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Abstract

We consider systems of linear differential and difference equations

δY (x) = A(x)Y (x), σY (x) = B(x)Y (x)

with δ = d
dx , σ a shift operator σ(x) = x + a, q-dilation operator σ(x) = qx or

Mahler operator σ(x) = xp and systems of two linear difference equations

σ1Y (x) = A(x)Y (x), σ2Y (x) = B(x)Y (x)

with (σ1, σ2) a sufficiently independent pair of shift operators, pair of q-dilation op-
erators or pair of Mahler operators. Here A(x) and B(x) are n × n matrices with
rational function entries. Assuming a consistency hypothesis, we show that such sys-
tems can be reduced to a system of a very simple form. Using this we characterize
functions satisfying two linear scalar differential or difference equations with respect
to these operators. We also indicate how these results have consequences both in the
theory of automatic sets, leading to a new proof of Cobham’s Theorem, and in the
Galois theories of linear difference and differential equations, leading to hypertran-
scendence results.
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Descartes, 67084 Strasbourg Cedex, France, schaefke@unistra.fr.

◦Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695, USA,
singer@ncsu.edu.

Mathematics Subject Classification (2010): Primary 39A05; Secondary 34A30, 34K05, 34M03,
39A13, 39A45

1



2

1 Introduction

In [37], J.-P. Ramis showed that if a formal power series f(x) is a solution of a linear
differential equation and a linear q-difference equation2, q 6= 0, q transcendental if |q| =

1, both with polynomial coefficients, then f is the expansion at the origin of a rational
function. Rationality has also been shown for a formal power series satisfying

• a linear differential equation and a linear σ-difference equation with polynomial
coefficients, where σ is the Mahler operator σ(f)(x) = f(xk), k an integer ≥ 2

[12],

• a linear q1-difference equation and a linear q2-difference equation, both with poly-
nomial coefficients and with q1 and q2 multiplicatively independent (i.e., no integer
power of q1 is equal to an integer power of q2) [15] 3,

• a linear σ1-difference equation and σ2-difference equation with polynomial coeffi-
cients and with Mahler operators σ1, σ2 having multiplicatively independent expo-
nents [1].

Other results characterizing entire solutions of a linear differential equation and a linear σ-
equation with polynomial coefficients where σ is the operator σ(x) = x+ α, σ(x) = qx,
or σ(x) = xk and entire solutions of two linear σ-difference equations involving these
operators can be found in [13], [14],[17], [28], [30], [31], and [38].

These results have been proved with a variety of ideas such as the structure of ideals
of entire functions, Gevrey-type estimates, p-adic behavior and mod p reductions. In our
work we present a unified approach to all these results, reproving and generalizing them
to also characterize meromorphic solutions on the plane and certain Riemann surfaces.

Our results spring from two fundamental ideas. The first is that questions concerning
the form of solutions of two scalar linear differential/difference equations can be reduced
to showing that consistent pairs of first order systems are equivalent to very simple sys-
tems. The second is that the hypothesis of consistency allows us to show that the singular
points are of a very simple nature, to describe the interaction of local solutions at different
singular points and to continue local solutions meromorphically. These conclusions, in
turn, allow us to prove that the systems are equivalent to systems of a very simple form.
For our approach, it is crucial that δ and σ or σ1 and σ2, respectively, commute except for
some constant factor. The commutativity is closely related to the consistency condition.

2A linear difference equation involving the operator σ(x) = qx
3The result of [15] needs some restrictions, see below Corollary 15.
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Our approach is best explained with the example of Ramis’s result in the case |q| 6=
0, 1. Let f(x) be a power series satisfying both a linear differential equation and a linear
q-difference equation with coefficients in C(x). Using these equations, one shows that the
C(x)-vector space V spanned by {(x d

dx
)if(qjx)} with 0 ≤ i < ∞,−∞ < j < ∞ is

finite dimensional (see Corollary 3). This space consists of Laurent series and is invariant
under the map σ that sends x to qx and the derivation δ = x d

dx
. If y1(x), . . . , yn(x) is a

C(x)-basis of V and y(x) = (y1(x), . . . , yn(x))T , then

x
dy(x)

dx
= A(x)y(x), A(x) ∈ gln(C(x))

y(qx) = B(x)y(x), B(x) ∈ GLn(C(x)).
(1)

B(x) is invertible because σ is an automorphism. Calculating σ(δ(y(x))) = δ(σ(y(x)))

in two ways and using that the components of y are linearly independent over C(x), we
obtain that A(x) and B(x) satisfy the consistency condition

x
dB(x)

dx
+B(x)A(x) = A(qx)B(x). (2)

The first principal result of our work (Theorem 2) states in this case that there exists a
matrix G(x) ∈ GLn(C(x)) such that the gauge transformation y(x) = G(x)z(x) results
in a new simpler system

x
dz(x)

dx
= Ãz(x),

z(qx) = B̃z(x)
(3)

with Ã ∈ gln(C) and B̃ ∈ GLn(C).
This implies that there is a new basis z(x) = (z1(x), . . . , zn(x))T of V given by

z(x) = G(x)−1y(x) such that xdz(x)
dx

= Ãz(x) and z(qx) = B̃z(x) with Ã and B̃ constant
matrices. It is not hard to show that the entries of z(x) must be Laurent polynomials and
therefore rational. We then conclude that y(x) is also rational and hence also the given
f(x) is rational.

We now give an idea of the proof of Theorem 2 in the context of the present case. A
calculation shows that the consistency condition implies: if Y (x) is a solution of xdY (x)

dx
=

A(x)Y (x) then Z(x) = B(x)Y (x) is a solution of xdZ(x)
dx

= A(qx)Z(x). Repeating this
observation we have that for any m, there is a gauge transformation Y (x) = Dm(x)Z(x)

taking solutions of xdY (x)
dx

= A(x)Y (x) to solutions of xdZ(x)
dx

= A(qmx)Z(x). This
gauge transformation only introduces apparent singularities, that is, those at which one
has a meromorphic fundamental solution matrix. Since the singular points in C\{0,∞}
of these two equations are disjoint for sufficiently large m, we can conclude that all the
singular points, other than 0,∞, of dY (x)

dx
= A(x)Y (x) are apparent (see Lemma 8).
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If Y (x) is a formal fundamental solution of xdY (x)
dx

= A(x)Y (x), then as seen above
Z(x) = B(x)Y (x) is a formal fundamental solution of xdZ(x)

dx
= A(qx)Z(x). Compar-

ing it with the formal fundamental solution Z̃(x) = Y (qx) of this equation, it follows
that 0 is a regular singular point (see Lemma 9). A similar statement holds for ∞. We
then have that if Y (x) is a fundamental solution analytic in a neighborhood of an ordinary
point, then Y (x) can be analytically continued to a meromorphic function on the universal
cover Ĉ of C\{0}. If Y (xe2πi) is the solution matrix obtained by analytically continuing
Y (x) once around 0, we have that Y (xe2πi) = Y (x)H for some H ∈ GLn(C). Writing
H = e2πiÃ with a non-resonant Ã, a calculation shows that G(x) = Y (x)x−Ã is a matrix
valued meromorphic function on C\{0}. Using the fact that 0 and∞ are regular singular
points, one deduces that G(x) has moderate growth at these points and so must have ra-
tional function entries. Therefore the gauge transformation y(x) = G(x)z(x) transforms
xdy(x)

dx
= A(x)y(x) to xdz(x)

dx
= Ãz(x). One then shows that the consistency condition

implies that this transformation also results in a constant q-difference equation for z(x)

and so (1) is transformed into (3) (see Lemma 10 for details).
The rest of our work is organized as follows. In Section 2 we consider systems (1)

where σ(x) = x + 1, qx (q 6= 0 not a root of unity) or xq, (q an integer ≥ 2) and
A(x) ∈ gln(C(x)), B(x) ∈ GLn(C(x)), C an algebraically closed field of characteristic
zero. Assuming a consistency condition analogous to (2) we show in Theorem 2 that
there is a transformation Y (x) = D(x)Z(x) with D(x) ∈ GLn(C(x)) taking system
(1) to a much simpler system. When σ(x) = qx or xq, we characterize those y(x) ∈
C[[x]][x−1] and those y(x) meromorphic on the Riemann surface of log x (when C = C)
that simultaneously satisfy a linear differential equation and a linear σ-difference equation
over C(x) ( Corollary 3). When σ(x) = x + 1, we characterize those y(x) ∈ C[[x−1]][x]

and those y(x) meromorphic on C that simultaneously satisfy a linear differential equation
and a linear σ-difference equation over C(x) (Corollary 5). Theorem 2 allows us to also
characterize in Corollary 6 when the time-1-operator of a linear differential system has
rational entries.

In Section 3 we consider systems of the form

σj(Y ) = Bj Y, j = 1, 2 (4)

with Bj ∈ GLn(C(x)) satisfying a suitable consistency condition and (σ1, σ2) defined
by (σ1(x) = x + 1, σ2(x) = x + α), α ∈ C\Q or (σ1(x) = q1x, σ2(x) = q2x) or
(σ1(x) = xq1 , σ2(x) = xq2) with q1 and q2 multiplicatively independent. Theorem 13
states that there is a gauge transformation Y (x) = D(x)Z(x), D(x) ∈ GLn(C(x)) in
the first two cases and D(x) ∈ GLn(K), K = C({x1/s | s ∈ N∗}) in the last case,
transforming such a system into a system with constant coefficients. Once again the proofs
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depend on showing that the singular points and the connection relations are particularly
simple. We again have corollaries characterizing formal solutions and solutions on various
domains of two linear σ equations in each of these three cases (Corollaries 14, 15 and 16).

We end this introduction with a discussion of two applications of our results. The first
concerns properties of automatic sets (See [3] for a general introduction to these sets and
[10] and [38] for connections to Mahler equations). A subset N ⊂ N of integers is called
k-automatic if there is a finite-state machine that accepts as input the base-k representa-
tion of an integer and outputs 1 if the integer is inN and 0 if it is not inN . Many sets can
be k-automatic for fixed k (for example the set of powers of 2 is 2-automatic) but only
very simple sets can be k- and `-automatic for multiplicatively independent integers k and
`. This fact is formalized in Cobham’s Theorem [19], [23].

Theorem (Cobham). Let k and ` be two multiplicatively independent integers. Then a set
N ⊂ N is both k- and `-automatic if and only if it is the union of a finite set and a finite
number of arithmetic progressions.

Linear difference equations involving the Mahler operator and k-automatic sets are
related by the following fact: If N is a k-automatic set then F (x) =

∑
n∈N x

n satisfies
a scalar linear difference equation over Q(x) with respect to the Mahler operator σ(x) =

xk, that is, a k-Mahler equation. In ([1], Theorem 1.1), Adamczewski and Bell show: a
power series f(x) ∈ C[[x]][x−1] satisfies both a k- and `-Mahler equation if and only if
it is a rational function, proving a conjecture of Loxton and van der Poorten [34]. Their
proof relies on Cobham’s Theorem. On the other hand, it is known that their Theorem
1.1 implies Cobham’s Theorem (see, for example, Section 2, [1] or Chapitre 7, [38]). In
our work we prove and generalize the Adamczewski-Bell result (Corollary 16) without
using Cobham’s Theorem, therefore yielding a new proof of this latter result. Our proof
of the Adamczewski-Bell result follows the general philosophy of our work. We show
that proving that a power series of two such Mahler equations is rational can be reduced to
showing that consistent pairs of first order Mahler systems must be of a very simple nature.
In fact, although we deduce the Adamczewski-Bell result from Theorem 13 mentioned
above, we do not need its full strength and can also prove this result from the weaker
statement contained in Proposition 22.

The second application concerns the Galois theory of difference equations. In [25] a
differential Galois theory of linear difference equations was developed as a tool to un-
derstand the differential properties of solutions of linear difference equations. This theory
associates to a system of linear difference equations Y (σ(x)) = B(x)Y (x) a group called
the differential Galois group. This is a linear differential algebraic group, that is a group of
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matrices whose entries are functions satisfying a fixed set of (not necessarily linear) dif-
ferential equations. Differential properties of solutions of the linear difference equation
are measured by group theoretic properties of the associated group. For example, a group
theoretic proof is given in [25] of Hölder’s Theorem that the Gamma Function satisfies
no polynomial differential equation, that is, the Gamma Function is hypertranscenden-
tal. In general, one can measure the amount of differential dependence among the entries
of a fundamental solution matrix of Y (σ(x)) = B(x)Y (x) by the size of its associated
group; the larger the group the fewer differential relations hold among these entries. This
theme has been taken up in [21] where the authors develop criteria to show that the gen-
erating series F (x) =

∑
n∈N x

n of certain k-automatic sets N are hypertranscendental.
As we mentioned above, these generating series satisfy Mahler equations and Dreyfus,
Hardouin and Roques in [21] develop criteria to insure that a given Mahler equation has
SLn or GLn as its associated group. The proofs of the validity of their criteria depend on
Bézivin’s result [12] that a power series that simultaneously satisfies a Mahler equation
and a linear differential equation must be a rational function. In [22], the authors develop
similar criteria (using the result of Ramis mentioned in the Introduction) for linear q-
difference equations. Both Ramis’s result and Bézivin’s result appear in Corollary 3 as a
consequence of Theorem 2 in the present work. Using Theorem 2 directly, the authors of
[6] classify the differential Galois groups that can occur for the equations considered in
this latter theorem and, in particular, rule out certain groups from occurring. Using this
classification, it is shown in [6] how the criteria of [21] and [22] can be extended and given
simple proofs. The results of [6] can also be used in designing algorithms to compute the
differential Galois group of linear difference equations (c.f., [5]). Using the Galois theory
presented in [33], the authors of [22] also develop criteria to determine when a solution
of a linear q-difference equation satisfies no q′-difference relation (even nonlinear) with
respect to a multiplicatively independent q′. This is done, in a manner analogous to the
results of [21], by developing criteria to insure that the Galois groups in this context are
large. Their result depends on the results of Bézivin and Boutabaa [15]. The results of
Section 3 can also be used to sharpen the criteria in [22].

2 Reduction of systems of differential and difference equa-
tions

Let C be an algebraically closed field4 and k = C(x). Let δ be a derivation on k with
constants C and σ be a C-algebra endomorphism of k. We suppose that there is a constant

4All fields considered in this work are of characteristic zero.
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µ ∈ C such that δσ = µσδ. This commutativity except for a constant factor is crucial for
our approach.

We consider three cases of couples (δ, σ) below.

case S: The derivation is δ = d/dx and σ is the shift operator defined by σ(x) = x + 1.
Here µ = 1.

case Q: The derivation is δ = x d/dx and σ is the q-dilation operator defined by σ(x) = q x

with some q ∈ C, q 6= 0 and not a root of unity. Note that µ = 1 here as well.

case M: The derivation is δ = x d/dx and σ is the Mahler operator defined by σ(x) = xq

with an integer q ≥ 2. Here we have µ = q.

