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Let X be a C’ vectorfield on S* = {(x, y, z) E iw3: x2 +y2 + z2 = 1 } such that no 
open subset of S* is the union of closed orbits of X. If X has only a finite number of 
singular orbits and satisfies one additional condition, then it is shown that X is 
topologically equivalent to a polynomial vectorfield. A corollary is that a foliation 
9 of the plane is topologically equivalent to a foliation by orbits of a polynomial 
vectorfield if and only if F has only a finite number of inseparable leaves. CD 1985 

Academic Press, Inc. 

1. INTR~DLJ~TIoN 

Two vectorfields X and Y defined on oriented manifolds M and N, 
respectively, are called topologicdy equivalent if there is an orientation- 
preserving homeomorphism h: M + N that sends orbits of X to orbits of Y, 
preserving the direction of the orbits. In this paper, we investigate the 
question, which vectortields on S* are topologically equivalent to 
polynomial vectorfields? Here S2 = ((x, y, z) E lR3 :x2 + y* + z* = 1 }. “Vec- 
torfield on S*” always means a tangent vectorlield to S*; a polynomial 
vectorfield on S2 is, in addition, one each of whose coordinates is a 
polynomial in x, y, z. 

To state our result, we recall from [A] that an orbit y of a vectorfield X 
is called positively (resp. negatively) stable if nearby orbits stay near y in 
positive (resp. negative) time. More precisely, y is positively (resp. 
negatively) stable if for any point p on y and any E > 0 there exists 6(p, 
E) > 0 such that if Ij q-p 11 < 6, then the positive (resp. negative) semiorbit 
of X through q lies within E of the positive (resp. negative) semiorbit of X 
through p. An orbit is called positively (resp. negatively) unstable if it is not 
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positively (resp. negatively) stable. An orbit is called singular if it is 
positively or negatively unstable, or if it is an equilibrium. If a vectorlield 
on S2 has only a finite number of singular orbits, then these are just 
equilibria, boundaries of hyperbolic sectors at the equilibria (separatrices), 
and isolated closed orbits [A, p. 2581. 

Our main result is 

THEOREM 1.1. Let X he a C’ vectorfield on S2 such that 

(Hl ) no open subset of S2 is the union of closed orbits; 

(H2) X has only a finite number of singular orbits; 

(H3) X satisfies the separatrix cycle condition described in Section 5. 

Then X is topologically equivalent to a polynomial vector-field. 

The hypotheses of Theorem 1.1 allow any finite number of closed orbits; 
they allow any finite number of equilibria, each with any finite number of 
elliptic, hyperbolic, and parabolic sectors; and they allow certain patterns 
of separatrix connections among the equilibria. (Hypothesis (H3) is a 
restriction on the latter.) However, the hypotheses of Theorem 1.1, while 
sufhcient for the existence of a polynomial model, are certainly not 
necessary. There exist polynomial (in fact linear) vectorfields that violate 
(Hl), and there exist those with curves of equilibria that trivially violate 
(H2). Now that Dulac’s proof that a polynomial vectorfield on I&!’ or S2 
can have only a finite number of isolated closed orbits has been questioned 
(see [C-S]), the necessity of (H2) is in doubt even for polynomial vector- 
fields with a finite number of equilibria. More relevant to our result is the 
existence of polynomial vectorlields that satisfy (Hl) and (H2) but violate 
(H3), and whose existence could not be proved by our approach (Exam- 
ple 2, Sect. 5). On the other hand, our approach, with some additional 
complication, can be used to show the existence of polynomial models for 
certain vectorfields that satisfy (Hl ) and (H2) but violate (H3) (Example 3, 
Sect. 5). 

We remark that the proof of Theorem 1.1 is nonconstructive. Moreover, 
there is no estimate of the degree of the polynomial model. For explicit 
construction of polynomial models for structurally stable vectorlields on 
Pi*, see [Sv]. 

We shall refer to vectortields on S2 that satisfy (Hl) and (H2) as vector- 
fields of finite type. 

The paper is organized as follows. In Section 2, we review the notion of 
the scheme of a vectorfield of finite type on S2. According to Andronov et 
al. two vectorfields with the same scheme are topologically equivalent. We 
shall use this fact to show that various vectorfields we construct are 
topologically equivalent to our original vectorfield X. In Section 3, we dis- 
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cuss a class of easily understood equilibria of vectorfields on lR2 or S*. This 
class includes a model for each topological equivalence class of equilibria 
that we shall encounter. In Section 4, we review the work of 
Reyn [Rel, Re2] on separatrix cycles joining first-order saddle points, and 
we extend this work to certain separatrix cycles that pass through saddle- 
nodes. In Section 5, we construct a C” model Y for X whose closed orbits 
are of simplest possible type and whose equilibria are of the class described 
in Section 3. This construction can be carried out provided X is of finite 
type and satisfies the separatrix cycle condition described in Section 5. After 
these preliminaries, the proof of Theorem 1.1 is given in Section 6, with 
proofs of two lemmas postponed until Sections 7 and 8. 

The proof of Theorem 1.1 goes as follows. We imbed Y in a q-parameter 
family of vectorlields Y(A1,..., A,, x), in which the topological structure of 
the equilibria is preserved, but nonequilibrium orbits that are both 
positively and negatively unstable are broken. Here q is the number of non- 
equilibrium orbits of Y that are both positively and negatively unstable. 
This class includes orbits that are both CI- and o-separatrices (see Sect. 2) 
and closed orbits that are attracting on one side and repelling on the other. 
We approximate the family Y(& x) by a polynomial family Y(,$ x), again 
preserving the topological structure of the equilibria. For some 2, the orbits 
of Y that are both positively and negatively unstable all remain unbroken 
in Y(& .). Thus, corresponding to each limit set of Y (these are equilibria, 
closed orbits, or separatrix cycles for vectorfields of finite type) there is a 
corresponding limit set of Y((% .). It is easy to ensure that each closed orbit 
of Y(& .) has the same attracting or repelling behavior on each side as the 
corresponding closed orbit of Y. Moreover, because of the separatrix cycle 
condition, we can ensure that each separatrix cycle of Y(& .) has the same 
attracting or repelling behavior as the corresponding separatrix cycle of Y, 
and that no new closed orbits are created nearby. It follows that Y(& .) has 
the same scheme as Y and hence is topologically equivalent to Y. 

In Section 9, we use Theorem 1.1 to draw conclusions about polynomial 
models for vectorfields on IR”. In particular we show that a foliation of Iw* 
with only a finite number of inseparable leaves is topologically equivalent 
to a foliation by orbits of a polynomial vector field. 

We would like to thank Henry King for several helpful conversations. 

2. SCHEME OF A VECTORFIELD OF FINITE TYPE 

Let p be an isolated equilibrium of a C’ vectorfield of finite type X on S2. 
Then p has arbitrarily small closed canonical neighborhoods whose boun- 
daries are composed of curves transverse to X and parts of orbits of X [A, 
pp. 313-3141; see Fig. 1. The restrictions of X to any two canonical 
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FIG. 1. E, elliptic sector; H, hyperbolic sector; P, parabolic sector; (r, separatrix. 

neighborhoods of p are tvpologicalfy equivalent. There is a familiar 
division of any canonical neighborhood of p into a finite number of elliptic, 
hyperbolic, and parabolic sectors [A, Chap. S]; see Fig. 1. An c1- (resp. w-) 
separatrix at p is a semiorbit of X that approaches p as t --+ -cc (resp. as 
t + 00) and that bounds a hyperbolic sector at p. We shall use the shorter 
expression separatrix to refer to an orbit of X that includes an 01- or o- 
separatrix at any equilibrium. 

If FAT is the flow of X, so that F,-(p, t) is the orbit of X that passes 
through p at t = 0, then q belongs to the LX- limit set (resp. w- limit set) ofp 
if and only if there is a sequence t, + -cc (resp. t, -+ co) such that 
II F,( p, t,) - q I/ -+ 0. A liwit set K is the c1- or w-limit set of some point. It is 
nontrivial if it is not an equilibrium. A limit set is always a compact con- 
nected union of orbits. A nontrivial limit set K is a limit set from the 
right (resp. from the left) if an arbitrarily small transversal to a nonequi- 
librium orbit in K contains points on the right (resp. on the left) of K 
whose z- or w-limit set is K Here right and left are determined by the time 
orientation of the orbit in K. If X has only a finite number of singular 
orbits, then each nontrivial limit set of X is either a single closed orbit or a 
compact connected union of equilibria and orbits that are a-separatrices at 
one end and o-separattices at the other. A limit set of the latter type is 
called a separatrix cycle. 
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Andronov et al. define the scheme of a vectorlield of finite type to be the 
following information: 

(Sl) A list of all equilibria P,,..., pm and nonequilibrium singular 
orbits y, ,..., y,. 

