∧

5
1

1
2

1
1
2

5
∧

2
3

a
,3

b
,4

4
,
6

1
0

1
0



Linear Differential Operators for Polynomial Equations 381

T
a
b
le

2
.
D

eg
re

e
7

a
n
d

8
.

D
eg

re
e

7
G

C
(7

)
D

(7
)

F
2
1
(7

)
F

4
2
(7

)
L

(7
)

=
L

(3
,2

)
A

(7
)

S
(7

)
X

P
−

1
1
7
a
,.

..
,1

7
f

2
a
,2

b
,2

c
3

a
,3

b
6

6
6

6
6
∧

6
1
2

1
1

1
2

6
∧

2
1
2
,1

6
a
,1

6
b
,6

,6
7
,
8

1
5

1
5

D
eg

re
e

8
G

C
(8

)
4
[x

]2
E

(8
)

D
8
(8

)
Q

8
(8

)
X

P
−

1
1
2
,1

4
a
,1

4
b
,1

8
a
,1

8
b
,1

8
c
,1

8
d

1
2
a
,1

2
b
,1

2
c
,1

4
a
,1

4
b
,1

4
c
,1

4
d

1
2
a
,.

..
,1

2
a

1
2
a
,1

2
b
,1

2
c
,2

,2
1
2
a
,1

2
b
,1

2
c
,2

,2
2
∧

2
1
2

1

G
E

(8
)

:
2

Q
8

:
2

1
/
2
[2

3
]4

[2
2
]4

X
P
−

1
1
2
a
,1

2
b
,1

2
c
,2

a
,2

b
1
2
a
,1

2
b
,1

2
c
,2

a
,2

b
1
2
,1

4
a
,1

4
b
,2

a
,2

b
1
2
,1

4
a
,1

4
b
,2

a
,2

b

2
∧

2
1
2

1
2

1
4

1
2

2
s

2
1
,1

2
a
,1

2
b

1
2
a
,1

2
b
,1

2
c

1
4
a
,1

4
b
,1

4
c

1
,1

2
a
,1

2
b

G
D

(8
)

2
D

8
(8

)
[4

2
]2

E
(8

)
:
E

4

X
P
−

1
1
2
,2

a
,2

b
,2

c
1
2
,2

a
,2

b
,2

c
1
2
,2

a
,2

b
,2

c
1
2
,2

a
,2

b
,2

c

2
s

2
a

,2
s

2
b

1
,2

1
2
,2

1
4
,2

1
,1

2
a
,1

2
b

2
s

2
c

1
,1

2
a
,1

2
b

1
,1

2
a
,1

2
b

1
,1

2
a
,1

2
b

1
,1

2
a
,1

2
b

G
E

(8
)

:
3

S
(4

)[
1
/
2
]2

E
(8

)
:
D

6
2
A

4
(8

)
=

S
L

(2
,3

)
X

P
−

1
1
2
,3

a
,3

b
1
2
,3

a
,3

b
1
2
,3

a
,3

b
2

a
,2

b
,3

3
s

2
1
,1

3
a
,1

3
b
,3

1
,2

,3
1
,2

,3
3
∧

3
a

1
1
2

3
∧

3
b

1
2

1
2

G
[1

/
4
·c

D
(4

)2
]2

E
(8

)
:
4

1
/
2
[2

4
]e

D
(4

)
1
/
2
[2

4
]d

D
(4

)
E

(8
)

:
D

8
1
/
2
[2

4
]c

D
(4

)
[2

4
]D

(4
)

X
P
−

1
1
2
,2

,4
1
2
,2

,4
1
2
,2

,4
1
2
,2

,4
1
2
,2

,4
1
2
,2

,4
1
2
,2

,4
4
∧

4
1

1
2

1
1
2

1
2

1
2

1
2

4
∧

2
1
2
a
,1

2
b
,1

2
c
,1

2
d
,2

1
4
a
,1

4
b
,2

a
,2

b
1
2
a
,1

2
b
,2

a
,2

b
2
,4

2
1
,2

b
,2

c
1
4
a
,1

4
b
,4

2
,4

4
s

2
1
,1

2
,1

4
a
,1

4
b
,2

,4
1
,1

2
,2

a
,2

b
,4



382 O. Cormier et al.

T
a
b
le

2
.
C

o
n
ti

n
u
ed

.

G
1
/
2
[2

4
]4

[2
3
]4

1
/
2
[2

4
]E

(4
)

E
(8

)
:
D

4
[2

4
]4

[2
4
]E

(4
)

X
P
−

1
1
2
,1

4
a
,1

4
b
,4

1
2
,1

4
a
,1

4
b
,4

1
2
a
,1

2
b
,1

2
c
,4

1
2
a
,1

2
b
,1

2
c
,4

1
2
,1

4
a
,1

4
b
,4

1
2
a
,1

2
b
,1

2
c
,4

4
∧

4
1

1
2

1
2

1
1
2

1
2

4
∧

2
1
2
a
,1

2
b
,2

a
,2

b
1
4
a
,1

4
b
,2

a
,2

b
1
4
a
,1

4
b
,2

,2
1
2
a
,.

..
,1

2
f

2
,4

2
a
,2

b
,2

c

G
G

L
(2

,3
)

[2
3
]A

(4
)

[2
4
]A

(4
)

[2
3
]S

(4
)

1
/
2
[2

4
]S

(4
)

[2
4
]S

(4
)

X
P
−

1
3
,4

3
,4

3
,4

3
,4

3
,4

3
,4

4
∧

4
1

1
1
2

1
2

1
1
2

3
∧

3
1
2

1
1

1
2

1
2

1
2

4
∧

2
1
2
,2

,3
3

a
,3

b
6

6
3

a
,3

b
6

4
s

2
1
,3

,6
1
,3

a
,3

b
,3

c
1
,3

,6

G
E

(8
)
:
A

4
E

(4
)2

:
D

6
E

(8
)
:
S

4
[A

(4
)2

]2
[1

/
2
·S

(4
)2

]2
1
/
2
[S

(4
)2

]2
[S

(4
)2

]2
X

P
−

1
1
2
,6

1
2
,6

1
2
,6

1
2
,6

1
2
,6

1
2
,6

1
2
,6

6
∧

2
3
,6

a
,6

b
3

a
,3

b
,3

c
,6

3
,6

a
,6

b
6
,9

6
,9

6
,9

6
,9

3
s

2
1
,1

3
a
,1

3
b
,3

1
,2

,3

6
s

2
1
,1

2
,2

a
,2

b
,6

,9
1
,1

2
,4

,6
,9

1
,1

2
,4

,6
,9

1
,1

2
,4

,6
,9

4
∧

2
1
2
a
,1

2
b
,2

a
,2

b
1
4
a
,1

4
b
,4

2
,4

G
E

(8
)

:
7

=
F

5
6
(8

)
E

(8
)

:
F

2
1

P
S

L
(2

,7
)

P
G

L
(2

,7
)

E
(8

)
:
L

7
=

A
L

(8
)

A
(8

)
S
(8

)
X

P
−

1
7

7
7

7
7

7
7

7
∧

7
1

1
1

1
1

1
1
2

7
∧

2
7
,7

,7
7

a
,7

b
,7

c
3

a
,3

b
,7

,8
6
,7

,8
2
1

2
1

7
s

2
1
,6

,7
,1

4
1
,7

,2
0



Linear Differential Operators for Polynomial Equations 383

Table 3. Degree 9.