Observe that σ is bijective in cases S and Q, but not in case M.
We will consider systems

δ(Y ) = AY

σ(Y ) = BY
(5)

with A ∈ gln(k), B ∈ GLn(k) that are consistent, that is A and B satisfy the consistency
condition given by

δ(B) = µσ(A)B −BA. (6)

The consistency condition is closely related to the almost-commutativity of δ, σ. Note
that it guarantees that δ(σ(Z)) = µσ(δ(Z)) holds for any solution Z of the system (5) in
any extension of C(x). It is satisfied if there exists a fundamental solution of δ(Y ) = AY

that is also a solution of σ(Y ) = BY in some extension of C(x) in which δ and σ

commute or if there exists a solution vector of the system in such an extension such that
its components are linearly independent over C(x). The consistency condition is satisfied
for the systems (5) constructed from the applications to common solutions of pairs of
linear scalar equations, again because δ and σ commute except for a constant factor.

We say that (5) is equivalent (over k) to a system

δ(Z) = ÃZ

σ(Z) = B̃Z
(7)

with Ã ∈ gln(k), B̃ ∈ GLn(k) if for some G ∈ GLn(k),

Ã = δ(G)G−1 +GAG−1

B̃ = σ(G)BG−1
(8)

that is, if (7) comes from (5) via the gauge transformationZ = GY . Note that the property
of consistency is preserved under equivalence.
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A simple, but crucial observation is the fact that the consistency condition can be
expressed as an equivalence.

Lemma 1. Consider the system (5). It satisfies the consistency condition (6) if and only if
it is equivalent to the system

δ(Z) = µσ(A)Z, σ(Z) = σ(B)Z (9)

by the gauge transformation Z = BY . For N ∈ N∗, it is equivalent to the systems

δ(Z) = µNσN(A)Z, σ(Z) = σN(B)Z. (10)

Proof. Rewriting (6) yields the first part, iteration using the fact that all these equivalent
systems are again consistent yields the second.

Observe that (10) is also obtained by applying σN to (5).
The main result of this section expresses that the consistency condition is very restric-

tive.

Theorem 2. The system (5) satisfying the consistency condition (6) is equivalent over k
to a system (7) with Ã ∈ gln(C), B̃ ∈ GLn(k). Moreover:

case S: Ã is diagonal, B̃ ∈ GLn(C) is constant and upper triangular and commutes with
Ã.

case Q: If λ1, λ2 are eigenvalues of Ã, then λ1 − λ2 6∈ Z \ {0}. B̃ ∈ GLn(C) is constant
and commutes with Ã.

case M: The eigenvalues of Ã are rational and in the interval [0, 1[ and there exists a diag-
onalisable matrix D with integer eigenvalues commuting with Ã such that Ã + D

is conjugate to q Ã. We have B̃ ∈ GLn(C[x, x−1]), such that the exponents m ap-
pearing with nonzero coefficient in B̃ are integer differences of the form qλ1 − λ2

of eigenvalues λ1, λ2 of Ã.

Remark: Simple counter-examples show that the statement in case Q no longer holds
if q is a root of unity. Consider for instance the natural consistent system satisfied by
yj(x) = exp(qjx), j = 0, ..., n− 1, if qn = 1.

Before giving a proof of this result in sections 2.1 and 2.2, we deduce several corollar-
ies concerning common solutions of the linear differential and σ-difference equations

L(f(x)) = δn(f(x)) + an−1(x)δn−1(f(x)) + . . .+ a0(x)f(x) = 0 and

S(f(x)) = σm(f(x)) + bm−1(x)σm−1(f(x)) + . . .+ b0(x)f(x) = 0,
(11)

with ai(x), bi(x) ∈ C(x).
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Corollary 3. Consider δ, σ as in case Q or M. Let E be the field of meromorphic func-
tions on Ĉ, where Ĉ denotes the Riemann surface of the logarithm over C \ {0}. C(x) is
considered as a subfield of E. If f ∈ E satisfies the linear differential and σ-difference
equations (11) then

f(x) =
t∑

i,j=1

rij(x)xαi log(x)j (12)

where αi ∈ C and rij ∈ C(x). In case M, we obtain moreover that the αi are ratio-
nal. Conversely, any such function satisfies a pair of linear differential and σ-difference
equations with coefficients in C(x).

Assume f(x) ∈ C[[x]][x−1] with C(x) considered as a subfield of C[[x]][x−1]. If f(x)

satisfies the linear differential and σ-difference equations (11) then f is rational, i.e. f ∈
C(x).

Remark: 1. The Corollary can be extended to functions satisfying non-homogeneous
systems

L(f(x)) = h1(x), S(f(x)) = h2(x),

where h1(x) and h2(x) are of the form (12). Indeed, as the latter satisfy homogeneous sys-
tems of the form (4), it is straightforward to eliminate them from the non-homogeneous
system at the expense of increasing the orders n and m of the equations. A similar remark
applies to the corresponding corollaries in case S and in cases 2S and 2Q in section 3.

2. Functions of the form (12) are elementary function. Algorithms for finding such solu-
tions of linear difference equations are known (eg. [20], [36], Ch. 4) and can be modified
to find solutions of this special type. Possible values of α and relevant powers of log x can
be calculated using effective procedures to determine canonical forms of such equations
at singular points ([36], Ch. 3.1). Again a similar remark applies to the corresponding
corollaries in case S and in cases 2S and 2Q of section 3 ([35]).

3. The final assertion of the above corollary corresponds to results of Ramis [37] in case
Q and of Bézivin [12] in case M. Their proofs proceed by examining the asymptotic be-
havior of solutions of the two scalar linear differential equations rather than our approach.
In [37], Ramis assumed that q 6= 0 and q is transcendental if |q| = 1. This condition can
be reduced to |q| 6= 0, 1. The latter was needed to ensure that qnx → 0 or qnx → ∞
when n → ∞ and allowed asymptotic results for q-difference equations to be applied.
As mentioned above, our approach only requires that σ(x) = qx, q 6= 0 has no periodic
points other than the fixed points.

4. Although we use Theorem 2 to prove the final statement of this corollary, one can prove
this directly from Lemmas 8 and 9 below as noted in the remark following Lemma 9.
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Proof. We begin by proving the assertion concerning a function f(x) ∈ E. Let W0 be
the C(x)-subspace of E spanned by

{σjδi(f(x))}

where 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1. Using the fact that δσ = µσδ and the equation
L(f(x)) = 0, one sees thatW0 is left invariant under δ. Similarly, using S(f(x)) = 0, one
sees that W0 is invariant under σ. Unfortunately, σ does not preserve linear independence
over C(x) in case M – just consider 1 and x1/q. Therefore we consider now the vector
spaces W` generated by the elements of σ`(W0), ` = 0, 1, .... These are again invariant
under δ and σ. As they form a descending chain of finite dimensional C(x)-vector spaces
there must be a first index s such Ws = Ws+1. It is easy to see that we then have that
W` = W`+1 for all ` ≥ s. In the sequel, we consider Ws and omit the index s.

Let w1, . . . , wt be a C(x)-basis of W and let w = (w1, . . . , wt)
T . We have that

δ(w) = Aw

σ(w) = Bw
(13)

for some A ∈ glt(k), B ∈ GLt(k) because σ(w1), ..., σ(wt) again generate W . We claim
that A and B satisfy (6). To see this, note that

0 = µσδ(w)− δσ(w) = (µσ(A)B −BA− δ(B))w.

Since the entries of w are linearly independent over k, we have (6).
Before we continue with the proof of this corollary, we remark that the above argument

does not use special properties of δ and σ and will again be useful later. We note it as

Lemma 4. Let C be an algebraically closed field, k = C(x), E a k-algebra, δ a deriva-
tion on E annihilating C satisfying δ(x) ∈ k and σ a C-algebra endomorphism on E
satisfying σ(k) ⊂ k and δσ = µσδ for some µ ∈ C∗. Suppose that there exists an
f ∈ E satisfying a system (11) of equations. Then there exist s, t ∈ N 5, a solution vector
w = (w1, ..., wt)

T ∈ Et of a system (13) satisfying the consistency condition (6) and
ri ∈ k, i = 1, .., t, such that σsf =

∑t
i=1 riwi.

We now apply Theorem 2 to the equations δ(Y ) = AY, σ(Y ) = BY . We conclude
that there is a gauge transformation Z = GY that transforms this system to a system
δ(Z) = ÃZ, σ(Z) = B̃(x)Z where Ã is a constant matrix (with rational eigenvalues in
case M ). Letting z = (z1, . . . , zt)

T = Gw we see that z ∈ Et satisfies δz = Ãz and
hence z = xÃC for some constant matrix C. Therefore the zi are of the desired form.

5N denotes the set of non-negative integers in the present text.



11

Since the zi are again a C(x)-basis of W , there exists a non-negative integer s such that
σs(f) is a C(x)-linear combination of the zi. In case Q, it follows immediately that f is
also a C(x)-linear combination of terms of the wanted form. In case M , we find that f is
a C(xq

−s
)-linear combination of terms of the desired form, that is, it is itself of that form.

Thus we have proved the first statement of the corollary.
To prove the second part of the corollary, first assume that f = xα log(x)j with α ∈ C,

j ∈ N. A simple calculation shows that the operator L = (δ − α)j+1 annihilates f .
In case Q, we obtain that S = (σ − qα)j+1 also annihilates f .
In case M, it is required that α be rational. As there are only finitely many rationals in

[0, 1[ with the same denominator as α, there must exist positive integers m 6= n such that
(qm − qn)α =: r ∈ Z. Then σm(f) = qj(m−n)xrσn(f) and we have found a σ-difference
equation for f .

The general case follows from the fact that sums and products with rational func-
tions of solutions of differential or σ-difference equations, respectively, again satisfy
such equations.

We now turn to the assertion concerning a function f(x) ∈ C[[x]][x−1]. We can again
use Lemma 4 and apply Theorem 2. Following the proof of the first part of this corollary
we will find the solutions of δz = Ãz in C[[x]][x−1]t. Clearly the coefficient z(`) of z in
front of x` must satisfy Ã z(`) = ` z(`). Hence z(`) can only be different from 0 for finitely
many ` and so z ∈ C[x, x−1]t ⊂ C(x)t. Since the entries in the vector z form a C(x)-basis
of W , we must have t = 1. Therefore z is a scalar in C(x) and so σs(f) is also rational,
σs(f)(x) = g(x) ∈ C(x). In case Q, the proof is finished since we can immediately
conclude that f(x) ∈ C(x). In case M, we have that σs(f) is in C{xqs}[x−qs ] and hence
invariant under the substitutions x→ x exp(2πi`/qs), ` = 0, ..., qs−1. Therefore we also
have that

σs(f)(x) = q−s
qs−1∑
`=0

g(x exp(2πi`/qs)) ∈ C(xq
s

).

Hence f ∈ C(x).

In the shift case, the corollaries obtained are slightly different as we cannot consider
the difference equation on Ĉ or C[[x]][x−1]. It is possible here to consider the difference
equation for meromorphic functions of C and for formal Laurent series in 1/x, that is in
C[[x−1]][x]. Again C(x) is considered as a subset of C[[x−1]][x], where the inclusion is
given by series expansion at x =∞.

Corollary 5. Consider δ = d/dx and σ induced by σ(x) = x+ 1 . If f(x) is a meromor-
phic function on some horizontal strip {x ∈ C | m < Imx < M} satisfying the system



12

(11) of a linear differential and difference equations with coefficients in C(x) then

f(x) =
t∑
i=1

ri(x)eαix

where αi ∈ C and ri(x) ∈ C(x). Conversely, any such function satisfies a pair of linear
differential and difference equations with rational coefficients.

If f(x) ∈ C[[x−1]][x] satisfies the system (11) of a linear differential and difference
equations with coefficients in C(x) then f(x) is rational.

Remark: In [13], Bézivin and Gramain consider entire solutions of linear differential/dif-
ference equations of the type considered in Corollary 5 and show that such solutions must
be of the form described. Their proof ultimately depends on an analytic result of Kelleher
and Taylor describing the growth properties of a set of entire functions equivalent to the
property that they generate an ideal equal to the whole ring of entire functions. A crucial
part of their proof also involves reduction to equations with constant coefficients but in a
different manner than the proof presented here. They also give conditions on the equations
that guarantee that the ri(x) appearing in the expression for f(x) are polynomials.

Such a condition can also be given here. Let `(x) be the least common denominator of
the coefficients aj(x), j = 0, ..., n − 1 of L in (11), r(x) the least common denominator
of the coefficients bj(x), j = 0, ...,m− 1 of S. By the C(x)-linear independence of eαix,
i = 1, ..., t, also the individual terms ri(x)eαix are solutions of the scalar equations (11).
Therefore the poles of some ri(x) must be among the zeroes of `(x). Now let α be a pole
of some ri(x) with minimal real part. Then it is a zero of `(x) as seen above, but in view
of σ−mS(ri(x)eαix) = 0, α must also be a zero of σ−mr. As a consequence, all ri must
be polynomials, if ` and σ−mr have no common zero.

Proof. Using Lemma 4 and Theorem 2, we obtain that f(x) is a C(x)-linear combination
of solutions of δz = Ãz with diagonal constant Ã. This yields the first part of the corollary.

To prove the second part of the corollary, first assume that the ri are polynomials with
deg(pi) = ni. A simple calculation shows that the operators L =

∏t
i=1(δ − αi)ni+1 and

S =
∏t

i=1(σ − eαi)ni+1 annihilate f . In general, let p(x) be a common denominator of
the ri and let L̃ and S̃ be the operators annihilating p(x)f . Then clearly L = 1

p(x)
L̃◦Mp(x)

and S = 1
σnp(x)

S̃ ◦Mp(x), n = t +
∑
ni, Mp(x) the multiplication operator, satisfy the

conditions of the theorem.
For the last part of the corollary we use again Lemma 4 and Theorem 2 and obtain

again that f(x) is a C(x)-linear combination of solutions of δz = Ãz, with diagonal
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constant Ã, now in C[[x−1]][x]t. Hence z is also constant 6. As a consequence, f(x) is in
C(x).

Another consequence of Theorem 2 in case S concerns the time-1-operator associated
to a system dy

dx
= A(x)y, A ∈ C(x). It is defined by TA(x) = Y (x+ 1, x), where Y (t, x)

denotes the solution matrix of d
dt
Y (t, x) = A(t)Y (t, x) satisfying Y (x, x) = I . It is

holomorphic on C\∪L`=1[x`−1, x`+1] if x`, ` = 1, ..., L are the singularities ofA(x). By
the theorem on the dependence of solutions upon initial conditions, it is readily verified
that W (t, x) = ∂Y

∂x
(t, x) satisfies d

dt
W (t, x) = A(t)W (t, x) and W (x, x) = −A(x) and

hence ∂Y
∂x

(t, x) = −Y (t, x)A(x). Thus we find that

d

dx
TA(x) = A(x+ 1)TA(x)− TA(x)A(x).

The system
d
dx
y = A(x)y

y(x+ 1) = TA(x)y(x)
(14)

therefore satisfies the consistency condition (6). This implies that TA(x) may be continued
analytically to the universal covering of C \ {ξ, ξ + 1 | ξ a singularity of A(x)}. It also
allows us to show

Corollary 6. The time-1-operator defined for a system of linear differential equations
dy
dx

= A(x)y, A(x) ∈ gln(C(x)), has rational functions as entries if and only if the system
is equivalent over C(x) to a system with a constant diagonal coefficient matrix.

