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By definition, an autonomous function is a differentially algebraic function Jon iw 
(or on C), every translate J, of which satisfies every algebraic differential equation 
that J satisfies. We find several equivalent formulations of the property of being 
autonomous. Our main result is that if Jis differentially algebraic and meromorphic 
in the full complex plane, and if g is an autonomous entire function, then Jog must 
be autonomous. @‘I 1988 Acadenuc Press. Inc. 

1. INTRODUCTION 

A function y(x) is said to be differentially algebraic (DA) if it satisfies a 
non-trivial algebraic differential equation (ADE), that is, an equation of 
the form 

P(x, y) = P(x, y(x), y’(x), . ..) p(x)) = 0, (1) 

where P is a polynomial with complex coefficients in its n + 1 
variables-for example, 

(x2 + 2) y”‘3y’* - 5(x + 7t) yn2y3 + (7x + 3) = 0. 

Equation (1) is called autonomous if P is independent of the independent 
variable x-for example, 

7.y"'4y2 + J;t.y"'.yJ - 3 = 0. (2) 

* The research of both authors was partially supported by grants from the National Science 
Foundation. 
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(It is a simple fact (see [OST]) that every C” function that is DA must 
satisfy an autonomous ADE.) 

Throughout this paper, we restrict ourselves to functions that are 
meromorphic in the whole complex plane unless it is clear from the context 
otherwise. It is an amusing exercise to prove that 8, or indeed any periodic 
meromorphic DA function y(x), has the property that if y(x) satisfies an 
ADE P = 0, then every translate y,(x) = y(x - T) must also satisfy P = 0. 
We shall call a function with this property autonomous, and study such 
functions here. An autonomous function is a DA function that cannot be 
distinguished from its translates by means of differential algebra. By the 
Shannon-Pour-El-Lipshitz-Rubel theorem (see [LIR]), this means (in 
the analytic case, at least) that if y(x) is autonomous, then every general- 
purpose analog computer that produces y(x) also produces every translate 
of Y(X). 

In Section 2, we give some revealing equivalent notions of the idea of 
autonomous functions-in particular the meromorphic function y(x) is 
autonomous if and only if x does not belong to the differential field 
generated by y(x). In Section 3, we show that neither the sum nor the 
product of two autonomous functions need be autonomous. This is not so 
surprising since being autonomous is an extension of being periodic, and 
no one expects the sum or product of periodic functions (with different 
periods!) to be periodic. In Section 4, we use a result of Steinmetz [STE] 
to prove that if g(x) is an autonomous entire function, and if f(x) is any 
differentially algebraic entire function, then f(g(x)) is autonomous. (Some 
restrictions on the domain off are needed-consider otherwise g(x) = e-’ 
and f(x) = log x.) In some respects, the class AUT of autonomous 
functions resembles the class PER of periodic functions. This seems to be 
an analogy worth pursuing. 

In Section 5, we show briefly that we may write x=f (x) +g(x) where 
f(x) and g(x) are periodic meromorphic functions, but that we may 
not write x as a finite sum of periodic entire functions. We conclude, in 
Section 6, with a few open problems. In the Appendix, we give a short and 
accessible proof of the Kolchin-Ostrowski theorem that we use in this 
paper. 

2. EQUIVALENT FORMULATIONS 

We use the following standard notations: @ for the complex numbers ([w 
for the real numbers), @(x) for the field of rational functions, C(y) for the 
ring of differential polynomials with constant coefficients, @(x)(v} for the 
ring of differential polynomials with coefficients in c(x), and AUT for the 
class of autonomous functions. 
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PROPOSITION 1. The following are equivalent. 

0) 24 is autonomous. 

(ii) Let P(x,Y)=~ Pi(y)X’ be in C(x){y } with POE@ {Y>. lf- 
P(x, u(x)) = 0 for all x, then P,(u(x)) = 0 for all i and all x. 

(iii) Let I= (PE C(x){ y}: P(x, u(x)) = 0) be the radical differential 
ideal of all differential polynomials that annihilate u. Then I has a Cfinite) 
basis of autonomous differential polynomials, i.e., elements of C( y }. 

(This means that there exist autonomous differential polynomials 
P 1, . . . . P, such that for any f E Z, some power f N off lies in the differential 
ideal generated by P,, . . . . P,. In other words, Z is finitely generated as a 
radical differential ideal.) 