G C(9) E(9) S(3)[x]3 D(9) S(3)[1/2]S(3)
XP − 1 13a, 13b, 19a, . . . , 19f 13a, . . . , 13h 13a, 13b, 2a, 2b, 2c 2a, 2b, 2c, 2d 2a, 2b, 2c, 2d

2s3
a 1, 12, 2 1, 12, 2

2s3
b 2a, 2b 1, 12, 2

G 1/3[33]3 E(9) : 3 [33]3 S(3)[x]S(3) E(9) : 4 E(9) : D8

XP − 1 13a, 13b, 3a, 3b 13a, 13b, 3a, 3b 13a, 13b, 3a, 3b 2a, 2b, 4 4a, 4b 4a, 4b

3∧3 13 1 13

3s2 3, 3 3a, 3b

4∧2 12a, 12b, 4 2, 4

G [32]S(3) [33]S(3) E(9) : D6 [33 : 2]3 [1/2 · S(3)3]3 [S(3)3]3
XP − 1 2, 3a, 3b 2, 3a, 3b 13a, 13b, 6 13a, 13b, 6 13a, 13b, 6 13a, 13b, 6

3∧3 12 16

6∧6 12 12 1 12

6∧2 12, 16a, 16b, 2a, 2b, 2c, 6 12, 16a, 16b, 6a, 6b 3, 12

G [32]S(3)6 E(9) : 6 E(9) : D12 1/2 · [33 : 2]S(3)
XP − 1 2, 6 2, 6 2, 6 2, 6

6∧2 12, 16a, 16b, 2a, 2b, 2c, 6 12, 16a, 16b, 2a, 2b, 2c, 6 12, 2a, 2b, 4, 6 12, 2, 3a, 3b, 6
6∧3 2, 63 1, 12, 63

G [33 : 2]S(3) [1/2 · S(3)3]S(3) 1/2[S(3)3]S(3) [S(3)3]S(3)
XP − 1 2, 6 2, 6 2, 6 2, 6

6∧2 12, 2, 6, 6 3, 12 3, 12 3, 12
6∧6 1 12 12

3∧3 1 12

G M(9) E(9) : 8 E(9) : 2D8 E(9) : 2A4 E(9) : 2S4 L(9)
XP − 1 8 8 8 8 8 8

8∧8 1 12 12 1 12 1
8∧2 2, 2, 8, 8, 8 18a, 18b, 18c, 18d, 83 2a, 2b, 8a, 82

b 2a, 2b, 8a, 8b, 8c 4, 8, 16 7a, 7b, 7c, 7d

G L(9) : 3 A(9) S(9)
XP − 1 8 8 8

8∧8 1 1 12

8∧2 7, 21 28 28

Using the eigenring, we can show that it is irreducible. Therefore the permutation
representation has an irreducible summand of dimension 4. According to Table 2, the
Galois group G of P over Q(x) belongs to a family of 19 groups (from [1/4 · cD(4)2]2
to [24]S(4)). The fourth exterior power of LP is y′ + 2(12x4−15x2−1)

x(x2−1)(3x2+1) y = 0 and has the

rational solution (x2−1)
x2(1+3x2)4 . So there remain seven possible groups. The second exterior

power of LP is of order 6 and factors as a product of two irreducible differential equations
of order 3, where one is

L3(y) = y(3) +
2(60x4 − 15x2 − 1)
x(5x2 − 1)(1 + 3x2)

y′′ +
7425x6 − 1951x4 − 613x2 + 3

12x2(1 + 3x2)2(5x2 − 1)
y′

+
2025x6 − 1269x4 − 17x2 − 3

12x3(5x2 − 1)(1 + 3x2)2
y = 0.

Therefore, the Galois group G of P over Q(x) is either [23]A(4) or 1/2[24]S(4). The
third exterior power of L3 has (5x2−1)

x2(1+3x2)4 as a rational solution, so G is [23]A(4). 2
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Table 4. Degree 10 and 11.

G C(10) D(10) D10(10) [52]2
XP − 1 12, 15a, 15b, 15c, 15d, 110a, 110b, 110c, 110d 12, 22

a, 22
b 12, 2a, 2b, 2c, 2d 12, 2a, 2b, 2c, 2d

2s2 1, 2 15, 2

G 1/2[F (5)]2 [24]5 [25]5 [24]D(5) 1/2[25]D(5) [25]D(5)
XP − 1 12, 42 15a, 15b, 15c, 15d, 5 15a, 15b, 15c, 15d, 5 2a, 2b, 5 2a, 2b, 5 2a, 2b, 5

5∧5 1 12 1 12 12

5∧3 5a, 5b 5a, 5b

5∧5
a , 5∧5

b 1 12

G F (5)[x]2 [1/2 ·D(5)2]2 1/2[D(5)2]2 A(5)[x]2 1/2[S(5)]2 [D(5)2]2 S(5)[x]2
XP − 1 12, 4a, 4b 12, 4a, 4b 12, 4a, 4b 12, 4a, 4b 12, 4a, 4b 12, 4a, 4b 12, 4a, 4b

4∧4 12 1 12 1 12 12 12

4∧2 14a, 14b, 4 12a, 12b, 2a, 2b 14a, 14b, 4 3a, 3b 6 2, 4 6

4s2 1, 12, 42 1, 12, 4a, 4b

6∧2 4a, 5, 6 4c, 5, 6

G A5(10) S5(10d) [24]F (5) 1/2[25]F (5) [25]F (5)
XP − 1 4, 5 4, 5 4, 5 4, 5 4, 5

4∧4 1 12 12 12 12

5∧5 1 1 12 1 12

4∧2 3a, 3b 6 14a, 14b, 4 14a, 14b, 4 14a, 14b, 4
5∧2 3a, 3b, 4 4, 6

5s5 1, 515, 105 12, 515, 105

G [24]A(5) [25]A(5) [24]S(5) 1/2[25]S(5) [25]S(5)
XP − 1 4, 5 4, 5 4, 5 4, 5 4, 5

4∧4 1 1 12 12 12

5∧5 1 12 12 1 12

4∧2 3a, 3b 6 6 6
5∧2 10 10

5s2 1, 54, 104, 153, 20 12, 54, 104, 153, 20

G [52 : 4]2 [52 : 4]22 [52 : 42]2 [52 : 42]22

XP − 1 12, 8 12, 8 12, 8 12, 8
8∧8 1 12 1 1
8∧2 14a, 14b, 14c, 14d, 4a, 4b, 8a, 8b 18a, 18b, 18c, 18d, 8a, 8b, 8c 22, 4a, 4b, 4c, 4d, 8 22, 8a, 8b, 8c

G [1/2 · F (5)2]2 1/2[F (5)2]2 [F (5)2]2 [A(5)2]2 [1/2 · S(5)2]2 1/2[S(5)2]2 [S(5)2]2
XP − 1 12, 8 12, 8 12, 8 12, 8 12, 8 12, 8 12, 8

8∧8 1 12 12 1 1 12 12

8∧2 2a, 2b, 8a, 8b, 8c 2a, 2b, 8, 16 2a, 2b, 8, 16 6a, 6b, 16 12, 16 12, 16 12, 16

2s2 14a, 14b, 14c 14, 2
8∧4 12

4, 162, 36 2, 32, 36

G L(10) L(10) : 2 M(10) S6(10) L(10) · 22 A(10) S(10)
XP − 1 9 9 9 9 9 9 9

9∧9 1 12 1 12 12 1 12

9∧2 102, 8a, 8b 8a, 8b, 10a, 10b 10a, 10b, 16 10a, 10b, 16 16, 20 36 36

Degree 11
G C(11) D(11) F55(11) F110(11) L(11) M(11) A(11) S(11)

