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PROJECTIVE ISOMONODROMY AND GALOIS GROUPS

CLAUDE MITSCHI AND MICHAEL F. SINGER

(Communicated by Sergei K. Suslov)

Abstract. In this article we introduce the notion of projective isomonodromy,
which is a special type of monodromy-evolving deformation of linear differential
equations, based on the example of the Darboux-Halphen equation. We give
an algebraic condition for a parameterized linear differential equation to be
projectively isomonodromic, in terms of the derived group of its parameterized
Picard-Vessiot group.

1. Introduction

Classically, monodromy-preserving deformations of Fuchsian systems have been
investigated by many authors who described them in terms of the Schlesinger equa-
tion and its links to Painlevé equations. In [15], Landesman developed a new Galois
theory for parameterized differential equations. A special case was developed in [8],
where the authors consider parameterized linear differential equations and discuss
various properties of the parameterized Picard-Vessiot group, the PPV-groups for
short. This is a linear differential algebraic group in the sense of Cassidy [6]. As
is well known, the differential Galois group of a system with regular singularities
is, as a linear algebraic group, Zariski topologically generated by the monodromy
matrices with respect to a fundamental solution. Cassidy and Singer have shown
that a parameterized family of such systems is isomonodromic if and only if its
PPV-group is conjugate to a (constant) linear algebraic group.

Analogous to the Schlesinger and Painlevé equations’ relation to isomonodromic
deformations of Fuchsian systems, the Darboux-Halphen V equation accounts for a
special type of monodromy-evolving deformation of Fuchsian systems, as was shown
by Chakravarty and Ablowitz in [9]. After reviewing the notion of isomonodromy
in Section 2, we follow and detail, in Section 3, the description by Ohyama [17]
of the Darboux-Halphen system in a way that will illustrate the general notion of
projective isomonodromy that is introduced in Section 4 for general parameterized
(not necessarily Fuchsian) differential systems with analytic coefficients. For Fuch-
sian systems, our definition naturally extends the classical notion of isomonodromy
(not necessarily of the Schlesinger type) given for instance in [3]. For these sys-
tems, we show in Section 5 that projective isomonodromy is indeed the type of
monodromy-evolving deformation introduced by Ohyama in ([17], Section 4) and
we characterize it by a condition on the residue matrices. In Section 6, we consider
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general parameterized systems with regular singularities that are not necessarily
Fuchsian, and we characterize projective isomonodromy by the purely algebraic
condition that the derived group (G,G) of the PPV-group G be conjugate to a
constant linear algebraic group when the given system is absolutely irreducible.

2. Classical isomonodromy

In many of the classical studies of isomonodromic deformations, only parame-
terized Fuchsian systems are considered. Furthermore, these systems are assumed
to be parameterized in a very special way; that is, the systems are written as

(2.1)
dY

dx
=

m∑
i=1

Ai(a)

x− ai
,

m∑
i=1

Ai(a) = 0,

where the n × n matrices Ai(a) depend holomorphically on the multi-parameter
a = (a1, . . . , an) in some open polydisk D(a0) and the condition on the residue
matrices guarantees, for simplicity, that ∞ is not singular. The polydisk D(a0) =
D1 × . . . × Dm has center at the initial location a0 = (a01, . . . , a

0
m) ∈ C

m of the
poles, with Di ⊂ C a disk with center a0i and Di ∩ Dj �= ∅ for all i �= j. Let
x0 ∈ D = P1(C) \

⋃
i Di.

For fixed a ∈ D(a0) and local fundamental solution Ya of (2.1) at x0, analytic
continuation along a loop γ from x0 in Da = P1(C) \ {a1, . . . , am} yields a solution
Y γ
a . The monodromy representation with respect to Ya is

χa : π1(Da;x0) → GLn(C),(2.2)

defined by

Y γ
a = Ya.χa(γ),

for all [γ] ∈ π1(Da;x0).

Definition 1. Equation (2.1) is isomonodromic, or an isomonodromic deformation,
if for each a ∈ D(a0) there is a matrix C(a) ∈ GLn(C) such that

χa = C(a) χa0 C(a)−1.

Bolibrukh ([3], [4]) has characterized isomonodromic deformations as follows.