Proof. It suffices to put B(x) = TA(x) and to apply Theorem 1.

An analogous corollary can be stated for the “q-multiplication-operator” that can be de-
fined for a system x dy

dx
y = A(x)y. Details are left to the reader.

In case M, the statement of Theorem 1 is not entirely satisfactory, because the matrix
B(x) obtained is not constant. This can be repaired by changing the base field. Consider
the field K = C({x1/` | ` ∈ N}) (see [21]) containing all fractional powers of x. This
field also has the advantage that σ, now defined by mapping xα to xqα for all rational α, is
an automorphism7. The derivation δ̃ = x log(x) d

dx
and the automorphism σ mapping xα

to xqα, log(x) to q log(x) commute on the base field K(log x) (i.e. µ = 1). Furthermore,
as the consistency conditions for the couple (δ, σ) and the couple (δ̃, σ) are equivalent we
do not consider δ̃ here.

6By the way, as the entries of z form a C(x)-basis of the space W of the proof of Lemma 4, we have
t = 1.

7For this property it would not be necessary to have all fractional powers of x in the field. The field
K0 = C({x1/q` | ` ∈ N}) would suffice.
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Corollary 7. Consider the system (5) in case M with A ∈ gln(K), B ∈ GLn(K) satis-
fying the consistency condition (6). It is equivalent over K to a system (7) with nilpotent
constant Ã ∈ gln(C) and constant B̃ ∈ GLn(C) satisfying qÃB̃ = B̃Ã. It is equivalent
over K(log(x)) to a system (7) with Ã = 0 and constant B̃ ∈ GLn(C).

Proof. Making a change of variables x = tN with a suitable positive integer N , if nec-
essary, we can assume that A,B have entries in C(x). By Theorem 1, there is a gauge
transformation changing (5) into δU = ĀU, σU = B̄(x)U with constant Ā having ratio-
nal eigenvalues. By a constant transformation, we can assume that Ā is in Jordan canonical
form. IfD = diag(r1, ..., rn) is the diagonal of Ā, then U = diag(xr1 , ..., xrn)Z is a gauge
transformation in GLn(K) changing the system into (7) where now Ã = Ā−D is nilpo-
tent. The matrix B̃(x) has entries in C[x1/N , x−1/N ] for some positive integerN and satis-
fies the consistency condition. Writing B̃(x) =

∑t
m=−tBmx

m/N yields qÃBm−BmÃ =
m
N
Bm for any m ∈ {−t, . . . , t}. Since Ã is nilpotent, so is the operator mapping X to

qÃX −XÃ. Hence Bm = 0 unless m = 0. This proves the first statement.
In order to prove the second statement it suffices to use the first and to make the gauge

transformation V = exp(− log(x)Ã)Z. Observe that the consistency condition for Ã, B̃
is qÃB̃ = B̃Ã and that is implies exp(q log(x)Ã)B̃ = B̃ exp(log(x)Ã).

We now turn to a proof of Theorem 2. In a first step, the consistency condition will
be used in the form of Lemma 1 to characterize the singularities of the equation δ(Y ) =

A(x)Y . We say that a singular point x1 of the equation δ(Y ) = A(x)Y is an apparent sin-
gular point if there is a fundamental solution matrix whose entries are in C{x−x1}[(x−
x1)−1] 8. Note that this condition is the same as saying that there is an equivalent system
for which x1 is a regular point. To see this note that truncating the entries of such a funda-
mental solution matrix at a sufficiently high power, we obtain a matrix G such the gauge
transformation Y = GZ leads to an equivalent system for which x1 is a regular point. In
Lemma 8 we show that the finite singular points must be apparent singular points (with
the exception of 0 in cases Q and M). In cases Q and M, Lemma 9 shows the effect of
consistency, that is Lemma 1, on the structure of local solutions at these points. Finally,
monodromy theory is used to show that the differential equation is equivalent to δz = Mz

with some constant matrix M and that the spectrum of M has the desired properties. In
case S, Lemma 11 states the first consequence for the solutions at infinity. Then we have to
work considerably harder to arrive at the wanted reduced form of the differential equation
(c.f., Proposition 12.) The rest of the conclusions of Theorem 2 will follow easily.

8Although some authors use this term to mean that the equation has a fundamental solution matrix
holomorphic at x1, we will use the above extended meaning throughout this work.
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The entries of A and B have coefficients that lie in a countable algebraically closed
field so we may replace C, if necessary, with a countable algebraically closed field, again
denoted by C. Furthermore, we may assume that C is a subfield of the complex numbers
C. In the rest of the proof it can be verified that all equivalent systems can be chosen to
have entries in this C(x).

Lemma 8. Consider δ, σ as in cases S,Q or M and a system (5) satisfying the consistency
condition (6). Then each finite singular point ξ of the differential equation δY = AY ,
except maybe 0 in cases Q and M, is an apparent singular point.

Remark: Using the Lemma, it can be shown (see e.g. [9]) that the system (5) is equivalent
to a system (7) where Ã and B̃ have entries in C[x, x−1] in cases Q and M and Ã, B̃ ∈
C[x] in case S. We do not need this statement in our proof.

Proof. Consider the differential equation

δ(Y ) = AY. (15)

By Lemma 1, it is equivalent to

δZ = µNσN(A)Z. (16)

for any positive integer N . Let s(x) = σ(x) ∈ C[x]. Let S be the set of finite singularities
of (15), except 0 in cases Q and M and let SN be the analogous set for (16). Note that
x1 ∈ SN if and only if σN(x1) = s(s(. . . s(x1) . . .)) is in S. It can be verified in each
of the cases S,Q and M that for any finite singularity ξ ∈ S and large enough N , there
exists x1 ∈ SN not in S satisfying σN(x1) = ξ. Since (15) and (16) are equivalent, there
exists a basis of solutions of (16) in C{x−x1}[(x−x1)−1]n. Applying σ−N yields a basis
of solutions of (15) in C{x − ξ}[(x − ξ)−1]n in cases S and Q. Substituting the branch

x = x1

(
1 + t−ξ

ξ

)1/qN

of t1/qN , we see that δy(t) = A(t)y has a basis of solutions in

C{t− ξ}[(t− ξ)−1]n in case M as well.
Hence every finite singular point ξ of (15,) except 0 in cases Q and M, is an apparent

singular point.

We now consider the behavior of solutions of equations (5) at infinity. In general, if one
has a linear differential equation δY = A(x)Y with A(x) ∈ gln(C((x−1))), there exists a
formal fundamental solution matrix of the form

Y (x) = Φ(x)xLeQ(x) (17)
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where Φ(x) is a formal power series in x−1/r for some integer r, L is a constant matrix
and Q(x) =

∑h
j=1Qjx

rj where the Qj are diagonal matrices with entries in C and the rj
are positive rational numbers with rh > rh−1 > . . . > r1 > 0 (or Q(x) ≡ 0); furthermore
L and Q(x) commute (c.f., [7]).

In the rest of the proof of Theorem 2, we will treat cases Q and M together and then
treat case S.

2.1 Proof of Theorem 2: Cases Q and M.

We begin by showing that under our hypotheses Q(x) = 0 in these cases.

Lemma 9. Let Y (x) be a formal fundamental solution matrix of δ(Y ) = AY as in (17).
In cases Q and M we then have that Q(x) = 0, i.e.∞ is a regular singular point.

In the same way, it is shown that 0 also must be a regular singular point in those two
cases.

Remark. We note that Lemmas 8 and 9 are sufficient to prove, in cases Q and M, that any
f(x) ∈ C[[x]][x−1] satisfying (11) must be in C(x). Using the argument of Corollary 3,
we may assume that f(x) is a component of a vector y(x) of power series such that
y(x) is a solution of a consistent system (13). Lemma 9 implies that f(x) converges in a
neighborhood of 0 since this point is a regular singular point and Lemma 8 implies that
y(x) can be continued analytically to a meromorphic function on C. Finally, y(x) has at
most polynomial growth since ∞ is also a regular singular point. Altogether, we obtain
that y(x) has rational components and so f(x) is rational.

Proof. Let Q(x) = diag(p1(x), . . . , pn(x)). By Lemma 1, we have that B(x)Y (x) is a
solution of δ(Y ) = µσ(A(x))Y (x) and σ(Y (x)) as well. Let p(x) be a nonzero diagonal
entry of Q(x). By the uniqueness of the pi (Theorem 2,[7]), we must have that for some
j, σ(p(x)) = pj(x). This implies that the map p(x) 7→ σ(p(x)) permutes the pi . From
this we conclude that for some m, that σm(p(x)) = p(x), a contradiction in cases Q and
M. Therefore we have that Q(x) = 0.

Lemma 10. In cases Q and M there exists a matrix T ∈ gln(C) such that λ1 − λ2 6∈ Z∗

for eigenvalues λ1, λ2 of T and a gauge transformation Z = F Y , F ∈ GLn(C(x)), that
transforms δY = A(x)Y into δ(Z) = TZ.

Moreover in case M, the matrix T has the following properties:

1. Its eigenvalues λ are rational with smallest denominators prime to q, 0 ≤ λ < 1.
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2. There exists a diagonalisable matrix D with integer eigenvalues commuting with T
such that T +D is conjugate to q T .

Proof. Consider any local fundamental matrix Y (x) of (15). Because of Lemma 8 it can
be continued analytically to a meromorphic function on Ĉ. Let Y (x e2πi) be the funda-
mental matrix obtained by going once around 0. There exists a constant invertible matrix
H ∈ GLn(C) such that

Y (x e2πi) = Y (x)H,

the so-called monodromy matrix associated to Y and (15). It is well known that there
exists a matrix T ∈ gln(C) such thatH = exp(2πiT ). Consider nowG(x) = Y (x)x−T =

Y (x) exp(− log(x)T ). By construction, G(x) is invertible for every x that is not a pole
and G(x e2πi) = G(x), i.e. G is single valued. By the previous lemma, 0 and ∞ are
regular singular points of (15) and therefore the growth of G(x) as x→ 0 or x→∞ is at
most polynomial (i.e. there exists K,L > 0 such that |G(x)| ≤ L(|x| + |x|−1)K). Hence
the meromorphic function G on C∗ must be a rational function,i.e. G ∈ GLn(C(x)). The
transformation y = G(x)z changes δy = A(x)y into a system of differential equations
having xT as a fundamental solution, i.e. δz = T z. The matrices T and G(x) satisfy
A = δ(G)G−1 +GTG−1, det(G) 6= 0. Therefore the entries of T and the coefficients of
the entries ofG satisfy a finite number of equations and inequations with coefficients inC.
The Hilbert Nullstellensatz can be applied and yields that there also exists a solution in C.
Therefore we may assume that T ∈ GLn(C) and G(x) ∈ GLn(C(x)). A further constant
gauge transformation allows us to assume that T is in triangular form. To insure that the
eigenvalues of T do not differ by nonzero integers, one can make a gauge transformation
by a diagonal matrix S whose diagonal entries are powers of x (c.f., Lemma 3.11, [36]).

In case M, it also remains to show the stated properties. Observe that B(x)Y (x) and
Y (xq) are both fundamental solutions of δY = q A(xq)Y – this was used before. Hence
there exists a constant invertible matrix D such that

B(x)Y (x) = Y (xq)D.

For the corresponding monodromy matrices this implies the relation H = D−1HqD

because xq goes q times around 0 when x goes once. Therefore H and Hq are conjugate.
As a first consequence, the mapping λ→ λq must induce a permutation of the eigenvalues
of H . Hence, for every eigenvalue λ of H there exists a positive integer ` such that λq` =

λ. The eigenvalues of H are therefore roots of unity and the smallest positive integer m
satisfying λm = 1 must be prime to q. This shows that the matrix T with H = exp(2πiT )

can be chosen having the first property.
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We can assume that T is in Jordan canonical form T = diag (T1, ..., Tr) with Jor-
dan blocks Ti of size ni, say. The mapping λmodZ → qλmodZ induces a permu-
tation of the equivalence classes λmodZ of the eigenvalues λ of T . Hence there is a
permutation matrix P such that the diagonal blocks of P−1 qT P have the same size
and modulo Z the same eigenvalues as those of T . Therefore there is a diagonal matrix
D = diag (d1In1 , ...drInr) with integer di such that the blocks of P−1 qT P and T + D

have same size and same eigenvalues and thus the two matrices are conjugate. This proves
the second property of the matrix T .

We can now complete the proof of Theorem 2 in cases Q and M. From the above lemmas
we know that there is a gauge transformation that transforms δ(Y ) = AY into a new equa-
tion δ(Y ) = TY where T has the stated properties. Apply the same gauge transformation
to σ(Y ) = BY to yield σ(Y ) = B̃Y . The consistency condition (6) implies that

δB̃(x) = µTB̃(x)− B̃(x)T.

Comparing the orders of the poles, we see that B̃(x) can have no finite poles other than 0
and we have B̃(x) ∈ C[x, x−1]. Now let B̃(x) =

∑m0

m=−m0
xmBm.

In case Q we obtain that TBm − BmT = mBm for all m = −m0, . . . . ,m0. As the
eigenvalues of the operator X 7→ TX − XT are exactly the differences λ1 − λ2 where
λ1, λ2 are eigenvalues of T the condition for T shows that Bm = 0 unless m = 0. This
proves the theorem in case Q.

In case M we then have qTBm − BmT = mBm for all m = −m0, ...,m0. Hence
Bm 6= 0 can only hold for integers m such that there exist eigenvalues λ1, λ2 of T such
that qλ1 − λ2 = m. This shows the remaining statement of the theorem in case M.

2.2 Proof of Theorem 1: Case S

In the remaining case S, we consider again the formal fundamental solution matrix at
infinity of the form (17). We will first show that under our hypotheses rh ≤ 1 in case S.

Lemma 11. Let Y (x) be a formal fundamental solution matrix of δ(Y ) = AY as in (17).
We then have that rh ≤ 1 in case S.

Proof. Let Q(x) = diag(q1(x), . . . , qn(x)). Let q(x) = ahx
rh + ah−1x

rh−1 + . . .+ a1x
r1

be one of the qi and assume rh > 1. Note that for any integer m we have q(x + m) =

q(x) + mrhx
rh−1+ other terms of order less than rh − 1. We have that B(x)Y (x) is a

solution of δ(Y ) = A(x + 1)Y (x). Therefore, by the uniqueness of the qi (Theorem
2,[7]), we must have that for some j, q(x + 1) = qj(x) modulo terms of order ≤ 0. This
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implies that the map q(x) 7→ q(x + 1) permutes the qi modulo non-positive terms. From
this we conclude that for some m, that q(x+m) = q(x) modulo terms of order less than
rh − 1, a contradiction. Therefore we have that rh ≤ 1.

The following proposition concerns only linear differential equations whose formal so-
lutions satisfy the conclusions of the Lemmas 11 and 8, with no mention of difference
equations.