(iv) x $ C(u), the differential field generated by 62 and u. 

(v) u has a minimal differential polynomial (see below) that is 
autonomous. 

Proof (i) * (ii). Assume u is autonomous. If P(x, u(x))=0 then 
0 = P(x, u(x + c)) = Cy=“=o P,(u(x + c)) x’ for all x and c. Fix z E C and let 
x0, . . . . x, be distinct elements of C. Choose to, . . . . t, so that xj+ tj= z for 
j = 0, . . . . m. We then have Cy!“=o P,(u(z)) xi=0 for j=O, . . . . m. Using the 
Vandermonde determinant, we see that this implies that P,(u(z)) = 0 for 
i = 0, . . . . m. 

(ii ) 3 (i). Easy. 
(ii) * (iii). Easy. Of course, to make the basis finite, one uses the 

Ritt-Raudenbush basis theorem (see [ KAP] ). 
(iii) =+ (i). Easy 
(ii) 3 (iv). Assume XE C(u). We then have x= P(u)/Q(u) for some 

P, QEC{ y> with Q(u) #O. Therefore Q(u) x- P(u) =O, while Q(u) #O, 
contradicting (ii). 

(iv) =s- (ii). Assume that there are P,g@{y} such that 
Cy=“=o P,(u) xi = 0 with the P,(u) not all 0. Among all such relations, select 
one with the smallest m. Dividing by P,(u) and differentiating, we find 
that (P,,- JP,)‘= -m. Therefore x=(-P,- l(u)/mP,(u)) + c~C(u), 
contradicting (iv). 

We will complete the proof of Proposition 1 after a brief excursion into 
minimal polynomials. 

Among all the non-zero P E C(x){ y } that annihilate the DA function u, 
choose one of minimal order (say n), and of minimal degree in u(“). Such a 
differential polynomial is called a minimal differential polynomial for u. We 
will gather some facts about such polynomials in the following lemma. 
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Recall that for a differential polynomial of order n, the coefficient of the 
highest power of y”” is denoted by I and is called the initial, and aP/8yCn’ is 
denoted by S and is called the separant. 

LEMMA 1. (a) If P is a minimal polynomial for f, then P is irreducible 
as a polynomial in y(” with coefficients in @(x, y, . . . . y’“- ‘I). 

(b) If P, and P2 are both minimal polynomials for f, then 
P, =a(x, y, . . . . y’“-‘I) P, for some aEC(x,y, . . . . y’“- ‘I). 

(~1 lfQWx){~l annihilates f, then for some non-negative integers i 
and j, S’I’Q E [PI, the differential ideal generated by P in C(x){ y }, i.e., the 
ideal generated by P, P’, P”, . . . . in C(x){ y}. 

(d) Let Q E C(x){ y}, let P be a minimal polynomial forS, and assume 
that the order of P is the same as the order of Q and that Q is irreducible 
ouer @(x, y, . . . . y’“- I’). Zf Q annihilates f, then Q is a minimal polynomial 
for f 

Proof (a) If P=QR, then either Q[f]=O or R[f]=O. Assume 
that Q[f] =O. Comparing orders and degrees, we see that 
R E @(x, y, . . . . y”‘+ I’), so that P is irreducible as claimed. 

(b) We may write 

P, = A,( y(n))m + ‘. . + A, 

P* = B,( y’n))m + . . . + B,, 

where Ai, Bi~C(x)[y, . . . . y (n ~ ‘) 1. Now B P, - A, P, has smaller degree in 
Y (“I, so that B,P, - A,P2 E 0. Using the Ereducibility of P, and P,, we see 
that P, divides P, and so P, = UP,. 

(c) This is obtained by differentiating and using the usual division 
algorithm in several variables-see [KAP] for details. 