XP − 1 111a, . . . , 111j 2a, . . . , 2e 5a, 5b 10 10 10 10 10
10∧10 12 1 1 1 12

10∧2 12, 14
10, 104 10, 11, 122 45 45 45

10∧3 102, 45, 55 120
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If in the degree 6 case, one obtains a decomposition of the permutation character of
D6(6) or D(6) (assuming LP is of order 4, i.e. contains no linear characters), this means
that in the latter case LP is the product of two irreducible isomorphic equations of order
2 and in the former case LP is the product of two irreducible non-isomorphic equations
of order 2. We can distinguish the two cases using the eigenring: consider Lc the least
common left multiple (LCLM) of the two irreducible equations L1 and L2 of order 2. A
simple consideration (see for instance Section 2.2 in Singer (1996)) yields that in the first
case the eigenring of Lc, ED(Lc), is of dimension 1 or 4 (depending on whether L1 and
L2 are equal or not) whereas in the second case ED(Lc) is of dimension 2.

Example 5.6. (Example 2.6 continued) We wish to find the Galois group of the
polynomial P (x, y) = y2(y2 + 3)2 + 4x, which is irreducible over Q(x). In Example 2.6
we have considered the transformed polynomial P̃1 = y6P (x − 2, 1

y + 1) whose roots
are linearly independent over Q and whose linear associated differential equation LP̃1

has been computed in Example 2.7. The latter one is of order 6 and factors into two
equations of order 1 and two irreducible equations L1 and L2 of order 2. Hence, G is
equal to D6(6), D(6) or F18(6). We have

L1(y) = y
′′

+
−69x2 + 150x − 128 + 12x3

2(3x4 − 13x3 + 52x − 48)
y
′
+

6x2 + 28x − 103

9(3x4 − 13x3 + 52x − 48)
y

L2(y) =
108x5 − 1677x4 + 10869x3 − 21188x2 − 2084x + 21824

2(x − 2)(3x − 4)(x + 2)(x − 3)(3x2 − 33x + 142)
y
′

+
−19384056x2 + 15839360x3 + 10963312x + 5967x7 − 136744x6 + 1372731x5 − 6551430x4 − 2195328

36(x − 2)2(3x − 4)2(x + 2)(x − 3)2(3x2 − 33x + 142)
y

The LCLM of L1 and L2 is of degree 4 and its eigenring is of dimension 2, so G is equal
to D(6) or F18(6). The second symmetric power of L1 has a rational solution 3x−10

3(x+2)2 so
GQ(x) = D(6). 2

5.2. Galois group over k0(x)

As mentioned before, our approach computes the geometric Galois group G of P over
k0(x). This is due to the fact that in order to apply the differential Galois theory, one
must assume that the field of constants is algebraically closed. Of course, the Galois group
over k0(x) may be larger than the Galois group over k0(x). We will refer to the former
group as Gk0(x) (the arithmetic Galois group) and the latter group as Gk0(x). We always
have Gk0(x) ⊂ Gk0(x). Note that the resolvent method (see Matzat et al., 2000) also gives
a method to compute the arithmetic Galois group of P over k0(x) (see Mattman and
McKay, 0000).

Example 5.7. Consider P (y) = y3 − x ∈ Q(x)[y]. The roots of P (y) = 0 are z1 = x1/3,
z2 = ξ · x1/3 and z3 = ξ2 · x1/3 where ξ is a primitive cube root of unity. One checks
that GQ(x) = S(3) and that GQ(x) = A(3). Note that the splitting field Q(x)(z1, z2, z3)
contains the new constant ξ = z2/z1 and 2 = [Q(ξ) : Q] = |S(3) : A(3)|. 2

The previous example illustrates the fact that the groups Gk0(x) and Gk0(x) are distinct
precisely when the splitting field of P over k0(x) contains new constants. This observation
will be the basis of the technique we will use to calculate Gk0(x) (and is very similar to
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the idea behind Duval’s algorithm to find an absolutely irreducible factor, as well as our
modification). The key result is the following lemma.

Lemma 5.8. Let K be an algebraic extension of k0(x) and k0 be the algebraic closure of
k0. We then have that

[K : k0(x)] = [K · k0 : k0(x)][K ∩ k0 : k0]

where K · k0 is the compositum of K and k0 in the algebraic closure of K.

Proof. Consider the following diagram:

Since [K : k0(x)] = [K : K ∩ k0(x)][K ∩ k0(x) : k0(x)], it is enough to show that
[K ∩ k0(x) : k0(x)] = [K ∩ k0 : k0] and [K : K ∩ k0(x)] = [K · k0 : k0(x)].

To prove the first equality, let {αi} be k0-basis of K ∩ k0. To show that this set spans
the k0(x) vector space K∩k0(x), it is enough to show that any polynomial p ∈ K∩k0(x)
must lie in (K ∩ k0)[x]. We proceed to show this by induction on the degree of P .
Differentiating with respect to x we see that all the coefficients of the nonzero powers of
x must lie in K ∩ k0 and so the constant coefficient must also lie in this field. To see that
the set {αi} is linearly independent over k0(x), let

∑
i fi(x)αi = 0, with fi ∈ k0(x). We

then have fi(a) = 0 for all elements a ∈ k0 that are not poles of the fi. Since this is an
infinite set, we have that all the fi = 0 and so {αi} is a k0(x)-basis of K ∩ k0(x).

We now prove the second equality. Note that since K ∩ k0 is algebraically closed in
K, we have that any elements of K, linearly independent over K ∩ k0 remain linearly
independent over k0 (see Lang, 1993, Chapter VIII. 4). Let {ei}∞i=0, e0 = 1, be a K ∩ k0-
basis of K ∩ k0(x), and {fi}m

i=0, f0 = 1, be a K ∩ k0(x)-basis of K. Since {eifj} is a
K ∩ k0-basis of K and {ei}∞i=0, e0 = 1, is a k0-basis of k0(x), we have that {fi}m

i=0 is a
k0(x)-basis of Kk0. 2

Corollary 5.9. Let K be the splitting field of a polynomial P ∈ k0(x)[y] over k0(x).
Then |Gk0(x)| = |Gk0(x)|[K ∩ k0 : k0].

We note that the above lemma is also partly a consequence of Theorem 1.12 of Lang
(1993, Chapter VI, Section 1) and can also be used to justify the key fact behind Duval’s
algorithm.

For the rest of this section, we assume that P ∈ k0[x, y] and is absolutely irreducible.
Note that in this case Gk0(x) is a transitive normal subgroup of the transitive group
Gk0(x). From Table 5 we see that, in most cases, there are only very few possibilities of
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Table 5. Transitive groups G and their normal transitive subgroups N .