(S2) For each equilibrium pi, a list, in counterclockwise cyclic order, 
of singular orbits whose CI- or o-limit set is p, and elliptic sectors at pi. 
When a singular orbit is listed we state whether pi is its a- or o-limit set; if 
both, it is listed twice. 

(S3) A list of all nontrivial limit sets K,,..., K,. If a set is a limit set 
from both right and left, it is listed twice. Thus each Kk is regarded as a 
limit set from the right or left only. 

(S4) For each Kk, the following information: 

(a) 

lb) 

(c) 

(d) 

A list, as follows, of the nonequilibrium singular orbits and 
equilibria that comprise Kk: 

where pi, is the c1- (resp. o-) limit set of r,, (resp. yj,_,), 
I= l,..., c. (Lower subscripts are read mod c. If Kk is a closed 
orbit, then of course Kk is just some y,.) 

Whether the counterclockwise traversal of each simple 
closed curve in Kk agrees with the traversal as t increases or 
decreases. (“Counterclockwise” is defined by identifying 
S”\ { pO} with R2, where pO is a point of S2 that lies on no 
singular orbit.) 

Whether Kk is a limit set from the right or from the left, and 
whether Kk is an c1- or w-limit set from that side. 

A list, in out-to-in cyclic order, of the singular orbits that 
limit on Kk from the side in question. 

(S5) A list of all ordered pairs of conjugate free limit sets. (A, B) is an 
ordered pair of conjugate free limit sets provided (a) A (resp. B) is either a 
pi or a Kk; (b) A (resp. B) is not the cx- (resp. o-) limit set of any y, (if A or 
B is a Kk, this means any y, on the correct side); (c) there is an orbit y such 
that A (resp. B) is the CI- (resp. o-) limit set of y (from the correct side if A 
or B is a Kk). 

Two schemes are equioalent if there is a bijection between their sets of 
equilibria and nonequilibrium singular orbits that preserves all the above 
information. 
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THEOREM 2.1 [A, p. 4421. If two C’ vector fields of finite type on S2 
have equivalent schemes, then they are topologically equivalent. 

We remark that because of the arbitrary choice made in (S4)(b), the 
scheme of a vectorfield is not unique up to equivalence. 

3. MODEL EQUILIBRIA 

An earlier, and not quite correct, version of the material in this section 
appeared in [S-SZ]. 

We call an equilibrium p of a C” vectorfield Y on R* or S* a model 
equilibrium if either 

(El) p is a first-order node or focus (i.e., both eigenvalues of DY(p) 
lie on the same side of the imaginary axis); or 

(E2) in some local coordinates (x, y) such that p corresponds to 
(0, 0), we have 

~==X,(x,Y)+~,+,(x,Y)+o(lxId+‘f I Yld+‘), 

P=y,(x>Y)+ Kf+,b~Y)+4xld+‘+/ Yld+‘), 

with xi, yi homogeneous polynomials of degree i, d>, 2, and 

(a) xY,(x,~)-~~,(x,y)=(-1)~-‘(x~+y~)~~~~ (y-jx); 
(b) ~Y~+~(x,jx)--j~X~+r(x,jx)=O,j= l,..., d- 1; 

(c) if xX,(x,jx) +jxY,(x,jx) = 0, then xx,+ l(X?h) + 
jxY,+,(x,jx)#O,j= l,..., d- 1. 

The significance of (E2) is seen by blowing up the equilibrium. Let 
@: R x S’ + R2 be the polar coordinate map @(T, 0) = (r cos 8, r sin 0). Let 
P= r’ ~ ‘@* Y, where Y = Y(x, y) is written in the coordinates of (E2). Y is 
given by 

i= i Y’+‘[COSexd+,( cos 8, sin 0) + sin BY,, Jcos 8, sin e)] + o(r*), 
i=O 

I 

4 = 1 r’[cos QY,, Jcos 0, sin 8) - sin fIXd+,(cos 8, sin e)] + o(r). 
i=O 

If r = 0, then k = 0, and, by (E2)(a), 6 = 0 if and only if tan 8 =j, j = l,..., 
d- 1. If tan 0, =j for some j between 1 and d- 1, then 
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+ sin 8, Y,(cos 0,, sin 19,) 
= 

cos 8, Y,, ,(COS e,, sin e,) $1 _ [COS eyd(cos 8, sin e) ’ 
e - so I 

cos B,X,(cos Bo, sin 0,) 
0 

-sin eoxd+ ,(COS eo, sin e,) - sin ex,(cos 8, sin e)] 1 

By (E2)(a), a&a0 (0,&J #O; by (E2)(b), a@&(O, 0,) = 0. Thus DY(0, 0,) 
has eigenvectors a/& and a/%). The eigenvalue for a/% is always nonzero. 
Thus &O, 0) changes sign at each equilibrium of P on r = 0. If S/&(0, e,,), 
the eigenvalue for a/&, is nonzero, then (0, 0,) is a first-order node or sad- 
dle. If S/&(0, 0,) = 0, it follows from (E2)(c), the formula for i, and [A, 
p. 3401, that I’ has a saddle-node at (0, 0,); moreover, one can choose 
local coordinates (F, B) near (0, 0,) so that F= 0, 8= 0 corresponds to 
(0,&J and 

(3.1) 

with [#O, a#O, ti=o(jFj + IBl), $=o(lF)‘+ /812). We shall refer to a 
saddle-node for which there exists such a choice of coordinates as a second- 
order saddle-node. 

Thus F has only nodes, saddles, and saddle-nodes of simplest type on 
the circle Y = 0. If Y has a node (resp. saddle, saddle-node) at (0, tan ~ ‘j), 
then it has a node (resp. saddle, saddle-node) at (0, rr + tan - ’ j). If P has a 
saddle-node at (0, tan ~ ‘j) with two hyperbolic sectors in r 30, then at 
(0, 71 + tan ~ ’ j) there is a parabolic sector in r 2 0; and vice versa. Note 
that 6 is positive for r = 0, 0 < 8 < tan - ’ 1, so that if (0, tan -’ 1) has two 
hyperbolic sector in r 3 0, then there is an a-separatrix at (0, tan -’ 1) in 
r > 0, and if (0, tan ~ ’ 1) is a node or has a parabolic sector in r 2 0, then 
all nearby orbits in r B 0 approach (0, tan - ’ 1) as t + cc. 

We define the saddle-node sequence of a model equilibrium of degree d, 
d 2 2, to be a certain sequence of 2d - 2 symbols from the set { S,, S,, N,, 
N,}. The jth symbol is determined by the behavior of Y in r 2 0 near the 
jth equilibrium of F on r = 0, counting in the counterclockwise direction 
from 0 = 0. Let (0, 0,) be this jth equilibrium. The jth symbol of the sad- 
dle-node sequence is 



POLYNOMIAL VECTORFIELDS 413 

S, (resp. S,) if there are two hyperbolic sectors of P at (0, 0,) in 
P > 0, bounded by r = 0 and an a- (resp. o-) separatrix at 
(0, &J; 
N, (resp. N,) if a neighborhood of (0, (3,) in r 2 0 is the union 
of negative (resp. positive) semiorbits of P that converge to 
(0, &J. 

The saddle-node cycle of a model equilibrium is just the saddle-node 
sequence thought of as a cycle: the first term in the sequence follows the 
last. The following lemma is immediate. 

LEMMA 3.1. (1) The first symbol in the saddle-node sequence of a model 
equilibrium is S, or N,,. (2) In the saddle-node cycle of a model equilibrium, 
S, is always followed by S, or N, ; S, by S, or N, ; N, by S, or N, ; N, by 
S, or N,. 

Equilibria p and q of vectorfields X and Y on oriented manifolds M and 
N are called topologically equivalent if there are neighborhoods U and V of 
p and q such that X/ U is topologically equivalent to Yl V via a 
homeomorphism that takes p to q. 

THEOREM 3.2. Every equilibrium of a C’ vectorfield of finite type is 
topologically equivalent to a model equilibrium. 