(d) Using the division algorithm, we see that there exist A,, . . . . A, in 
C(x)(y) such that R=ZiQ-(A,P+ ... +A,P’) has degree in y’“’ less 
than that of P. Since R(f) = 0, we have R E 0. Therefore P divides liQ, so 
that P divides Q. Since Q is irreducible, we see that P=aQ where 
aE @(x, y, . . . . y+‘)), so that Q is therefore a minimal polynomial for f: 

We now complete the proof of Proposition 1 by showing that (i) o (v). 
Assume that u is autonomous and let P(x, y, . . . . y”“) be a minimal 
polynomial1 We may write P = C x’P,, where each Pi E C[y, . . . . y’“‘]. By 
the proved implication (i) =+ (ii), we have Pi(u) = 0 for each Pi for some i, 
we know that the order of Pi is n and the degree of Pi in y’“’ is the same as 
the degree of P in y’“‘. Therefore Pi is a minimal polynomial for f, and is 
autonomous. 
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To show that (v)+(i), assume that u has a minimal polynomial P in 
C{y}. Let Q be in C(x)(y) and assume that Q(u) = 0. By Lemma l(c), 
Z’SjQ E [PI. Since any RE [P] satisfies R(f(x + c)) = 0 for all c E @, we 
have 

Z’[u(x + c)] S,‘[u(x + c)] Q[u(x + c)] = 0 

for all c E C. Note that I and S each either has lower order or lower degree 
(in y’“‘) than P. So by the minimality of P, we cannot have Z[u(x + c)] or 
S[u(x + c)] vanishing. Therefore Q[ u(x + c)] = 0 for all c E C, and u is 
therefore autonomous. 

PROPOSITION 2. Suppose that u satisfies no (n - 1)st order ADE but that 
it does satisfy an autonomous ADE of order n, say P( y, . . . . y’“‘) = 0 for some 
PE C{ y}. Then u is autonomous. 

Proof Let Q be an irreducible factor of P in C[ y, . . . . y’“‘] that involves 
y’“‘. Then Q has the same order as a minimal polynomial for u, so by 
Lemma 1 (d), it must be a minimal polynomial for u. By the part (v) * (i) 
of Proposition 1, u is autonomous. 

Application 1. u = (1 + e2-‘)/( 1 - e’“) E AUT because it satisfies y’ = 
y2 - 1, and of course does not satisfy any ADE of order 0. 

Application 2. Consider the ADE 

Y' = Y2(Y - 111 

and note that 

1 1 1 1 
y2(y- l)=y-1-y-p 

so that 

s 
If we let c = 0, say, and let u be an analytic solution of 

log l-f +;=x, 
( ) 

then u is not an elementary function, and is consequently not algebraic. 
Therefore u is autonomous. That u is not elementary follows from 
[SIN, Corollary 23. 



AUTONOMOUSFUNCTIONS 359 

PROPOSITION 3. Suppose that u is a C” function that satisfies an nth 
order ADE of the form 

p(x) y’“‘(x) = r(x, y(x), . ..) y’“- l’(x)), (*I 

where r is a polynomial in its arguments and p is a polynomial in x. Suppose 
,further that u satisfies no (n - 1 )st order ADE. Let ul he the ideal of all 
differential polynomials that annihilate u. Write (*) as 

Q(x y(x) . . . y’“‘(x)) =O. 7 95 (#) 

Then u’ is the radical differential ideal generated by Q, i.e., ul= { Q }. 

Here {Q} is the ideal of all differential polynomials P, some integer 
power of which belongs to the differential ideal generated by Q. 

Proof of Proposition 3. Solve (*) for y’“‘(x) and differentiate suc- 
cessively to get y@‘(x), y”‘+‘)(x), . . . as polynomials in y(x), 
y’(x), . . . . y’“-.- “( ) x w h ose coefficients are rational functions of x. Suppose 
now that PE u’, say P(x, u(x), u’(x), . . . . u ‘“‘(x)) = 0. Insert the expressions 
just obtained for u@‘, u”‘+ I’, . . . . ~6~’ and write the result as 
P(x, u(x), u’(x), . ..) u’-” (x)) = 0. Since u satisfies no (n - 1 )st order (non- 
trivial) ADE, we must have p z 0. Now suppose that u is any C” solution 
of Q = 0. Repeating the above manipulations, with u in place of u, we get 

P(x, u(x), u’(x), . ..) 0 ‘“‘(x)) = P(z, u(x), u’(x), . ..) u+ “(X)). 

Since P= 0, we have P(x, u(x), . . . . u’“‘(x)) = 0. By the differentially 
algebraic form of the Nullstellensatz (see [SEI]), PE {Q} and the 
proposition is proved. 