Proposition 12. Let Y (x) be a formal fundamental solution matrix as in (17) of the differ-
ential equation δ(Y ) = AY,A ∈ gln(C(x)) with rh ≤ 1. Assume that all finite singular
points of the differential equation are apparent in the sense of Lemma 8. Then there exists
a diagonal matrix Ã with constant entries and a gauge transformation Z = F Y such
that Z satisfies δ(Z) = ÃZ.

Proof. For almost all directions θ there exist

1. sectors S and T of openings greater than π bisected by θ and θ + π, respectively,

2. a number R > 0 and functions ΦS(x) and ΦT (x) analytic for |x| > R in S and T ,
respectively, such that

(a) ΦS(x) and ΦT (x) are asymptotic to Φ(x) as x→∞ in their respective sectors,
and

(b) Y S(x) = ΦS(x)xLeQ(x) and Y T (x) = ΦT (x)xLeQ(x) are solutions of δY =

AY .

This can be proved using multisummation (c.f., Section 7.8, [36]) but can also be obtained
independently (c.f., the proposition of [29], p.85).

We write Q(x) = diag(q1(x)I1, . . . , qs(x)Is) with distinct qi(x) and Ij identity ma-
trices of an appropriate size. We can furthermore order the qi(x) so that in the direction
arg(x) = ψ = θ + π/2 we have Re(qj(x)) < Re(qk(x)) for large |x| if j < k. Let us
first assume that there are no monomials of the form xα, 0 < α < 1 in any of the qi
(we shall show below that this is indeed the case). We may then write Q(x) = Λx where
Λ = diag(λ1I1, . . . , λsIs) with Re(λjx) < Re(λkx) for j < k and arg(x) = ψ. Let C+

be the Stokes matrix defined by Y S(x) = Y T (x)C+ in the component of the intersection
of S and T that contains the line arg(x) = ψ. Because of the ordering of the λi we have
that C+ is upper triangular with 1 on the diagonal (§3,[8]; c.f., Theorem 8.13, [36]).

We include a short proof of this fact for the convenience of the reader. Write Y S =

(Y S
1 |...|Y S

s ) and Y T = (Y T
1 |...|Y T

s ) in block columns according to the subdivision of
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Q and do the analogous subdivision for Φ. Split L = diag(L1, ..., Ls) and write C+ =

(C+
i,j)i,j=1,...,s in corresponding blocks. First suppose that there is a non-vanishing block

C+
ij ,i > j, below the diagonal. Fix one such j. Then

Y S
j (x) =

m∑
i=1

Y T
i C

+
ij (18)

wherem ≤ s is chosen as the last index i such that C+
i,j 6= 0. By assumption we havem >

j. Hence Y S
j exp(−qm(x)) has a non-vanishing asymptotic expansion Φm(x)xLmC+

mj as
x → ∞ on the line arg x = ψ contradicting the fact that it also has an expansion
Φj(x)xLj exp(qj(x) − qm(x)) and hence vanishes faster than any power of x as x → ∞
on this line because of m > j. Therefore there is no non-vanishing block C+

ij below the
diagonal. In the same way one shows that the diagonal blocks Cjj must equal Ij . This
completes the proof that C+ is upper triangular with 1 on the diagonal.

Similarly to C+, let C− be the Stokes matrix defined by Y S(x) = Y T (x)C− in the
component of the intersection of S and T that contains the line arg(x) = ψ−π. Note that
Re(λjx) > Re(λkx) on the line arg(x) = ψ − π if j < k. We therefore have that C− is
lower triangular with 1 on the diagonal. As all finite singular points are apparent, both
Y S(x) and Y T (x) can be extended as meromorphic functions on C with finitely many
poles. We therefore have C+ = C− = I . The matrix

F (x) = Y S(x)e−Λx = Y T (x)e−Λx

has entries that are meromorphic with finitely many poles and of polynomial growth at
infinity, that is, rational entries. Therefore the transformation Z = F−1(x)Y yields the
system δ(Y ) = ΛY .

We now show that monomials of the form xα, 0 < α < 1 cannot appear in any of the
qi. Assuming that this is not the case we will argue to a contradiction. We write each qi(x)

as
qi(x) = λix+ terms involving xα with 0 < α < 1.

To fix notation, we assume that the same branches of log x are used to define Y S(x) and
Y T (x) on the component of S ∩ T containing ψ but that on the other component we use
arg x near ψ − π in S and arg x near ψ + π in T .

We define the Stokes matrix C+ as above. Again we have that C+ is upper triangular
with 1 on the diagonal. We divide this matrix again C+ = (C+

ij ) according to the diagonal
blocks of Q. We do not claim that C+ is the identity matrix because different determina-
tions of the powers are used in the definitions of Y S(x) and Y T (x) in the components of
the intersection of S and T that contain the lines arg(x) = ψ±π. Nevertheless Y S(x) and
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Y T (x) are meromorphic on C with finitely many poles by the assumption of the Propo-
sition so Y S(x) = Y T (s)C+ also holds in this component. This implies that C+

ij = 0 if
i < j and λi 6= λj because otherwise Re(λix) > Re(λjx) on the line arg(x) = ψ + π,
thus Re(qi(x)) > Re(qj(xe

−2πi)) for large x on this line and therefore by (18) the right
hand side would grow faster as |x| → ∞ on that line than the left hand side if C+

ij 6= 0, a
contradiction.

To complete the argument that no xα, 0 < α < 1 appear in the qi(x), note the follow-
ing:

If some qi(x) appears in Q(x) we must have, for all integers m, that the conjugate
qi(xe

2mπi) also appears ([7], §1).

Continuing, we assume that some qi(x) contains a monomial xα, 0 < α < 1, and let
j be the smallest index for which this is true. We claim that λi 6= λj for i < j. If not
then, for some i, qi(x) = λx and qj(x) = λx + cxα + lower order terms. Among the
conjugates qj(e2mπix), m integer, we can find one such that Re(ce2mπiαxα) tends to −∞
as x approaches infinity along the line arg(x) = ψ. By the minimality of j, this is also the
case for m = 0. We then have Re(qi(x)) > Re(qj(x))) eventually along this line as well,
contradicting i < j. Hence the blocks C+

ij do not only vanish if i > j, but as seen above
also if i < j (since λi 6= λj in this case).

Therefore Y S
j = Y T

j for the block column corresponding to qj(x). This is impossible
since near arg x = ψ + π, Y T

j (x) is asymptotic to something times eqj(x) while Y S
j (x) is

asymptotic to something times eqj(xe−2πi). This contradiction allows us to conclude that
no fractional powers appear in the qi(x) and so completes the proof.

We can now complete the proof of Theorem 2 in case S. From Proposition 12 we know
that there is a gauge transformation that transforms δ(Y ) = AY into a new equation
δ(Y ) = ÃY where Ã is the diagonal matrix diag(a1, . . . , an) with constant entries. Apply
the same gauge transformation to σ(Y ) = BY to yield σ(Y ) = B̃Y , B̃ = (bi,j). Since
the ai are constant, the consistency condition (6) implies

δ(bi,j) = (ai − aj)bi,j (19)

If ai 6= aj then bi,j = 0 since (19) then has no nonzero solution in C(x). If ai = aj , then
δ(bi,j) = 0. Therefore B̃ has constant entries. Equation (6) now implies that Ã and B̃

commute. This implies that there is a matrix D ∈ GLn(C) which commutes with Ã such
that DB̃D−1 is upper diagonal.
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3 Reduction of systems of difference equations

Here we present results analogous to Section 2 for systems of two difference equations
with shifts having irrational quotient, for systems of two q-difference equations with “in-
dependent” q and for systems of two Mahler equations with independent q.

We consider two commuting C-algebra endomorphisms σ1, σ2 on k extending the
trivial automorphism on C, more specifically, the three cases of couples (σ1, σ2) below.

case 2S: Two shift operators σj defined by σ1(x) = x+1 and σ2(x) = x+αwhere α ∈ C\Q.

case 2Q: Two q-dilation operators σj , j = 1, 2, defined by σj(x) = qj x with multiplicatively
independent9 qj ∈ C, |qj| 6= 0, qj not a root of unity. We also assume that at least
one of the qj does not have modulus 1, without loss of generality |q1| 6= 1.10 When
considering σj on the Riemann surface Ĉ of the logarithm, we fix logarithms of qj
used to determine qjx in Ĉ for given x ∈ Ĉ.

case 2M: Two Mahler operators σj , j = 1, 2, defined by σj(x) = xqj with some multiplica-
tively independent positive integers qj .

More precisely, we will consider systems

σj(Y ) = Bj Y, j = 1, 2 (20)

with Bj ∈ GLn(k) that are consistent, that is B1 and B2 satisfy the consistency condition
given by

σ1(B2)B1 = σ2(B1)B2. (21)

As in Section 2, the consistency condition is closely related to the commutativity of
σ1, σ2. Both are fundamental for our approach. As (6) did in Section 2, the consistency
condition guarantees that σ1(σ2(Z)) = σ2(σ1(Z)) holds for any solution Z of the system
(20) in any extension of C(x). The other remarks following (6) apply analogously.

We say that (20) is equivalent (over k) to a system

σj(Z) = B̃jZ, j = 1, 2 (22)

with B̃j ∈ GLn(k) if for some G ∈ GLn(k),

B̃j = σj(G)BjG
−1, j = 1, 2 (23)

9i.e. there are no nonzero integers nj such that qn2
2 = qn1

1 .
10Alternatively to |q1| 6= 1, one can assume that |q1| = |q2| = 1, q2 not a root of unity, q1 transcendental

over Q or q1 algebraic over Q such that its minimal polynomial has a root in C of absolute value not equal
to 1. See Remark 21.
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that is, if (22) comes from (20) via the gauge transformation Z = GY . Note that the
property of consistency is preserved under equivalence. In the present context we can
prove

Theorem 13. In cases 2S and 2Q, the system (20) satisfying the consistency condition
(21) is equivalent over k to a system (22) with constant invertible commuting B̃j , j = 1, 2,
that is B̃j ∈ GLn(C), j = 1, 2, and B̃2 B̃1 = B̃1 B̃2.

In case 2M, the system (20) satisfying the consistency condition (21) is equivalent over
K = C({x1/s | s ∈ N∗}) to a system (22) with constant invertible commuting B̃1, B̃2.

Remark: 1. When n = 1 in case 2S, the result of this theorem is a reformulation of
Lemma 3.1 in [17] where the authors give a purely algebraic proof of this special case.

2. In case 2S, one of the equations can be made diagonal by a (polynomial) transformation
Z = HU ,H = exp(Nx) with a certain nilpotent matrixN commuting with its coefficient
matrix.

3. In case 2M, the statement of the theorem also holds for Bj ∈ GLn(K), j = 1, 2,
because fractional powers of x can be removed by some change of variables x = tN with
a suitable positive integer N .

The proof of this theorem will be given for each of the cases separately in Sections 3.1, 3.2
and 3.3. As in Section 2, we present a few consequences of the theorem before presenting
these proofs. These concern a system

Sj(f(x)) = σ
mj
j (f(x))+ bj,mj−1(x)σ

mj−1
j (f(x))+ . . .+ bj,0(x)f(x) = 0, j = 1, 2 (24)

with bj,i(x) ∈ C(x).
In view of the simplest nontrivial system of this form, y(x + 1) = y(x), y(x + α) =

y(x), in case 2S with non-real α, it is necessary to consider elliptic functions if we are
interested in solving (24) using meromorphic functions. We recall the functions needed
here (see [32], section 23.2). The Weierstrass ℘-function is the unique 1- and α-periodic
meromorphic function that has exactly one double pole in the basic parallelogram with
vertices ±1/2 ± α/2 and satisfies ℘(x) = 1

x2
+ O(x) as x → 0. All elliptic (i.e. mero-

morphic 1- and α-periodic) functions can be expressed as rational functions of ℘ and
℘′. The Weierstrass ζ-function is the odd antiderivative of ℘. It satisfies ζ(x + 1) =

ζ(x) + 2η1, ζ(x + α) = ζ(x) + 2η2 for all x, where ηj are certain constants such that
the vectors (η1, η2) and (1, α) are linearly independent. The Weierstrass σ-function is the
solution of σ′/σ = −ζ with σ′(0) = 1. It is an entire function vanishing at the origin and
satisfies σ(x+ 1) = e2η1x+η1σ(x), σ(x+α) = e2η2x+η2ασ(x) for x ∈ C. We introduce an
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additional function ρ by ρ(δ, x) = σ(x + δ)/σ(x).11 It is a meromorphic function with a
simple pole at the origin that satisfies

ρ(δ, x+ 1) = e2η1δρ(δ, x) and ρ(δ, x+ α) = e2η2δρ(δ, x).

Corollary 14. Consider σ1 and σ2 as in case 2S.
If f(x) is a meromorphic function in C that solves a system (24) and α is nonreal, then

f(x) =
I∑
i=1

K∑
k=0

ri,k(x)gi,k(x)ζ(x)keαixρ(δi, x) (25)

where αi, δi ∈ C, ri,k(x) ∈ C(x) and gi,k(x) are elliptic functions. The latter and the
functions ζ and ρ are taken with respect to the periods 1 and α. Conversely, any such
function satisfies a pair of linear difference equations with rational coefficients.

If f(x) is a meromorphic function in C that solves a system (24) and α is real or f(x)

has only finitely many poles, then

f(x) =
I∑
i=1

ri(x)eαix (26)

where αi ∈ C and ri(x) ∈ C(x).
If f(x) ∈ C[[x−1]][x] satisfies a system (24) then f(x) is rational.

Remark: 1. In the case of real irrational α, a slight extensions of the proof shows that
the statement also holds if f(x) is a function on the real line continuous in all but finitely
many points solving a system (24). Indeed, it suffices to use the vector space E of all
functions on the real line continuous in all but finitely many points and to apply Fejér’s
Theorem instead of the simple Fourier series. This also implies that the given f(x) is
analytic at the points of continuity and can be continued analytically to a meromorphic
function with finitely many poles on the whole complex plane. Similar extensions can be
obtained in the second part of the subsequent corollary and in Corollary 16. A similar
reasoning is also crucial in the proof of the Theorem in case 2M.

2. In [13], Bézivin and Gramain consider entire solutions of (24) for case 2S under the
assumption that α ∈ C\R. They show that such solutions must be of the form given
in (26). They generalize this result to entire functions of s variables satisfying 2s dif-
ference equations with respect to suitably independent multi-shifts. The techniques are
similar to those mentioned in the Remark following Corollary 5. In [17], Brisebarre and
Habsieger replace the condition that α ∈ C\R with α ∈ C\Q but need several other

11This function appears already in the classical works of [4, 26], but seems to be not so well known.
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nontrivial technical conditions on the coefficients of (24) to show that entire solutions are
of the form given in (26). The techniques are essentially algebraic, reducing this problem
to a similar problem for equations with constant coefficients in a manner different from
our approach. In [14], Bézivin shows essentially the statement in remark 1, i.e. that for
α ∈ R\Q, a solution f(x), continuous on R, of (24) is of the form given in (26). Using
properties of skew polynomial rings, Bézivin reduces the problem to the case of constant
coefficient equations. In [31], Marteau considers systems of scalar equations of the form∑N

i=0 ai(x)f(x + αi) = 0 where the ai(x) are polynomials and the αi ∈ C. He shows
that, under certain restrictions on the αi, real valued continuous solutions and entire solu-
tions of such systems must also be of the form given in (26). Using essentially algebraic
techniques, constant coefficients systems are considered in [28, 31].