In Section 5, we shall replace our C’ vectorfield X by a C” vectorfield Y 
that is topologically equivalent to X and has only model equilibria. The 
reader will note that this may involve replacing equilibria of X by more 
degenerate equilibria; for example, we shall replace first-order saddles by 
degree 3 model equilibria. In this instance, at least, the replacement is done 
solely to achieve uniformity of exposition, and could easily be avoided. 

The remainder of this section is devoted to the proof of Theorem 3.2. Let 
X be a C’ vectorfield of finite type having an equilibrium at p. If X has no 
hyperbolic or elliptic sectors at p, then p is topologically equivalent to a 
first-order node (or focus). Otherwise, the topological equivalence class of p 
is determined by the arrangement, in counterclockwise cyclic order, of 
elliptic sectors at p and a- and o-separatrices at p [A, p. 3151. Thus we 
shall represent the topological equivalence class of p by a cycle of symbols 
from the set (E, S,, S,}. This cycle is called the local scheme of the 
equilibrium. From it we construct a saddle-node cycle as follows: 

(SNl ) If the local scheme includes no S, or S,, then it consists of an 
even number of E’s, say 2k l?s. The saddle-node cycle includes k N,‘s and 
k NW’s, with N,‘s and N,‘s alternating. 

505’57 3-x 
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(SN2) Otherwise: 

(a) If two S,‘s (resp. S,‘s) are adjacent in the local scheme, add 
on N, (resp. N,) between them. 

(b) If a string of E’s of length k occurs in the local scheme, 
replace it by k + 1 symbols, each an N, or N,, with the NM’s 
and N,‘s alternating. The new string starts with N, 
(resp. N,) if the string of E’s is preceded by S, (resp. S,). 

Thus the equilibrium of Fig. 1 has local scheme 

(3.2) 

so its saddle-node cycle is 

Nw N, S, So, N,, So, S, So, N, N, . (3.3) 

LEMMA 3.3. The saddle-node cycle constructed from the local scheme of 
an equilibrium satisfies Lemma 3.1(2). 

Proof: Use the fact that in a local scheme that is not all E’s, a string of 
an even number of E’s is surrounded by two Sa’s or two So’s; a string of 
an odd number of E’s is surrounded by one S, and one S,. 1 

LEMMA 3.4. The saddle-node cycle constructed from the local scheme of 
an equilibrium has even length. 

Proof: Let e = number of elliptic sectors at the equilibrium, h = number 
of hyperbolic sectors at the equilibrium. By a formula of Bendixson, the 
index i of an equilibrium is given by i = f(e - h + 2). Since i is an integer, 
e E h mod 2. We divide the proof into three cases. 

Case 1. If the scheme contains no S,‘s or S,‘s, the lemma follows 
immediately from (SNl). (Note that e is even because h = 0.) 

Case 2. If the scheme contains no E’s, let I= length of scheme; 
1, = number of S,‘s that follow an S, in the scheme; 1, = number of S,‘s 
that follow an S, in the scheme; m =length of saddle-node cycle. Then 
h = I- (1, + E,) E 0 mod 2 (since e = 0). Therefore m = I + (lm + 1,) = 
0 mod 2. 

Case 3. If neither case 1 nor 2 holds, then the scheme divides into s > 1 
strings of E’s and s strings of S,‘s and S,‘s. Let ej = length of jth string of 
E’s; 1, = length of jth string of S,‘s and S,‘s; lEj = number of S.‘s in jth 
string of S,‘s and S,‘s that follow an S,; lwj = number of S,‘s in jth string 
of S,‘s and S,‘s that follow an S,; hi= number of hyperbolic sectors 
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represented by the jth string of S@‘s and S,‘s. Then hi = lj - (fUj + lwj) - 1. 
Therefore 

s 
m= C (ej+l)+ i (lj+l,j+I,,) 

j= I j= I 

=,gl (ei+ 1) + i [hj+ 2(/m,+ l,,j) + l] 
,=l 

ze+hmod2zOmod2. 1 

Given the saddle-node cycle constructed from the local scheme of an 
equilibrium, we choose a saddle-node sequence (r i . . . grn by letting CJ r be an 
S, or N,, in the saddle-node cycle, and continuing from there. 

LEMMA 3.5. There exists u model equilibrium having this saddle-node 
sequence. 

Proof: Let m = 2(d- 1). By the abbreviated saddle-node sequence 
c - 
c1 ... czCd- Ij, we shall mean the saddle-node sequence crl ... IJ~(+,) with 
the subscripts c( and o removed. Thus d, . . . I?,(,- i) is a sequence of S’s and 
N’s In order that a model equilibrium have the desired abbreviated sad- 
dle-node sequence, it is necessary that X, and Yd satisfy 

(Ll) xY,-yX,=(-l)d-’ (x2+y2) n;:; (y-jx), 

and for each j = l,..., d- 1, 

(L2,) if 8 = tan ~ ’ j, then cos 8 X,(cos 0, sin 19) + sin 0 Y,(cos 8, sin 0) 
has sign 

(-1)’ ifdj=NandC:,_r+j=N, 

(-l)j+l if6j=Sand6,-,+,=S, 

0 otherwise. 

Replace (L2,), j= l,..., d- 1, by the requirement that cos 8 Xd(cos 0, 
sin 8) + sin 8 Y,(cos 9, sin 0) equal a specified value. Let Xd(x, y) = 
~~=Oaj~iydPi, Y,(x,y)=c,dCO bjxiydpi. Then (Ll) and (L2) become a 
system of 2d+ 1 linear equations in the 2d + 2 unknowns a,,..., ad, bO,..., b,. 
Divide equations (L2,) by cosd+’ 8, j= l,..., d- 1. Then the matrix of the 
system becomes 
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d+2 

d-l 

d+l d+l 

-I 0 0 0 0 0 0 0 0 

0 -1 0 0 1 0 0 0 0 

0 0 0 -1 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

I I 1 1 I 1 1 I .” 1 1 

2” 2”- I 2d 2 1 I 2d+’ 2d p I 22 2 

[d-L)“(d-ljdm ’ (d-f)d-2... 1 (d-l’) “+‘(d-f)“(d-l)d~‘~~~(d-l)2(d-l), 

To show that this system can be solved, we add the row 

to the bottom of the matrix and show that the resulting square matrix has 
nonzero determinant. To evaluate the determinant, first add column j to 
column d +j, j = 2 ,..., d+ 1. Then expand in turn by rows l,..., d + 2. The 
result is - I A 1, where A is a certain d x d matrix. If we factor out 2 = 1’ + 1 
from the first row of A, 22 + 1 from the second row,...., d2 + 1 from the dth 
row, we find that 1 A I = I Bl nf= ,(j’ + l), where / BI is clearly nonzero: up 
to permutation of its columns, B is the transpose of a Vandermonde 
matrix. 

In order that a model equilibrium have abbreviated saddle-node 
sequence ~7~ .‘.fF2(dm ,), it is further necessary that for each j = l,..., d- 1, 
x ‘,+, and Y,, 1 satisfy. 

(L3,) if B = tan ‘,j, then cos SY,, ,(cos 8, sin (3) -sin 0X,+ ,(cos 0, 
sin t3) = 0; 

(L4,) if 0 = tan ~ ’ j and cos BX,(cos 0, sin 0) + sin QY,(cos 8, 
sin 6) = 0, then cos 19x,+ ,(cos 0, sin 0) + sin BY,, ,(cos 8, sin 0) 
has sign 

(-1)’ ifgj=N, 

(-1)“’ ifCJ=S. 

To see that this system can be solved, we replace (L4J) by the requirement 
that cos 0X,+ 1( cos 0, sin (3) + sin 6Y,+ 1(cos 8, sin 6) take on the value 
E’ = & 1 at 0 = tan - ’ j for all j = l,..., d- 1. Then an equivalent system is 

(L5,) X,+,(COS~,~~~~)=E~COS~ (e=tan-‘j;j=l,...,d-1); 
(L6,) Y,+,(cos~, sin8)=sjsin0 (8=tan-y;j=l,..., d-l), 

which can be solved for X,, 1, Y,, , . 
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FIGURE 2 

Thus we can find a model equilibrium having abbreviated saddle-node 
sequence d, ...c&,~-~). That it has saddle-node sequence cur . . . ozCdP r, 
follows from Lemmas 3.1 and 3.3, and the requirement that (or be S, or 
N,. I 

Theorem 3.2 follows from a demonstration that the model equilibrium of 
Lemma 3.5 has the same local scheme as the original equilibrium. This is 
left to the reader. In Fig. 2, we have sketched the blow-up of a model 
equilibrium having saddle-node sequence (3.3) (cf. Fig. 1). 

