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MODEL THEORY OF PARTIAL DIFFERENTIAL FIELDS:
FROM COMMUTING TO NONCOMMUTING DERIVATIONS

MICHAEL F. SINGER

(Communicated by Julia F. Knight)

Abstract. McGrail [3] has shown the existence of a model completion for the
universal theory of fields on which a finite number of commuting derivations

act and, independently, Yaffe [7] has shown the existence of a model completion

for the univeral theory of fields on which a fixed Lie algebra acts as derivations.
We show how to derive the second result from the first.

1. Introduction.

In [3], McGrail gives axioms for the model completion of the universal theory
of fields of characteristic zero with several commuting derivations. Independently,
Yaffe [7] gave axioms for the model completion of the universal theory of a more
general class of fields: LDF0, the universal theory of fields of characteristic zero
together with a finite dimensional Lie algebra acting as derivations. The goal of this
short note is to show that starting from McGrail’s results one can quickly write down
axioms for Yaffe’s model completion, that is, one can reduce the noncommutative
case to the commutative case.

Another axiomatization of the model completion of a theory of differential fields
with noncommuting derivations has been given by Pierce [4] using differential forms
and a version of the Frobenius Theorem. In fact, one can state the Frobenius
Theorem as a result that allows one to replace noncommuting vector fields with
commuting ones: given an involutive analytic system Ly, y ∈ M of tangent spaces
of rank p on an analytic manifold M and a point x ∈ M , one can choose analytic
coordinates x1, . . . , xp around x such that Ly is spanned by (∂/∂x1)y, . . . , (∂/∂xp)y

for all y in an open set containing x (cf. [6], Theorem 1.3.3). In his introductory
remarks, Pierce states that one might be able to reduce the noncommutative case to
the commutative case ([4], pp.924-925) but does not give details, proceeding rather
to develop his results ab initio. The present note carries through this reduction.

I would like to thank Evelyne Hubert for several useful discussions and especially
for pointing out the relation between the result of Cassidy and Kolchin appearing
as Proposition 6, p. 12 of [1] and the Frobenius Theorem. I would also like to
thank Yoav Yaffe for discussions that helped clarify my initially vague ideas and
the anonymous referee for useful comments.
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2. Commuting Bases of Derivations

In [7], Yaffe defines the universal theory LDF0 of Lie differential fields. To do
this he fixes a field F of characteristic zero, a finite dimensional F-vector space
L with a Lie multiplication making it a Lie algebra over a subfield of F and a
vector space homomorphism φF : L → Der(F), the Lie algebra of derivations on
F , preserving the Lie multiplication. We fix a basis {D1, . . . , Dn} of L and let
[Dk, Dl] =

∑
m αm

klDm for some αm
kl ∈ F . The elements αm

kl are called the structure
constants of L. The language for LDF0 is the language of rings together with unary
function symbols Di, i = 1, . . . , n and constant symbols for each element of F . The
theory LDF0 consists of

• the diagram of F including the action of the Di,
• the theory of integral domains of characteristic zero,
• axioms stating that the Di are derivations,
• for each k, l an axiom of the form ∀x(DkDlx−DlDkx =

∑
m αm

klDmx).

We shall refer to a model of LDF0 as a Lie ring over L or, more simply, a Lie ring,
if it is clear which L is used.

We will need another concept from [7]: the ring of normal polynomials. This
is defined as follows. Let A be a model of LDF0. For each I = 〈i1, . . . , in〉 ∈ Nn

define a variable XI and consider the ring RA = A[{XI}I∈Nn ] of polynomials in this
infinite set of variables. Yaffe shows ([7], p. 57-61) how one can define an action of L
on RA so that this ring is a model of LDF0 and one sees from his proof that the Di

act as linearly independent derivations. Although this is not needed in the following
lemma, we note that Yaffe also shows that if B is a model of LDF0 that extends A
and b ∈ B, then the map from RA to B given by XI 7→ DI(b) = Di1

1 Di2
2 . . . Din

n (b)
for all I, is a homomorphism of structures. Yaffe’s construction of RA allows us to
conclude

Lemma 2.1. If A is a model of LDF0 with derivations DA
1 , . . . , DA

n , then A embeds
in a model B of LDF0 with derivations DB

1 , . . . DB
n extending the derivations of A

such that the DB
1 , . . . DB

n are linearly independent over B.

To show that the axioms in the next section yield a model completion of this
theory we need two additional facts that are contained in the next results.

Lemma 2.2. Let A with derivations DA
1 , . . . , DA

n be a model of LDF0 and assume
that the DA

i are linearly independent over A. Then there exist ai,j ∈ A such that
the derivations D

A
i =

∑
j ai,jD

A
j are linearly independent over A and commute.

Proof. We shall assume A is a field and follow the proof of Proposition 6 in Chapter
0, §5 of [1] with a few small modifications. As noted in the introduction, this is an
algebraic version of the Frobenius Theorem.

