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We show that a linear algebraic group is the Galois group of a pa-
rameterized Picard–Vessiot extension of k(x), x′ = 1, for certain
differential fields k, if and only if its identity component has no
one-dimensional quotient as a linear algebraic group.
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1. Introduction

In the usual Galois theory of polynomial equations, one starts with a polynomial having coeffi-
cients in a field2 k, forms a splitting field K of this polynomial and then defines the Galois group of
this equation to be the group of field automorphisms of K that leave k element-wise fixed. A natu-
ral inverse question then arises: Given the field k, which groups can occur as Galois groups. For example,
if k = C(x), C an algebraically closed field and x transcendental over C , any finite group occurs as
a Galois group [27, Corollary 7.10]. In the Galois theory of linear differential equations, one starts
with a homogeneous linear differential equation with coefficients in a differential field k with alge-
braically closed constants C , forms a Picard–Vessiot extension K (the analogue of a splitting field)
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and defines the Galois group of the linear differential equation to be the differential automorphisms
of K that leave k element-wise fixed. This Galois group is a linear algebraic group defined over C
and one can again seek to determine which groups occur as the Galois group of a homogeneous
linear differential equation over a given differential field. For example, if k = C(x), C an algebraically
closed field, x′ = 1 and c′ = 0 for all c ∈ C , then any linear algebraic group occurs as a Galois group
of a Picard–Vessiot extension of k ([9,10] for proofs of this as well as references to earlier work). Be-
sides putting the Picard–Vessiot theory on a firm modern footing, Kolchin developed a generalization
of Picard–Vessiot extensions called strongly normal extensions and developed a Galois theory for these
fields (see [12] for an exposition and references to the original articles and [16] for a reworking of this
theory in terms of differential schemes). The Galois groups of these extensions can be arbitrary alge-
braic groups. Kovacic [14,15] studied the general inverse problem in the context of strongly normal
extensions and showed that this problem can be reduced to the inverse problem for linear algebraic
groups and for abelian varieties. If k = C(x) as above, Kovacic showed that any abelian variety can
be realized and, combining this with the solution for linear algebraic groups described above, one
sees that any algebraic group defined over C can be realized as a Galois group of a strongly normal
extension of C(x) (Kovacic also solved the inverse problem for connected solvable linear algebraic
groups and laid out a general plan for attacking the inverse problem for linear groups over arbitrary
fields).

In [17], Landesman developed a new Galois theory generalizing Kolchin’s theory of strongly normal
extension to include, for example, certain differential equations that contain parameters. The Galois
groups appearing here are differential algebraic groups (as in [13]). A special case was developed in
[4] where the authors consider parameterized linear differential equations and discuss various prop-
erties of the associated Galois groups, named parameterized Picard–Vessiot groups or PPV-groups for
short. These latter groups are linear differential algebraic groups in the sense of Cassidy [2], that is,
groups of matrices whose entries belong to a differential field and satisfy a fixed set of differential
equations. The inverse problem in these theories is not well understood. Landesman showed that any
connected differential algebraic group is a Galois group in his theory over some differential field that
may depend on the given differential algebraic group [17, Theorem 3.66]. The analogue of the field
C(x) mentioned above is a field k = k0(x) with commuting derivations � = {∂x, ∂1, . . . , ∂m}, m � 1,
where k0 is a differentially closed (see the definition below) Π = {∂1, . . . , ∂m}-differential field, x is
transcendental over k0, ∂i(x) = 0 for i = 1, . . . ,m and ∂x is defined on k by setting ∂x(a) = 0 for
all a ∈ k0 and ∂x(x) = 1. In what follows, the symbol k will always be used refer to a differential
field of this type. It is not known, in general, which differential algebraic groups appear as Galois
groups in Landesman’s theory over this field. In [17] and [4], it is shown that the additive group
Ga(k0) cannot appear while any proper subgroup of these groups does appear as a Galois group (the
same situation for Gm(k0) is also described in [17]).3 More recently, the results of [21] and [6] give
necessary and sufficient conditions in topological terms for a linear differential algebraic group to be
a PPV-group of a PPV-extension of k0(x) for certain k0 (see below for a precise statement of their
results).