4. SEPARATRIX CYCLES 

For any subset A of R2 or S2, let N,(A) denote the set of points in R2 or 
S2 whose distance from A is GE. 

Let Z, be a c” vector field, 2 d s < co, on R2 or S2 with a first-order sad- 
dle at p. We may assume local coordinates (x, y) have been chosen so that 
p = (0,O) and 

ZcdX? Y) = (P + 4(x, Y)) & + (AY + t4-T Y)) $7 

If A is a compact subset of R2 or S2, we denote by Z?(A) the Banach 
space of c” vectorfields on R* or S2 restricted to A, with the c” topology. 
For a fixed E > 0, let !E be the afine subspace of X”(N,(O, 0)) consisting of 
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vectorfields that agree to first order with Z0 at (0, 0). We denote by 
c”[N,(O, 0), Iw*, (0, 0)] the space of C” maps from N,(O, 0) to [w’ that fix 
the origin, with the c” topology. By the stable-unstable manifold theorem 
[C-H, Sect. 9.21 there is a continuous map Y from a neighborhood 4?/ of 
Z. in X to c”[N,(O, 0), a8*, (0, 0)], and a neighborhood U of (0,O) in Iw*, 
such that for all ZE %, Y(Z) = Yz is a diffeomorphism, and for all 
(4 Y) E u, 

In other words, for each Z near Z, there is a local diffeomorphism of lQ* 
that takes the local stable manifold of Z to the x axis and the local 
unstable manifold of Z to the y axis; and this diffeomorphism depends 
smoothly on Z. 

For a, b, 6 positive and small there is, for each ZE 4!, a mapping from 
{u} x (0, S] to (0, 1) x {b} given by following the flow of Yy,,Z. We write 
/I = /IZ(a) if (a, a) goes to (p, b) under this mapping. Reyn [Rel] has 
shown that 

PAa) = Ai+ -w +fz(a)), 
where A, > 0 depends continuously on Z, fi(cr) is continuous for each Z, 
and fi(a) -+ 0 as CI -+ 0. Thus we can extend fi to a continuous mapping 
from [0, S] to [0, l), still denoted fi, that takes 0 to 0. Reyn’s argument 
also shows that the mapping uz1+ C”( [0, S], iw), Z+fz, is continuous. 
(This fact is used in [Re2].) 

Now suppose Z. has first-order saddles p1 ,..., p, (not necessarily distinct) 
and separatrices yi,..., yc such that K=p,y,p2y,...p,.yc is a separatrix 
cycle. Let pLi be the negative eigenvalue and li the positive eigenvalue at pi. 
Reyn shows that if n;= 1 (pi/n, I < 1, then K is repelling (i.e., an a-limit set); 
if n;= 1 ( p,/li I > 1, then K is attracting. (A separatrix cycle through saddles 
is a limit set from one side only.) Now let 3 be the affine subspace of 
.%“(N,(K)) consisting of vectorfields that agree to first order with Z, at 
pl,...,pr. Assume n;= i IpJl;( # 1. Then according to Reyn [Re2], for E 
small enough there is a neighborhood @ of Z, in 9 such that if ZE @ also 
has a separatrix cycle K’=pry; p2y;.. .p,.y:. in N,(K), then Z has no closed 
orbits in N,(K). Of course K’ is attracting (resp. repelling) if K is. 

Reyn’s results can easily be extended to certain separatrix cycles passing 
through saddle-nodes. For our purposes the following extension is suf- 
ficient. 

Let Z, be a C” vectorlield on [w2 or S*, 2 d s < GO, with a second-order 
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saddle-node at p. This means (cf. (3.1)) that we can choose local coor- 
dinates (x, v) so that p = (0,O) and 

Let X be the afline subspace of X”(N,(O, 0)) consisting of vectorlields that 
agree to second order with Z, at (0,O). By the stable-unstable and center 
manifold theorems [C-H, Sect. 9.21, there is a continuous mapping Y from 
a neighborhood @ of Z, in X to C”[N,(O, 0), Iw2, (0, 0)], and a 
neighborhood U of (0,O) in [w2, such that for all Z E %, Y(Z) = Yz is a dif- 
feomorphism, and for all (x, y) E U, 

with ~4 > 0, 6, = o( 1 ), 6, = o( 1 x I + I y I). In other words, for each Z near 
Z, there is a local diffeomorphism of R2 that takes the local stable or 
unstable manifold of Z to the x-axis and a local center manifold of Z to the 
y-axis; and this local diffeomorphism depends smoothly on Z. Divide 
Yz.Z by 1 + 6,(x, y) to obtain 2 = LOX a/ax + Y(~X + qy + 6,(x, y)) alay. 2 
and Yy,,Z have the same orbits on U for U sufficiently small. We wish to 
study the flow of 2 in a hyperbolic sector at (0,O). We assume for 
convenience that 5 < 0 and 6 > 0, so that the first quadrant is a hyperbolic 
sector. 

Choose p > 0. If U is small enough, then for all (x, y) E U with y > 0 and 
for all Z E %, 

Y(z”X + r?Y + tL(x3 Y 1) < PY. (4.1) 

For a, h, 6 positive and small there is, for each ZE 011, a mapping from 
(4xCWl to (0, W(b) g’ iven by following the orbits of 2. We write 
fl=flz(cr) if (a, c() goes to (/I, b) under this mapping. 

Let W = tx(ajax) + py(a/ay). By (4.1), for all Z E %, 

pZ(cc) < fiw(a) = Ae ~ 30 (A>O). 

Intuitively, since p may be chosen as small as we like, this estimate shows 
that if a separatrix cycle K contains a saddle-node pi, the “contribution” of 
p, toward K's being attracting or repelling dominates the contributions of 
any first-order saddles in K. One can use Reyn’s method of proof in [Re2] 
to formalize this idea and show 
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THEOREM 4.1. Let 2, be a c” vectorfield, 2 < s < CO, on R2 or S2 having 
the separatrix cycle K =p, y , p2 y 2 . pc y,, where each pi is either a first- 
order saddle or a second-order saddle-node, and at least one pi is a saddle- 
node. Let X be the affine subspace of %‘(N,(K)) consisting of vectorfields 
that agree with Z, to first order at each saddle and to second order at each 
saddle-node. Assume that at every saddle-node pi the nonzero eigenvalue of 
Z, is negative (resp. positive). Then K is attracting (resp. repelling). 
Moreover, for E small enough, there is a neighborhood & of Z, in X such 
that tfZ~@ also has a separatrix cycle K’=p,y;pzy;..‘p,.y:. in N,(K), 
then K is attracting (resp. repelling) and Z has no closed orbits in N,(K). 

5. C" MODEL VECTORFIELDS 

Let Y be a C” vectorfield of finite type on S2 each of whose equilibria is 
a model equilibrium. Choose p,, E S* such that pO lies on no singular orbit 
of Y. We shall identity YI S’\ { pO} with a C” vector field Y, on iw2 having 
only model equilibria. Suppose the equilibria of Y, of degree 22 (those 
that are not nodes or foci) are at p, ,..., pa and have degrees d, ,..., d,. Using 
the blowing-up construction [Dl, D2]) we can find a C” vectorlield y 
with the following properties: 

(Bl) P is defined on a space that is C” diffeomorphic to 
R2\( PI ,..a1 p,}, which we shall identify with the latter. 

(B2) There exist C” simple closed curves r, ,..., r, surrounding 
p, ,..., pa respectively, with disjoint interiors, such that y\ rW2\up=, m is 
C” diffeomorphic to Y, 1 iw’\{ p, ,..., p,}. 

(B3) For each i= l,..., a, define vectorlields Yi by Yi(x) = Y,(x -pi). 
There is an E > 0 and neighborhoods U, of ri such that tl Ui is C” dif- 
feomorphic to r ’ - %j* Y. I( -8, E) x S’. (@ is the polar coordinate map of I 
Section 3.) 