Note that this gives a second proof of the fact that if u satisfies no 
(n - 1 )st order ADE, but does satisfy an ADE of the form 

Y’“‘(X) = r(y(xL Y’(X) 7 ...? Y’“‘(X)), (+I 

where r is a polynomial that does not involve x, then u E AUT, since in this 
case, Q is an autonomous differential polynomial. 

We conclude this section with an amusing byplay. 

DEFINITION. A function u is said to be anti-autonomous tffor any c E @, 
c #O, there is an ADE P,(x, y, . . . . y’“‘) = 0 such that P,(x, u(x), . . . . 
u’“‘(x)) = 0 and P,.(x, u(x + c), . . . . ufn’(x + c)) # 0. 

Thus, an anti-autonomous function u is one such that each of its 
translates can be distinguished from u by means of differential algebra. 
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PROPOSITION 4. Any function that is not autonomous is anti-autonomous. 

Proof If u is not autonomous, then XE C(u), by (iv) = (i) of 
Proposition 1. This means that 

G(u, u’, . . . . u@)) 
x = H(u, u’, . ..) ZP) 

for some G, H in @(y}, where H(u) f 0. Let P = xH - G, so that 
P(x, u, . . . . ~6~)) = 0. If P(x, u(x + c), . . . . u(“)(x + c)) = 0, then P(x - c, u(x), . . . . 
u’“‘(x)) = 0 that (x - c) H(u, . . . . ~6’)) - G(u, . . . . ~6~)) = 0. Thus 
H(u, . . . . u (fl$ = :,‘a contradiction. Notice that one P works for all c. This 
gives the slickest proof that a periodic function must be autonomous. For 
since f(x) = f (x + c) for some c # 0, f cannot be anti-autonomous, and is 
hence autonomous. 

Remark. Proposition 4 indicates that the term “differentially periodic” 
might be a good substitute for “autonomous.” 

3. SUMS AND PRODUCTS OF AUTONOMOUS FUNCTIONS 

In the following, we shall use the Kolchin-Ostrowski theorem (see 
[KOL]). In a differential field, a constant is any term whose derivative is 
zero. 

THEOREM K-O. Let kc K be dtfferential fields of characteristic zero 
with the same constant subfields. Let u,, . . . . u,, v,, . . . . v, be elements of K 
satisfying u: E k for i = 1, . . . . n and V:/V~E k for i = 1, . . . . m. Zf ul, . . . . u,, 
v,, . . . . v, are algebraically dependent over k, then either there exist constants 
Cl 3 . . . . c,, not all zero, such that cI uI + . . . + c,u, E k or there exist integers 
nl, . . . . n m, not all zero, such that v;‘v’;~ . . . v”m E k m * 

We shall use this theorem for the cases corresponding to the following 
pairs of integers (n, m): (1, 0), (0, 1 ), (2,0), and (1, 1 ), and the reader 
should restate this theorem in these special cases. Note that we do not 
assume that the ui or vi are distinct. If, for example, u, = u2, we may take 
c,=l and c,= -1. 

We give a simple proof of Theorem K-O in the Appendix. Our proof is 
in the spirit of [ROS 11. Another similar, but less elementary, proof is 
given in [ROS 23. 

LEMMA 2. Zf u is autonomous and u is not algebraic over C(u), then 
24 + x is autonomous. 
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Proof. If 2.4+x is not autonomous, then xE@(u+x)= 
C(u + x, u’, u”, . ..). Therefore u and x are algebraically dependent over 
C(u’). Both x’ and U’ are in C( u’), so Theorem K-O implies that there 
are constants c and d, not both zero, such that cu -t dx E @(u’) E C(u). 
We must have d # 0, implying that x E C(u), a contradiction. 

PROPOSITION 5. There exist two autonomous entire functions f and g such 
that ,f + g is not autonomous. 

Proof: Let f=j e” dx, g = -f err dx +x. We then have f +g = x, so 
f +g is not autonomous. We now show that f is autonomous. If 
x E C(S e“’ dx) = @(j e”;dx, e”,e’;), then x and J epr dx would be 
algebraically dependent over @(e” >. This would imply that 1 e’ dx would 
be algebraic over @(x, e“ ), contradicting the fact that f err dx is not 
elementary [ROSl, p. 9711. This fact also implies that u = s ep’ dx is not 
algebraic over C( u’) = C(ee’). Of course the same holds for - j e” dx so 
Lemma 2 implies that -s e“ dx + x is also autonomous. 