Corollary 15. Consider σ1 and σ2 as in case 2Q. If α := log(q2)/ log(q1) is nonreal and
f(x) is a meromorphic function on the Riemann surface Ĉ of the logarithm and if f(x) is
a solution of a system (24) then

f(x) =
I∑
i=1

J∑
j=0

K∑
k=0

ri,j,k(x) log(x)jxαigi,k(t)ζ(t)kρ(δi, t), t = log(x)/ log(q1), (27)

where αi, δi ∈ C, ri,j,k(x) ∈ C(x) and gi,k(t) are elliptic functions. The latter and the
functions ζ and ρ are taken with respect to the periods 1 and α. Conversely, any such
function satisfies a pair of linear q-difference equations with rational coefficients.

If f(x) is a meromorphic function on Ĉ solving a system (24) and α is real or f(x)

has only finitely many poles then

f(x) =
I∑

i,j=0

rij(x)xαi log(x)j (28)

where αi ∈ C and rij ∈ C(x).
If f(x) ∈ C[[x]][x−1] satisfies a system (24) then f(x) is rational.

Remark: In [15] Bézivin and Boutabaa use p-adic techniques to show that if f(x) ∈
F [[x]][x−1], where F is the field of algebraic numbers, satisfies a system (24) for case 2Q
with q1, q2 ∈ K multiplicatively independent, then f(x) is rational. They prove a similar
result for F any characteristic 0 field assuming q1 and q2 are algebraically independent
over Q. In [14], Bézivin shows that for q1, q2 multiplicatively independent positive real
numbers, a solution of (24) that is continuous on the ]0,∞[ is of the form (28). The proof
again uses properties of skew polynomial rings and constant coefficient equations.

In case 2M, equations like log(log(xq)) = log(log(x)) + log(q) yield interesting solu-
tions. This suggests to consider the Riemann surface Č of log(log(x)). It is obtained by
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deleting the point 1ei0, i.e. the point with logarithm 0, from the Riemann surface Ĉ of the
logarithm and taking the universal covering of the remaining manifold. It is biholomor-
phically mapped to Ĉ by t = log(x), biholomorphically to C by s = log(log(x)) .

Corollary 16. Consider σ1 and σ2 as in case 2M.
If f(x) is a meromorphic function on the universal cover of the open punctured unit

disk D(0, 1) \ {0} (or on the universal cover of the annulus {x ∈ C | |x| > 1}) solving a
system (24), then f(x) can be continued analytically to a meromorphic function on Č and

f(x) =
I∑

i,j=0

rij(x)(log(x))αi log(log(x))j (29)

where αi ∈ C and rij ∈ C({x1/r | r ∈ N∗}). Conversely, any such function satisfies a
pair of linear Mahler equations with rational coefficients.

If f(x) is a meromorphic function on Ĉ solving a system (24) then

f(x) =
I∑

j=−I

rj(x)(log(x))j (30)

where rj ∈ C({x1/r | r ∈ N∗}).
If f(x) ∈ C[[x]][x−1] satisfies a system (24) then f(x) is rational.

Remark: As noted in the Introduction, the last statement of the above corollary was re-
cently proved by Adamczewski and Bell in [1]. Their tools include a local-global principle
to reduce the problem to a similar problem over finite fields, Chebotarev’s Density The-
orem, Cobham’s Theorem and some asymptotics - all very different from the techniques
used in the present work.

If one is only interested in proving the last statement, the application of Theorem 13
in the proof of this corollary can be replaced with the weaker Proposition 22. This is dis-
cussed in the remarks following Proposition 22.

We now turn to the proof of the three corollaries.

Proof. We will prove these three corollaries in parallel, diverging from this plan only
when the cases force us to. We can assume without loss in generality that bj,0(x) 6= 0,
j = 1, 2. Otherwise in cases 2S and 2Q, we can simply apply the inverses of σ1 or σ2. In
case 2M, we rewrite the system as a system for a new function f̃(x) = σa1σ

b
2(f(x)) with

suitable positive integers a, b, applying some powers of σ1 or σ2 to the equations. We then
first obtain that f̃(x) is as stated in Corollary 16. In the first two cases of this corollary,
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it follows immediately that f(x) also has the wanted form. In the last case, we obtain a
series f(x) ∈ C[[x]][x−1] such that σa1σ

b
2(f(x)) = f(xq

a
1 q
b
2) ∈ C(x). As shown at the end

of the proof of Corollary 3, this implies that f(x) ∈ C(x).
We proceed as for the corollaries concerning differential and difference equations. The

first part is the same for all the cases. Let E be the vector space of all meromorphic func-
tions f on C for the first two cases of Corollary 14, the vector space of all meromorphic
functions g on Ĉ for the first two cases of Corollary 15 and the second case of Corollary
16, and the vector space of all meromorphic functions on D(0, 1) \ {1} in the first case
of Corollary 16. Let E = C[[x−1]][x] or E = C[[x]][x−1] or E = ∪s∈N∗C[[x1/s]][x−1/s]

in the remaining cases concerning formal power series, respectively. Let L = C(x) for
Corollaries 14, 15 and L = K= C({x1/r | r ∈ N∗}) for Corollary 16. In all cases, σj ,
j = 1, 2, are extended in the canonical way to automorphisms of E and the extensions
commute.

Consider the L-subspace W of E generated by σm1 σ
n
2 (f), m = 0, ...,m1 − 1, n =

0, ...m2−1. By (24), W is invariant under σj and σ−1
j ; here the facts that σj commute and

that bj,0(x) 6= 0 are used.
Let w1, ..., ws be an L-basis of W and let w = (w1, ..., ws)

T . Then we have that

σj(w) = Bj(x)w, j = 1, 2 (31)

with Bj ∈ GLs(L) because the components of σj(w) are again a basis of W . The coeffi-
cient matrices of (31) satisfy the consistency condition (21). Indeed,

0 = σ1(σ2(w))− σ2(σ1(w)) = (σ1(B2)B1 − σ2(B1)B2)w

and as the components of w form a basis we obtain (31).
Now we apply Theorem 13 to the system σj(Y ) = Bj(x)Y, j = 1, 2. It yields a gauge

transformation Z = GY , G ∈ GLn(L), that transforms the system to σj(Z) = B̃jZ, j =

1, 2 where B̃j are constant commuting matrices. The vector z = Gw ∈ W s satisfies
σj(z) = B̃jz, j = 1, 2. Once we have proved that its components z1, ..., zs have the form
desired in each of the cases of the corollaries, the same will be true for f(x) because the
zi again form a basis of W – only for the last part of Corollary 16 this has to be modified
somewhat.

It remains to solve the system

σj(z) = B̃jz, j = 1, 2 (32)

with constant invertible commuting B̃j in each of the spaces E.
We now proceed as follows. The three corollaries contain nine cases in total. In each of

these cases we will consider functions meromorphic on a given domain or formal Laurent
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series and show that they are of the desired form. Once we have finished this we will
prove the converse statements.

We first consider case 2S on the space of meromorphic functions on C. If α is nonreal,
then (32) can be solved using the function ρ and exponential functions. Consider two
commuting logarithms of B̃j , i.e. commuting matrices Lj such that B̃j = exp(Lj), j =

1, 2. Then there are uniquely determined (commuting) matrices ∆ and C such that

2η1 ∆ + C = L1

2η2 ∆ + αC = L2

where (η1, η2) are as in the above definition of the ζ-function. The matrix-valued func-
tion12 Z(x) = eCxρ(∆, x) = 1

σ(x)
eCxσ(x + ∆) has meromorphic entries and satisfies

Z(x + 1) = eCe2η1∆Z(x) = B̃1Z(x) and similarly Z(x + α) = B̃2Z(x). If z is a vec-
torial solution of (32), then c(x) = Z(x)−1z(x) is 1- and α-periodic and meromorphic.
Hence its components are elliptic functions.

In order to express σ(x+ ∆) using scalar functions we proceed as it is well known for
the exponential. Let T be invertible such that J = T−1∆T is in Jordan canonical form
and let J = D +N with diagonal D and nilpotent N , D = diag(d1, ..., ds). Then

σ(x+ ∆) = Tσ(x+D)

(
I +

s−1∑
k=1

1

k!
σ(x+D)−1σ(k)(x+D)Nk

)
T−1 ;

here σ(x+D) = diag(σ(x+d1), ..., σ(x+ds)) and similarly σ(x+D)−1σ(k)(x+D) is the
diagonal matrix of the quotients σ(k)(x+dj)

σ(x+dj)
which in turn can be expressed using powers

of ζ(x+ dj) and elliptic functions. Finally as ζ(x+ dj)− ζ(x) are elliptic, 1
σ(x)

σ(x+ ∆)

can be expressed using the functions ρ(dj, x), powers of ζ(x) and elliptic functions.
If α is real and irrational or the number of poles of f is finite, then we consider again

commuting logarithms Lj of the coefficient matrices B̃j . Put c = exp(−L1x)z. Then c
satisfies σ1(c) = c and σ2(c) = B̃c, B̃ = B̃2e

−αL1 . Then c cannot have a pole at all,
because otherwise by the two equations all points of the lattice {k + mα|k,m ∈ Z}
would be poles and hence the set of poles would be dense for real irrational α or infinite
otherwise.

As c is 1-periodic and entire, it can be expanded in a Fourier series on C. On some
horizontal strip S of finite width, we have the uniformly convergent series

c(x) =
∞∑

k=−∞

cke
2πikx, x ∈ S.

12See [24], chapter V, for the extension of entire functions to matrices.
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The second equation satisfied by c, i.e.

c(x+ α) = B̃c(x) for x ∈ S

implies that B̃ck = exp(2πikα)ck for k ∈ Z. If ck 6= 0 for some k then exp(2πikα) is an
eigenvalue of B̃. As there are only finitely many such eigenvalues, the above Fourier series
can contain only a finite number of terms. This proves that c(x) =

∑k0
k=−k0 cke

2πikx, x ∈
C with some positive integer k0. As a consequence z = exp(L1x)c is of the desired form.

On E = C[[x−1]][x], we can assume that B̃1 is diagonal according to a remark follow-
ing the theorem. Hence it suffices to show that the solution of σ1(z(x)) = d z(x) in E is
a constant for every complex number d. Write such a solution as z(x) =

∑∞
k=k0

ck x
−k

with some k0 ∈ Z and ck ∈ C, k ≥ k0. Unless z = 0, we can assume that ck0 6= 0.
Comparing the coefficients of x−k0 , we find that d ck0 = ck0 . Hence d = 1. Comparing
the coefficients of x−k0−1 we find that ck0+1 = ck0+1 − ck0k0. Hence k0 = 0. The new
series z̃(x) = z(x) − c0 is again a solution of σ1(z̃(x)) = z̃(x) but unless z̃(x) = 0, the
corresponding series z̃(x) =

∑∞
k=k1

ck x
−k has a positive k1 which is impossible as seen

above. Hence z̃(x) = 0 and z is a constant.
In case 2Q and in the space of meromorphic functions on Ĉ, we simply put t =

log(x)/ log(q1) and consider z as a vectorial function of t now. The system σj(z) =

B̃jz, j = 1, 2 is then transformed into a system z(t + 1) = B̃1z(t), z(t + α) = B̃2z(t),
for a function z meromorphic on C. The above considerations then prove that the entries
of z have the desired form in the cases of nonreal and real α. The only difference is that
in the expansion of xC = eC log(q1)t using scalar functions, logarithms of x may occur.

In case 2Q, E = C[[x]][x−1], we write a solution of σj(z(x)) = B̃j z(x), j = 1, 2, as
a series z(x) =

∑∞
k=k0

ck x
k with some k0 ∈ Z and ck ∈ Cs, k ≥ k0. We obtain that each

ck satisfies B̃jck = qkj ck, j = 1, 2. Therefore unless ck = 0 for some k, the numbers qkj
must be eigenvalues of B̃j for j = 1, 2. As there are only finitely many eigenvalues we
obtain that z(x) ∈ (C[x, x−1])s ⊂ (C(x))s.

In case 2M and in the space of meromorphic functions on D(0, 1) \ {1}, we put s =
log(log(x))

log(q1)
and consider z as a function of s now. Proceeding as above 13 with the resulting

system of difference equations with irrational α = log(q2)
log(q1)

, the result follows readily. The
result concerning meromorphic functions on the annulus {x ∈ C | |x| > 1} is reduced to
the one on the punctured unit disk by the change of variables x → 1/x. Observe that in
this case, the reduction to a constant system uses a gauge transformation with coefficients
in C({x1/r | r ∈ N∗}).

In case 2M and in the space of meromorphic functions on Ĉ, we have to find solutions
of the system σj(z(x)) = B̃jz(x), j = 1, 2, that are meromorphic in Ĉ. Letting t = log x

13The restriction of the domain causes no additional problem.
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we can reduce this problem to the search for solutions, meromorphic in C, of a system
with constant coefficients in case 2Q. One then considers the series expansion at the origin
of such solutions and concludes, as in case 2Q, that these vectors have entries in C[t, t−1].
Therefore the entries of z(x) involve powers of log x.

In case 2M, f(x) ∈ C[[x]][x−1], we have to solve σj(z(x)) = B̃j z(x), j = 1, 2,
in E = ∪s∈N∗C[[x1/s]][x−1/s]. Expanding a solution in a series immediately proves that
z(x) is constant. Therefore f(x) is an element of K. We write f(x) = g(x1/s) with some
rational function g ∈ C(x) and some positive integer s. As in the proof of Corollary 3,
this yields f(ts) = g(t) and therefore also f(ts) = g(ξt) for any s-th root of unity ξ.
Hence f(ts) = 1

s

∑
ξs=1 g(ξt) ∈ C(ts). This yields that f(x) is rational.

For the converse concerning the shift operators, consider first f(x) = g(x)ζ(x)jeβxρ(δ, x)

where β, δ ∈ C, j is some positive integer and g is an elliptic function. By the proper-
ties of ρ and the exponential, we obtain with a1 = eβ+2η1δ that (σ1 − a1)j+1(f(x)) = 0.
Again products of solutions of σ1-difference equations with rational functions also sat-
isfy σ1-difference equations and sums of solutions of σ1-difference equations also satisfy
some σ1-difference equation. Therefore f(x) given by (25) also does. We obtain the σ2-
difference equation for f(x) in the same way.

For the proof of the converse concerning two q-difference equations, we proceed anal-
ogously. A slight change is that we have to consider

f(x) = log(x)ixβg(t)ζ(t)jρ(δ, t), t = log(x)/ log(q1).

Here (σ1 − a1)i+j+1(f(x)) = 0 for a1 = qβ1 e
2η1δ and (σ2 − a2)i+j+1(f(x)) = 0 for

a2 = qβ2 e
2η2δ.

For the proof of the converse concerning two Mahler systems, consider

f(x) = xr(log(x))α(log(log(x)))j

with r ∈ Q, α ∈ C and j ∈ N. There are k ∈ N∗, m ∈ N such that (qk1 − 1)qm1 r =: ` is an
integer. Then

(q−kα1 x−`σk1 − id)j+1σm1 (f(x)) = 0.

