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ELEMENTARY SOLUTIONS OF DIFFERENTIAL
EQUATIONS

MicHAEL F. SINGER

In this paper we deal with the problem: when does a
differential equation have an elementary solution, that is a
solution which can be expressed in terms of algebraic opera-
tions, logarithms and exponentials? As an application of our
theorem, we give necessary and sufficient conditions for a
certain class of first order differential equations to have
elementary solutions.

For the simplest differential equation ¥’ = «a, where a is an
algebraic function, Liouville showed that if such an equation has an
elementary solution, then this solution is an algebraic function plus
a sum of constant multiples of logarithms of algebraic functions.
In his paper, “Liouville’s Theorem on Functions with Elementary
Integrals”, Pacific J. of Math., 24 No. 1, Rosenlicht showed how
this theorem can be handled algebraically and generalized. We will
use Rosenlicht’s methods to show that if an arbitrary algebraic
differential equation has an elementary solution, this solution must
be of a special form.

An (ordinary) differential field is a field K and a map ': K— K
called a derivation, which satisfies (@ +b) =a + b and (ad) =
a'db + ab’ for all @,b in K. For example, a field of functions, mero-
morphic in some region of the plane, with the usual differentiation,
is such a field. A differential subfield k© of K is a subfield which is
closed under the derivation. If ¢ is in K and ¢’ = 0 then ¢ is called
a constant of K. The set of constants can be seen to form a subfield
of K. In this paper all fields will be of characteristic 0. By a
differential equation of order n over %k, we mean an expression of
the form f(y, ¥/, ---, ¥™) = 0 where f is a polynomial, with coefficients
in k£, in the variables vy, %', --., y™ with ¥ actually appearing. An
element u of K is said to satisfy such an equation if f(u,u’, ---,
u™) = 0 where % is the ¢th derivative of w. We note that if »
satisfies a differential equation of order n, then the field k(u, w/, - -, u‘™)
is a differential field of transcendence degree at most n. To see
that it is closed under the derivation, note that by differentiating
the equation f(u, %', -+, u'™) = 0 we can solve for »™*" in terms of
lower derivatives of wu.

If kc K are differential fields an element u(u # 0) in K is called
an elementary integral (exponential of an elementary integral) with
respect to k if there exist elements v, v,, --+, v, in k and ¢, ¢, +--, ¢,
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constants of & such that

n ,v{

w = v, + D6 —+

=,

7 n ’

u V;
<_ — o + Zci._1>.

U =y,

For elements u, v in K with u # 0, we say % is an exponential of
v or equivalently v is a logarithm of u if " = %'/u. Note that if
% is in k& (v is in k) then » is an elementary integral (w is an ex-
ponential of an elementary integral) with respect to k. K is called
a generalized elementary extension of k if

(1) K and &k have the same field of constants, and

(2) there exists a tower of differential fields k= K,Cc K,C --- C
K, = K where K, = K, ,(u;) and u, is either algebraic over K, , or
an elementary integral with respect to K;_, or an exponential of an
elementary integral with respect to K,_,.

If K is a generalized elementary extension of k and satisfies the
additional property that each of the above wu, is either algebraic
over K, , or a logarithm or exponential of an element in K, ,, we
say K is an elementary extension of k. It was shown in [8] that
every generalized elementary extension of % lies in an elementary
extension of k. Intuitively, one just has to add enough logarithms
into a generalized elementary extension K, making sure not to extend
the constants, to get an elementary extension containing K. We say
an element w of some differential extension of % is elementary with
respect to & if it lies in some elementary extension of k.

Generalized elementary extensions were introduced to deal with
the following phenomenon: Liouville’s theorem [5], says that if w is
elementary with respect to ¥ and «’ is in k, then

oS

uw = v, + ij ¢, L

=,
for some elements v; in k and constants ¢;. Another way of saying
this is: if an integral u of an element of %k is elementary, then u is
an elementary integral, (this, of course, was why elementary integrals
were so named). In general we have no bound on the transcendence
degree of the smallest elementary extension of k containing u, because
we don’t know how many logarithms (all possibly algebraically inde-
pendent) we need to adjoint to k to insure that we get u. Yet, we
know that % lies in a generalized elementary extension of transcend-
ence degree at most one over k. The main theorem of this paper
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says that this is true in general; if a differential equation over k& of
order » has a solution in a generalized elementary extension of k,
this solution lies in a generalized elementary extension of transcend-
ence degree less than or equal to » over k.