We can refine the above proof to find entire functions F and G with F 
autonomous and G periodic such that F+ G = x. To do this, note that 
f = s e“ dx is not periodic but that for some non-zero constant c, f - cx is 
periodic of period 2ni(f (x + 2ni) -f(x) = d # 0 for some constant d, so let 
c = d/2ni). Let F= (l/c) f and G = -( l/c)(f - cx). In Section 5, we shall 
show that x is not the sum of a finite number of periodic entire functions. 

LEMMA 3. Iff is autonomous, then exp([ f) is autonomous. 

Proof: If x E @ (exp(j f )) then x and exp(J f) are algebraically depen- 
dent over C( f ). Theorem K-0 implies that either x E C( f ) or 
exp(NJf) E Wf > f or some positive integer N. The first alternative is a 
contradiction. The second alternative implies that exp(j f) is algebraic over 
@(f ), so x would be algebraic over C (f ). Theorem K-O again implies 
that x would be in C( f ), a contradiction. 

PROPOSITION 6. There exist autonomous functions F and G such that FG 
is not autonomous. 

Proof: Let f and g be as in Proposition 2, and let F= exp(j f) and 
G=exp(lg). Then FG=exp(Jf+g). Since x~@(f+g)s (FG), FG is 
not autonomous. 
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4. COMPOSITIONS WITH AUTONOMOUS ENTIRE FUNCTIONS 

THEOREM 1. If g is an autonomous entire function and f is any dtfferen- 
tially algebraic meromorphic function in @, then f 0 g is autonomous. 

Proof. Our proof utilizes the following theorem of Steinmetz (see 
[STE, GRO]). We use the standard concepts and notation of Nevanlinna’s 
theory of value distribution (see [NEV]). 

THEOREM S. Let F,, , F, , . . . . F,(m 2 1) be meromorphic functions on @, 
none of which vanishes identically. Let h,, h,, . . . . h, be arbitrary 
meromorphic functions on 62. Let g be a nonconstant entire function and 
suppose that 

f T(r, h,) G KT(r, 8) + S(r, g), (0) 
p=O 

where K is a positive constant. Further, suppose that 

Fe(g) ho+ F,(g) h, + ... + F,,,(g) h,rO. (1) 

Then there exist polynomials PO, P,, . . . . P,, none of which vanishes iden- 
tically, so that 

P,(g)h,+ P,(g) h, + ... + P,(g)h,=O. (1’) 

To start our proof of Theorem 1, we write h =f og (i.e., h(x) =f (g(x)), 
and suppose that h is not autonomous. By Proposition 1, x E C(h), i.e., 
x = -P(h)/Q(h), where P and Q are autonomous differential polynomials 
in h, and Q(h) f 0. Thus 

xQ(h(x)) = -P(b)). (2) 

Now, as remarked in [STE], we may write, for any non-negative integer v 

h’“‘(x) = i f’j’k(x)) DujCg(x)l, 
j=l 

(3) 

where each D, is a homogeneous differential polynomial of degree j with 
constant coefficients. We write 

QChl = 1 (N,[f 1 og)H,Cgl 

f’Ch1 = c’ (N,Cf 1 os)fJ,Csl, 
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where C and 1’ are sums over different finite index sets. For a dependent 
differential variable u( = u(x)) we write, for g fixed as above, 

ml = c WJfl”8) ff&4 

m = 1’ (~,LCfl”8) ff,CUl> 

2[u] = P[k] +x&u]. 

We consider Q as a differential polynomial in u with coefficients in the dif- 
ferential ring 9 generated by the constants and the functions N,[f] og. 
This ring is a Ritt ring, i.e., a differential ring that contains the rational 
numbers Q. Let it4 be an autonomous minimal differential polynomial for g, 
whose existence is guaranteed by Proposition 1 (v). Let I be the initial of 
M and S the separant of M. By the division algorithm (see [KAP, p. 46, 
Lemma 7.31) there are non-negative integers c( and /I such that 

T A ZxSB~ = L mod {M}, 

in &?{u}, where L is lower than M, i.e., L either has lower order than M or 
lower degree. Here {M} denotes the differential ideal generated by M in 
9{~}. Remember that we are here considering M, T, Q, L, etc., as elements 
of &Y{u). Note that L[g] #O, for this would make Q[g] =0 (and hence 
Q[g] = 0) since Z[g] # 0 and S[g] # 0 because both I and S are lower 
than M. Define 

W[u] = Z”S”P[u] + xL[u]. 