A goal of this paper, is to make progress in finding purely algebraic necessary and sufficient
conditions. In the following, we give an algebraic characterization of those linear algebraic groups,
considered as linear differential algebraic groups, that can occur as PPV-groups of PPV-extensions of k
(under suitable hypotheses concerning k). Before we state the main result of this paper, we will recall
some definitions. Although these definitions may be stated in more generality, we will state them
relative to the field k defined above.

The parameterized Picard–Vessiot theory (PPV-theory) considers linear differential equations of the
form

∂xY = AY (1.1)

3 There are other Galois theories of differential equations due primarily to Malgrange [18], Pillay [22,20,23] and
Umemura [26]. In particular, inverse problems are addressed in [20]. We will not consider these theories here.



M.F. Singer / Journal of Algebra 373 (2013) 153–161 155
where A ∈ gln(k). In analogy to classical Galois theory and Picard–Vessiot theory, we consider fields,
called PPV-extensions of k, that act as “splitting fields” for such equations. A PPV-extension K of k
for (1.1) is a �-field K such that

1. K = k〈Z〉, the �-field generated by the entries of a matrix Z ∈ gln(K ) satisfying ∂x Z = A Z ,
det(Z) �= 0.

2. K ∂x = k∂x = k0, where for any �-extension F of k, F ∂x = {c ∈ F | ∂xc = 0}.

A Π -field E is said to be differentially closed (also called constrainedly closed, see, for example §9.1 of
[4]) if for any n and any set {P1(y1, . . . , yn), . . . , Pr(y1, . . . , yn), Q (y1, . . . , yn)} ⊂ E{y1, . . . , yn}, the
ring of differential polynomials in n variables, if the system

{
P1(y1, . . . , yn) = 0, . . . , Pr(y1, . . . , yn) = 0, Q (y1, . . . , yn) �= 0

}

has a solution in some differential field F containing E , then it has a solution in E . In [4] (and
more generally in [8]), it is shown that under the assumption that k0 is differentially closed, then
PPV-extensions exist and are unique up to �-k-isomorphisms. This hypothesis has been weakened to
non-differentially closed k0 in [7] and [29]. In these papers the authors give conditions weaker than
differential closure for the existence and uniqueness of PPV-extensions and discuss the corresponding
Galois theory. Although some of our results remain valid under these weaker hypotheses, we will
assume in this paper that k0 is Π -differentially closed. The set of field-theoretic automorphisms of
K that leave k element-wise fixed and commute with the elements of � forms a group G called the
parameterized Picard–Vessiot group (PPV-group) of (1.1). One can show that for any σ ∈ G , there exists
a matrix Mσ ∈ GLn(k0) such that σ(Z) = (σ (zi, j)) = Z Mσ . Note that ∂x applied to an entry of such
an Mσ is 0 since these entries are elements of k0 but that such an entry need not be constant with
respect to the elements of Π . In [4], the authors show that the map σ �→ Mσ is an isomorphism
whose image is furthermore a linear differential algebraic group, that is, a group of invertible matrices
whose entries satisfies some fixed set of polynomial differential equations (with respect to the deriva-
tions Π = {∂1, . . . , ∂m}) in n2 variables. We say that a set X ⊂ GLn(k0) is Kolchin-closed if it is the zero
set of such a set of polynomial differential equations. One can show that the Kolchin-closed sets form
the closed sets of a topology, called the Kolchin topology on GLn(k0) (cf. [2–4,13]).

As mentioned above, the papers [21] and [6] give necessary [6, Corollary 2.18 and Theorem 3.10]
and sufficient [21, Corollary 5.2] conditions for a linear differential algebraic group to be a PPV-group
over k0(x), as above, assuming that k0 is “sufficiently large”. The notion of “sufficiently large” is given
in the following definition. A Π -field F is a Π -universal field if for any Π -field E ⊂ F , finitely dif-
ferentially generated over Q, any Π -finitely generated extension of E can be differentially embedded
over E into F [12, p. 133]. Note that a universal field is differentially closed. The results of [21] and
[6] mentioned above combine to give

Theorem 1.1. Let k = k0(x) be as above with k0 a Π -universal field and G a linear differential algebraic group
defined over k0 . The group G(k0) is a PPV-group over k if and only if G(k0) is the Kolchin-closure of a finitely
generated subgroup.