Thus all critical points of PI Iw’\lJp, 1 Int rj that are not nodes or foci lie 
on the r, and are first-order saddles or second-order saddle-nodes. Each 
separatrix cycle K of Y corresponds to a separatrix cycle z of 
PI Iw’\U;, , Int r,. i? includes arcs of one or more ri that are separatrices 
of F. 

We shall refer to any such k as a blow-up of Y. 
Recall that if y is a closed orbit of Y and p E y, a Poincare map Z7 at p is 

defined by taking a transversal T to y at p and defining 17: T -+ T by 
Z7(x) = first return of orbit through x to T. 

A vectorfield Y on S2 is called a C” model vectorfield provided: 
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(Vl ) Y is C” and of finite type. 

(V2) All equilibria of Y are model equilibria. 

(V3) If y is a closed orbit of Y, p E y, Z7 is a Poincare map at p, and 
on(p)= 1, then D’ZZ(p)#O. 

(V4) If ~=41Y142Y2~- qCyC is a separatrix cycle of 81 R’\Uy,, 
Int Ti, where P is a blow-up of Y, then either (1) all qi in I? are saddles and 
n;=, p,/li # 1 (p, = negative eigenvalue of D8(qi), 1; = positive eigenvalue 
of DP(q;)); or (2) some qi in z are saddle-nodes, and at all qi in I? that are 
saddle-nodes, the nonzero eigenvalues of y have the same sign. 

Condition (V3) is independent of the choices of p and Z7; (V4) is 
independent of the choice of blow-up F. 

Let X be a C’ vectorfield of finite type on S2. For each equilibrium pI of 
X that is not topologically equivalent to a node, we construct a 
corresponding saddle-node sequence Ci = CJ~, oi2. . CJ,,, as in Section 3. Set 
mi = 2(d, - 1). Each separatrix cycle K of X corresponds to a cycle C, of 
some of the G;~. Any oii in such a cycle is an S, or S,. Let Y denote the set 
of all c,, such that orj E {S,, S,, } and CJ,,~+ d, _ I E {S,, S, >. Here the second 
subscript is mod 2(d, - 1). We say X satisfies the separatrix cycle condition 
provided there is a function f(o,) from y to the positive reals such that 

(Fl) f(o,)=f(a;j+d,-I) if di- 1 is even;f(a,)= [f(~~~+~,-r)]~’ if 
d, - 1 is odd. 

(F2) For every one-sided limit set K of X that is a separatrix cycle, 
either 

( 1) all CJ~ in C, are in 9’ and n,,,, c,f( cry) > 1 (resp. < 1) if K is 
attracting (resp. repelling); or 

(2) some crii in C, are not in 9’; if K is attracting (resp. 
repelling), all such (TV are S,‘s (resp. S,‘s). 

EXAMPLE 1. Let X be a C’ vectorfield whose phase portrait near p is 
given by Fig. 3. There are three separatrix cycles in Fig. 3, each a limit set 
from one side only: p’i, is attracting, py2 is repelling, and py, py2 is attract- 
ing. This vectorfield does not satisfy (F2)( 1) of the separatrix cycle con- 
dition. The saddle-node sequence of p is 

d1(T203c4= s,s,s,s,, (5.1) 

with the correspondence between separatrix cycles of X and cycles of the CJ~ 
being 

PYI PY2 -+ (T1g403c2. 
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FIGURE 3 

Thus we must havef(cr,)f(a,) > 1 andf(a,)f(a,) c: 1. Sincef(a,) =f(a,) 
and f(a4) =f(o,), this is impossible. 

Suppose a C” vectorfield Y has a model equilibrium at (0,O) that is 
topologically equivalent to the equilibrium of X at p. Then it must have 
saddle-node sequence (5.1). Denote the corresponding equilibria of H 
(notation of Sect. 3) on the circle r = 0 by q, , q2, q3, q4. Let pj = negative 
eigenvalue of D F(q,), Aj = positive eigenvalue of D F(qj), f(q]) = ) p/j, I. 
Because of (V4)( l), the nonexistence off satisfying (Fl ) and (F2) implies 
that there is no C” model vectorfield topologically equivalent to X. The 
reader should also remark that if the equilibrium of A’ at p is a first-order 
saddle with eigenvalues p < 0 and A> 0, it must be that 1 ,u/J. 1 = 1. We do 
not know if there is a polynomial vectorfield part of whose phase portrait is 
Fig. 3. 

EXAMPLE 2. The phase portrait of Fig. 4 also violates (F2)( 1) of the 
separatrix cycle condition. Nevertheless the polynomial vectorfield on R2, 

.t 
[I 3 =((x-l)2+Y2) (x2+;2-1)2(x2+;:F1)2][;] [ 

has this phase portrait. There is no model vectorfield on S2 part of whose 
phase portrait is Fig. 4, so the existence of a polynomial vectortield on R2 
having this phase portrait could not be proved by our method. ((For the 
relationship between polynomial vectortields on R2 and S2 see Sect. 9.) 
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FIGURE 4 

EXAMPLE 3. Consider the phase portrait of Fig. 5. Equilibrium p1 has 
saddleenode sequence 

and p2 has saddle-node sequence 

The separatrix cycle of Fig. 5 corresponds to the cycle CJ,, ~~~~~~~~~~ which 
violates (F2)(2) in the separatrix cycle condition. However, p, is 
topologically equivalent to a model equilibrium with saddle-node sequence 

with the separatrix cycle corresponding to a’, , rs22~23 CT;~. This cycle satisfies 
(F2)(2). Thus the proof of Theorem 5.1 will show that there is a model vec- 
tortield part of whose phase portrait is Fig. 5. By means of this trick, our 
arguments can be used to show the existence of polynomial vectorfields 
with certain phase portraits that violate the separatrix cycle condition. 

THEOREM 5.1. Zf X is a C’ uectorfield of finite type on S2 that satisfies 
the separatrix cycle condition, then there is a C” model vectorfield Y on S2 
that is topologically equivalent to X. 

Proof: We shall give the proof under the assumption that X is itself C”. 
The general case requires some additional approximation. 

Let p, ,..,, pm be the equilibria of X. Let y ,,..., y, be the nonequilibrium 
singular orbits of X with y ,,..., y, closed and Y,+ 1 ,..., y, not closed. The 
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FIGURE 5 

notion of a canonical neighborhood of an equilibrium was mentioned in 
Section 2. A canonical neighborhood of a closed orbit y is a closed annular 
neighborhood N(y) such that X is transverse to its boundary, and every 
point of N(y) belongs to a semiorbit that limits on y without leaving N(y). 
Canonical neighborhoods of closed orbits having the same attracting or 
repelling behavior on respective sides are topologically equivalent [A, 
p. 3821. Choose disjoint canonical neighborhoods N(pi), i= l,..., m, N(y,), 
j = l,..., Z, so small that: 

(Pl) Each yj, j= I+ l,..., II, that has pi as its CI- or o-limit set inter- 
sects N(pj) in one or two semiorbits that limit on pi. These semiorbits meet 
i3N( pi) transversally. 

(P2) Let (slk} denote the set of semiorbits in N(p,) that are c(- or o- 
separatrices at pi. Let sjk n aN(p,) = { aik}. There is a disjoint set of con- 
nected subarcs Iik of aN( pi) such that aik E Ilk, X is transverse to lJZjk, each 
yi other than those of (Pl ) meets aN( pi) only in uZjk, and if such a yr 
meets I,, then sik c a(yi) u o(y?). 

(P3) On each separatrix cycle K that is a limit set on the right (resp. 
left) there is a point p on K\UN(pi); a right (resp. left) transversal T to K 
at p, Tc S’\[lJy!, N(pi) u vi= i N(y,)], parameterized by 4: [0, a] + S* 
with &O)=p; and a Poincare map n for K, Z7: q5((0, a,]) --, 
&O, a,], ZIl(d(a,))=t#(a,), such that if K is attracting (resp. repelling) on 
the side in question, then (4 -’ o I70 4)(u) - u < 0 (resp. > 0) for all 
UE (0, a,]. Moreover, the orbit from q5(a,) to b(a2) does not meet any 
N(Pi). 