Then W[g] = 0. We may write 

(*I 

where the F,, are certain entire functions, and the Z??p are entire expressions 
in g, g’, g”, . . . . Note that, because M is autonomous, Z”SBP and L do not 
involve the independent variable x. We may now apply Theorem S to get 
polynomials P, such that 

c P,(g) qLs1 +x 1’ PJg) qg1= 0. 

It is clear that, except in the trivial case where g is a constant, it cannot be 
a polynomial, for if g were a non-constant polynomial in x then we could 
take several derivatives of g to get x E C(g), contradicting g being 
autonomous. Thus, T(r, x) = O(T(r, g)). Since T(r, xl(x)) 6 T(r, l(x)) + 
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T(r, x), we see that the hypothesis (0) of Theorem S is fulfilled in our case, 
using the known estimate 

T(r, &lcd) = O(T(r, g)) + S(r, 8) 

(see [CLU]). Notice now that C’ P@( .) /?,[I .] is lower than M since each 
of the R,, as differential expressions occurring in L, is lower than M and 
since the P2 are only ordinary polynomials, and M is not of order 0. Hence 
C’ P,(g) H,[g] # 0. Thus (*) may be rewritten as 

p*kl+ G?*cg1= 0, where Q*[gl #O, (#) 

which contradicts the hypothesis that g is autonomous. This contradiction 
proves the theorem. 

Note that the results we have proved can be used to generate a large 
number of autonomous entire functions. Start with the class of all periodic 
entire functions. Then, for every f we have so far, adjoin exp( jf ). Now 
every derivative of an autonomous function g must be autonomous, since if 
x E C( g’), then x E C(g). Thus, we may adjoin all derivatives of the 
autonomous functions constructed so far. Also, for every f we have so far, 
we may adjoin F(f ), where F is any differentially algebraic entire function. 
Keep on repeating these processes to get a substantial class of entire 
autonomous functions. 

5. FINITE SUMS OF PERIODIC FUNCTIONS 

In this section, we will write z, instead of x, for the independent variable. 

PROPOSITION 7. There exist two differentially algebraic and periodic 
meromorphic functions in 62 such that z = f(z) + g(z) for all z. On the other 
hand, z is not the sum of finitely many periodic entire functions. 

Proof. We use the Weierstrass c-function c(z) using [SAZ, Chap. VIII, 
Sect. 61 as a reference. We are using the “periods” {ok > = {I + mi: I, m E 22, 
12+m2#O} so that 

i(z)=;+ 1 [ l - 1 Z (VI I,meZ z-(l+mi)+f+mi+(l+mi)2 ’ 1 /2+m*+o 
Further, we have 

i(z + 1) - i(z) = v, i(z + i) - i(z) = q’, 
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where q and q’ are constants that satisfy Legendre’s equation 

iv - q’ = 27ri. 

It is clear from (V) that 9 is real, and hence q # q’. Let 

7(z) = i(z) - v, -g(z) = i(z) - tfz. 

Then f is periodic of period 1, and g is periodic of period i. Furthermore, 
y(z) + g(z) = (q’ - q) z, and the first part of the result follows on choosing 
f(z)=(rl’-~l)-~&) and g(z)=(rl’-rl)plg(z). 

Note that this result gives a meromorphic version of Proposition 5, since 
g and h, being periodic, must be autonomous. 

For the second part, let us suppose that 

z =f,b) + . . +f&), (?P) 

where eachf;(z) is entire, with period 0;. By coalescing terms if necessary, 
we may suppose that the oi are pairwise incommensurate. 

LEMMA 4. If f is an entire function and if o and of are two incommen- 
surable complex numbers such that 

f(z + co) -f(z) = 0 and f(z + o’) -f(z) = c, (+I 

then c = 0 and f is a constant. 

Proof: Differentiate (+) to see that f’(z) is a doubly periodic entire 
function, and hence a constant. Thus f (z) E AZ + B, and since f has period 
o, A must equal 0 and f (z) E B, a constant. 