Theorem 2 (Bolibrukh). Equation (2.1) is isomonodromic if and only if the fol-
lowing equivalent conditions hold.

(1) There is a differential 1-form ω on
(
P1(C)×D(a0)

)
\
⋃m

i=1{(x, a) | x−ai =
0} such that

• for each fixed a ∈ D(a0),

ω =
m∑
i=1

Ai(a)

x− ai
dx;

• dω = ω ∧ ω.
(2) For each a ∈ D(a0) there is a fundamental solution Ya of (2.1) such

that Ya(x) is analytic in x and a, and the corresponding monodromy repre-
sentation χa does not depend on a, that is, χa = χa0 .
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A special type of isomonodromic deformation is given by the Schlesinger differ-
ential form

(2.3) ωs =
m∑
i=1

Ai(a)

x− ai
d(x− ai)

whose integrability condition is known as the Schlesinger equation

(2.4) dAi(a) = −
m∑

j=1,j �=i

[Ai(a), Aj(a)]

ai − aj
d(ai − aj), i = 1, . . . ,m.

Bolibrukh gave examples [3] of isomonodromic deformations that are not of the
Schlesinger type and he described the general differential forms that occur in The-
orem 2.

In the special case of order-two Fuchsian systems with four singularities one can,
generically, reduce each system to an order-two linear scalar differential equation
satisfied by the first component of the dependent variable Y , namely a Fuchsian
scalar equation with an additional apparent singularity λ. It is well known that
the Schlesinger isomonodromy condition then translates into a nonlinear equation
of Painlevé VI type satisfied by λ. For basic results about Painlevé equations and
isomonodromic deformations, we refer to [12] and [1] .

3. An example of a monodromy evolving deformation

In [9], Chakravarty and Ablowitz describe the Darboux-Halphen system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω′
1 = ω2ω3 − ω1(ω2 + ω3) + φ2

ω′
2 = ω3ω1 − ω2(ω3 + ω1) + θ2

ω′
3 = ω1ω2 − ω3(ω1 + ω2) − θφ

φ′ = ω1(θ − φ) − ω3(θ + φ)
θ′ = −ω2(θ − φ) − ω3(θ + φ)

(3.1)

as a prototype of a class of nonlinear systems arising as the integrability conditions
of an associated Lax pair in the same way as the Painlevé and Schlesinger equations
do. This system occurs in the Bianchi IX cosmological models and arises from a
special reduction of the self-dual Yang-Mills (SDYM) equation (cf. [1], [9], [10],
[17]). It is also related to the Chazy and Painlevé VI equations (see [1] for a
complete study of such equations and reductions of the SDYM equation). We will
review and detail Ohyama’s study [17] of this equation and refer to (3.1) as the
Darboux-Halphen V Equation or DH-V for short.

Originally (cf. [9]) the DH-V system with the special condition θ = φ = 0
arose from a geometrical problem studied by Darboux, who in 1878 obtained it as
the integrability condition for the existence in Euclidean space of a one-parameter
family of surfaces of second degree orthogonal to two arbitrary given independent
families of parallel surfaces. Halphen solved this system in 1881.

Ohyama ([17], [18]) shows how DH-V is, in the generic case, equivalent to
Halphen’s second equation

(3.2) x′
i = Q(xi), i = 1, 2, 3,

where

Q(x) = x2 + a(x1 − x2)
2 + b(x2 − x3)

2 + c(x3 − x1)
2(3.3)
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with constants a, b, c such that a+b = c+b = −1/4 (all derivatives are with respect
to the complex variable t).

As pointed out in [17], these equations do not satisfy the Painlevé property (on
their movable singularities) and may therefore not be expected to be monodromy-
preserving conditions. Nevertheless Chakravarty and Ablowitz in [9], and Ohyama
in [17], showed how these nonlinear equations actually express a special type of
monodromy-evolving deformation, in the same way as the Schlesinger and Painlevé
VI equations rule the isomonodromic deformations of Schlesinger type.