G A(3) S(3)
N A(3)

G/N C(2)

G C(4) E(4) D(4) A(4) S(4)
N C(4) E(4) E(4) E(4) A(4)

G/N C(2) C(2) C(3) S(3) C(2)

G C(5) D(5) F (5) A(5) S(5)
N C(5) C(5) D(5) A(5)

G/N C(2) C(4) C(2) C(2)

G C(6) D6(6) D(6) A4(6) F18(6) 2A4(6) S4(6d) S4(6c) F18(6) : 2
N C(6) D6(6) D6(6) A4(6) A4(6) A4(6) D6(6) F18(6)

G/N C(2) C(2) C(3) C(2) C(2) C(2) S(3) C(2)

G F36(6) 2S4(6) PSL(2, 5) F36(6) : 2 PGL(2, 5) A(6) S(6)
N A4(6) S4(6d) S4(6c) 2A4(6) F18(6) : 2 F36(6) PSL(2, 5) A(6)

G/N E(4) C(2) C(2) C(2) C(2) C(2) C(2) C(2)

G C(7) D(7) F21(7) F42(7) L(3, 2) A(7) S(7)
N C(7) C(7) C(7) D(7) F21(7) A(7)

G/N C(2) C(3) C(6) C(3) C(2) C(2)

Gk0(x) once Gk0(x) is known. Table 5 illustrates this fact: given a transitive group G on
n letters, we list, for n = 3, 4, 5, 6 and 7, all the proper normal transitive subgroups N
of G.

Suppose that we have computed Gk0(x) via the previous section. We now fix a
possible group G for Gk0(x) having Gk0(x) as proper normal subgroup and want to
decide, using differential Galois theory, if G = Gk0(x). By Corollary 5.9 we know that
if G = Gk0(x) 6= Gk0(x) then the extension k0(x)(y1, . . . , yn) of k0(x) contains new
constants. The method we propose is not an algorithm but does give results in many cases.

We consider a tentative k0(x)-basis B = {b1 = 1, b2, . . . , b|G|} (which we suppose given)
of |G| elements of k0(x)(y1, . . . , yn) over k0(x) and write z =

∑|G|
i=1 uibi with ui ∈ k0(x).

The condition z′ = 0 is therefore equivalent to a certain differential system S of order
one, in the variables ui, having solutions in k0(x), which can be decided using Barkatou
(1999) and Bronstein (1992).† There are three possible outcomes:

• The system S has no non-trivial rational solution. In this case, Gk0(x) 6= G. If G is
the only candidate, different from Gk0(x) for Gk0(x), then we have Gk0(x) = Gk0(x).

• The system has a nontrivial rational solution and we have determined that this does
not correspond to a new constant. We can then conclude that the putative basis B
is not a basis and thus Gk0(x) 6= G. Again, if G is the only candidate different from
Gk0(x) for Gk0(x) then Gk0(x) = Gk0(x) (see Example 5.14).

• The system S has a nontrivial rational solution and we have determined that this
corresponds to a new constant γ ∈ k0 \ k0 (we discuss methods for this below). We
then conclude that Gk0(x) 6= Gk0(x) and the index of Gk0(x) in Gk0(x) is bounded
from below by the degree of γ. In some cases this is enough to determine Gk0(x)

(see Example 5.15).

†It is important to note that those algorithms work over k0(x).
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This approach raises the questions of finding a tentative k0(x)-basis in an efficient way
and of determining if a rational solution of the resulting differential system corresponds
to a new constant. The first task can be done for the symmetric groups Sm and the
alternating groups Am, due to the fact that those groups are respectively m − 1 and
m − 2 transitive groups of degree m. The multiple transitivity allows us in both cases
to set up a basis by choosing arbitrary roots yi of P (see the proof of the next lemma).
This can be done for a larger class of groups. Recall that a Frobenius group is a transitive
subgroup of some symmetric group such that the only group element leaving two elements
fixed is the identity.

Lemma 5.10. If the Galois group Gk0(x) ∈ Sm over k0(x) is an s-transitive group and
if the identity is the only element of Gk0(x) that leaves s + 1 elements fixed, then by
choosing arbitrary roots y1, . . . , ys+1 of P , we get a k0(x)-basis of the splitting field of P
by multiplying all elements in the basis

{1, y1, . . . , y
m−1
1 , y2, y2y1, . . . , y2y

m−1
1 , . . . , ym−s

s . . . ym−2
2 ym−1

1 }

of k0(x)(y1, . . . , ys)/k0(x) and the basis {1, ys+1, . . . , y
λ−1
s+1 } of k0(x)(y1, . . . , ys)(ys + 1)

over k0(x)(y1, . . . , ys) where λ ∈ N is such that λ ·m(m− 1) · · · (m− s + 1) is the order
of Gk0(x).

In particular, for s = 1 this includes the case where Gk0(x) is a Frobenius group, for
s = 2 this includes the Zassenhaus groups (Gorenstein, 1968) and for s = m − 1 and
s = m− 2 this includes the symmetric group Sm and the alternating group Am.

Proof. We proceed by induction. Let s = 1. Since Gk0(x) is transitive a basis of
k0(x)(y1)/k0(x) is {1, y1, . . . , y

m−1
1 }. Let y2 6= y1 be a second root of P and denote

K the splitting field of P over k0(x). The Galois group of K/k0(x)(y1, y2) is a subgroup
of Gk0(x) whose elements leave y1 and y2 fixed. This group must be trivial by assumption
and thus K = k0(x)(y1, y2). The degree of k0(x)(y1, y2)/k0(x)(y1) is λ = |Gk0(x)|/m

showing that a k0(x)(y1)-basis of K is {1, y2, . . . , y
λ−1
2 }. Putting both bases together as

above yields a k0(x)-basis of K and gives the result.
Assume that the result holds until s = n − 1 and consider s = n > 1. Since

Gk0(x) is transitive the basis of k0(x)(y1)/k0(x) is {1, y1, . . . , y
m−1
1 }. The Galois group

of K/k0(x)(y1) is the stabilizer Gy1 of y1. Since s = n > 1 Gk0(x) is 2-transitive and the
polynomial Py1 = P/(Y − y1) is absolutely irreducible over k0(x)(y1). Its Galois group
Gy1 operates on the roots of Py1 as a permutation group of the m − 1 remaining roots.
Since Gy1 is (s − 1)-transitive and the identity is the only element of Gy1 that leaves
s elements fixed, we get a k0(x)(y1)-basis of K by induction. Putting both bases together
to get a k0(x)-basis gives the result.

The Frobenius groups satisfy the above conditions for s = 1 and the symmetric Sm

and the alternating groups Am, due to the fact that those groups are respectively m− 1
and m− 2 transitive groups of degree m, also satisfy the above conditions for s = m− 1
and s = m− 2. 2

If the group G is of the above type (s-transitive and the identity is the only element
that leaves s+1 elements fixed), then if the group is of order m · (m−1) · · · (m− (s−1))
it is also easy not only to set up a basis but also a multiplication table for the splitting
field (for larger groups this would involve some choices of elements).
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Example 5.11. Suppose that the Galois group GQ(x) of g = y5+
∑4

i=1 aiy1 ∈ Q(x)[y] is
the Frobenius group F (5) of order 20 = 5 · 4. Since the assumptions of the above lemma
are verified for s = 2, a Q(x)-basis of the splitting field is B = {1, y2, y

2
2 , y3

2 , y1, y1y2, y1y
2
2 ,

y1y
3
2 , y2

1 , y2
1y2, y

2
1y2

2 , y2
1y3

2 , y3
1 , y3

1y2, y
3
1y2

2 , y3
1y3

2 , y4
1 , y4

1y2, y
4
1y2

2 , y4
1y3

2} where y1, y2 are dis-
tinct roots of g. In order to multiply elements in the splitting field we use g, the minimal
polynomial of y1 over Q(x), and

g1(y) = y4 + (y1 + a4)y3 + (y2
1 + y1a4 + a3)y2 + (y3

1 + y2
1a4 + y1a3 + a2)y

+(y4
1 + y3

1a4 + y2
1a3 + y1a2 + a1)

the minimal polynomial of y2 over Q(x)(y1). 2

We now turn to the second task. Since we are only dealing with a putative basis, once
we have a nontrivial rational solution of the associated system, we need to determine if
it actually corresponds to a new constant. We can do this, in theory, using the following
lemma.