In Section 2, we will show

Proposition 1.2. Let k0 be a differentially closed field and G be a linear algebraic group defined over k0 . The
group G(k0) contains a Kolchin-dense finitely generated subgroup if and only if the identity component of G
has no quotient (as an algebraic group) isomorphic to the additive group Ga or the multiplicative group Gm.

Theorem 1.1 and Proposition 1.2 combine to immediately give the result mentioned in the abstract:

Theorem 1.3. Let k = k0(x) be as above with k0 a Π -universal field and let G(k0) the group of k0-points of a
linear algebraic group G defined over k0 . The group G(k0) is a PPV-group of a PPV-extension of k if and only
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if the identity component of G has no quotient (as an algebraic group) isomorphic to the additive group Ga or
the multiplicative group Gm.

Although the proof of Proposition 1.2 is algebraic, the proof of Theorem 1.3 outlined above de-
pends heavily on Theorem 1.1 whose proof is analytic. Nonetheless, part of Theorem 1.3 can also be
given an algebraic proof. In Section 3, we give an algebraic proof of the fact that a linear differential
algebraic group whose identity component has a quotient isomorphic to the additive group Ga or the
multiplicative group Gm cannot be a PPV-group over k0(x). It would be of interest to give an algebraic
proof of all of Theorem 1.3.

The author wishes to thank Phyllis Cassidy for helpful discussions concerning the content of this
paper.

2. Linear algebraic groups with finitely generated Kolchin-dense subgroups

The proof of Proposition 1.2 depends on the following four lemmas.

Lemma 2.1. Let G be a linear algebraic group defined over k0 and G0 be its identity component. G(k0) contains
a Kolchin-dense finitely generated group if and only if G0(k0) contains a Kolchin-dense finitely generated group.

Proof. Assume that G0(k0) contains a Kolchin-dense group generated by g1, . . . , gs . Let {h1, . . . ,ht} be
a subset of G(k0) mapping surjectively onto G(k0)/G0(k0). The set {g1, . . . , gs,h1, . . . ,ht} generates a
group that is Kolchin-dense in G(k0).

Assume that G(k0) contains elements g1, . . . , gs that generate a Kolchin-dense subgroup. From [28,
p. 142] or [1, lemme 5.11, p. 152], one knows that any linear algebraic group G(k0), k0 algebraically
closed, is of the form HG0(k0) where H is a finite subgroup of G(k0). Therefore we may write each
gi as a product of an element of H and an element of G0(k0) and so we may assume that there is
a finite set S = {g̃1, . . . , g̃t} ⊂ G0(k0) such that the group generated by S and H is Kolchin-dense in
G(k0). Extending S if necessary, we may assume that S is stable under conjugation by elements of
H and therefore that the group generated by S is stable under conjugation by the elements of H . An
elementary topological argument shows that the Kolchin-closure G ′ of the group generated by S is
also stable under conjugation by H . Therefore H · G ′ forms a group. It is a finite union of Kolchin-
closed sets, so it is also Kolchin-closed. It contains H and S so it must be all of G(k0). Finally G ′ is
normal and of finite index in G(k0) so it must contain G0(k0). Clearly G ′ ⊂ G0(k0) so G0(k0) = G ′ and
this shows that G0(k0) is finitely generated. �
Lemma 2.2. Let P ⊂ GLn be a connected semisimple linear algebraic group defined over k0 . Then P (k0) con-
tains a finitely generated Kolchin-dense subgroup.

Proof. From Proposition 1 of [25] or Lemma 5.13 of [24], we know that a linear algebraic group
contains a Zariski-dense finitely generated subgroup H . We also know that P contains a maximal
torus T of positive dimension. After conjugation, we may assume that T is diagonal and that the
projection onto the first diagonal entry is a homomorphism of T onto k∗

0 = k0\{0}. Since k0 is dif-
ferentially closed, the derivations ∂1, . . . , ∂m are linearly independent so there exist nonzero elements
x1, . . . , xm ∈ k0 such that det(∂i x j)1�i, j�m �= 0 [12, Theorem 2, p. 96]. For each i = 1, . . . ,m, let gi ∈ T
be an element whose first diagonal entry is xi . Let P ′ be the Kolchin-closure of the group generated
by H and {g1, . . . , gm}. We claim P ′ = P .