Using the connection relating the self-dual Yang-Mills equation and the con-
formally self-dual Bianchi equations, these authors showed that DH-V, and hence
Equation (3.2), actually is the compatibility condition of a Lax pair

∂Y

∂x
=

(
μ

P
I +

3∑
i=1

λiS

x− xi

)
Y,(3.4)

∂Y

∂t
=

(
νI +

3∑
i=1

λixiS

)
Y −Q(x)

∂Y

∂x
(3.5)

of 2 × 2 matrix equations, where x1, x2, x3 depend on t and P (x) = (x − x1)(x −
x2)(x − x3), and S is a traceless constant matrix and where μ and the λi are
constants with μ �= 0, λ1 + λ2 + λ3 = 0, and ν(x, t) satisfies the auxiliary equation

∂ν

∂x
= −x+ x1 + x2 + x3

P
μ.(3.6)

Assume that the Lax pair is integrable, i.e. that Equation (3.2) is satisfied by
the xi. Equation (3.4) is for fixed t a Fuchsian system with three singular points
x1, x2, x3, and Equation (3.6) implies that ν is not a rational function of x. There-
fore the Lax pair ((3.4), (3.5)) does not describe an isomonodromic deformation,
since otherwise the coefficients of (3.5) would be rational (cf. [20], Remark A.5.2.5).

Let us fix t0 ∈ C, and open disjoint disks Di with center at xi(t0), i = 1, 2, 3. Let
U(t0) be a neighborhood of t0 in C such that xi(t) ∈ Di for each i and all t ∈ U(t0),
and let x0 ∈ C be a fixed base-point, x0 /∈

⋃
i Di.

Let Y (t, x), for t ∈ U(t0), denote a fundamental solution, in a neighborhood of
x0, of the Lax pair ((3.4), (3.5)). It is therefore analytic in both t and x. For fixed
t ∈ U(t0), we can write an analytic continuation of the fundamental solution Y (t, x)
to a punctured neighborhood of xi as

Y (t, x) = Yi(t, x− xi(t)).(x− xi(t))
Li(t),(3.7)

where Yi(t, x− xi(t)) is single-valued, and the matrix Li(t) does not depend on x.
Note that Yi(t, x−xi(t)) is analytic in t and x and Li(t) is analytic in t. Indeed, for
fixed t ∈ U(t0), analytic continuation of Y along an elementary loop around xi(t)

yields a fundamental solution Ỹ (t, x) of (3.4) which is again analytic in both t and
x, by the theorem about analytic dependence on initial conditions (cf. [5]). The
monodromy matrixMi(t) is therefore analytic in t, as well as Li = (1/2πi) logMi(t),
and hence Yi(t, x − xi(t)) = Y (t, x) (x − xi(t))

−Li(t) is analytic in t and x in
(U(t0)×Di) \ {(t, x) | x− xi(t) = 0}.

Proposition 3. With notation as above, let Mi(t) for any fixed t ∈ U(t0) denote
the monodromy matrix of (3.4) with respect to Y , defined by analytic continuation
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along an elementary loop around xi(t). Then

Mi(t) = ci(t)Gi,(3.8)

where Gi is a constant matrix and where ci(t) = e
−2πμ

√
−1

∫ t
t0

αi(t)dt and the αi are
the residues of

x+ x1 + x2 + x3

P
=

3∑
i=1

αi

x− xi
.(3.9)

Proof. Let us show that

dLi

dt
= −αiμI,(3.10)

where αi is the xi-residue of (x+ x1 + x2 + x3)/P ; that is,

αi =
xi + σ∏

j �=i(xi − xj)

with σ = x1 + x2 + x3. Note that Yi is a function (the sum of a series) of the local
coordinate x− xi . We have

∂Y

∂t
= −Q(xi)

∂Yi

∂x
· (x− xi)

Li + Yi · (x− xi)
Li

(
log(x− xi)

dLi

dt
−Q(xi)

Li

x− xi

)

= −Q(xi)
∂Y

∂x
+ Y · log(x− xi)

dLi

dt
.

If we compare with Equation (3.5) of the Lax pair we get

−Q(xi)
∂Y

∂x
+ Y · log(x− xi)

dLi

dt
= −Q(x)

∂Y

∂x
+

(
νI +

3∑
i=1

cixiS

)
Y.