Before I proceed, I need a technical fact about generalized
elementary extensions. We say an element # in K is a good
elementary integral with respect to k< K if

e~

’ = V;
w =+ 36—
i=1 V;

with »;, in & and {¢, ¢, ---, ¢,} a Q-linearly independent set of con-
stants. An element w # 0 in K is said to be a good exponential of
an elementary integral with respect to kc K if

’

S

n
:’U{)—I—Zciv

=,

g

with the v, in & and {1, ¢, ¢, --+, ¢,} a Q-linearly independent set of
constants. A generalized elementary extension K of %k is said to be
good if the elementary integrals and exponentials of elementary
integrals used in building up the tower to K are good. I claim that
for any generalized elementary extension K of % there is a tower
of fields ¥ = Kfc KfC-.--C K = K which turns K into a good
elementary extension of k. It is enough to show that for E = F(9),
where 6 is an elementary integral or exponential of an elementary

integral, we can make FE into a good elementary extension of F.
Let

k ,Ul
0 =v; + D e~
=,
and assume that ¢,’s are linearly dependent over @. We can assume
that ¢, depends linearly on ¢, -, ¢;,_, and let

(e 4+ <o« + ny_y00)
n

Cp =

with n, 1y, -+, n,_, integers, then

— ng
0 = v+ 3 % o
=i vivyt

Continuing in this way we can eventually arrive at an expression
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where {d,, ---,d;} is a Q-linearly independent set of constants and
Uoy Uyy +++, U; are elements of k. So using this expression we see
that F(6) is a good elementary extension of F. Now assume that
0 satisfies

Y

’ k
LA L
7 =1,

and suppose {1, ¢, - -, ¢;} are Q-linearly dependent. As before assume
that ¢, depends linearly on 1,¢, ---, ¢,_,, and let, ¢, = (n, + n,c, +
« + N4_.C,_)/n where n, n, n,, -+, N,_, are integers, We can then
write
(0mv™)" SPR G

= nvy + C;
Gmvy™o .Z‘l ViU

Letting 6* = 0™v;™, u, = vrv¥, u, = NV, wWe get

,.
o~

o*' :u’+k— U

o R

Note that @ is algebraic over F(6*). Continuing in this way we
eventually get to the stage where {1, ¢,, - - -, ¢;} are linearly independent
over @, and ¢ algebraic over F(6*) so Fc F(#*)C F(f) is a good
generalized elementary extension of F. In conclusion, we have shown
that if 6 is an elementary integral with respect to F, then it is a
good elementary integral with respect to F, and that if 6 is an
exponential of an elementary integral with respect to F' then some
afd™(ne Z,n + 0, a € F'*) is a good exponential of an elementary integral
with respect to F. This allows us to exhibit any elementary extension
K of k as a good elementary extension of k.

The proof of the theorem relies on a fact about algebraic depend-
ence of certain elements in generalized elementary extension (the
lemma below). This in turn relies on the following proposition, whose
proof can be found in [6].

PROPOSITION. Let L be a differential field and K a differential
extension field with the same constants as L, which is furthermore
algebraic over k() for some { in K. Suppose that ¢, -+, c, are
constants which are linearly independent over Q and uy, -+, ,, v
in K (u, = 0 for all 7). Suppose further that

o~

U
C; —

’

v —

'M*

[

%=1

o

is im L. If ' is in L, then u,, - -+, u, are in L (the algebraic closure
of L in K) and v = ¢l + d, where ¢ is a constant and d is in L.
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If CJC is in L, then we have v in L and there are integers v, v,
cee, Y, With v, # 0 such that w3l is in L for 1L <7 < m.

LEMMA. Let kc L C K be differential fields with the same con-
stants. Let C,n be elements of K, algebraically dependent over L
such that ¢ is an elementary integral or an exponential of an
elementary integral with respect to k, the algebraic closure of k in
K and 1 is a good elementary integral or a good exponential of an
elementary integral with respect to k(). We can then find a & in
K such that

(1) & 1s an elementary integral or an exponential of an
elementary integral with respect to k.

(2) ¢ and 7 are algebraically dependent over k().

(3) ¢ is algebraic over L.

Furthermore, if C, 1 are both elementary integrals, so is & and if
€, n are both exponentials of elementary integrals them so is &.