To see this note that since P ′ contains H , P ′ is Zariski-dense in P . If P ′ �= P , then results of [3]
imply that there exist a nonempty subset Σ ⊂ k0Π , the k0 span of Π , such that P ′ is conjugate to a
group of the form P ′′(C) where P ′′ is a semisimple algebraic group defined over Q and C = {c ∈ k0 |
∂c = 0 for all ∂ ∈ Σ}. This implies that each element of G has eigenvalues in C and so, for each xi ,
∂(xi) = 0 for all ∂ ∈ Σ . Yet, if ∂ = ∑m

j=1 a j∂ j , not all a j zero and ∂(xi) = 0 for i = 1, . . . ,m, then
(a1, . . . ,am)X = (0, . . . ,0) where X = (∂i x j)1�i, j�m . This contradicts the fact that det X �= 0. Therefore
P ′ = P . �
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Lemma 2.3. Let G(k) = P (k0) � U (k0) be a connected linear algebraic group where P (k0) is a semisimple
linear algebraic group and U (k0) is a commutative unipotent group, both defined over k0 . If G(k0) has no
quotient isomorphic to Ga(k0), then G(k0) contains a Kolchin-dense finitely generated subgroup.

Proof. Note that U (k0) is isomorphic to km
0 for some m. Since P acts on U by conjugation, we

may write U = ⊕m
i=1 Ui where each Ui is an irreducible P -module. Furthermore, if the action of

P on some U j is trivial, then this U j would be of the form Ga(k0) and we could write P � U =
(P � ⊕i �= j U i) × Ga(k0). This would imply that there is an algebraic morphism of G(k0) onto Ga(k0),
a contradiction. Therefore we may assume the action of P on each Ui is nontrivial. Let B be a Borel
subgroup of P . From the representation theory of semisimple algebraic groups [11, Ch. 13.3], we
know that each Ui contains a unique B-stable one-dimensional subspace corresponding to a weight
λi : B → Gm(k0) (the highest weight of Ui ). For each i, let ui span this one-dimensional space.
We claim that the P (k0)-orbit of ui generates a group that equals Ui(k0). Note that since B(k0) is
connected and λi is not trivial, we have the P (k0)-orbit of ui contains Gm(k0)ui . Since Ui is an ir-
reducible P (k0)-module, there exist g1, . . . , gs ∈ P (k), such that g1ui g−1

1 , . . . gsui g−1
s span Ui . Since

g j(Gm(k0)ui)g−1
j = Gm(k0)(g jui g−1

j ) for j = 1, . . . , s, we have that the P (k0)-orbit of ui generates all
of Ui .

Now Lemma 2.2 asserts that there exists a finite set S ⊂ P (k0) that generates a Kolchin-dense
subgroup of P (k0). We then have that S ∪ {ui}m

i=1 generates a Kolchin-dense subgroup of G(k0). �
Lemma 2.4. The homomorphism l∂1 : Gm(k0) →Ga(k0) where l∂1(u) = ∂1(u)/u maps Gm(k0) onto Ga(k0).

Proof. Since k0 is differentially closed, we need only show that for any u ∈ k0, there is a Π -differential
extension F of k0 such that ∂1 y = uy has a solution y �= 0 in F . Let Π1 = {∂2, . . . , ∂m} and let F be
the Π1-field k0〈v〉, where v is a Π1-differentially transcendental element. We extend the derivation
∂1 from k0 to F by setting ∂1 v = uv , and ∂1(∂