From Equation (3.6) we have that

ν = μ log
3∏

i=1

(x− xi)
−αi + φ(t)

for some function φ(t), and hence as x tends to xi for fixed t (simplifying and then
comparing the leading terms on each side) we get that

log(x− xi)
dLi

dt
∼ −αiμ log(x− xi)I,

that is,
dLi

dt
= −αiμI.

The monodromy matrix of (3.4) with respect to x0 and Y around xi is Mi = e2πiLi ,
which in view of (3.10) is of the form

Mi(t) = ci(t)Gi,

where Gi is the initial monodromy matrix around xi(t0), and

ci(t) = e
−2πμ

√
−1

∫ t
t0

αi(t)dt.

�

This is an example of what we will call projectively isomonodromic deformations,
and we study them from an algebraic point of view.
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4. Projective isomonodromy

Let D be an open connected subset of P1(C), P be an open connected subset of
Cr, and x0 ∈ D. Assume that π1(D, x0) is finitely generated by γ1, . . . , γm. Let
A(x, t) ∈ gln(O), where O denotes the ring of n × n matrices whose entries are
functions analytic on D × P. We will consider the behavior of solutions of the
differential equation

dY

dx
= A(x, t)Y.(4.1)

In the following we let Scaln be the group of nonzero n× n scalar matrices.

Definition 4. Equation (4.1) is projectively isomonodromic if there existm analytic
functions ci : P → Scaln(C) and fixed matrices G1, . . . , Gm ∈ GLn(C) such that
for each t ∈ P there is a local solution Yt(x) of (4.1) at x0 such that analytic
continuation of Yt(x) along γi yields Yt(x) ·Gici(t), for each i.

Let Ȳ (x, t) be any solution of (4.1) analytic inD0×P, whereD0 is a neighborhood
of x0 in D, and let Mi(t) denote the monodromy matrix corresponding to analytic
continuation of this solution around γi. Note that Mi(t) depends analytically on t.
If (4.1) is projectively isomonodromic, then there exists a function C : P → GLn(C)
such that

Mi(t) = C(t)−1Gici(t)C(t)

for all t ∈ P. Since there may be many ways of selecting C(t), this function need
not depend analytically on t. However, we will show that one can find a function
C(t) satisfying the above and analytic in t. This fact can be deduced easily from
the following result of Andrey Bolibruch, whose proof is contained in the proof of
Proposition 1 of [3].

Proposition 5. For each i = 1, . . . ,m, let Hi : P → GLn(C) be analytic on P and
let Gi ∈ GLn(C). Assume that there is a function C : P → GLn(C) such that

Hi(t) = C(t)−1GiC(t)

for all t ∈ P and i = 1, . . . ,m. Then there exists an analytic function C with the
same property.

We can now prove the following.

Proposition 6. If (4.1) is projectively isomonodromic, then there exists a solution
Y (x, t) of (4.1) analytic in D0 × P, where D0 is a neighborhood of x0 in D such
that for all t ∈ P the monodromy matrix of Y (x, t) along γ is Gici(t).

Proof. Let Ȳ (x, t) be any solution of (4.1) analytic in D0 ×P, where D0 is a neigh-
borhood of x0 in D, and let Mi(t) denote the monodromy matrix corresponding to
analytic continuation of this solution around γi. Since (4.1) is projectively isomon-
odromic, there is a function C : P → GLn(C) such that Mi(t) = C(t)−1Gici(t)C(t)
for all t ∈ P. Applying Proposition 5 to Hi(t) = Mi(t)ci(t)

−1 and Gi, we may
assume that C(t) is analytic and thus Y (x, t) = Ȳ (x, t)C(t) satisfies the conclusion
of this proposition. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROJECTIVE ISOMONODROMY AND GALOIS GROUPS 611

5. Isomonodromy versus projective isomonodromy

We now turn to the relation between Fuchsian isomonodromic equations and
Fuchsian projectively isomonodromic equations. Consider the equation

dY

dx
=

m∑
i=1

Ai(t)

x− xi(t)
Y(5.1)

together with

(1) P, a simply connected open subset of Cr and
(2) D, an open subset in P1(C) and x0 ∈ D such that
(3) the functions Ai : P → gln(C) and the xi : P → C are analytic functions,
(4) P

1(C)\D is the union of m disjoint closed disks Di and
(5) for t ∈ P we have xi(t) ∈ Di.