It follows as before that f(x) given by (29) satisfies a σ1-Mahler equation. For the second
equation concerning σ2, we proceed analogously.

We now turn to the proof of Theorem 13. The consistency condition (21) can be inter-
preted as follows.

Remark 17. The gauge transformation Z = B2Y transforms

σ1(Y ) = B1 Y (33)
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into the equivalent system σ1(Z) = σ2(B1)Z. Iterating this procedure, we find that the
system (33) is equivalent to the systems

σ1(U) = σN2 (B1)U (34)

for any positive integerN by the gauge transformationZ = GNY ,GN = σN−1
2 (B2)...σ2(B2)B2.

Thus, if W is a fundamental solution matrix of (33) then both σN1 (W ) and GNW are fun-
damental solution matrices of (34).

The rest of the proof of Theorem 13 will be given separately for the three cases.

3.1 Proof of Theorem 13: Case 2S

In a first step, we consider analytic continuation of solutions of (33) under the hy-
potheses of the Theorem.

Lemma 18. In case 2S, consider a strip S = {x ∈ C|a1 < Imx < a2}, −∞ ≤ a1 <

a2 ≤ +∞. If g(x) is a holomorphic solution of (33) for x ∈ S with sufficiently large
positive real part or with sufficiently large negative real part then g(x) can be continued
analytically to a meromorphic function in S with finitely many poles.

Proof. LetM denote the set of x1 ∈ C such that B1(x) or B1(x)−1 has a pole at x =

x1. Consider a solution g holomorphic for x ∈ S with large positive real part. By the
difference equation (33), it can be continued analytically to S except for possible poles
in (M − N) ∩ S. By Remark 17, for N ∈ N, the function gN = GNg is a solution
of σ1(U) = σN2 (B1)U holomorphic for x ∈ S with large real part. By its difference
equation, it can be continued analytically to S except for possible poles in (σ−N2 (M) −
N) ∩ S = (M− N − Nα) ∩ S, because x1 is a pole of σN2 (B±1

1 ) if and only if σN2 (x1)

is a pole of B±1
1 . This implies that g = G−1

N gN can also be analytically continued to S
except possible poles in (σ−N2 (M) − N) ∩ S and in NN ∩ S, where NN is the (finite)
set of poles of G−1

N . Therefore g can be continued analytically to S with the exception of
(M− N−Nα) ∩ (M− N) ∩ S and NN ∩ S.

We claim that the former intersection is empty for appropriate N . The set {d− c+Z |
c, d ∈ M} is finite sinceM is finite. As α is irrational, the set {Nα + Z | N ∈ N} is
infinite. Hence we can selectN ∈ N such that for all c, d ∈M, the difference d−c 6≡ Nα

mod Z. If the first intersection is nonempty, there exists h ∈ S such that h = d−Nα−m
and h = c−n, where c, d ∈M andm,n ∈ N. This implies that d−c−Nα = m−n ∈ Z,
a contradiction. Thus the intersection is indeed empty. This means that g can be continued
analytically to S \ NN , where NN is finite.
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The proof in the case of g analytic for x ∈ S with large negative real part is analo-
gous.

Concerning the behavior at infinity, it is known that σ1(Y ) = B1 Y has a formal
fundamental solution

Y (x) = Φ(x)xL eQ(x)xDx, (35)

where Φ(x) is a formal power series in x−1/r for some integer r, L is a constant matrix
with eigenvalues γj satisfying 0 ≤ Re(γj) < 1

r
, Q(x) =

∑h
j=1 Qjx

rj where the Qj

are diagonal matrices with entries in C and the rj are positive rational numbers with
1 = rh > rh−1 > . . . > r1 > 0 (or Q(x) ≡ 0) and D is diagonal with entries in
1
r
Z; furthermore L, Q(x) and D commute (c.f., [27], chapter I, and [35], section 6.1).

The leading term Qh of Q(x) is chosen such that the imaginary parts of its entries are
between 0 and 2π14, 2π excluded. We can write D = diag(d`I`, ` = 1, ...,m) and Q(x) =

diag(q`(x)I`, ` = 1, ...,m) with identity matrices of appropriate size n` × n` and distinct
couples (d`, q`(x)), ` = 1, ...,m. Then also L = diag(L1, ..., Lm) with diagonal blocks of
corresponding size. The formal fundamental solution is essentially unique, i.e. except for
a permutation of the diagonal blocks and passage from some L` to a conjugate matrix.

By Remark 17, both B2(x)Y (x) and σ2(Y (x)) = Y (x + α) are formal fundamental
solutions of σ1(Z) = σ2(B1)Z. Re-expanding we find that Y (x+α) = Φ̃(x)xL̃eQ(x)xDx,

where L̃ ≡ L + αD mod 1
r
Z. Also writing L̃ = diag(L̃`, ` = 1, ...,m) we obtain from

the essential uniqueness of the formal fundamental solution that for each `, the matrices
L̃` ≡ L` + αd` mod 1

r
Z and L` are conjugate.15 Now if ak + 1

r
Z, k = 1, ..., r` are

the equivalence classes of the eigenvalues of L` modulo 1
r
Z, then ak + αd` + 1

r
Z are

those of L̃`. Hence the mapping x + 1
r
Z 7→ x + αd` + 1

r
Z induces a permutation of

the equivalence classes of the eigenvalues of L`. Applying it several times, if necessary,
to some eigenvalue ak, we obtain the existence of some positive integer N such that
ak + 1

r
Z = ak + Nαd` + 1

r
Z. Since α is not rational, but d` is, this is impossible unless

d` = 0 and we obtain that D = 0. The difference equation (33) and by symmetry also
σ2Y = B2Y are hence mild in the sense of [35], section 7.1.

Next we show the statement analogous to Proposition 12.

Lemma 19. In the present context, there exists a diagonal matrix B̃1 with constant entries
and a gauge transformation Z = F Y , F ∈ GLn(k), such that Z satisfies σ1(Z) = B̃1Z.

14Recall that solutions of σ1-difference equations remain solutions when multiplied by 1-periodic func-
tions.

15Observe that there can be no permutaion of diagonal blocks because the couples (d`, q`(x)), ` =
1, ...,m are distinct.
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Proof. This is an adaptation of the proof of Proposition 12. For θ 6= 0 sufficiently close
to 0, there exist

1. sectors S and T of openings greater than π bisected by θ and θ + π, respectively,

2. a number R > 0 and functions ΦS(x) and ΦT (x) analytic for |x| > R in S and T ,
respectively, such that

(a) ΦS(x) and ΦT (x) are asymptotic to Φ(x) as x→∞ in their respective sectors,
and

(b) Y S(x) = ΦS(x)xLeQ(x) and Y T (x) = ΦT (x)xLeQ(x) are solutions of σ1Y =

AY .

This can be proved using multisummation (c.f., [16], [35], section 9.1).
We write Q(x) = diag(q1(x)I1, . . . , qs(x)Is) with distinct qj(x) and Ij identity matri-

ces of an appropriate size. We split

qi(x) = λix+ terms involving xα with 0 < α < 1.

As 0 ≤ Imλi < 2π, we may assume that θ is so close to 0 that

max
j,k

(Re(λjx)− Re(λkx)) < −Re(2πix) if arg(x) = ψ = θ + π/2. (36)

Indeed, this is equivalent to maxj,k Im
(
(λj − λk)eiθ

)
< 2π cos(θ) which is true for suf-

ficiently small |θ|.
According to Lemma 18 both Y S(x) and Y T (x) can be continued analytically to mero-

morphic functions on C with finitely many poles. The same is true for their inverses, be-
cause their transposed inverses also satisfy equations to which Lemma 18 applies. We call
these extensions again Y S(x), Y T (x).

Let D(x) be the connection matrix defined by Y S(x) = Y T (x)D(x). It is meromor-
phic on C with finitely many poles and 1-periodic. Hence it is entire. Moreover, as Y S(x),
Y T (x) and (Y T )−1(x), it has at most exponential growth as |Imx| → ∞ in the intersec-
tions of S and T . Hence the Fourier series of D(x) has at most finitely many terms. Let
us write D(x) =

∑k0
k=−k0 D

(k)e2πikx. The blocks of D(x) corresponding to the subdivi-
sion of Q(x) are denoted by Di,j(x), those of D(k) by D(k)

i,j . Write Y S = (Y S
1 |...|Y S

s ) and
Y T = (Y T

1 |...|Y T
s ) in corresponding block columns.

We claim that D(x) is constant. To show this, fix some j. Then

Y S
j (x) =

s∑
m=1

k0∑
k=−k0

Y T
m (x)e2πikxD

(k)
m,j.



34

Because of (36) we obtain that D(k)
m,j = 0 if k < 0. Otherwise the right hand side would

grow more rapidly as |x| → ∞, arg(x) = ψ than the left hand side. For the line arg(x) =

ψ + π, the exponentials e2πikx are ordered inversely with respect to growth as |x| → ∞.
Here we find that D(k)

m,j = 0 if k > 0. Altogether we obtain that D(x) is constant.
The rest of the proof is identical to the one of Proposition 12 with D(x) replacing the

matrix C+ in the latter argument.

We can now complete the proof of Theorem 13 in case 2S. Apply the gauge transformation
Z = FY of Lemma 19 to σ2Y = B2Y to yield σ2Z = B̃2Z, B̃2 = (bi,j). Since B̃1 =

diag(a1, ..., an) is constant diagonal, the consistency condition (21) implies that

σ1(bi,j) =
ai
aj
bi,j.

If ai 6= aj we obtain that bi,j = 0 since the above equation has no nonzero solution in
C(x) then. If ai = aj we have σ1(bi,j) = bi,j and hence bi,j is a constant. Therefore B̃2 is
also constant. This completes the proof in case 2S.

3.2 Proof of Theorem 13: Case 2Q

In case 2Q, we omit the index 1 of q1 and assume |q| > 1 for simplicity. Fix a loga-
rithm 2πiτ of q. Concerning analytic continuation we prove here

Lemma 20. In case 2Q, consider a spiraling strip S = {e2πiτt ∈ Ĉ|a1 < Im t < a2},
−∞ ≤ a1 < a2 ≤ +∞. If g(x) is a holomorphic solution of (33) for x ∈ S with
sufficiently large modulus or with sufficiently small modulus then g(x) can be continued
analytically to a meromorphic function in S such that the projections of its poles to C∗

form a finite set.

Proof. The proof is analogous to that of Lemma 18. The only sets of possible poles are
now (M· q−N) ∩ S or (M· q−N2 · q−N) ∩ S, respectively, and their intersection is empty
for convenient N because of the condition imposed on q and q2 in case 2Q. We leave it to
the reader to fill in the details.

Concerning the behavior at 0 (and similarly at∞), it is known that there exists a formal
gauge transformation Z = GY , G ∈ GLn(C[[x1/s]][x−1/s]), s ∈ N∗, that reduces (33)
to a system σ(Z) = xDA0Z, where D is a diagonal matrix with entries in 1

s
Z and A0 ∈

GLn(C) such that any eigenvalue λ of A0 satisfies 1 ≤ |λ| < |q|1/s, moreover D and A0

commute. If we write D = diag(d1I1, ..., drIr) with distinct dj and Ij identity matrices of
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an appropriate size, thenA0 = diag(A1
0, ..., A

r
0) with diagonal blocksAj0 of corresponding

size. D and A0 are essentially unique, i.e. except for a permutation of the diagonal blocks
and passage from some Aj0 to a conjugate matrix. If D happens to be 0, then s can be
chosen to be 1 and G is convergent (see [35], ch. 12, [2], [18]).

According to Remark 17, our system (33) is equivalent to σ(U) = σ2(B1)U . The
gauge transformation V = σ2(G)U now transforms this system to σ(V ) = σ2(xDA0)V .
Now σ2(xDA0) = xD qD2 A0 and there is a diagonal matrix F with entries in 1

s
Z com-

muting with D and A0 such that the gauge transformation W = xFV reduces the latter
system to σ(V ) = xDÃ0V , where Ã0 = q−F qD2 A0 has again eigenvalues with modu-
lus in [1, |q|1/s[. Now we write Ã0 = diag(Ã1

0, ..., Ã
r
0) and fix some j ∈ {1, ..., r}. If

aj1, ..., a
j
rj

are the eigenvalues of Aj0 then q−fjqdj2 a
j
` , ` = 1, ..., rj , are those of Ãj0. By the

uniqueness of the reduced form, the mapping x 7→ q−fjq
dj
2 x induces a permutation of the

eigenvalues of Aj0. If we apply it several times, if necessary, we obtain the existence of
some ` ∈ {1, ..., rj} and of some positive integer k such that q−kfjqkdj2 aj` = aj` . Due to
our condition on q and q2 this is only possible if dj = 0. Thus we have proved that D = 0.

Hence 0 and ∞ are regular singular points of (33). There is a gauge transformation
Z = G0(x)Y , G0(x) ∈ GLn(C{x}[x−1]) reducing the system to σ(Z) = A0Z and a
gauge transformation V = G∞(x)Y , G∞(x) ∈ GLn(C{x−1}[x]) reducing the system to
σ(V ) = A∞V , where A0, A∞ are constant invertible matrices with eigenvalues in the
annulus 1 ≤ |λ| < |q|[.

Now we fix a matrix L0 such that A0 = qL0(= exp(2πiτL0))) and thus Y0(x) =

G0(x)−1xL0 is a solution of (33) in some neighborhood of 0 in Ĉ. By Lemma 20, this
solution can be continued analytically to a meromorphic function on Ĉ such that the
projections of its poles to C∗ form a finite set. This implies that G0(x)−1 can be continued
to a meromorphic function on C with finitely many poles. We use the same name for this
extension. In some annulus K < |x| < ∞, K sufficiently large, it can be expanded in a
convergent Laurent series

G0(x)−1 =
∞∑

m=−∞

Gmx
m

with some constant matrices Gm and therefore also

G∞(x)G0(x)−1 =
∞∑

m=−∞

Pmx
m

with constant matrices Pm.
Now by construction, G∞(x)G0(x)−1xL0 is a solution of the equation σ(V ) = A∞ V .

Using qL0 = A0, this implies the equations

Pm q
mA0 = A∞Pm, m ∈ Z.
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Now if m 6= 0, then qmA0 and A∞ cannot have a common eigenvalue as those of A0, A∞
have a modulus in [1, |q|[. Hence Pm = 0 for m 6= 0 and there is a constant invertible
matrix P0 such that G∞(x) = P0G0(x) for |x| > K. In particular, the above Laurent
series of G0(x)−1 has only finitely many terms corresponding to positive powers of x
since this is the case for G∞(x)−1. This means that ∞ is only a pole of the G0(x)−1, a
meromorphic function on C with finitely many poles. We obtain that G0(x)−1 and hence
also G0(x) have entries that are rational functions.

Thus we have shown that (33) is equivalent over C(x) to σ(Z) = A0Z with some
constant invertible matrix A0. To complete the proof of Theorem 13 for case 2Q, apply
the same gauge transformation to σ2(Y ) = B2(x)Y to obtain σ2(Z) = B̃2(x)Z. The
consistency condition implies here that

σ1(B̃2(x))A0 = A0B̃2(x).