Let fi( pi) be a canonical neighborhood of pi contained in Int N( pi), and 
let A(pi) = Int N(p,)\fi( p,). Let 2 be a C” vector-field on S2\uA(pi) such 
that: 

(Zl) ZI m( pi) is a canonical neighborhood of a model equilibrium at 
pi topologically equivalent to the equilibrium of X at pi. Thus if the 
equilibrium of X at pi is not topologically equivalent to a node, then 
ZI N( pi) is C” equivalent to a C” vectorfield Zi, defined on a closed 
neighborhood of (0,O) in [w*, that satisfies (E2)(a), (b), (c) of Section 3. Let 
cj = Oil . . . aim, be the saddle-node sequence constructed from the local 
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scheme of X at pi. Denote the corresponding equilibria of Zi on r = 0 by 
qil,..., qim,. At each qv that is a saddle, let pii (resp. A,) denote the negative 
(resp. positive) eigenvalue. We require that 1 pcLijl&l =f(oii). (The proof of 
Theorem 3.2 shows that there exist model equilibria with the desired sad- 
dle-node sequence and the desired A,, pti. The fact that a canonical 
neighborhood of such a model equilibrium can be mapped onto &pi) by a 
C” diffeomorphism is geometrically obvious.) 

(22) ZI N(y,) is topologically equivalent of XIN(y,); moreover, 
Z( N(y,) equals XI N(y,) except in a small neighborhood of some point of 
yj, and Z satisfies (V3) on yj. (This is easily arranged by altering X on a 
small flow box around a point pey,. If yj is attracting or repelling from 
both sides, we can arrange that on(p) # 1; if yj is attracting from one side 
and repelling from the other, we can arrange that DZ7(p) = 1 and 
D*mp) # 0.) 

(23) Outside lJy=, Int N(pi) u lJf= , Int N(y,), Z = X. 

We now extend Z to UA(pi). 

1. Elliptic Sectors. Each elliptic sector E of Z in &pi) corresponds to an 
elliptic sector E of X in N( pi). Let b, , 6, denote the points of aN( pi) that 
are common to E and the adjacent parabolic sectors, and let 6, and & be 
points of afi(p,) belonging to the corresponding parabolic sectors (see 
Fig. 6). 

Join b”, to b, and b, to d, by curves across A(pi) that fit together with 
the integral curves of Z through 5,) b,, b,, 5, to form a C” curve, and 
extend Z along these curves in a nonzero C” manner. Extend Z in a C” 
manner across the open region R, of Fig. 6 so that Z is tangent to the con- 
structed curves and Z is nonzero in R,. (This can be done in a Co manner 
since ZJ dR, has index 0, then C” approximated; see [H] on C” 

‘i 

FIGURE 6 
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approximation.) Then every orbit of 2 that enters R, on one side of i? 
leaves on the other (or there would be an equilibrium of Z in RE). This 
construction is to be done so that the regions R, are disjoint. 

2. Separatrices. Let (Sik} be the set of semiorbits of Z in m(p,) that are 
a- or o-separatrices of Z at pi. Here S, wsik under the equivalence between 
ZI N(pi) and X( N( pi). Let 5, meet dR(pi) in 2,. Join each aik to zik by a 
curve across A(pi) that fits together with S, and the integral curve of Z 
through ajk to form a C” curve. Extend Z along these constructed curves 
in a nonzero C” manner. 

3. Hyperbolic Sectors. Corresponding to each hyperbolic sector fi of Z 
in #(pi) there is now an open region R, of A(p,) as shown in Fig. 7. 
Extend Z over RH in a nonzero C” manner. 

4. Parabolic Sectors. Corresponding to each parabolic sector of Z at pi 
there is now an open region R, of A(p,) as shown in Fig. 8. Extend Z over 
R, in a nonzero C” manner. 

5. If Z has a node or focus at pi, then Z is transverse to aA( Extend 
Z over A(p,) in a nonzero C” manner so that each orbit of Z that meets 
A(pi) enters through one boundary curve and leaves through the other. 
This can be done, e.g., by first transferring the radial flow on an annulus to 
A(pj) by a diffeomorphism and then smoothing. 

Each separatrix cycle K of X corresponds to a separatrix cycle R of Z. 
The separatrix cycle condition and (Zl) guarantee that K and K have the 

FIGURE I 
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FIGURE 8 

same stability. A Poincare map iT for K is defined on the transversal T of 
(P3); fi takes d((O, a,]) to ~$((0, ~1). (To see that if is defined on 
d( (0, a,]), assume for definiteness that a2 > a, and consider the open 
“annulus” R, bounded by K, the orbit of Z(or X) from &al) to #(a,), and 
c$( [a,, uz]). Since z is repelling by (P3) and there are no equilibria of Z 
in R,, the w-limit set of a point in d((O, ai]) must be a closed orbit in R, 
or must lie at least partly outside R, [A, p. 921. But any closed orbit in R, 
must cross &(O, ai]) or there would be an equilibrium of Z in R,. It 
follows that the positive semiorbit through any point in d((O, a,]) either 
returns to 4((0, a,]) or leaves R, through d(u,, ~1). 

If there are closed orbits of Z in R,, we now alter Z near T in order to 
break them. Assume for definiteness that K (hence R) is repelling. Then for 
some p>O, (4-l 0 ii 0 4)(~)>24 for u~(O,p]u[u,-p,u,]. Let 
G(u, t) = Fz(#(u), t), where F, is the flow of Z (Sect. 2). By altering Z on 
G([p, a, -p] x [0, S]) we can ensure that (4-l 0 fi 0 b)(u) > u for all 
UE (0, a,]. Thus the new vectorfield has no closed orbits in R,. Let Y be 
the vectorfield that results from carrying out this construction for each 
separatrix cycle. 

We claim that Y has no nonequilibrium singular orbits other than those 
corresponding to yi ,..., y,. Any nonequilibrium singular orbit of Y other 
than those corresponding to y1 ,..., yn must have nonempty intersection with 
UA(pi), and in fact must contain a semiorbit that meets UA(pi) u UN(y,) 
only in regions RH that are not included in regions RK. Let us consider for 
definiteness a positively unstable semiorbit y of Y that meets the interior of 
such a region R,. By construction no positively unstable semiorbit of X 
meets RH, so all orbits of X that meet R, are positively asymptotic to the 
same equilibrium or closed orbit [A, p. 274-J. In fact, all must ultimately 
enter A(pi), where pi is a node or focus, or all must ultimately enter a 
region R,, or all must ultimately enter a region N(y,). But by our construc- 
tions the same is true of orbits of Y that meet RH, a contradiction. 
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Thus the only singular orbits of Y are the equilibria pl,...? pm, their 
separatrices, and the closed orbits yi,..., yI. The proof of Theorem 5.1 is 
completed by showing that Y has the same scheme as X (Sect. 2) and hence 
is topologically equivalent to X. 1 

6. PROOF OF THEOREM 1.1 

Suppose the model vectorfield Y of Theorem 5.1 has equilibria pi ,..., pm 
of degrees d, ,..., d,. If di 3 2, the topological equivalence class of pi is deter- 
mined by its jet of order di + 1. Choose s > max(d, + 2). Let X be the set of 
C” vectorfields 2 on S* such that for i = l,..., m, Z- Y vanishes to order 
d, + 1 at pi if di 3 2, and to 1st order at pi if di = 1. X is an afline subspace 
of P(P). 

Let I++, x: R -+ R be two C” functions such that 0 < @, x < 1, and 
moreover 

(1) ~(t)>OifandonlyifO<t<l,and~~~(t)dr=l; 

(2) x(u)= 1 if (~1 G$ and x(u)=0 if JuI 3 1. 

We renumber the nonequilibrium singular orbits of Y so that yi,..., yy 
denote the orbits that are both positively and negatively unstable. The 
numbering is chosen so that yi ,..., y,,,, are closed and yM+ i ,..., yq are not. 

For j = l,..., q let B, be a flow box around a point of yj, with the B, dis- 
joint. The B, are chosen so small that no singular orbit meets Bi except 
those that limit on a limit set containing yi. On each Bj we choose coor- 
dinates (t,, uj) such that Y 1 B, = a/at,. By multiplying Y by a small positive 
constant if necessary, we can ensure that B, contains {(t,, u,): 0 < tj d 1, 
- 1 ,< uj < I>, with uj = 0 corresponding to yj n ?,. 