Lemma 5.12. Let y1, . . . , yn be solutions of LP (y) = 0, s ∈ N and u1, . . . , u|G| ∈ k0(x).
One can determine a point α ∈ k0 and a bound M ∈ N, depending on α, s, u1, . . . , u|G|

and y1, . . . , yn, such that z =
∑|G|

i=1 uibi ∈ k0 (where the bi are monomials in yj) if and
only if the coefficients of x− α, (x− α)2, . . . , (x− α)M in the Taylor series expansion of
z at α are 0.

Proof. Since the ui and the yi all satisfy some linear differential equations, one can
construct a differential equation L1(y) = 0 satisfied by z (Singer, 1979). Now 1 (and thus
any element of k0) and z are both solutions of the LCLM L3(y) of L1(y) and L2(y) = y′.
We take for α a regular point of L3(y) and for M the order of L3(y). If at α the Taylor
series of two solutions agree on terms of order less than M , then the solutions coincide.
The result now follows. 2

To apply the preceding lemma, one needs to construct the differential operator L3, a
process which is likely to be expensive. An alternative approach is to use Fuchs’s relation
to obtain upper bounds for the exponents at possible “true” and apparent singularities
and then select a point α and use Taylor series expansions at this point. This can be
done since we know (from the Newton polygon of P ) lower bounds on the exponents that
can occur in power products of roots of P and we will have a basis of the solutions space
of S. We will not describe this process in detail but rather work out a specific example
(see Example 5.15).

Example 5.13. Consider the equation P (y) = y3 − x over Q(x). We will prove that its
Galois group over Q(x) is A(3) and over Q(x) is S(3).

First, we consider the transformed polynomial P1 = y3P (1/y + 1) = (1− x)y3 + 3y2 +
3y + 1. The differential equation associated to P1 is

LP1(y) = y′′′ +
5x− 2

x(x− 1)
y′′ +

2(19x− 1)
9x2(x− 1)

y′ +
2

9x2(x− 1)
y = 0.

As LP1 is the product of the three linear operators δ + 1
x−1 , δ + 5x−2

3x(x−1) and δ + 7x−4
3x(x−1) ,

the Galois group of P1 over Q(x) is A(3).
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Let y1, y2 and y3 denote the roots of P1 and suppose that {1, y1, y2, y1y2, y
2
1 , y2y

2
1} is

a basis of Q(x)(y1, y2, y3). Suppose that z = u0 + u1y1 + u2y2 + u3y1y2 + u4y
2
1 + u5y2y

2
1

is a constant. The condition z′ = 0 leads to the system S1:

S1 :


u0

u1

u2

u3

u4

u5



′

=



0 0 1
x(x−1)

−1
3x(x−1)

2
3x(x−1) 0

0 1
3x

1
x(x−1) 0 2

3x(x−1)
−1

3x(x−1)

0 0 x+2
3x(x−1) 0 0 1

3x(x−1)

0 0 −1
3x

2x+1
3x(x−1) 0 1

x(x−1)

0 1
3x

−1
3x 0 2x+4

3x(x−1) 0
0 0 0 0 0 x+1

x(x−1)




u0

u1

u2

u3

u4

u5

 .

Using the algorithm presented in Barkatou (1999), we find that the differential system
S1 admits the rational solutions: u0 = λ1 + 1

xλ0, u1 = x+2
x λ0, u2 = 1−x

x λ0, u3 = 2u2,

u4 = u2 and u5 = (x−1)2

x λ0, where λ0 and λ1 are constants. Computing the Puiseux
expansions of P1 at x = 0, we take y1 = 1

x−1 (1 + x1/3 + x2/3) and y2 = 1
2(x−1) (2 + (−1−

I
√

3)x1/3 + (−1 + I
√

3)x2/3). Since we have explicit expressions for y1 and y2 we find
that (for λ0 = 1, λ1 = 0) z = 1

x + x+2
x y1 + 1−x

x y2 + 2(1−x)
x y1y2 + 1−x

x y2
1 + (x−1)2

x y2y
2
1 is

1
2 (−1 + I

√
3). This new constant has degree 2 over Q so GQ(x) = S(3). 2

Example 5.14. Consider the polynomial

P = y3 − (1 + 3x2)(3y − 2)

(from Malle and Matzat, 1999, p. 404, f3,1) which is irreducible over Q(x). The differential
equation associated to P is

LP (y) = y′′ − 8
3(1 + 3x2)2

y = 0

and LP is the product of the linear operators δ + 3
√

3x+I√
3(1+3x2)

and δ − 3
√

3x+I√
3(1+3x2)

, thus the

Galois group of P over Q(x) is N = A(3).
Suppose that Galois group of P over Q(x) is G = S(3). Thus, if y1, y2, y3 are

the roots of P , a basis for Q(x)(y1, y2, y3) is B = {1, y1, y2, y1y2, y
2
1 , y2y

2
1}. If z =

u0 + u1y1 + u2y2 + u3y1y2 + u4y
2
1 + u5y2y

2
1 is a constant then we have the differential

system S2:

S2 :


u0

u1

u2

u3

u4

u5


′

=



0 2
3x

− 1
3x

− 2
3x

4
3x

0

0 − 1+9x2

3x(1+3x2)
0 2

3x
− 2

3x
− 2

3x

0 0 − 1+9x2

3x(1+x2)
2
3x

0 2
3x

0 0 1
3x(1+x2)

− 2(1+9x2)

3x(1+3x2)
0 1

3x

0 − 1
3x(1+3x2)

1
3x(1+3x2)

0 − 2(1+9x2)

3x(1+3x2)
2
3x

0 0 0 0 0 − 1+9x2

3x(1+3x2)




u0

u1

u2

u3

u4

u5

 .

This admits the rational solutions u0 = λ1 + 1
xλ0, u1 = − 1

xλ0, u2 = 1
xλ0, u3 = u4 = 0

and u5 = − 1
x(1+3x2)λ0. The Puiseux expansions for the roots of P at x = 1 up to order

5 are

y = Z +
(
−2

3
+

5
6
Z +

1
12

Z2

)
(x− 1) +

1
12

Z(x− 1)2
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+
1
54

(
−1− 13

4
Z +

1
8
Z2

)
(x− 1)3 +

1
36

(
1 +

17
12

Z − 1
8
Z2

)
(x− 1)4

+
(
− 19

648
− 29

1296
Z2 +

19
5184

Z

)
(x− 1)5

where Z satisfies Z3 − 12Z + 8 = 0. We take two Puiseux expansions y1 and y2

corresponding to different solutions Z1 and Z2 of Z3 − 12Z + 8 = 0 and by expanding
(for λ0 = 1) the “constant” z = 1

x −
1
xy1 + 1

xy2 − 1
x+3x3 y2y

2
1 at x = 1, we find that

z = −3− 5
32 (x− 1)5 + O(x− 1)6. This contradicts the fact that B is a basis over Q(x);

so the Galois group of P over Q(x) is N = A(3). 2

Example 5.15. We consider the polynomial P = y5−5xy4 +50y3−50xy2 +125y−25x
(Malle, private communication). The differential equation associated to P is

LP (y) = y(5) +
5(3x2 + 1)
x(x2 − 5)

y(4) +
12(−1 + 5x2)

(x2 − 5)2
y(3) +

12(5x4 − 8x2 − 5)
x(x2 − 5)3

y′′

+
384

25(x2 − 5)4
y′ − 384

25x(x2 − 5)4
y = 0.