Expanding B̃2(x) in a convergent Laurent series in a punctured disk centered at the origin

B̃2(x) =
∞∑

m=−M

Cmx
m

we find that the coefficients satisfy the equations Cm qmA0 = A0Cm,m = −M, .... Again
qmA0 and A0 have no common eigenvalue and hence Cm = 0 if m 6= 0. Thus B̃2(x) is
also a constant and the theorem is proved in case 2Q as well.

Remark 21. Following ideas of Bézivin ( [37, Page 90]) we can establish Theorem 13,
case 2Q under the assumptions that |q1| = |q2| = 1 , q1, q2 multiplicatively independent,
q2 not a root of unity, q1 transcendental over Q or q1 algebraic over Q such that its minimal
polynomial has a root in C of absolute value not equal to 1. For the proof, let F ⊂ C be
the field generated by q1 and q2 and the coefficients of the entries of B1 and B2. This is a
finitely generated extension of Q. Hence by the assumption on q1, there is an embedding
ψ : F → C such that such that |ψ(q1)| 6= 1. We can extend ψ to an automorphism of C
which we denote again by ψ. After applying ψ to the system (20), we get a new system
that satisfies the hypotheses of Theorem 12. Therefore there exists a gauge transformation
Z = GY transforming this new system to a system with constant invertible commuting
matrices B̃1, B̃2. One sees that the system with matrices ψ−1(B̃1), ψ−1(B̃2) satisfies the
conclusion of Theorem 13 with respect to our original system.

3.3 Proof of Theorem 13: Case 2M

In case 2M, it is more convenient to use different notation. We consider



37

y(xp) = A(x)y(x), y(xq) = B(x)y(x) (37)

with multiplicatively independent positive integers p and q andA(x), B(x) ∈ GLn(C(x))

satisfying the consistency condition

A(xq)B(x) = B(xp)A(x). (38)

We want to show that there exist G(x) ∈ GLn(K) and commuting A0, B0 ∈ GLn(C)

such that the gauge transformation y = G(x)z reduces (37) to

z(xp) = A0z(x), z(xq) = B0z(x). (39)

The proof is more involved than in cases 2S and 2Q because there are several fixed points
of the mapping x 7→ xp, namely 0,∞ and the (p− 1)-th roots of unity, because solutions
holomorphic in some neighborhood of the origin or∞ can only be extended using (37) to
the unit disk or the annulus |x| > 1, respectively, and because the behavior of the solutions
of Mahler systems near 0 and∞ is not well understood. The consistency condition (38)
is crucial and will be used many times.

The plan is as follows. In a first step we prove that any formal vectorial solution of
a system (37) satisfying (38) is rational and deduce the statement of the theorem under
the additional hypothesis that x = 0 is a regular singular point of y(xp) = A(x)y(x),
i.e. there is a formal series G0(x) ∈ GLn(K̂), K̂ =

⋃
r∈N∗ C[[x1/r]][x−1/r], such that the

gauge transformation y = G0(x)z reduces the equation to one with a constant coefficient
matrix. In a second step, we prove that x = 0 is always regular singular for a consistent
system (37), (38) thus completing the proof.

Proposition 22. In case 2M, consider the system (37) satisfying the consistency condition
(38) and suppose that g(x) ∈ (C[[x]][x−1])n is a formal vectorial solution. Then g(x) ∈
C(x)n.

Corollary 23. In case 2M, consider the system (37) satisfying the consistency condition
(38) and suppose that the point x = 0 for the first equation of (37) is regular singular.
Then (37) is equivalent over K = C({x1/s | s ∈ N∗}) to a system (39) with constant
invertible commuting A0 and B0.

Remark: The Proposition could be deduced from the last part of Corollary 16, i.e. from
Theorem 1.1 of [1]. Indeed, consider the C(x)-subspace space of C[[x]][x−1] generated
by the components of g(x). By (37), it is invariant under σ1, σ2 and it follows as usual that
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each component of g(x) satisfies a system of two scalar linear p- and q-Mahler equations
and hence is rational by the Theorem 1.1 of [1].

Conversely, Theorem 1.1 of [1] can be deduced from Proposition 22: Given a for-
mal solution f(x) of a system (24), the first part of the proof of Corollary 16 con-
structs a system (37) satisfying the consistency condition (38) having a solution vector
in (C[[x]][x−1])n. As this solution vector is actually a basis of some vector space contain-
ing f(x), we can assume that one of its components is f(x). Proposition 22 then yields
that f(x) is rational.

Observe that Theorem 13 in case 2M (and hence also the first part of Corollary 16)
is not an immediate consequence of the result of [1] because it is not clear a priori that
the point 0 is regular singular under the hypotheses of the theorem. This statement is the
contents of Proposition 26.

Proof of Corollary 23. We consider a formal series G0(x) ∈ GLn(K̂) reducing y(xp) =

A(x)y(x) to z(xp) = A0z(x) with a constant invertible matrix A0. This means

G0(xp) = A(x)G0(x)A−1
0 . (40)

By a change of variables x = tr, if necessary, we can assume that G0(x) ∈ GLn(k̂),
k̂ = C[[x]][x−1] (we do not use that A(x), B(x) are in C(xr) then).

Applying the gauge transformation y = G0(x)z to the second equation y(xq) =

B(x)y(x), we obtain z(xq) = B̃(x)z(x) with some B̃(x) ∈ GLn(K̂) satisfying the con-
sistency condition A0 B̃(x) = B̃(xp)A0. Using the series expansion of B̃(x), it is readily
shown that B̃(x) must be constant and commutes with A0. We write B̃(x) =: B0. Thus
G0(x) also satisfies

G0(xq) = B(x)G0(x)B−1
0 . (41)

The system (40), (41) can be considered as a vectorial system

Y (xp) = Ā(x)Y (x), Y (xq) = B̄(x)Y (x),

where Y (x) has coefficients in gln(k̂) ∼ k̂n
2 and Ā(x), B̄(x) are the matrices of the

linear operators mapping Z to A(x)ZA−1
0 and B(x)ZB−1

0 , respectively. This system sat-
isfies the consistency condition, because A(x) and B(x) do and A0, B0 commute. Now
Proposition 22 can be applied to its formal solution G0(x) and we obtain that G0(x) has
rational entries.

Proof of Proposition 22. We first show that g(x) is actually convergent. This could be
deduced from [38], section 4. For the convenience of the reader, we provide a short proof.
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To do that, we truncate g(x) at a sufficiently high power of x to obtain h(x) ∈
gln(C[x][x−1]) and introduce r(x) = h(x) − A(x)−1h(xp) and g̃(x) = g(x) − h(x).
Then we have

g̃(x) = A(x)−1g̃(xp)− r(x). (42)

We denote the valuation ofA(x)−1 at the origin by s ∈ Z and introduce Ã(x) = x−sA(x)−1

which is holomorphic at the origin.
First choose M ∈ N such that pM + s > M and h(x) such that g(x) − h(x)

has at least valuation M . Then by (42), r(x) also has at least valuation M . Now con-
sider R > 0 such that Ã(x) is holomorphic and bounded on D(0, R). Then consider
for positive ρ < min(R, 1) the vector space Eρ of all series F (x) =

∑∞
m=M Fmx

m

such that
∑∞

m=M |Fm|ρm converges and define the norm |F (x)|ρ as this sum. Then Eρ
equipped with | |ρ is a Banach space and the existence of a unique solution of (42) in
Eρ for sufficiently small ρ > 0 follows from the Banach fixed-point theorem using that
|xsF (xp)|ρ ≤ ρMp+s−M |F (x)|ρ for F (x) ∈ Eρ. This proves the convergence of g̃(x) and
hence of g(x).

By (37), rewritten g(x) = A(x)−1g(xp), the function g can only be extended analyt-
ically to a meromorphic function on the unit disk. According to Theorem 4.2 of [38]
(see also [11]), it is sufficient to show that g(x) does not have the unit circle as a natural
boundary and the rationality of g(x) follows. We show how it follows naturally, in our
context, that g(x) can be continued analytically as a meromorphic function to all of C
and, as well, that it has only finitely many poles. The rationality of g(x) then follows as
in [38] and [11] from a growth estimate.

As we want to extend g(x) beyond the unit disk, we use the change of variables x = et,
u(t) = y(et) and obtain a system of q-difference equations

u(pt) = Ā(t)u(t), u(qt) = B̄(t)u(t) (43)

with Ā(t) = A(et), B̄(t) = B(et). It satisfies the consistency condition

Ā(qt)B̄(t) = B̄(pt)Ā(t). (44)

We are not in case 2Q, however, because Ā(t), B̄(t) are not rational in t, but rational in
et.

Nevertheless, the local theory at the origin used in the proof of Lemma 20 applies to
the present consistent system. In particular, we know that the origin is a regular singular
point in case 2Q. We therefore obtain a matrix A1 with eigenvalues λ in the annulus
1 ≤ |λ| < p and G1(t) ∈ GLn(C{t}[t−1]) such that u = G1(t)v reduces the first equation
of (43) to v(pt) = A1v(t). This means

G1(pt) = Ā(t)G1(t)A−1
1 for small t. (45)



40

Applying the same gauge transformation to the second equation of (43) yields an equa-
tion v(qt) = ˜̄B(t)v(t) with some ˜̄B(t) ∈ GLn(C{t}[t−1]). It satisfies the consistency
condition A1

˜̄B(t) = ˜̄B(pt)A1. As at the end of the proof in case 2Q, we expand ˜̄B(t) =∑∞
m=m0

Cmt
m. The coefficients satisfy A1Cm = Cm(pmA1), m ≥ m0. As A1 and pmA1

have no common eigenvalue unless m = 0, we obtain that ˜̄B(t) =: B1 is constant and
commutes with A1. We note the second equation satisfied by G1

G1(qt) = B̄(t)G1(t)B−1
1 for small t. (46)

Lemma 24. The functions G1(t)±1 can be continued analytically to meromorphic func-
tions on C and there exists δ > 0 such that both can be continued analytically to the
sectors {t ∈ C∗ | δ < arg(±t) < 2δ}.

Proof of the lemma. LetM be the set of poles of Ā(t)±1, i.e. the set of t such that
et is a pole of A(x) or A(x)−1. Note thatM is 2πi-periodic, has no finite accumulation
point and is contained in some vertical strip {t ∈ C | −D < Re t < D}. By (45),G1(t)±1

can be continued analytically to C∗ \ (M · pN) and thus to meromorphic functions on C
which we denote by the same name. By construction, G1(t)±1 are also analytic in some
punctured neighborhood of the origin. By the properties ofM, the infimum of the |Re t1|
on the set of all t1 ∈M having nonzero real part is a positive number. AsM is contained
in some vertical strip there exist sectors {t ∈ C∗ | δ < arg(±t) < 2δ} disjoint toM and
hence toM· pN. Therefore G1(t)±1 can be analytically continued to these sectors and the
lemma is proved.

Consider now the function d(t) = G1(t)−1g(et). By Lemma 24 and because g(x) is
holomorphic in some punctured neighborhood of x = 0, d(t) is defined and holomorphic
for some sector S = {t ∈ C | |t| > K, π + δ < arg t < π + 2δ}. By (37), (45), and (46)
it satisfies

d(pt) = A1d(t), d(qt) = B1d(t) for t ∈ S. (47)

To solve (47), consider a matrix L1 commuting with B1 such that pL1 = A1. Put F (t) =

t−L1d(t). Then

F (pt) = F (t), F (qt) = B̃1F (t) for t ∈ S (48)

where B̃1 = B1q
−L1 . Thus H(s) = F (es) is log(p)-periodic on the half-strip B = {s ∈

C | Re s > log(K), π + δ < Im s < π + 2δ} and can be expanded in a Fourier series.
This implies that

F (t) =
∞∑

`=−∞

F` t
2πi

log(p)
` for t ∈ S. (49)
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The second equation of (48) yields conditions on the Fourier coefficients

F` exp
(

2πi log(q)
log(p)

`
)

= B̃1F` for ` ∈ Z.

Therefore F` = 0 unless exp
(

2πi log(q)
log(p)

`
)

is an eigenvalue of B̃1. Since p and q are

multiplicatively independent, the quotient log(q)
log(p)

is irrational and hence exp
(

2πi log(q)
log(p)

)
is

not a root of unity. Therefore all the numbers exp
(

2πi log(q)
log(p)

`
)

, ` ∈ Z are different and

only finitely many of them can be eigenvalues of B̃1. This shows that the Fourier series
(49) has finitely many terms and thus F (t) can be analytically continued to the whole
Riemann surface Ĉ of log(t). The same holds for d(t) = tL1F (t).

Since g(x) is a convergent Laurent series in C[[x]][x−1], the function h(t) = g(et)

is holomorphic for t with large negative real part and 2πi-periodic. We conclude using
Lemma 24 that h(t) = G1(t)d(t) can be analytically continued to a meromorphic function
on Ĉ, in particular the point t = 2πi is at most a pole of h. By its periodicity, this implies
that t = 0 also is at most a pole of h and that it can be continued analytically to a 2πi-
periodic meromorphic function on C which we denote by the same name.

This periodicity allows one to define a meromorphic function g̃(x) on C \ {0} by
g̃(et) = h(t). As g̃(x) = g(x) for small |x| 6= 0 by the construction of h, we have shown
that g(x) can be continued analytically to a meromorphic function on C which we again
will denote by the same name.

The formula h(t) = G1(t)d(t) and Lemma 24 also imply that h(t) is analytic in some
sector S̃ = {t ∈ C∗ | δ < arg t < 2δ} with small positive δ. As this sector contains some
half strip {t ∈ C | Re t > L, µRe t < Im t < µRe t + 3π} for some positive L, µ which
has vertical width larger than 2π and h is 2πi-periodic, its poles are contained in some
vertical strip {t ∈ C | −L < Re t < L}. For the function g(x) this means that it can be
continued analytically to a meromorphic function on C with finitely many poles.

The proposition is proved once we have shown that g(x) has polynomial growth as
|x| → ∞. This is done as in the proof of Theorem 4.2 in [38] (see also [11]). Consider
r0> 1 such that g(x) and A(x) are holomorphic on the annulus |x| > r0/2. There are
positive numbers K,M such that |A(x)| ≤ K|x|M for |x| ≥ r0. Consider now the annuli

Aj = {x ∈ C | rp
j

0 ≤ |x| < rp
j+1

0 }, j = 0, 1, ...

covering the annulus |x| ≥ r0. Any x ∈ Aj can be written x = ξp
j with some ξ ∈ A0.

Then we estimate using (37) and the inequality for |A(x)|

|g(x)| = |g(ξp
j

)| ≤ Kj
(
|ξ|pj−1 · · · |ξ|p|ξ|

)M
max

r0≤|ξ|≤rp0
|g(ξ)|.
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Hence there is a positive constant L such that |g(x)| ≤ LKj |x|
M
p−1 for x ∈ Aj.Assuming

log(r0) ≥ 1 without loss in generality, we find that j ≤ log(log(|x|))/ log(p) for x ∈ Aj .
Hence there exists d > 0 such that

|g(x)| ≤ L (log(|x|))d |x|
M
p−1 for |x| > r0

and the proof of Proposition 22 is complete.
For later use, we note another corollary of Proposition 22.