Let C = ∩n
i=1Ker DA

i . Let {xi}i∈I be a transcendence basis of A over C. Let δi

be the unique derivation on A satisfying δi(c) = 0 for all c ∈ C and δi(xj) = 1 if
i = j and 0 if i 6= j. Any x ∈ A will lie in a subfield algebraic over C(x1, . . . xN ) for
some N and so δi(x) = 0 for all i > N . For any derivation D of A that is trivial
on C, consider the sum

∑
i∈I D(xi)δi. Although this sum is infinite, the previous

remark shows that for any x ∈ A, the sum
∑

i∈I D(xi)δi makes sense and using the
results of Chapter VII, §5 of [2], one can show that D =

∑
i∈I D(xi)δi.
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Since the Di are linearly independent over A there exist ai,j ∈ A such that the
derivations D

A
i =

∑
j ai,jD

A
j satisfy (after a possible renumbering of the δj)

D
A
i = δi (mod

∑
j>n

Aδj)

for i = 1, . . . , n. To see that the D
A
i are linearly independent over A note that if∑

j bjD
A
j = 0 then 0 =

∑
j bjD

A
j (xi) = bi. I now claim that the D

A
i commute.

Since the δi commute, we have that

[D
A
r , D

A
s ] = 0 (mod

∑
i>n

Aδi)

for any r, s. Since the A-span of the D
A
i is closed under [ , ], we have that there

exist br,s,j ∈ A such that

[D
A
r , D

A
s ] =

n∑
j=1

br,s,jD
A
j

=
n∑

j=1

br,s,jδj (mod
∑
i>n

Aδi) .

Therefore, we have that br,s,j = 0 for all r, s, and j and hence that the D
A
j commute.

�

We shall need to compare Lie rings for two different Lie algebras L1 and L2. I
will denote by LDF 1

0 (resp. LDF 2
0 ) the theory of Lie rings based on the action

of the Lie algebra L1 (resp. L2). I will assume the two algebras are of the same
dimension over F .

Lemma 2.3. Let A with derivations D1
1, . . . , D

1
n be a model of LDF 1

0 and assume
that the D1

i are linearly independent over A. For i = 1, . . . , n, let D2
i =

∑
j ai,jD

1
j

for some ai,j ∈ A and assume that A with derivations D2
1, . . . , D

2
n is a model of

LDF 2
0 . If B is an extension of A that is a model of LDF 1

0 with respect to the
extensions of the derivations D1

1, . . . , D
1
n, then the formulas D2

i =
∑

j ai,jD
1
j define

derivations on B such that B with these derivations is a model of LDF 2
0

Proof. Let αm
k,l be the structure constants of L1 and βm

k,l be the structure constants
of L2. We have

[D2
l , D2

k] =
∑

j

(
∑

i

(al,iD
1
i (ak,j)− ak,iD

1
i (al,j)) +

∑
r,s

al,rak,sα
j
r,s)D

1
j , and

∑
m

βm
l,kD2

m =
∑

j

(
∑
m

βm
l,kam,j)D1

j

First note that since the D1
j are linearly independent over A, these derivations are

linearly independent over B as well. We therefore have that [D2
l , D2

k] =
∑

m βm
l,kD2

m

if and only if∑
i

(al,iD
1
i (ak,j)− ak,iD

1
i (al,j)) +

∑
r,s

al,rak,sα
j
r,s =

∑
m

βm
l,kam,j

for all j. If this holds in A then it will hold in B. �
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In particular, if the basis elements D2
i commute, we have

Corollary 2.4. Let A with derivations D1
1, . . . , D

1
n be a model of LDF0 and assume

that the D1
i are linearly independent over A. For i = 1, . . . , n, let D2

i =
∑

j ai,jD
1
j

for some ai,j ∈ A and assume that the D2
i commute as derivations on A. If B is

an extension of A that is a model of LDF0, then the D2
i commute as derivations

on B.

Note that in model theoretic terms, the statement that the basis elements D2
i

commute, which a priori is a universal statement, is actually (equivalent to) a
quantifier free statement, given that the D1

i are linearly independent.

3. Axioms for the Model Completion of LDF0

Let us begin by recalling the situation for fields with commuting derivations. In
[3], McGrail gave axioms for the model completion m-DCF of the universal theory
m-DF of differential fields with m commuting derivations D1, . . . , Dn. She also
showed that this former theory has elimination of quantifiers. In particular, for any
field F with m commuting derivations and any system S(u1, . . . , ur, v1, . . . , vs) =
{f1(u1, . . . , ur, v1, . . . , vs) = 0, . . . , ft(u1, . . . , ur, v1, . . . , vs) = 0, g(u1, . . . , ur, v1,
. . . , vs) 6= 0} of differential polynomials there exist systems T1(u1, . . . , ur), . . . ,
Tl(u1, . . . , ur) such that for any u1, . . . ur ∈ F there exists a solution v1, . . . , vs

in some differential extension of F if and only if the ui satisfy one of the systems
Ti(u1, . . . , ur).