i2
2 . . . ∂

im
m v) = ∂

i2
2 . . . ∂

im
m (∂1 v) = ∂

i2
2 . . . ∂

im
m (uv). With these

definitions, F becomes a Π -differential extension of k0 and y = v satisfies ∂1 y = uy. �
Proof of Proposition 1.2. Assume that G(k0) contains a Kolchin-dense finitely generated subgroup.
Lemma 2.1 implies that G0(k0) also contains a Kolchin-dense finitely generated subgroup. If there is
an algebraic morphism of G0(k0) onto Gm(k0) then Lemma 2.4 implies that there is a differential
algebraic morphism of G0(k0) onto Ga(k0). Therefore we may assume that we have a differential
homomorphism of G0(k0) onto Ga(k0). This implies that Ga(k0) would contain a Kolchin-dense sub-
group generated by a finite set of elements {αi}m

i=1. We will show that any finite set of elements of
Ga(k0) satisfy a linear differential equation over k0 and so could not generate a Kolchin-dense sub-
group of Ga(k0). Let C be the ∂1-constants of k0 and β1, . . . , βs a C-basis of the C-span of the αi ’s. Let
R(Y ) = wr(Y , β1, . . . , βs) where wr denotes the Wronskian determinant. R(Y ) is a linear differential
polynomial yielding the desired R ∈ k0[∂1]. Therefore there is no algebraic morphism of G0(k0) onto
Gm(k0) or Ga(k0).

Assume that there is no algebraic morphism of G0(k0) onto Gm(k0) or Ga(k0). Lemma 2.1 implies
that it is enough to show that G0(k0) contains a Kolchin-dense finitely generated group. We may
write G0 = P � Ru where P is a Levi subgroup and Ru is the unipotent radical of G [11, Ch. 30.2].

We first claim that P must be semisimple. We may write P = (P , P )Z(P ) where (P , P ) is the
derived subgroup of P and Z(P ) is the center of P . Furthermore, Z(P )0 is a torus [11, Ch. 27.5]. We
therefore have a composition of surjective morphisms

G0 → G0/Ru  P → P/(P , P )  Z(P )/
(

Z(P ) ∩ (P , P )
)
.

Since G0 is connected, its image lies in the image of Z 0(P ) in Z(P )/(Z(P ) ∩ (P , P )) and therefore is
a torus. This torus, if not trivial, has a quotient isomorphic to Gm . This would yield a homomorphism
of G0(k0) onto Gm(k0) and, by assumption, this is not possible. Therefore Z 0(P ) is trivial. Since G0 is
connected we must have Z(P ) ⊂ (P , P ). Therefore P = (P , P ) and is therefore semisimple.
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We shall now show that it suffices to prove that G0(k0) contains a Kolchin-dense finitely generated
subgroup under the assumption that Ru is commutative. In [14], Kovacic shows [14, Lemma 2]: Let
G be an abstract group, H a subgroup and N a nilpotent normal subgroup of G. Suppose H · (N, N) = G.
Then H = G. Therefore, if we can find a Kolchin-dense finitely generated subgroup of the k0-points of
G0/(Ru, Ru)  P � (Ru/(Ru, Ru)), then the preimage of this group under the homomorphism G0 →
G0/(Ru, Ru) generates a Kolchin-dense subgroup of G(k0).

Therefore, we need only consider connected groups satisfying the hypotheses of Proposition 1.2
and of the form P (k0) � U (k0), where P is semisimple and U is a commutative unipotent group.
Lemma 2.3 guarantees that such a group has a finitely generated Kolchin-dense subgroup. �

We note that Theorem 1.1 allows one to show other classes of linear differential algebraic groups
are PPV-groups of PPV-extensions of k0(x). As noted above, if G is a linear algebraic group defined
over an algebraically closed field C , then G(C) contains a finitely generated Zariski-dense subgroup.
If C is the field of Π -constants of k0, then the Zariski and Kolchin topologies are the same on G(C).
Therefore G(C) will be a PPV-group over k0(x).

3. Linear differential algebraic groups a PPV-groups

As mentioned above, it would be of interest to give an algebraic proof of Theorem 1.3 and give
an equally simple characterization of all linear differential algebraic groups that are PPV-groups over
k0(x). In this section we show, by example, that the necessary condition of Theorem 1.3 insuring that
a linear algebraic group is a PPV-group can be proved algebraically and extended to linear differen-
tial algebraic groups. We will also show that this condition is not sufficient to insure that a linear
differential algebraic group is a PPV-group over k0(x).