Suppose now that (+) holds. For a complex number o, let A, be the 
difference operator with spacing o: (A, *f)(z) =f(z + CD) -f(z). Choose a 
representation (+) with n as small as possible. Clearly, n > 2, since z is not 
periodic. Let us now apply the operator A = A,, * A,, * ... * Awn-, to (+) 
to get 

(Acon *f,,)(z) = 0, 

(A *f&)=0. 

If n = 2, then A = A,,, and we may apply Lemma 4 to see that f, is a 
constant. We could add this constant to fi and reduce the number n in the 
representation (+). Therefore n 2 3. Let 

F(z) = (A,, * A,, * . . *Awn-z * f,)(z). 
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Then 

(d,on * m) = 0, (A,“-, * mz) = 0. 

Applying Lemma 4 again, we see that F(z) is a constant. Repeating this 
argument, we eventually see that f,(z) is a constant, which leads to a 
contradiction as above. 

6. OPEN PROBLEMS 

Problem 1. If f(z) and g(z) are autonomous analytic functions on 
suitable domains, must f(g(z)) also be autonomous? (Note: following 
Proposition 1 we could now take as our definition off being autonomous, 
where f is only defined on an open subset of C, that z $ C (f ).) 

Problem 2. Can an autonomous function have the unit circle as a 
natural boundary? 

Problem 3. Does z belong to the ring generated by the periodic entire 
functions? That is, can we write z as a finite sum of finite products of 
periodic entire functions? (Note that z does belong to the field generated 
by the periodic entire functions. This follows from Proposition 7 and the 
fact that every periodic function that is meromorphic in @ is the quotient of 
two periodic entire functions. For (see [SAZ, Chap. S]), if f(z) is a 
periodic meromorphic function on the plane, say with period 2xi, then 
(and only then) we may writef(z) = M(e’), where M(w) is meromorphic in 
the set 3, which is the Riemann sphere with 0 and cc deleted. But, by the 
Mittag-Leffler theorem, every meromorphic function M on 3 may be 
written as the quotient M= A/B of two holomorphic functions on 3. Then 
f(z) = A(e”)/B(eZ) is the desired representation.) 

Problem 4. Does there exist an entire (or meromorphic) autonomous 
function that is of order O? Of fractional order? Of integer order # 1 (# 1 
or 2 in the meromorphic case)? 

APPENDIX: A SIMPLE FWXF OF THEOREM K-O 

We restate this theorem for the reader’s convenience. 

THEOREM K-O. Let kc K be differential fieids of characteristic zero 
with the same constant subfields. Let ul, . . . . u,, v,, . . . . v, be elements of K 
satisfying U’E k .for i = 1, . . . . n and V’IVE k for i= 1, ..,, m. Zf 
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Ul, ..-, u n, vI , . . . . v, are algebraically dependent over k, then either there exist 
constants c,, . . . . c,, not all zero, such that c, u, + . . . c, u, E k or there exist 
integers n, , . . . . n,, not all zero, such that v”~~“~ . ‘. v”m E k 12 m . 

This result will follow from the next two lemmas. 

LEMMA Al. Let kc K be differential fields of characteristic 0 with the 
same constant subfields. Let y E K and assume y is algebraic over k 

(a) ify’Ek then yEk; 

(b) if y’/y E k then yN E k for some non-zero integer N. 

Proof (a) Let y” + a,,- 1 y” ~ ’ + . . . + a, be the minimal polynomial 
for y over k. Assuming m > 1, we will derive a contradiction, Differen- 
tiating, we have 

(my’+akP,)y”P1+ ... +(a,y’+ab)=O. 

If m > 1, we must have my’ + a; _, = 0. This implies that y + (l/m) a, _, is 
a constant and so lies in k. Therefore y E k. 

(b) Let y’/y = t E k. Let y” + a,y’+ ... + a, =0 be the minimal 
polynomial for y with aj#O. Differentiating we have 

my”t + (al +jt) #+ . . . + ah = 0. 

Comparing this equation to our original equation, we see that 
mta, = a; +jt. Therefore (m -j) t = ajja, and so 

(m-i,Lz=(). 
I 

This implies that 

(Y” -j/aj)’ = o 
y” -j/a, 

so ~“-‘/a~ is a constant. Therefore y”-j~ k. 

LEMMA A2. Let kc K be differential fields of characteristic 0 with the 
same constant subfields. Let w E K and assume w is transcendental over k. Let 
z E K be algebraic over k(w). 