Define a q-parameter family g/(A) = g(A,,..., A,) of vector fields in X as 
follows: 

If x C fi B,, then g(A)(x) = Y(x). 
j=l 

If x E B,, then g(A)(x) = ?Y(A.)(tj, uj) = 

For j = l,..., M we define 5: a neighborhood of Yin X --f R as follows. In 
Bj, consider the line segment Tj defined by tj=O. Let Tj = 
((0, uj): lujl <S}. F or all Z near Y in X, Z is transverse to Tj, and, if 6 is 
small enough, a first return map 17,: 7” b --) Tj is defined. Use uj as the coor- 
dinate on T, and define q(Z, uj) = n,(u,) - uj. Define uj(Z) implicitly by 
aq/auj(Z, u,(Z)) = 0. This can be done since &!$‘auj( Y, 0) = 0 because yJ is 
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both positively and negatively unstable, and, by (V3) in the definition of 
model vectorfield (Sect. 5), a2$ja$( Y, 0) # 0. Finally, define 3(Z) = 
q-5 Uj(Z)). 

LEMMA 6.1. There is a neighborhood ??L of Y in S and canonical 
neighborhoods N(l),), j = l,..., M, such that all 3, j= l,..., M, are defined on 
t/2/, andfor each j, 

( 1) if Z E J&, then Z 1 N(y.,) # 0 and Z is transverse to 8N(yj); 
(2) qj"& i&y c" '; 

(3 ) if Z E % and 5(Z) = 0, then Z 1 N( yi) is topologically equivalent to 
Yl N;li). 

Moreover, ajai,(.5q o ?!I)(O) = +6,, (Kronecker delta; k = l,..., q; 
j= 1 ,..., Ml. 

Proof [So, pp. 9-121. 1 

For each j = M + l,..., q, yj contains an cr-separatrix at some piaCi, and an 
w-separatrix at pi,,,( jI. Let T, c B, be defined as above, with coordinate yi. 
For each Z E X there is a unique orbit yJZ) that contains an a-separatrtx 
at pizc,) having the same tangent at pizc,) as an cc-separatrix contained in y,. 
Let uj,,(Z) = first intersection of y.,,=(Z) with T,. Similarly, there is a unique 
orbit y;,,,(Z) that contains an w-separatrix at pi,ti,j, having the same tangent 
at pi,,,( jI as an w-separatrix contained in yj. Let u,,,(Z) = last intersection of 
rJZ) with T,. 

LEMMA 6.2. [f %! is a small enough neighborhood of Y in X, then for 
each j= M + l,..., q, the map Z --, u,,(Z) (resp. uJZ)) is defined for all 
Z E 92 and is c” ~ drd/~ (resp, C’ ~’ “‘MIX), 

Lemma 6.2 is proved by applying the stable-unstable-center manifold 
theorem to blow-ups of the Z in a. Details are in Section 7. 

Let .5(Z) = uj,,(Z) - ui,,JZ), j= M+ l,..., q. By Lemma 6.2, 3 is at least 
c?. 

LEMMA 6.3. i?/i?A,(.~ 0 %)(0)=6, (k= l,,,,, q; j=M+ I,..., q). 

Let .F = (* ,..., Cqq). 

PROPOSITION 6.4. F 0 % is C2, (F 0 g)(O) =O, and D(5 0 g)(O) is 
nonsingular. 

Proposition 6.4 follows from the definitions of 9 and g and the forego- 
ing lemmas. 

It follows that B 0 q maps a neighborhood V of 0 in [WY, which we take 
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to be compact, diffeomorphically to a neighborhood of 0 in R’J. Let 
Y(i, x) = Y(A)(X). 

LEMMA 6.5. Y(l, x)1 VxS’ can be approximated arbitrarily closely in the 
c” topology by a polynomial family ?((n, x), where ?(A, .) E f.T for each II in 
V. 

The proof of Lemma 6.5 is in Section 8. 
Set @(A) = Y(A, .). By Lemma 6.5 9 0 @: V-r [WY can be made 

arbitrarily close to 9 0 g ( V in the C2 topology. Hence for @ sufficiently 
close to Y, there exists fin V such that (9 0 G?)(l) =O. Thus if @ is suf- 
ficiently close to Y, ??(I) has closed orbits and separatrix connections 
corresponding to those of Y. For @ sufficiently close to &, the closed orbits 
of ???(I) near those of Y have the same stability. It follows from the 
definition of model vectorlield, the definition of X, and the results of Sec- 
tion 4 that separatrix cycles of @(n^) have the same stability as the 
corresponding separatrix cycles of Y. Moreover, every 2 E X has equilibria 
at pl,..., pm topolgically equivalent to those of Y at p, ,..., pm, and every 
Z E %’ that is sufficiently close to Y has no other equilibria. We may assume 
this is true of @(I). By using Lemma 6.2 to see that separatrices of@(x) are 
close to those of Y, we can see that if @‘(I) is close enough to Y, then the 
schemes of @‘(I) and Y are isomorphic provided @(I) has no singular 
orbits other than those already mentioned. Since @i(f) has only the 
equilibria p,,...,pm with known separatrices, according to [A, p. 2581, it is 
enough to check that @(n^) has no closed orbits other than those already 
mentioned. 

Let ‘y^r ,..., 9, be the nonequilibrium singular orbits of @‘(I) that are close 
to YlY., Y,,. There is a homeomorphism h: S2 + S2 close to the identity that 
fixes p1 ,..., p, and takes yi to f,, j= l,..., n. The complement in S2 of the set 
of singular orbits of Y is a finite union of connected open subsets of S2, 
called the cells of Y, each of which is simply or doubly connected 
[A, p. 2761. If C is a simply connected cell, then h(C) contains no closed 
orbit of &i(R) (otherwise there would be an equilibrium of ?@(I) in h(C)). If 
C is doubly connected then each component of X is a node, focus, closed 
orbit, or separatrix cycle; moreover, one component of X is the a-limit set 
of every point in C, and the other is the o-limit set of every point in 
C[A, p. 2791. 

Let C be a doubly connected cell of Y, and let A, and A, be the two 
components of X. Choose closed neighborhoods Ni of Ai as follows: 

(1) If Aj is a node, focus, or attracting or repelling closed orbit, then 
Ni is a small canonical neighborhood of Aj. Therefore [P-P, pp. 15331551, 
if Z is sufficiently close to Y, then Z has a node, focus, or attracting or 
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repelling closed orbit respectively in Ni, and Ni is a canonical 
neighborhood of it. 

(2) If A, is a closed orbit that is both positively and negatively 
unstable, then N, is a canonical neighborhood of Ai that satisfies ( 1 ), (2), 
and (3) of Lemma 6.1. 

(3) If A, is a separatrix cycle, then Ni is a neighborhood of Ai con- 
tained in the neighborhood N&A,) of Theorem 4.1, such that Y is 
transverse to dNin C. It follows that if Z is sufficiently close to Y and Z 
has a separatrix cycle in N,, then every point of aN,n C belongs to a 
semiorbit of Z that limits on Aj without leaving Ni. 

Let D denote the closure of C\(N, u N2), a compact set. If p E D, then 
there exist finite numbers t,(p) such that F,(p, t) E D iff t_(p) < t 6 
t+(p), and the sets (t+(p): p E D} are bounded. Therefore if @ is suf- 
ficiently close to g then D c h(C) and each orbit of @(fi) through a point 
of D leaves D in forward and backward time. It follows from the choice of 
N,, N2 that @(I) has no closed orbit in h(C). 1 

7. PROOF OF LEMMA 6.2. 

For any vectorfield W on Iw2, let jkW(q) denote the k-jet of W at q. 
Parameterize a neighborhood of pi in S2 by Y: NJO, 0) + S2, with ‘Y 
chosen so that J ‘dl+‘IFI*Z(O, 0) satisfies (E2)(ak(c) (see Sect. 3) for all 
ZEX. (X is defined in Sect. 6.) Let P,, ,(x, y) be the polynomial vector- 
field of degree di + 1 having this (d, + 1)-jet. 

Let X, denote the afline subspace of X”(N,(O, 0)) consisting of vector- 
fields W with jdl+ ’ W(0, 0) = P,, , . The map X +X, given by Z + Y*Z is 
bounded linear. 