This equation admits a one-dimensional subspace of rational solutions (spanned by x),
so P is absolutely irreducible. Since LP factors completely into linear factors, we get
from Table 1 that the Galois group of P over Q(x) is the cyclic group C(5). According
to Table 5 its Galois group over Q(x) is either C(5), D(5) or F (5).

Suppose it is F (5). Since F (5) is Frobenius of order 20 = 5 · 4, a tentative Q(x)-basis
should be B = {1, y2, y

2
2 , y3

2 , y1, y1y2, y1y
2
2 , y1y

3
2 , y2

1 , y2
1y2, y

2
1y2

2 , y2
1y3

2 , y3
1 , y3

1y2, y
3
1y2

2 , y3
1y3

2 ,
y4
1 , y4

1y2, y
4
1y2

2 , y4
1y3

2} where y1 is any root of P and y2 is another root of P whose minimal
polynomial over Q(x)(y1) is (see Example 5.11)

P1(y) = y4 + (y1 − 5x)y3 + (y2
1 − 5xy1 + 50)y2 + (y3

1 − 5xy2
1 + 50y1 − 50x)y

+ y4
1 − 5xy3

1 + 50y2
1 − 50xy1 + 125.

We can thus express any power yn
2 for n ≥ 4 using y1 and lower powers of y2. Suppose

that z =
∑

bi∈B uibi is a constant. Constructing the linear differential system U ′ = 1
5MU

associated to z′ = 0 (see the matrix M in Table 6), and computing the rational solutions,
we obtain

u0 = λ0 +
(60xλ1 + 30xλ2 + 25λ3)

x2 − 5
, u1 =

(40x2 − 300)λ1 + (15x2 − 130)λ2 − 13xλ3

x2 − 5
,

u2 =
12xλ1 + 7xλ2 + (3x2 − 4)λ3

x2 − 5
, u3 = −20λ1 + 10λ2 + 3xλ3

5(x2 − 5)
,

u4 = − (95x2 − 300)λ1 + (45x2 − 130)λ2 + 13xλ3

x3 − 5
, u5 = −−43xλ1 − 30xλ2 + (8x2 − 73)λ3

x2 − 5
,

u6 = − (25x2 − 60)λ1 + (20x2 − 25)λ2 + 27xλ3

5(x2 − 5)
, u7 =

5xλ1 + 4xλ2 + 7λ3

5(x2 − 5)
,

u8 =
39xλ1 + 23xλ2 + (3x2 − 4)λ3

(x2 − 5)
, u9 =

−135λ1 + (5x2 − 175)λ2 − 27xλ3

5(x2 − 5)
,

u10 =
−15xλ1 + 9xλ2 + (5x2 − 4)λ3

5(x2 − 5)
, u11 = −−3λ1 + 2λ2 + xλ3

5(x2 − 5)
,

u12 = − (25x2 − 20)λ1 + (15x2 − 10)λ2 + 3xλ3

5(x2 − 5)
, u13 =

5xλ1 + 14xλ2 + 7λ3

5(x2 − 5)
,
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u14 =
(5x2 − 4)λ1 − λ2 − xλ3

5(x2 − 5)
, u15 = − 5xλ1 − λ3

25(x2 − 5)
,

u16 =
x(5λ1 + 3λ2)

5(x2 − 5)
, u17 = − λ1 + 3λ2

5(x2 − 5)
,

u18 = − xλ1

5(x2 − 5)
, u19 =

λ1

25(x2 − 5)

where the λi are constants.
Computing the Puiseux expansions of the solutions of P at x = 0, we take for y1 the

series which has the value 0 at x = 0 and for y2 another series (its value at x = 0 is
a solution of Z4 + 50Z2 + 125 = 0). We wish to determine whether z is actually a
constant. We find that

z = λ0 − 5λ3 − (60λ1 + 26λ2)Z +
4
5
λ3Z

2 − 2
5
(2λ1 + λ2)Z3 + O(x2)

where Z satisfies Z4 + 50Z2 + 125 = 0.
Letting λ0 = λ3 = 0 and 2λ1 + λ2 = 0, 60λ1 + 26λ2 = 1, we find an element

z̃ =
∑

bi∈B ũibi = Z + O(x2). We now compute a bound M which will ensure that z̃
is a constant. Note that the orbit of z̃ under all possible permutations of the yi has at
most 20 elements (which is the maximal order of the arithmetic Galois group). Therefore,
z̃ and the element 1 satisfy a linear differential equation of order at most 21. The point 0 is
an apparent singularity of LP , and the exponents of LP at ±

√
5 are {0, 1/5, 2/5, 3/5, 4/5}

and at ∞ are {−1, 0, 1, 2, 3}. From the explicit form of the ui we get that the elements
of the orbit of z̃ under the Galois group have poles at {

√
5,−

√
5} of order at most 1 and

at ∞ of order at most 1. All other points are, at worst, apparent singularities. We now
use equation (4) of Section 2.2 that we deduced from Fuchs’s relation. The left-hand side
of equation (4) in this situation is at most 1

2 (3 − 2)(21)(20) + 3 = 213. Therefore, the
exponent at any apparent singularity is at most 19 + 213 = 232. Calculating the Taylor
series of y1 and y2 to sufficiently high powers, we see that z̃ agrees with a constant up
to order 233. Therefore it must be a constant. This implies that z̃ = Z, is an element of
degree 4 over Q. Corollary 5.9 implies that C(5) = Gk0(x) has index at least 4 in Gk0(x)

and so this latter group must be F (5). 2

6. Final Comments

In this paper we show that several geometric and algebraic properties of a polynomial
in two variables can be determined from the associated minimal annihilating operator.
One can ask, how can this be generalized to polynomials of more variables? Given a
squarefree polynomial P (x1, . . . , xn, y) ∈ k0(x1, . . . , xn)[y], one considers the left ideal
I of all operators in k0(x1, . . . , xn)[∂1, . . . , ∂n] that annihilate the roots of P . One can
show that the common solution space of these operators is a finite-dimensional vector
space over k0 and that the dimension of this vector space is equal to the dimension of
the k0-span of the collection of roots of P . In a manner completely analogous to that of
Section 4.1, one can show that the number of irreducible factors of P over k̄0(x) is the
dimension of the space of rational common solutions of the elements of I. Algorithms
are known to determine this space (see Oaku et al., 2001) and one can generalize the
algorithm presented in Section 4.1 to determine these irreducible factors as well. The
question remains as to how one can generalize the techniques of Section 3 to polynomials
of several variables, that is, what topological information concerning the hypersurface
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P = 0 can be determined from the singular locus of the associated holonomic system
(Saito et al., 2000).
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//www.inria.fr/cafe/stages/rapports/dottax.ps.gz).

Duval, D. (1991). Absolute factorization of polynomials: a geometric approach. SIAM J. Comput., 20,
1–21.

Eichler, M. (1966). Introduction to the Theory of Algebraic Numbers and Functions. New York, Academic
Press.

Galligo, A., Watt, S. M. (1977). A numerical absolute primality test for bivariate polynomials.
In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation,
pp. 217–224. ACM Press.

Gao, S. (2001). Factoring multivariable polynomials via partial differential equations, Preprint, Clemson
University.