(a) If w’ E k and Z’E k, then there is a constant c such that CW+ZE k. 

(b) If w’ E k and z’/z E k, then z” E k for some non-zero integer n. 

(c) If w’/w E k and z’/z E k, then z”wm E k for some integers n, m, not 
both zero. 

SO5/75/2-13 
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ProoJ (a) Since z is algebraic over k(w) and Z’E k(w), Lemma Al 
implies that z E k(w). We expand z in partial fractions 

where the pi are manic irreducible polynomials in w, deg qii < deg pi and 
the qij and h are polynomials. Fix some p,(w) and call it p(w) and let ni = n. 
Differentiating, we get 

( 
q,(w) ’ z’= (p(w))“+ ... ) 

= -%(W)(P(W))’ 
P”“(W) 

+ terms whose denominators 
contain lower powers of p. 

Since p(w) is manic, deg(p(w))’ < deg(p(w)). Therefore p(w) does not 
divide -n q,(w)(p(w))‘. This implies that p(w) actually appears in the 
denominator of the partial fraction decomposition of z’. Since z’ E k, this is 
a contradiction unless 

z = h(w) 

for some polynomial h(w) = u,wm + ... + a,. Differentiating, we find 

Z’=a:,wm+(mu,w’+u:,~,)w”-‘+ . ..a.. 

If m> 1, then a; =O=mu,w’+u~-, . This implies that w’= 
( -a, ~ ,/mu,,,)’ so (w + a, _ Jmu,)’ = 0. We could conclude that w E k, a 
contradiction. Therefore m < 1, so z = a, w + uO. Differentiating again, we 
find 

We see that a; = 0 (i.e., a, is constant) and z-u, w E k. 
(b) Since z is algebraic over k(w) and Z’/ZE k, we have by Lemma 

Al, zNe k(w) for some non-zero integer N. We may write 

ZN = u npyr, 

where the pi are irreducible manic polynomials, a E k and ni E Z. We then 
have 
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Since Z’/Z E k and since deg pi < deg pi, uniqueness of the partial fraction 
decomposition lets us conclude that each nj = 0, so zN = a E k. 

(c) We first note that if p(w) is a manic irreducible polynomial 
and p(w)# w, then p(w) does not divide (p(w))‘. To see this let 
p(w) = w” + bw” + . . . ) b a non-zero element of k and n >m. Differen- 
tiating, we have 

(p(w))’ = ntwn + (b’ + mtb) w”’ + . . . , 

where t = w’/w. If p(w) divides (p(w))’ then 

ntb = 6’ + mtb 
so 

(n-m) t=$. 

This implies that (w”-“‘/b)‘/(w”-“lb) =0 or wnAm/b is a constant, con- 
tradicting the fact that w is transcendental over k. 

Since z is algebraic over k(w) and z’/z E k, Lemma Al implies that zN E k 
for some non-zero integer N. We may write 

zN = awM IIp;l, 

where the pi are irreducible manic polynomials #w, a E k, and M and the 
ni are integers. We then have 

Since pi does not divide pi., the uniqueness of the partial fraction decom- 
position implies that each n, = 0. Therefore zN = aw”” or zNweM E k. 

Proof of Theorem K-O. We proceed by induction on n +m, If 
n+m= 1, then the result is just Lemma Al. Assume n+m> 1. Ifn#O, we 
have that u2, . . . . u,, ui, . . . . u, are algebraically dependent over k(u,). By 
induction, we have that either c2u2 + . . . + C,U, E k(u,) for some constants 
cl, . . . . c, not all zero or 0;’ . . . . .oz E k(u, ) for some integers n, ,..., n, not 
all zero. In the first case let z=czu,+ ... +c,u, and w=ul. 

If w is algebraic over k, then Lemma Al implies that 
1 .24i + 0. U2 + . . . + 0 . u,, E k. If w is not algebraic over k, apply Lemma A2 
to conclude that w + cz = ui + cc, z+ + . . . + cc,, u,, E k. In the second case 
let z = u;’ . . . . . uz and w = u1 . If w is algebraic over k, we argue as above. 
If w is not algebraic over k, Lemma A2 implies that zN = u;Yn’ . . . . . uFm E k. 
If n = 0 but m # 0, we argue in a similar manner using Lemma A2 (c). 
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