Let x0 ∈ D and γi, i = 1, . . . ,m, be the obvious loops generating π1(D, x0). We
then have that Equation (5.1) is analytic in D×P and we can speak of monodromy
matrices Mi(t) corresponding to analytic continuation of a fundamental solution
matrix along γi. We can now state

Proposition 7. Let D and P be as above. Equation (5.1) is projectively isomon-
odromic if and only if for each i = 1, . . . ,m, there exist functions bi : P → Scaln(C)
and Bi : P → gln(C), analytic on P such that

(1) Ai = Bi + bi for i = 1, . . . ,m and
(2)

dY

dx
=

(
m∑
i=1

Bi(t)

x− xi(t)

)
Y(5.2)

is isomonodromic.

Proof. Assume that Equation (5.1) is projectively isomonodromic and let Y (x, t), Gi

and ci be as in the conclusion of Proposition 6. Since P is simply connected and
the ci(t) are nonzero for all t, there exist analytic bi : P → Scaln(C) such that

e2π
√
−1bi = ci. Let

Z(x, t) = Y (x, t)

m∏
i=1

(x− xi(t))
−bi(t).

One sees that the monodromy of Z along γi is given by Gi and so is independent
of t. Therefore, letting Bi = Ai − bi, we have that

dY

dx
=

(
m∑
i=1

Bi(t)

x− xi(t)

)
Y

is isomonodromic.
Now assume that Ai, Bi, bi are as in items (1) and (2) of the proposition and that

Equation (5.2) is isomonodromic. If Y (x, t) is a local solution of (5.2) with constant
monodromy matrices Gi along γi, then Z(x, t) = Y (x, t)

∏m
i=1(x − xi(t))

bi(t) will

have monodromy Gici(t) along γi, with ci(t) = e2π
√
−1bi(t). Thus Equation (5.1) is

projectively isomonodromic. �
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Proposition 7 applies to the DH-V example since we can rewrite Equation (3.4)
of the Lax pair as

∂Y

∂x
=

(
3∑

i=1

Ai(t)

(x− xi)

)
Y,

where Ai = Bi + bi, with

Bi = λiS,

bi =
μIn∏

j �=i(xi − xj)
.

An easy computation shows that since x′
i − x′

j = Q(xi) − Q(xj) = x2
i − x2

j for all
i, j, we have

b′i =
dbi
dt

= − xi + σ∏
j �=i(xi − xj)

μ == −αiμ,

and we recover the result of Proposition 3 that the monodromy of this equation is
evolving ‘projectively’ and is equal to

Mi(t) = e2π
√
−1bi(t)Gi = e

−2πμ
√
−1

∫ t
t0

αi(t)dtGi.

6. Parameterized differential Galois groups

In this section we examine the parameterized differential Galois groups of pro-
jectively isomonodromic equations. Parameterized differential Galois groups (cf.
[8], [15]) generalize the concept of differential Galois groups of the classical Picard-
Vessiot theory, and we begin this section by briefly describing the underlying theory.

Let
dY

dx
= A(x)Y(6.1)

be a differential equation where A(x) is an n × n matrix with entries in C(x).
The usual existence theorems for differential equations imply that if x = x0 is a
point in C such that the entries of A(x) are analytic at x0, then there exists a
nonsingular matrix Z = (zi,j) of functions analytic in a neighborhood of x0 such

that dZ
dx = A(x)Z. Note that the field K = C(z1,1, . . . , zn,n) is closed with respect

to taking the derivation d
dx and this is an example of a Picard-Vessiot extension.1

The set of field-theoretic isomorphisms of K that leave C(x) elementwise fixed and
commute with d

dx forms a group G called the Picard-Vessiot group or differential
Galois group of (6.1). One can show that for any σ ∈ G, there exists a matrix
Mσ ∈ GLn(C) such that σ(Z) = (σ(zi,j)) = ZMσ. The map σ �→ Mσ is an
isomorphism whose image is furthermore a linear algebraic group, that is, a group
of invertible matrices whose entries satisfy some fixed set of polynomial equations in
n2 variables. There is a well-developed Galois theory for these groups that describes
a correspondence between certain subgroups of G and certain subfields of K as well
as associates properties of Equation (6.1) with properties of the group G. The
elements of the monodromy group of (6.1) may be identified with elements of this
group, and when (6.1) has only regular singular points, it is known that G is the
smallest linear algebraic group containing these elements (cf. [19], Theorem 5.8).
Further facts about this Galois theory can be found in [13] and [19].