Recall that @: [w x S’ + lR2 is the polar coordinate map @(Y, 0) = 
(r cos 8, r sin (3). Since any WE X, vanishes to order d, - 1 at (0, 0), we can 
blow up W to rlpd@*W, a c” -dl vectorfield on [ -6, S] x S’. If we put 
W’=r’-d@*W, then 

and 

(7.1) 

icomponent ofj2WI~{O)xS’=j.component ofj2r1-4@*Pd,+1. (7.2) 

Let Xi denote the afline subspace of C’-“I( [ - 6, S] x S’) consisting of vec- 
torfields W’ on [ -6, S] x S’ that satisfy (7.1) and (7.2). The map X8 +X’:, 
given by W -+ r ’ -‘@j* W is bounded linear. To see this, note first that the 
map X5 + X” ~ ‘( [ -6, S] x S’) that takes W to @*W is bounded linear 
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[D2, p. 55]), and @* W vanishes to order di- 1 along (0) x S’. Then 
repeatedly use 

LEMMA 7.1. Let C: denote the space of Ck functions on [ -6, S] x S’ 
that vanish to order 1 on (0) x S’, with the Ck topology. Then the map 
c; + Cf:,’ g iven by f (r, 0) + r - ‘f (r, 0) is bounded linear. 

Proof Use f (r, 8) = r sh Q/&(sr, Q) ds, so r -~ If(r, 0) = 1: 8fl 
&(sr, 0) ds. 1 

If y is an a- or o-separatrix of Y at pi and the tangent direction of ‘VP ly 
at (0,O) is 8,, then r’-‘@*P,,+, (0, 0,) = 0. Therefore for each ZE X, 
r’-dz@*Y*Z(O, 0,) = 0, and mofeover r1 p4@*Y*Z(0, 0,) has a/% as an 
eigenvector with eigenvalue o1 # 0, o1 independent of Z. We assume 
without loss of generality that G, < 0. Then the other eigenvalue is a2 > 0, 
a2 independent of Z. The corresponding eigenvector is a/&-. 

If a2 = 0, then by the center manifold theorem [C-H, Sect. 9.21, there is a 
c”p4 functional 0(Z, r), defined on a neighborhood of (Y, 0) in !E x R, 
such that B(Z, 0) = 8, for all Z, and ((r, B(Z, r)} is a center manifold for 
rl-%*!P*Z at (0, 0,). For each Z near Y, this local center manifold 
includes the IX- or o-separatrix of @*y*Z at (0, 0,) in r > 0. This fact 
implies the lemma. If a2 >O, the same result follows from the center- 
unstable manifold theorem [C-H, Sect. 9.21. m 

8. PROOF OF LEMMA 6.5 

LEMMA 8.1. Let x1 ,..., x, be points in a closed ball B in Rp; k, ,..., k, 
nonnegative integers; s > max ki an integer; and g: [ - 1, 11” x B + [w a C” 
function such that for each i= l,..., m, the k,-jet of g at (A, xi) is independent 
of A. Given E > 0, there exists a polynomial P: [ - 1, 11“ x B + Iw such that 
j”lP(A, xi) = j“g(A, xi) (all A E [ - 1, 11”; i = l,..., m) and (1 P-g IIs < E, where 
I( (Is is the c” norm for functions on [ - 1, 11” x B. 

Proof: We use induction on m. For m = 0 just approximate g in the C” 
topology by a polynomial. Proceeding inductively, we assume without 
loss of generality that x, = (O,..., 0). Write g(l, X) = P,(x) + 
&=k,+l x’g,(A,x), where Z=(i, ,..., i,), 111=i,+ ... +i,, x’=xilf...xj, 
P,(x) =jkm g(l, 0) (any AE [ - 1,l Jq), and the g1 are C” functions. 
Approximate each 8, by a polynomial P, so that P, and g, have the same 
k,-jet on C-1, llqx {xi}, i=l,..., m-l. Let P=P,+C,,,=k,+,xrP,. If 
the P, are sufficiently close to gl, then P will satisfy the conclusion of the 
lemma. m 

Lemma 6.5 follows from 
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PROPOSITION 8.2. Let Y: [ - 1, 11” x S* + R3 be a C” mapping such that 
for each A, Y(& .) is a tangent vector field to S*. Let x, ,..., x, be a finite 
collection of points on S*; kl,..., k, nonnegative integers; s> max ki an 
integer. Assume that for each i= l,..., m, the k,-jet of Y at (I, x,) is indepen- 
dent of 1. Then given E > 0 there is a polynomial P: [ - 1, 11” x S* -+ R3 such 
that: 

(1) II y- %=. 
(2) For each I”, ?(,I, .) is a tangent vectorfield to S2. 

(3) j”lE(A, xi)=jklY(l, xi) (all dE c-1, 114; i= l,..., m). 

Proof Without loss of generality we may assume that for each 
i = l,,.., m, if xi = (xii, xi2, xi3), then xi, #O, xi2 #O, xi3 # 0. Let B be a 
closed ball in R3 that contains S*. We extend Y to a C” map Y 
[ - 1, 11” x B -+ R3, Y(A, x) = (g,(A, x), g,(A, x), g,(l, x)), such that the ki- 
jet of Y at (A, xi) is independent of I. and x1 g, +x2 g, + x3 g, =0 iden- 
tically. When x3 = 0, we have 

Xlgl(~,XlrX*,O)+X*g2(~,XI,X2,0)=0, (8.1) 

so we can write 

g, = x2 g,2(4 x1, x2) +x3 g,,(k x1, x2, x3), 

g2 = Xl g*,(A Xl 9 x2) + x3 g,,(A x1, x2, x3), 

where g12, g13, g2,, g2, are C” functions whose ki- jets at (A, xi) 
(i = l,..., m) are independent of 2. We shall think of g,,, g,, as functions on 
[ -1, llyx B. By Lemma 8.1 we can approximate g12, g,,, g,, by 

polynomials &?12, k13, 223 having the same k,-jet at (A, xi) (all A E 
[ - 1, lly; i= l,..., m) as the functions they approximate. Let g2r = -g12. By 
(8.1), 221 approximates gsl and has the same ki - jet at (A, xi) (all 
AE[-l,114; i=l,..., m). Let g,=x,g,,+x,g,,; g2=x1g21+x3g23. 
Then 

x1 $1 +x2 it2 = x3(xl itI3 + x2 k23). 

Let g3 = -(x1 gr3 +x2 g23). Then Y= ( gl, g2, g3) satisfies the conclusion 
of the proposition. 1 
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9. PLANAR VECTORFIELDS 

Let .Z(z,, z2) be a C’ vectorlield on Iw*. Using sterographic projection 

x, = 2z,( 1 + z: + z:, ~ ‘, 

x* = 2z,( 1 + z: + z;, - ‘, 

x3 = (zf + z; - l)(l +z:+z;)-‘; 
(9.1) 

we can transform Z to a C’ vectorfield on S”\ { (0, 0, l)}. Multiplying this 
vectorfield by a suitable C’ function that is zero only at (0, 0, l), we obtain 
a vectorlield on S*\{ (0, 0, 1)) that is the restriction of a C’ vectorlield X 
on S2 having an equilibrium at (0, 0, 1). Whether or not X satisfies 
hypotheses (Hl )-(H3) of Theorem 1.1 depends only on Z. If X does satisfy 
these hypotheses, we can find a topologically equivalent polynomial vector- 
field p(xi, x2, xX) = (fi, T2, rj). Using (9.1) we transform P to a vectorfield 
on Iw2, which becomes a polynomial vectorfield 2 when multiplied by a suf- 
ficiently high power of 1 + z: + z :. 2 is topologically equivalent to Z. 

As a special case we consider C’ vectorfields Z on IF?* that vanish 
nowhere. The orbits of Z give a foliation of Iw2. Recall that a leaf L, of a 
foliation is inseparable if there exists another leaf L, #L, such that for any 
neighborhoods 0, and 0, of L, and L, there is a leaf L that intersects both 
0, and 02. 

COROLLARY 9.1. Let F be a jbliation of the plane given by the orbits of 
a C’ vectorfield Z. 9 has a finite number of inseparable leaves if and only if 
4 is topologically equivalent to a foliation of the plane by orbits of a 
nowhere zero polynomial vectorfield. 

Proof: Let X be a CL vectorfield on S* constructed from Z as described 
above. The only equilibrium of X is at (0, 0, l), and every orbit of X 
approaches (0, 0, 1) as t -+ *co. It is easy to show that if a leaf L of 9 is 
not inseparable, then the corresponding orbit of X is both positively and 
negatively stable. Therefore X has only a finite number of singular orbits. X 
has no closed orbits or separatrix cycles (otherwise Z would have 
equilibria). By Theorem 1.1 and the contructions of this section, Z is 
topologically equivalent to a polynomial vectorfield 2. 

The converse is proved in [M] or [S-Sl]. 1 
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