Corollary 25. Consider multiplicatively independent positive integers p, q. Let A(x) and
B(x) be two matrices with polynomial entries such that the consistency condition (38)
holds and A(0) and B(0) are invertible. Then there exists a matrix G(x) with polynomial
entries, G(0) = I and

A(x) = G(xp)A(0)G(x)−1, B(x) = G(xq)B(0)G(x)−1.

As an application, consider two polynomials a(x), b(x) without constant term satisfying

a(xq)− a(x) = b(xp)− b(x).

This is the consistency condition for the matrices A(x) =

(
1 0

a(x) 1

)
and B(x) =(

1 0
b(x) 1

)
. The above Corollary yields the existence of a polynomial matrix G(x) with

the stated properties. The conditions encoded in A(x)G(x) = G(xp) and G(0) = I imply

that G(x) =

(
1 0

g(x) 1

)
with some polynomial g(x) without constant term. We obtain

a(x) = g(xp)− g(x), b(x) = g(xq)− g(x).

In the case of p, q without common divisor, the existence of such a polynomial g(x) can
be proved directly. Under the present hypothesis that p and q are multiplicatively inde-
pendent, this is possible but less elementary. A similar reasoning will appear in the proof
of Corollary 26.

Proof of Corollary 25. Putting G(x) = I + H(x), the first equation of the statement is
equivalent to

H(x) = A(x)−1A(0)− I + A(x)−1H(xp)A(0).

Using the fixed point principle in M = gln(xC[[x]]) equipped with the x-adic norm,
it follows that the latter equation has a unique solution in M. This also follows from
Proposition 34 of [39]. Hence there is a unique formal series G(x) = I + ... such that
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A(x) = G(xp)A(0)G(x)−1. Now put B̃(x) = G(xq)−1B(x)G(x). AsA(x), B(x) satisfy
the consistency condition, so do A0:= A(0) and B̃(x). Again a series expansion yields
that B̃(x) =: B0 is constant.

As in the proof of Corollary 23, the formal solution G(x) ∈ I +M of the system

G(xp) = A(x)G(x)A−1
0 , G(xq) = B(x)G(x)B−1

0 (50)

can be considered as a formal (matricial) solution of a consistent system (37) and thus
must have rational entries by Proposition 22.

It remains to prove thatG(x) actually has polynomial entries. AsA(x) has polynomial
entries, the first equation of (50) implies the following statement: If x = x0 is a finite
regular point of all entries of G(x) then so is x = xp0. The contrapositive – which is also
true – says: If x = x0 is a finite pole of some entry of G(x) then so is any p-th root of x0.
Now there is no finite subset of C that is stable with respect to taking any p-th root of any
element besides the empty set and {0}. As the entries of G(x) have no poles at x = 0, the
set of their finite poles must be empty. Hence G(x) has polynomial entries.

Unfortunately not every Mahler system is regular singular.

Example. The system y(xp) = A(x)y(x), A(x) =

(
1 0
x−1 2

)
is not regular singular at

the origin. Otherwise, there exist an invertible matrix T (x) ∈ GL2(E), E = C[[x1/r]][x−1/r]

for some positive integer r and some constant triangular matrix C =

(
a 0
c b

)
with

nonzero a, b such thatA(x)T (x) = T (xp)C. For the determinants this means that 2 det(T (x)) =

ab det(T (xp)); hence det(T (x)) is a constant and ab = 2. Considering the upper right el-
ements of both sides implies T12(x) = T12(xp)b.

If T12(x) 6= 0, we obtain b = 1 and thus a = 2. This means that C has the dis-
tinct eigenvalues 1, 2 and hence with an additional transformation, we can replace it by
diag(1, 2) and as a consequence, T (x) is replaced by some lower triangular matrix. If
T12(x) = 0, we immediately obtain that a = 1, b = 2 and hence we can replace C by
diag(1, 2) also in this case.

Thus we can assume in both cases thatC = diag(1, 2) and that T (x) is lower triangular
and hence its diagonal elements are constants.

Now put T (x) =

(
c 0

u(x) d

)
. Then u(x) ∈ E satisfies cx−1+2u(x) = u(xp). We now

consider the vector space F of all formal Laurent series
∑∞

j=−∞ ajx
−j/r. Then u(x) ∈ F

and also v(x) := −c
∑∞

k=0 2−k−1x−p
k ∈ F . As v(x) satisfies cx−1 + 2v(x) = v(xp),

the difference d(x) = u(x) − v(x) ∈ F satisfies 2d(x) = d(xp). In view of the series
expansions, this means that d(x) =: d is a constant. We obtain that u(x) = v(x) + d in
contradiction to u(x) ∈ E.
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Fortunately, our matrices A(x) are very special. The proof of Theorem 13 in case 2M
is complete, once we have shown

Proposition 26. Consider A(x), B(x) ∈ GLn(K̂), K̂ =
⋃
r∈N∗ C[[x1/r]][x−1/r] satisfy-

ing the consistency condition (38). Then x = 0 is a regular singular point of y(xp) =

A(x)y(x).

Proof. We will show later

Lemma 27. Under the hypotheses of Proposition 26, there exists a gauge transformation
y = H(x)z, H(x) ∈ GLn(K̂), that changes (37) into

z(xp) = Ã(x)z(x), z(xq) = B̃(x)z(x), (51)

where Ã(x) = d I with some d ∈ C or Ã(x), B̃(x) are both lower block triangular with
blocks of the same size, i.e. there existm ∈ {1, ..., n−1} andA11(x), B11(x) ∈ GLm(K̂),
A22(x), B22(x) ∈ GLn−m(K̂), A21(x), B21(x) ∈ K̂n−m,m such that

Ã(x) =

(
A11(x) 0
A21(x) A22(x)

)
, B̃(x) =

(
B11(x) 0
B21(x) B22(x)

)
. (52)

Recall from the beginning of section 3 that gauge transformations preserve the consis-
tency condition. Hence it also holds for Ã(x) and B̃(x).

We now prove the Proposition by induction. In case n = 1, it has been shown in
Proposition 23 of [39] that y(xp) = A(x)y(x) is always regular singular. Indeed, if
A(x) = axsb(x), where a ∈ C∗, s ∈ Q and b(x) ∈ C[[x]] with b(0) = 1, then there
is a formal series c(x) ∈ C[[x]] with c(0) = 1 satisfying c(xp) = b(x)c(x) as a power
series expansion readily shows. Thus y(xp) = A(x)y(x) is equivalent to z(xp) = axsz(x)

and by z = x
s
p−1v, this is equivalent to v(xp) = a v(x).

So suppose that the statement has been proved for all dimensions smaller than n. Given
A(x), B(x) as in the hypothesis, we now invoke Lemma 27. When Ã(x) = dI , there is
nothing to do. Otherwise, we observe that the couples A11(x), B11(x) and A22(x), B22(x)

also satisfy the consistency condition and therefore by the induction hypothesis, x = 0

is a regular singular point of u(xp) = Ajj(x)u(x), j = 1, 2. Thus there exists gauge
transformations u = Fjj(x)v with entries in K̂ that transform the systems to constant
ones v(xp) = Ãjjv(x), j = 1, 2. Performing the same gauge transformations on the
systems u(xq) = Bjj(x)u(x), j = 1, 2 yields systems v(xq) = B̃jj(x)v(x) with B̃jj(x)

having coefficients in K̂. As we still have the consistency condition, we have

ÃjjB̃jj(x) = B̃jj(x
p)Ãjj, j = 1, 2.
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As used before, this implies that the B̃jj(x) are also constant and commute with Ãjj .
Hence using the block diagonal matrix F (x) = diag(F11(x), F22(x)), the system (51) is
reduced to one, where additionally Ajj, Bjj are constant and commute.

It remains to show that for a system (51), (52) with constant commuting Ajj, Bjj

satisfying the consistency condition, the point x = 0 is a regular singular point of the first
equation of (51). Observe that the consistency condition reduces to an equation for the
lower left block

A21(xq)B11 + A22B21(x) = B21(xp)A11 +B22A21(x). (53)

This suggests splitting A21(x), B21(x) into their polar parts A−21(x), B−21(x) and their reg-
ular parts A+

21(x), B+
21(x) containing the terms with negative or non-negative exponents,

respectively. Then (53) splits into two equations

A±21(xq)B11 + A22B
±
21(x) = B±21(xp)A11 +B22A

±
21(x). (54)

We are interested in the polar parts that have to be removed. They are polynomial in x−1/r

for some positive integer r. So we replace x = ξ−r and consider the matrices

A−(ξ) =

(
A11 0

A−21(ξ−r) A22

)
, B−(ξ) =

(
B11 0

B21(ξ−r) B22

)
. (55)

These matrices are polynomial in ξ and satisfy the consistency condition because of (54).
Here Corollary 25 applies and yields a polynomial matrix G(ξ) with G(0) = I such that

A−(ξ)G(ξ) = G(ξp)A−(0). (56)

Writing G(ξ) =

(
G11(ξ) G12(ξ)
G21(ξ) G22(ξ)

)
with blocks of the same size as those of A−, we find

A11G12(ξ) = G12(ξp)A22 from the (1, 2)-blocks in (56). Expanding G12(ξ) in powers of
ξ and using G12(0) = 0, we find that G12(ξ) vanishes. Similar, the diagonal blocks in
(56) now show that G11(ξ) = Im, G22(ξ) = In−m. Finally, its (2, 1)-blocks show that
A−21(ξ−r) + A22G21(ξ) = G21(ξp)A11. Then the transformation z = G(x−1/r)w changes
z(xp) = Ã(x)z(x) into w(xp) = Ǎ(x)w(x), where G(x−p/r)Ǎ(x) = Ã(x)G(x−1/r).

Using the block structure of Ã(x) and G(ξ), this implies that Ǎ(x) =

(
A11 0

Ǎ21(x) A22

)
where

Ǎ21(x) = A21(x) + A22G21(x−1/r)−G21(x−p/r)A11 = A21(x)− A−21(x) = A+
21(x).

Thus we have shown that y(xp) = A(x)y(x) is equivalent over K̂ tow(xp) = Ǎ(x)w(x)

where all entries of the coefficient matrix Ǎ(x) have positive valuation. As shown in the
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beginning of the proof of Corollary 25 and stated in Proposition 34 of [39], this implies
that x = 0 is a regular singular point of the latter system and hence also of the given
system y(xp) = A(x)y(x). This completes the proof of Proposition 26.

Proof of Lemma 27. By Theorem 24 of [39], there exists a gauge transformation y =

T (x)z, T (x) ∈ GLn(K̂) that changes y(xp) = A(x)y(x) into z(xp) = A(1)(x)z(x) where
A(1)(x) ∈ GLn(K̂) is lower triangular and has constant diagonal entries. Performing the
same gauge transformation on the second equation y(xq) = B(x)y(x), we can assume
without loss of generality that the given matrix A(x) additionally has this property. In the
sequel, we denote the entries of A(x) by ajk(x), those of B(x) by bjk(x), j, k = 1, ..., n,
and, without mentioning it again, do the same for other matrices. We omit the argument
“(x)” if an entry is constant.

If the diagonal entries ajj, j = 1, ..., n, were distinct, it could be shown from the
consistency condition thatB(x) is also lower triangular thus proving the Lemma – in fact,
this would first be done for b1n(x) as the consistency condition implies that a11b1n(x) =

b1n(xp)ann and thus b1n(x) = 0 if a11 6= ann; then the same follows successively for
the other entries of B(x) above the diagonal in a similar way. Unfortunately, we have no
information about these diagonal entry.

Dividing A(x) by ann, we can assume that ann = 1. Let m ≥ 1 be the maximal length
of a block Im in the lower right corner of A(x), i.e. we start with

A(x) =

(
A11(x) 0
A21(x) Im

)
, A11(x) lower triangular with constant diagonal.

If all entries bjk(x) vanish for j = 1, ...n−m, k = n−m+ 1, ..., n, then B(x) is lower
block triangular with blocks of the same size as A(x) and the lemma is proved. Otherwise
there is an entry br`(x) 6= 0 with 1 ≤ r ≤ n −m, n −m < ` ≤ n. By going over to the
uppermost nonzero entry in the `-th column of B(x), we can assume that bj`(x) = 0 for
j = 1, ..., r − 1 if r > 1.

We express the element pr`(x) of P (x) = A(xq)B(x) = B(xp)A(x) in two ways and
find pr`(x) = arrbr`(x) = br`(x

p)a``. This yields that br`(x) is constant and arr = a`` = 1.
We denote d = br`(x).

Consider now the following matrix S(x): Its r-th column is 1
d
B`(x

1/q), where B`(x)

denotes the `-th column ofB(x); the other columns of S(x) are the unit vectors e1, ..., er−1

and er+1, ..., en. Observe that S(x) is lower triangular. We now perform the gauge trans-
formation y = S(x)z on our system and obtainA(2)(x) = S(xp)−1A(x)S(x) andB(2)(x) =

S(xq)−1B(x)S(x) which still satisfy the consistency condition.A(2)(x) is still lower trian-
gular and has unchanged diagonal entries and lower right block. The right multiplication
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B(x)S(x) adds multiples of columns r + 1, ..., n to the r-th column of B(x) – this is not
really interesting. The left multiplication by S(xq)−1 substracts 1

d
bj`(x) times row r from

row j of the resulting matrix for j = r + 1, ..., n. This means in particular that the `-th
column of B(2)(x) is a multiple of the r-th unit vector.

We consider now the entries p(2)
j` (x), j = r + 1, ..., n, of the product P (2)(x) =

A(2)(xq)B(2)(x) = B(2)(xp)A(2)(x). As the `-th columns of B(2)(x) and A(2)(x) are mul-
tiples of unit vectors, we find that

p
(2)
j` (x) = a

(2)
jr (xq)d = b

(2)
j` (xp)a`` = 0

and hence a(2)
jr (x) = 0 for j = r + 1, ..., n. Thus the r-th column of A(2)(x) equals the

r-th unit vector.
If r < n − m then we can exchange the r-th and (r + 1)-th rows and columns of

A(2)(x) and B(2)(x) and obtain A(3)(x), B(3)(x) which still satisfy the consistency con-
dition, A(3)(x) is lower triangular with constant diagonal and lower right block Im, but
now the additional column that is a unit vector is the (r+ 1)-th column. If r+ 1 < n−m
then we repeat the modification. In this way, we obtain a system v(xp) = A(4)(x)v(x),
v(xq) = B(4)(x)v(x) equivalent to (37) over K̂, where A(4)(x) is still lower triangular
with constant diagonal but now has a lower right block Im+1, i.e. its size has increased.
Thus we can start all over and, after a finite number of steps, we either reach a situation
(51), (52) proving the lemma or we stop with Ã(x) = In. This proves the Lemma and
completes the proof of Theorem 13 in case 2M.
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[12] J.-P. Bézivin. Sur une classe d’équations fonctionnelles non linéaires. Funkcial.
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