Let F ,L and φF be as above. Let RF be the ring of normal polynomials with
coefficients in F . For any t ∈ N, we will denote by RF [x1, . . . , xt] the usual (not
differential) ring of polynomials in the variables x1, . . . , xt with coefficients in RF .
The axioms for LDCF0, the theory of Lie differentially closed fields of characteristic
zero, are the axioms for LDF0 plus the axioms for fields and the following axioms:

(1) for any t and any polynomial p(x1, . . . , xt, {XI}) ∈ RF [x1, . . . , xt] we have
an axiom that states that for any a1, . . . , an such that p(a1, . . . , an, {XI}) 6=
0 there exists b such that p(a1, . . . , an, {DI(b)}) 6= 0

(2) there exists an n2-tuple of elements x = (x1,1, . . . , xn,n) such that the
derivations Dx

1 =
∑

j x1,jDj , . . . , D
x
n =

∑
j xn,jDj form a linearly inde-

pendent set of commuting derivations.
(3) for any x such that {Dx

1 , . . . , Dx
n} is a linearly independent set of commuting

derivations and any system S(u1, . . . , un, v1, . . . , vm) involving differential
polynomials in the Dx

i , we have

∃u1, . . . vmS(u1, . . . , un, v1, . . . , vm)

if and only if
l∨

j=1

Tj(u1, . . . , un)

where the Tj are as described above.
Note that (3) implies that the models of this theory are algebraically closed.

I will use Blum’s criteria ([5], Section 17) to show that these axioms give the
model completion of LDF0. The first step is to show that any model A of LDF can
be extended to a model of LDCF0. Taking quotient fields of the ring constructed
in Lemma 2.1 we extend A to a model K0 of LDF0 were the derivations are linearly
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independent over K0. Note that the ring constructed in Lemma 2.1 allows us to
conclude that K0 satisfies axiom scheme (1). Lemma 2.2 implies that axiom (2)
holds. Let N0 be the set of n2-tuples of elements in K0 and assume that this set
is well ordered. Let x be the smallest element of N0 such that {Dx

1 , . . . , Dx
n} is a

linearly independent set of commuting derivations and let K0
1 be the differential

closure of K0 thought of as a field with commuting derivations {Dx
1 , . . . , Dx

n}. Since
the Di can be expressed a K0-linear combinations of the Dx

i , Lemma 2.3 implies
that K0

1 is still a model of LDF0. Let x̄ be the next smallest element of N0

such that {Dx̄
1 , . . . , Dx̄

n} is a linearly independent set of commuting derivations
and let K0

2 be the differential closure of K0
1 thought of as a field with commuting

derivations {Dx̄
1 , . . . , Dx̄

n}. We can continue in this way for all elements of N0 and,
taking unions, form a field K̄0 such that for any x in N0 such that {Dx

1 , . . . , Dx
n}

is a linearly independent set of commuting derivations, K̄0 contains the differential
closure of K0 thought of as a field with commuting derivations {Dx

1 , . . . , Dx
n}. Again

Lemma 2.3 implies that K̄0 is a model of LDF0. We let K1 be the quotient field
of RK̄0 . Note that K1 satisfies axiom scheme (1). We now repeat this process
and form a field K2 such that for any n2-tuple x of elements in K1 such that
{Dx

1 , . . . , Dx
n} is a linearly independent set of commuting derivations, K2 contains

the differential closure of K1 thought of as a field with commuting derivations
{Dx

1 , . . . , Dx
n} and also satisfies axiom scheme (1). One now sees that K∞ = ∪Ki

is a model of LDF0 and satisfies the axioms of LCDF0.
I will now show that if A |= LDF0, B |= LDCF0, B being |A|+-saturated and

A ⊂ B, then for any simple extension A(a) there is an A-embedding f : A(a) → B.
I will first show that I can assume that A satisfies axioms (1) and (2) above.

Let RA(a) = A(a)({XI}) be the field fractions of normal polynomials over A(a).
Axioms (1) and saturation imply that there is an A-embedding of A({XI}) into B.
Furthermore, A({XI}) satisfies axiom schemes (1) and (2). If we can extend this
embedding to A({XI})(a), then restricting to A(a) will give the desired conclusion.
We therefore will assume from the beginning that A satisfies axiom schemes (1) and
(2).

Let x be elements of A such that Dx
i are linearly independent commuting deriva-

tions. Corollary 2.4 implies that these derivations commute on A(a) as well. The
isomorphism type of a over the field A with derivations {Dx

i } is determined by the
set of {Dx

i }-differential polynomials that a satisfies and the set that it does not
satisfy. By axiom scheme (3) and saturation, we can realize this type in B and so
get an embedding of A(a) into B, considered as {Dx

i }-differential fields. Since the
{Di} are linear combinations of the {Dx

i }, this is also an embedding as models of
LDF0.
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