Lemma 3.1. If G0(k0) has Gm(k0) or Ga(k0) as a homomorphic image (under a differential algebraic ho-
momorphism) and G(k0) is a PPV-group of a PPV-extension of k0(x), then Ga(k0) is a PPV-group of a PPV-
extension of a finite algebraic extension E of k0(x).

Proof. We will show that this result follows from the Galois theory of parameterized linear differen-
tial equations [17,4]. Let K be a PPV-extension of k0(x) having G as its PPV-group. The fixed field
E of G0 is a finite algebraic extension of k0(x). If G0 has Gm(k0) as a homomorphic image un-
der a differential homomorphism then composing this homomorphism with l∂1 : Gm(k0) → Ga(k0)

where l∂1(u) = ∂1(u)/u, Lemma 2.4 implies that Ga(k0) would also be a homomorphic image of
G0(k0) under a differential homomorphism. Therefore we shall only deal with this latter case. Let
φ : G0(k0) → Ga(k0) be a surjective differential algebraic homomorphism and let H be its kernel. The
Galois theory [4, Theorem 9.5] implies that the fixed field of H is a PPV-extension F of E whose
PPV-group over E is differentially isomorphic to Ga(k0). �

The following lemma is the key to showing that Ga(k0) is not a PPV-group over a finite algebraic
extension of k0(x).

Lemma 3.2. Let E be a finite algebraic extension of k0(x) and f ∈ E. Let K be the PPV-extension of k0(x)
corresponding to the equation

∂x y = f .

Let z ∈ K satisfy ∂xz = f . Then there exists a nonzero linear differential operator L ∈ k0[∂1] and an element
g ∈ E such that

L(z) = g.
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Proof. The proof of this lemma is a slight modification of Manin’s construction of the Picard–Fuchs
equations (see Section 3, pp. 64–65 of the English translation of [19]). We shall use (as does Manin)
ideas and results that appear in [5]. In Ch. VI, §7 of [5], Chevalley shows that ∂1 can be used to
define a map D on differentials of E satisfying D(y dx) = (∂1 y)dx. Furthermore, Theorem 13, Ch. VI,
§7 of [5] states that for any differential ω and any place P of E , we have resP D(ω) = ∂1(resP ω)

(where resP denotes the residue at P ). Let α1, . . . ,αm be the nonzero residues of f dx. As in the proof
of Proposition 1.2, one can show that there is a nonzero linear differential operator R ∈ k[∂1] such
that R(αi) = 0, i = 1, . . . ,m. We then have that for any place P , resP (R( f )dx) = R(resP ( f dx)) = 0.
Therefore R( f )dx has residue 0 at all places, that is, it is a differential of the second kind. Note that
∂ i

1(R( f ))dx is also a differential of the second kind for any i � 1. The factor space of differentials of
the second kind by the space of exact differentials has dimension 2g over k, where g is the genus
of E [5, Corollary 1, Ch. VI, §8]. Therefore there exist v2g, . . . , v0 ∈ k0 such that

v2g∂
2g
1

(
R( f )

)
dx + · · · + v0 R( f )dx = dg̃ = ∂x g̃ dx

for some g̃ ∈ E . This implies that there exists a linear differential operator L ∈ k0[∂1] such that

L( f ) = ∂x g̃.

Furthermore, ∂x(L(z)) = L(∂xz) = L( f ) = ∂x g̃ . Therefore L(z) = g where g = g̃ + c for some c ∈ k0. �
Proposition 3.3. If G is a linear differential algebraic group defined over k0 such that G0(k0) has Gm(k0) or
Ga(k0) as a quotient (as a linear differential group), then G(k0) cannot be a PPV-group of a PPV-extension of
k0(x).