1Picard-Vessiot extensions and the related Picard-Vessiot theory are developed in a fuller
generality in [13] and [19], but we shall restrict ourselves to the above context to be concrete.
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Now let

dY

dx
= A(x, t)Y(6.2)

be a parameterized system of linear differential equations where A(x, t) is an n×n
matrix whose entries are rational functions of x with coefficients that are functions
of t = (t1, . . . , tr), analytic in some domain in Cr. A differential Galois theory
for such equations was developed in [8] and in greater generality in [15]. Let k0
be a suitably large field2 containing C(t1, . . . , tr) and the functions of t appearing
as coefficients in the entries of A and such that k0 is closed under the derivations
Π = {∂1, . . . , ∂r}, where each ∂i restricts to

∂
∂ti

on C(t1, . . . , tr) and the intersection
of the kernels of the ∂i is C. As before, existence theorems for solutions of differential
equations guarantee the existence of a nonsingular matrix Z(x, t) = (zi,j(x, t)) of

functions, analytic in some suitable domain in C×C
r, such that dZ

dx = AZ. We will
let k = k0(x) be the differential field with derivations Δ = {∂x, ∂1, . . . , ∂r}, where
∂x(x) = 1, ∂x(z) = 0 for all z ∈ k0 and the ∂i extend the previous ∂i with ∂i(x) =
0. Finally we will denote by K the smallest field containing k and the zi,j that is
closed under the derivations of Δ. This field is called the parameterized Picard-
Vessiot field or PPV-field of (6.2). The set of field-theoretic automorphisms of K
that leave k elementwise fixed and commute with the elements of Δ forms a group
G called the parameterized Picard-Vessiot group (PPV-group) or parameterized
differential Galois group of (6.2). One can show that for any σ ∈ G, there exists a
matrix Mσ ∈ GLn(k0) such that σ(Z) = (σ(zi,j)) = ZMσ. Note that ∂x applied
to an entry of such an Mσ is 0 since these entries are elements of k0 but that
such an entry need not be constant with respect to the elements of Π. One may
think of these entries as functions of t. In [8], the authors show that the map
σ �→ Mσ is an isomorphism whose image is furthermore a linear differential algebraic
group, that is, a group of invertible matrices whose entries satisfy some fixed set of
polynomial differential equations (with respect to the derivations Π = {∂1, . . . , ∂r})
in n2 variables. We say that a set X ⊂ GLn(k0) is Kolchin-closed if it is the
zero set of such a set of polynomial differential equations. One can show that the
Kolchin-closed sets form the closed sets of a topology, called the Kolchin topology
on GLn(k0) (cf. [6, 7, 8, 14]). The following result shows how the PPV-group can
be used to characterize isomonodromy. As in Section 4, let P be a simply connected
subset of Cr and D an open subset of P1(C) with x0 ∈ D. We assume that A(x, t)
in Equation (6.2) is analytic in D × P. Assume that P1(C)\D is the union of m
disjoint disks Di and that for each t ∈ P, Equation (6.2) has a unique singular
point in each Di and that this singular point is a parameterized regular singular
point in the sense of ([16], Definition 2.3). Note that by ([16], Corollary 2.6) this
in particular implies that the singularity is regular singular for each fixed t, in the
usual sense. Let γi, i = 1, . . . ,m be the obvious loops generating π1(D, x0). We then
have that Equation (6.2) is analytic in D×P and we can speak of (parameterized)
monodromy matrices Mi(t) corresponding to analytic continuation, for each fixed
t, of a fundamental solution matrix along γi.

2To be precise, we need k0 to be differentially closed with respect to Π; that is, any system
of polynomial differential equations in arbitrary unknowns having a solution in an extension field
already has a solution in k0. See [8] for a discussion of differentially closed fields in the context of
this Galois theory.
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Proposition 8 ([8, Proposition 5.4]). Assume that D, P and Equation (6.2) are
as above. Then this equation is isomonodromic in D × P ′ for some subset P ′ ⊂ P
if and only if the PPV-group G of this equation over k is conjugate to G1(C) for
some linear algebraic group G1 defined over C.