Gorenstein, D. (1968). Finite Groups. New York, London, Harper & Row.
Henry, J. P. G., Merle, M. (1989). Complexity of computation of embedded resolution of algebraic curves.

In EUROCAL’87 (Leipzig, 1987), LNCS 378, pp. 381–390. Berlin, Springer.
Huppert, B. (1967). Endliche Gruppen I. Berlin, New York, Springer.
Kaltofen, E. (1995). Effective Noether irreducibility forms and applications, Symposium on the Theory

of Computing (New Orleans, LA, 1991). J. Comput. Syst. Sci., 50, 274–295.
Kaplansky, I. (1976). An Introduction to Differential Algebra, 2nd edn. Paris, Herman.
Lang, S. (1993). Algebra, 3rd edn. New York, Addison Wesley Inc.
Lenstra, H. W. (1992). Algorithms in algebraic number theory. Bull. Am. Math. Soc., 26, 211–244.
Mattman, T., McKay, J. (0000). Computation of Galois groups over function fields. Math. Comput., 66,

823–831.
Malle, G., Matzat, H. (1999). Inverse Galois Theory, Springer Monographs in Mathematics. Berlin,

Springer.

(http://www.inria.fr/cafe/stages/rapports/dottax.ps.gz)
(http://www.inria.fr/cafe/stages/rapports/dottax.ps.gz)


Linear Differential Operators for Polynomial Equations 395

Matzat, H., McKay, J., Yokoyama, K. (2000). Special issue on algorithmic methods in Galois
theory, foreword of the guest editors. J. Symb. Comput., 30, 631–633.

Oaku, T., Takayama, N., Tsai, H. (2001). Polynomial and rational solutions of holonomic sys-
tems, Effective methods in algebraic geometry (Bath, 2000). J. Pure Appl. Algebr., 164, 199–220.

Poole, E. G. C. (1960). Introduction to the Theory of Linear Differential Equations. New York, Dover
Publications Inc.

Ragot, J.-F. (1997). Sur la factorisation absolue des polynômes, Thèse. Université de Limoges.
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Appendix: Tschirnhaus Transformations

In Section 2 we gave a method to transform certain polynomials into polynomials whose
roots are linearly independent over the constants. In this section we discuss other possible
methods that lead to (and depend on) several conjectures of independent interest. We
begin with the following definition.

Definition 6.1. Let K be a field and P (y), T (y) ∈ K[y] be polynomials. We define
the Tschirnhaus transform of P with respect to T to be the polynomial PT (y) =
Resz(P (z), y − T (z)), where Resz denotes the resultant with respect to z.

One sees that PT (y) has the same degree as P (y) and that its roots in an algebraic
closure K̄ of K are {T (α) | α is a root of P}. For future use, we wish to ensure that the
factorization properties of P (y) are preserved by the Tschirnhaus transformation. The
relevant facts are given in the following lemma.

Lemma 6.2. Let K be a field, P (y) ∈ K[y] a squarefree polynomial and E the splitting
field of P (y) over K. Let T (y) ∈ K[y] satisfy the property that T (α) 6= T (β) for distinct
roots of P (y) in E and let Q(y) = PT (y).

If P = cP1 · · ·Pt and Q = dQ1 · · ·Qs where c, d ∈ K and the Pi and Qi are monic,
irreducible polynomials in K[y] then t = s. Furthermore, after a possible renumbering
Qi(y) = Resz(Pi(z), y − T (z)) and Pi(y) = GCD(Qi(T (y)), P (y)).
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Proof. Let G be the Galois group of E over K. The map α 7−→ T (α) maps the roots
of P (y) bijectively onto the roots of Q(y). Furthermore, for any α ∈ E, σ ∈ G we have
that σ(T (α)) = T (σ(α)). Therefore, T maps G-orbits of roots of P (y) to G-orbits of
roots of Q(y). Identifying an irreducible monic factor of P (y) with its set of roots gives
a bijective correspondence between these factors and G-orbits of roots of P . Therefore,
after a possible renumbering T maps the roots of Pi(y) bijectively to the roots of Qi(y).
The final statement of the lemma reflects this fact. 2

We now turn to the question of transforming a polynomial into a polynomial whose
roots are linearly independent.

Proposition 6.3. Let k = k0(x) and let P ∈ k[y] be a squarefree polynomial of degree
n. There exist integers ai,j, 0 ≤ ai,j < n such that the roots of PT (y) = 0 in k are linearly
independent over k0, where T (y) = a0 + a1y + · · ·+ an−1y

n−1 and ai =
∑n−1

j=0 ai,jx
j.

Proof. Let U0, . . . , Un−1 be differential indeterminates and y1, . . . , yn be the roots of
P . The field of constants of K = k < U0, . . . , Un−1 > is once again k0. The elements
Vi =

∑n−1
j=0 Ujy

j
i are linearly independent over k0. To see this, note that (V1, . . . , Vn) =

(U0, . . . , Un−1)V where V is the Vandermonde matrix of y1, . . . , yn. Let c1, . . . , cn be
constants such that

∑
ciVi = 0. We then have that (U0, . . . , Un−1)V (c1, . . . , cn)T = 0

and so V (c1, . . . , cn)T = 0. Since V is nonsingular, we must have that (c1, . . . , cn)T = 0.
We can therefore conclude that the Wronskian determinant W of the Vi is a nonzero
differential polynomial in the Ui. This differential polynomial has order n − 1 in the Ui

and so by a result of Ritt (1966, p. 35), van der Put and Singer (2001, Lemma 2.20) there
exist polynomials ai as specified such that the substitution Ui 7−→ ai keeps W nonzero.
Thus the elements ỹi =

∑n−1
j=0 ajy

j
i are linearly independent over k0 and the polynomial

T (y) =
∑n−1

i=0 aiy
i satisfies the conclusion of the proposition. 2

The set of possible coefficient vectors (ai,j) has cardinality (n + 1)n2
. To decide

if a choice yields a desired Tschirnhaus transformation one can formally differentiate
Y = a0 + a1y + · · · + an−1y

n−1 as in the algorithm described in the beginning of
Section 2. At each stage one replaces y′ with a linear combination of powers of y using
Px + y′Py = 0. For some choice within the described bounds one will produce a linear
operator of order n. In particular, for almost all choices of ai,j ∈ k0, we will produce a
Tschirnhaus transformation that yields linearly independent roots.

We would like to be able to select constants ai 6= 0 such that for T (y) =
∑n−1

i=0 aiy
i,

the roots of PT (y) are linearly independent over k0. Obviously, this cannot be done if the
roots of P lie in k0 but one could ask if such a Tschirnhaus transform exists assuming
that P has no roots in k0. This would follow from the following conjecture.

Conjecture I. Let K be a differential field of characteristic zero with field of constants
C and y1, . . . , yn distinct, nonconstant elements of K. There exists a polynomial T (Y )
in C[Y ] of degree at most n− 1 such that the elements ỹj = T (yj), j = 1, . . . , n− 1 are
linearly independent over C.

The conjecture implies that the Wronskian determinant W in the proof of Proposi-
tion 6.3 will be nonzero when we replace the Ui with constants. Therefore W is nonzero
when we replace all derivatives of the Ui with zero. The resulting polynomial will have
degree at most n in the Ui and so there will be a choice of ai ∈ k0 within the desired
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bounds that are not a zero of this polynomial. This would still not necessarily yield a de-
terministic method for finding these ai in polynomial time but would yield a probabilistic
argument that almost all choices of ai yield the desired linear independence.