Proof. Assume that G(k0) is a PPV-group of a PPV-extension of k0(x). Lemma 3.1 implies that, in this
case, Ga(k0) is a PPV-group of a PPV-extension K of E , where E is a finite algebraic extension of k0(x).
From Proposition 9.12 of [4], K is the function field of a Ga(k0)-principal homogeneous space. The
corollary to Theorem 4 of [13, Ch. VII, §3] implies that this principal homogeneous space is the trivial
principal homogeneous space and so K = E〈z〉 where for any σ ∈ Ga(k0) there exists a cσ ∈ k0 such
that σ(z) = z + cσ . In particular, σ(∂xz) = ∂xz for all σ ∈ Ga(k0) and so ∂xz = f ∈ E . Lemma 3.2 im-
plies that there exists a linear differential operator L ∈ k0[∂1] and an element g ∈ E such that L(z) = g .
For any σ ∈ Ga(k0), we have g = σ(g) = σ(L(z)) = L(σ (z)) = L(z + cσ ) = g + L(cσ ) so L(cσ ) = 0. This
implies that the PPV-group of K over E is a proper subgroup of Ga(k0), a contradiction. �

We shall now show that the necessary conditions of Proposition 3.3 are not sufficient, in general,
for guaranteeing that a linear differential algebraic group is a PPV-group of a PPV-extension of k0(x).

Let k0 be an ordinary differentially closed field with derivation ∂1 and let

G =
{(

1 0
a b

) ∣∣∣ a,b ∈ k0, b �= 0, ∂1b = 0

}
 G1 � G2

where

G1 =
{(

1 0
a 1

) ∣∣∣ a ∈ k0

}
 Ga(k0)

G2 =
{(

1 0
0 b

) ∣∣∣ b ∈ k0, b �= 0, ∂1b = 0

}
 Gm(C)

where C = {c ∈ k0 | ∂1c = 0}. Let k = k0(x) be a � = {∂x, ∂1}-field as in the introduction. We shall show
that G(k0) contains no Kolchin-dense finitely generated subgroup, G is Kolchin-connected, and there
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is no surjective differential algebraic homomorphism of G(k0) onto Ga(k0) or Gm(k0). From the first
property, Theorem 1.1 implies that G(k0) cannot be a PPV-group of a PPV-extension of k0(x).

To see that G(k0) contains no Kolchin-dense finitely generated subgroup, note that any element
of G(k0) can be written as a product of an element of Ga(k0) and Gm(C). Therefore it is enough to
show that any set of elements of the form

(
1 0
a1 1

)
, . . . ,

(
1 0
an 1

)
,

(
1 0
0 b1

)
, . . . ,

(
1 0
0 bm

)

with the ai ∈ k0 and the bi ∈ C do not generate a Kolchin-dense subgroup of G . Let H be the group
generated by these elements and let L ∈ k[∂1] be a nonzero differential operator such that L(ai) = 0
for all i = 1, . . . ,n. A calculation shows that any element of H is of the form

(
1 0

c1a1 + · · · + cnan b

)

with b and the ci in C . Therefore H is a subgroup of

{(
1 0
a b

) ∣∣∣ L(a) = 0, ∂1b = 0, b �= 0

}

which is a proper Kolchin-closed subgroup of G .
To see that G is Kolchin-connected, note that G is the product of Kolchin-irreducible Kolchin-closed

sets and so must be irreducible.
We now show the last claimed property of G . Since Ga(k0) is a differential homomorphic image

of Gm(k0), it suffices to show that there is no surjective differential algebraic homomorphism of
G(k0) onto Ga(k0). Assume not and let φ : G(k0) → Ga(k0). Restricting φ to G2 yields an algebraic
homomorphism of Gm(C) into Ga(k0). Since algebraic homomorphisms preserve the property of being
semisimple, we must have that G2 ⊂ kerφ. Therefore for any a ∈ k and any b ∈ C∗ , we have

(
1 0
a 1

)(
1 0
0 b

)(
1 0

−a 1

)
=

(
1 0

a − ba b

)
∈ kerφ.

For any ã ∈ k0 and 1 �= b ∈ C there exists an a ∈ k0 such that a − ba = ã, so kerφ contains all elements
of the form

(
1 0
ã b

)

a ∈ k0, 1 �= b ∈ C . Since G2 ⊂ kerφ as well, we have that G ⊂ kerφ, a contradiction.
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