7. An algebraic condition for projective isomonodromy

We now relate the property of projective isomonodromy to properties of the PPV-
group. We still assume that Equation (6.2) has (parameterized) regular singularities
only, in the sense of ([16], Definition 2.3).

Proposition 9. Let k,K,A, and G be as above. Equation (6.2) is projectively
isomonodromic if and only if its PPV-group G is conjugate to a subgroup of

GLn(C) · Scaln(k0) ⊂ GLn(k0).

Proof. Let xi(t), i = 1, . . . ,m be the singular points of Equation (6.2),

dY

dx
= A(x, t)Y

and let Y (x, t), Gi, ci be as in the conclusion of Proposition 6. Since P is simply
connected and the ci(t) are nonzero, there exist analytic bi : P → ScalnC such

that e2π
√
−1bi = ci for each i (in fact, we can select bi(t) ∈ Scal(k0) since k0 is

differentially closed). Consider the system of differential equations

dZ

dx
= (A(x, t)−

m∑
i=1

bi(t)

(x− xi(t))
)Z = B(x, t)Z,

(7.1)

du

dx
= (

m∑
i=1

bi(t)

(x− xi(t))
)u = b(t)u.

We will consider this as a differential equation with coefficient matrix(
B 0
0 b

)
∈ gl2n(k).

Let E be the PPV-extension of k for the system (7.1). Note that the first equation of
this system is isomonodromic, hence has a PPV-group that is conjugate in GLn(k0)
to a constant group over C. Therefore the PPV-group of (7.1) over k is conjugate
in GL2n(k0) to a subgroup of GLn(C)×Scaln(k0) ⊂ GL2n(k0). It is easy to see that
Y ∈ GLn(E) is a fundamental solution of Equation (6.2) if and only if Y = Zu,
where (

Z 0
0 u

)
is a fundamental solution of (7.1). Let us choose Z such that the corresponding
representation H of the PPV-group is a subgroup of GLn(C) × Scaln(k0) and let
Y = Zu be a fundamental solution of (6.2). We clearly have K ⊂ E, where K is
the PPV-extension of k for (6.2). The action of H on E gives

(σ, τ )(Y ) = σ(Z)τ (u)

for all (σ, τ ) ∈ H, and it induces a homomorphism Φ of H onto the PPV-group of
K over k. In terms of matrices, Φ is given by Φ(σ, τ ) = σ · τ and its image is in
GLn(C) · Scaln(ko).
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The converse is clear since the (parameterized) monodromy matrices Mi(t) all
belong to the PPV-group (see Theorem 3.5 of [16]). �

One easy consequence of Proposition 9 is

Corollary 10. Let k,K,A, and G be as above. If Equation (6.2) is projectively
isomonodromic, then the commutator subgroup (G,G) is conjugate to a subgroup of
GLn(C).

This corollary yields a simple test to show that (6.2) is not projectively isomon-
odromic: If the eigenvalues of the commutators of the monodromy matrices (with
respect to any fundamental solution matrix) are not constant, then (6.2) is not
projectively isomonodromic. In particular, if the determinant or trace of any of
these matrices is not constant, then (6.2) is not projectively isomonodromic. The
converse of the corollary is not true in general (see Remark 7.1 below), but it is
true if (6.2) is absolutely irreducible, that is, when (6.2) does not factor over k, the
algebraic closure of k. Before we prove this, we will discuss some group-theoretic
facts.

In the following, we say that a subgroup H ⊂ GLn(k0) is irreducible if the only
H-invariant subspaces of kn0 are {0} and kn0 . A differential equation with coefficients
in k is absolutely irreducible if it is irreducible over any finite extension of k.

Lemma 11. Let H be an irreducible subgroup of GLn(C) and let g ∈ GLn(k0)
normalize H. Then g ∈ GLn(C) · Scaln(k0).
Proof. For any h ∈ H and g ∈ GLn(k0) normalizing H, we have that

0 = ∂i(g
−1hg) = −g−1∂i(g)g

−1hg + g−1h∂i(g)

for all ∂i ∈ Π. Therefore,

∂i(g)g
−1h = h∂i(g)g

−1.