In Proposition 6.6 we will show that the conjecture is true if we only demand that
T be a polynomial of degree at most n(n − 1)/2 but at present we cannot prove the
conjecture in general or even for roots of a general squarefree polynomial having no
factors independent of x. We can show that Conjecture I, as stated, is true for roots of
an absolutely irreducible polynomial. This will follow from the following lemma.

Lemma 6.4. Let F0 ⊂ F1 ⊂ F2 be fields and assume that F2 is a finite Galois extension
of F0 with Galois group G. Let H ⊂ G be the Galois group of F2 over F1 and let
τ1H, . . . , τnH be the cosets of H in G. Then there exist σ1, . . . , σn ∈ G such that the set
S = {v ∈ F1 | det(σiτj(v)) 6= 0} is not empty. Furthermore, any v ∈ S has the property
that its conjugates are linearly independent over F0.

Proof. Let σ1, . . . , σm be the elements of G. The usual proof of the Normal Basis
Theorem (see Lang, 1993, Chapter VI, Section 13) shows that the set S′ = {w ∈ F2 |
det(σiσj(w)) 6= 0} is not empty. Fix some w ∈ S′ and let v =

∑
σ∈H σ(w). We then

have that v ∈ F1. Let N be the m× n matrix (σiτj(v)). The columns of this matrix are
the sums of disjoint sets of m/n columns of the m×m matrix (σiσj(w)). Therefore, the
columns of N are linearly independent. Therefore, after a possible renumbering, we may
assume that the matrix (σi, τj(v))j=1,...,n

i=1,...,n is nonsingular. This establishes the first claim
of the lemma.

For any v ∈ F1 the conjugates of v over F0 are among the elements τ1(v), . . . , τn(v).
Let v ∈ S and let a1τ1(v) + · · ·+ anτn(v) = 0 for some ai ∈ F0. For any σ ∈ G we have
σ(a1τ1(v) + · · · + anτn(v)) = a1στ1(v) + · · · + anστ(v) = 0. Since det(σiτj(v)) 6= 0 we
have that each ai = 0. This proves the final conclusion of the lemma. 2

We now show the following proposition.

Proposition 6.5. Let P (y) be an absolutely irreducible polynomial in k0(x)[y] of degree
n. There exist integers ai, 0 ≤ ai ≤ n − 1 such that the roots of PT (y) in k0(x) are
linearly independent over k0, where T (y) = a0 + a1y + · · ·+ an−1y

n−1.

Proof. Let F0 = k0(x) and let F2 be the splitting field of P (y) over F0. Let α ∈ F2

be a root of P (y) and F1 = F0(α). The hypothesis implies that [F1 : F0] = n.
Any element of F1 is of the form a0 + a1α + · · · + an−1α

n−1 for some ai ∈ F0.
Let σ1, . . . , σn, τ1, . . . , τn be as in Lemma 6.4 and let Y0, . . . , Yn−1 be indeterminates.
The conclusion of Lemma 6.4 implies that the polynomial A(Y0, . . . , Yn−1) = det(Y0 +
Y1σiτj(α)+ · · ·+Yn−1σiτj(αn−1))j=1,...,n

i=1,...,n is a nonzero homogeneous polynomial of degree
n with coefficients in F2. Therefore, there exist integers ai, 0 ≤ ai ≤ n such that
A(a0, . . . , an−1) 6= 0 and so the conjugates of a0 + a1α + · · · + an−1α

n−1 are linearly
independent over k0(x). This implies that the roots of PT (y) are linearly independent
over k0(x) where T (y) = a0 + a1y + · · ·+ an−1y

n−1. 2

We now will show that for distinct nonconstant elements y1, . . . , yn in a differential field
K of characteristic zero with field of constants C, there exists a polynomial T ∈ C[Y ],
of degree at most n(n− 1)/2, such that the elements ỹi = T (yi) are linearly independent
over C. We note that the usual properties of Wronskians imply that these elements will
be linearly independent over the algebraic closure C of C (see Kaplansky, 1976).
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We begin by noting that, under the above assumptions, there exist n homomorphisms
φi: C[y1, . . . , yn] → C such that the entries of the matrix (φi(yj)) are all distinct. To
construct φ1 note that, by assumption, the element

∏
i 6=j(yi − yj) is nonzero in K and

therefore invertible. Theorem 11 of Lang (1993, Chapter IX, Section 1) implies that there
exists a homomorphism φ1: C[y1, . . . , yn, (

∏
i 6=j(yi − yj))−1] → C. Clearly, the elements

φ1(yi) are distinct. Now assume that we have constructed φ1, . . . , φt such that the entries
of the t × n matrix (φi(yj)) are distinct. The assumptions imply that the elements∏

i 6=j(yi−yj) and
∏

h,i,j(yh−φi(yj)) are nonzero. Therefore there exists a homomorphism
φt+1: C[y1, . . . , yn, (

∏
i 6=j(yi−yj))−1,

∏
h,i,j(yh−φi(yj))−1] → C. Continuing until t = n

yields the desired homomorphisms.

Proposition 6.6. Let K be a differential field of characteristic zero with field of
constants C and y1, . . . , yn distinct, nonconstant elements of K. There exists a polynomial
T (Y ) in C[Y ] of degree at most n(n − 1)/2 such that the elements ỹj = T (yj),
j = 1, . . . , n− 1 are linearly independent over C.

Proof. We will construct a polynomial T1(Y ) ∈ C[Y ] of degree at most n(n − 1)/2
such that the elements ỹj = T1(yj), j = 1, . . . , n − 1 are linearly independent over C.
Let φ1, . . . , φn be the homomorphisms described above and let (φi(yj)) be the resulting
matrix with distinct entries. There exists a polynomial T1(Y ) ∈ C[Y ] of degree n(n−1)/2
such that T1(φi(yj)) = 0 for all i > j, that is T1 is zero for each entry below the
diagonal. Since T1 can have no further zeros, the diagonal elements of (T1(φi(yj)) are
nonzero and so the determinant of this matrix is nonzero. Let cj ∈ C be elements such
that

∑n
j=1 cjT1(yj) = 0. Applying the φi, we have that

∑n
j=1 cjφi(T1(yj)) = 0. The

invertibility of (T1(φi(yj)) implies that the ci are zero and so the elements {T1(yj)} are
linearly independent over C. Note that this implies that the Wronskian of the elements
{T1(yj)} is nonzero.

Let T (Y ) be a polynomial of degree n(n−1)/2 with indeterminate constant coefficients
{d0, . . . , dn(n−1)/2}. The Wronskian W (T (y1, . . . , T (yn)) is a polynomial in the di with
coefficients in K that is furthermore nonzero since the above shows that we can specialize
the di and obtain a nonzero result. Since C is an infinite field, we can specialize the
di to elements ci in C and obtain a polynomial T (Y ) satisfying the conclusion of the
proposition. 2

From the proof of Proposition 6.6, one sees that Conjecture I would follow from the
following conjecture.

Conjecture II. Let C be a field of characteristic zero and (ai,j) a matrix with distinct
entries. There exists a polynomial T (Y ) in C[Y ] of degree at most n − 1 such that the
matrix (T (ai,j)) is invertible.

We finally note that the set of coefficients of polynomials PT that satisfy the conclusions
in Proposition 6.5 lie in a Zariski open set. This yields a probabilistic argument that
almost all such transformations will have the desired effect. In a similar way, almost all
polynomials of degree n(n− 1)/2 will satisfy the conclusion of Proposition 6.6.
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