Since H is irreducible, Schur’s Lemma implies that ∂i(g)g
−1 = zi ∈ Scaln(k0).

One can check that the zi satisfy the integrability conditions ∂izj = ∂jzi, so there
exists a nonzero u ∈ Scaln(k0) such that ∂iu = ziu for all i. This implies that
∂i(u

−1g) = 0 for all i and so g = uh for some h ∈ GLn(C). �
It is well known that if G and H are linear algebraic groups with H normal in

G, then G/H is also a linear algebraic group. For Scaln(k0) � GLn(k0), we will
denote by ρ the canonical map ρ : GLn(k0) → GLn(k0)/Scaln(k0).

Lemma 12. Let H ⊂ GLn(k0) be a Kolchin-connected linear differential algebraic
group and let H be its Zariski-closure in GLn(k0). Assume that H is irreducible.
Then

H ⊂ (H,H)Π · Scaln(k0),
where (H,H)Π is the Kolchin-closure of (H,H).

Proof. Since H is irreducible, it must be reductive ([21], p. 37). Since H is
Kolchin-connected, H is Zariski-connected, so we can write H = Z(H) · (H,H),
where Z(H) is the center of H ([11], Ch. 27.5). Using the irreducibility again,
Schur’s Lemma implies that Z(H) ⊂ Scaln(k0). Using the map ρ above, we
have that ρ(H) is isomorphic to (H,H)/(Z(H) ∩ (H,H)) and so is a connected
semisimple linear algebraic group. Furthermore, ρ(H) is a Zariski-dense, Kolchin-
connected, subgroup of ρ(H). Propositions 11 and 13 and those of [7] imply
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that ρ(H) equals (ρ(H), ρ(H))Π, the Kolchin-closure of its commutator subgroup
(ρ(H), ρ(H)). Since (H,H)Π is a linear differential algebraic group, we have that
ρ((H,H)Π) is a linear differential algebraic group containing (ρ(H), ρ(H)) and
therefore contains (ρ(H), ρ(H))Π. Since (H,H)Π ⊂ H we have that ρ((H,H)Π) =
ρ(H). Therefore H ⊂ (H,H)Π · Scaln(k0). �

Lemma 13. Let G ⊂ GLn(k0) be a linear differential group and assume that

(1) (G,G) ⊂ GLn(C) and

(2) the identity component G
0
of G, the Zariski-closure of G in GLn(k0), is

irreducible.

Then G ⊂ GLn(C) · Scaln(k0).

Proof. We first note that the Zariski-closure of G0, the Kolchin-component of the

identity of G, is Zariski-connected and of finite index in G. Therefore G
0
is the

Zariski-closure G0 of G0. We now apply Lemma 12 to H = G0 and conclude that
G0 ⊂ (G0, G0)Π · Scaln(k0). Since (G,G) ⊂ GLn(C) we have that (G0, G0)Π ⊂
GLn(C). Furthermore, since G

0
is irreducible and is the Zariski-closure of G0,

we have that G0 is irreducible. Therefore (G0, G0)Π is an irreducible subgroup of
GLn(C). Any g ∈ G normalizes G0 and therefore normalizes (G0, G0)Π. Applying
Lemma 11 to H = (G0, G0)Π, we have that G ⊂ GLn(C) · Scaln(k0). �

Remark 7.1. Simple examples (e.g., G = Diagn(k0), the group of diagonal matrices)
show that the condition (G,G) ⊂ GLn(C) does not imply G ⊂ GLn(C) · Scaln(k0)
without some additional hypotheses.

Proposition 14. Let k,K,A,G be as in Proposition 9. If Equation (6.2) is ab-
solutely irreducible and (G,G) is conjugate to a subgroup of GLn(C), then (6.2) is
projectively isomonodromic.

Proof. As noted above, G is the usual Picard-Vessiot group of (6.2) over k. If (6.2)

is absolutely irreducible, then G
0
is an irreducible subgroup of GLn(k0). Lemma 13

implies that G ⊂ GLn(C) · Scaln(k0). �
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