Proof. First note that we can assume that { is not algebraic
over L, otherwise we could take { for our & From this we can

conclude that %) N L = k. The proof now proceeds by considering
the following four cases:

Case 1. Assume

¢ =3a,2 +¢ and 7 = 35, % 4 o
i Wi
where s;,t are in k£ and u, v are in k(@) and {b;} is a Q-linearly
independent set of constants. We can apply the proposition to the
expression

55, % 4+ w—7) =0
Ui

with respect to the fields L < L({) K and conclude that «, :--, u,
are in L and v — 9 = ¢ + d where ¢ is a constant and d is in L.
Let ¢=d=v—7—c¢l. Conditions (2) and (3) are then clearly
satisfied. Note that since u,, ---, u, are in k(@) N L, they are in k.
We have

ro__ a0 ' y ui S; ’
g=v—-—n—-—¢cl’'=-23b—L —cla,=~ — ct'.
i 83

Since u,, s;, t are in k, £ is an elementary integral with respect to k,
so we have (1).
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Case 2. Assume that

¢ =3a,3% + ¢ and - 3, 4 o
s; n u;
where s, t, u;, v are as before and {1, b,} is a Q-linearly independent
set of constants. We can apply the proposition to the expression

—%+2bi-“-5‘+v'=o

u‘b
and conclude that the u, and 7 are in L and v = ¢{ + d with d in
L and ¢ a constant. Let & =7. Conditions (2) and (8) are then
satisfied. Since the s, and d =V — ¢ are in LNEkQ =k and

» ’ ’ ’
i:l:ZbiZ‘i+v’ =3b, % o+ &
¢ /i U, U
=30 % 4 o(50 5 1 ¢) 4 @
ui Si

we have that £ is an exponential of an elementary integral over k.
Case 3. Assume
’ ’ ’
£_ Ya, 2 + ¢ and 7 = 3b, % + o'
¢ S Uy
with w,;, v, s, t as before and {b} a Q-linearly independent set of
constants. We can apply the proposition to the expression

Y =7 =0
U;

and conclude that v — 7 is in L and that there are integers v,, ++-, v,
with v, # 0 such that w°{* is in L. Let & = v, (y — v). ¢ then satisfies
(2) and (3). Each w7 is in k@ NL =k and

¢ =u — o) = 3BV (zup)(sa, 4 r)
wyolvi )

1

so £ is an elementary integral with respect to k.
Case 4. Assume

¢ S; U

with w,, v, s;,, t as before and {1, b;} a Q-linearly independent set of
constants. We can apply the proposition to the expression

=]
B
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—%7]-'+2bzl;+'v'=0

7

and conclude that v is in L and that there are integers Yo, Vs ***

Y,.1 With v, % 0 such that the wyl* and 7*(»+t are in L. Let
& =mnrln+, (2) and (3) are then satisfied

Gy gy Ty
£ T s

+ Wper — Zbivi)<2azfi + t’)
S.

i

so £ is an exponential of an elementary integral.

THEOREM. Let E be a differential field of transcendence degree
n over a differential field F. If E lies in a generalized elementary
extension K of F, then E lies in a generalized elementary extension
of F of tramscendence degree m over F. Furthermore, if K =
F@, ---,0y) where each 0, is algebraic or an elementary integral
with respect to F(0,, «--, 0;_)), then E lies in a generalized elementary
extension of F of transcendence degree n which is likewise generated
only by elements which are algebraic or elementary integrals. A
stmilar statement holds if we restrict each 0, to be algebraic or an
exponential of an elementary integral with respect to F(0,, «+-, 0;_,).

Proof. If n =0, then the theorem is a triviality. Therefore,
we can assume that the transcendence degree of E over F is =1.
If F consisted only of constants, then any generalized elementary
extension would coincide with F. So we can assume F contains a
nonconstant. Furthermore, by the primitive element theorem for
differential fields [7], we can conclude that E = F(y, ¢/, ---, y™) for
some element y of E. Note that ¥, %', ---, y™ ™ forms a transcendence
base for E over F. Now the proof proceeds by induction on .
Although the proof could be written to suppress the n = 1 step, we
include it here in the hope that it will aid in understanding the
induction step.

n =1. Let E = F(y,y') with y algebraic over F(y). Let K
be a generalized elementary extension of F, containing FE, whose
transcendence degree over F is minimal with respect to all such
extensions. Using the facts about good elementary extension developed
in the paragraphs preceding the Proposition, we can pick a tran-
scendence basis 4, ---, d,, such that each 6, is a good elementary
integral or a good exponential of an elementary integral with respect
to some algebraic extension of F(4, ---, 0,_,). Now assume m > 1
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and we will work towards a contradiction. We will apply the lemma,
so let k be the algebraic closure of F(4,, ---,0,.) in K, {=84,_,,
=20, and L =Fk(y,y'). Since m was picked as small as possible,
y is not algebraic over k. Therefore, { and % are algebraic ally
dependent over L. We can conclude that there exists a ¢ satisfying
the conclusions of the lemma. While & is algebraic over k(y, ¥'), it
is not algebraic over k, for otherwise { =6,_, and n =4, would be
algebraically dependent over F(4, ---, 0,_,), contradicting the way
they were chosen. Therefore, y is algebraic over F(0, -, Opn_s, &)
and so F(y, ¥') would lie in a generalized elementary extension of F'
of transcendence degree < m — 1.

Induction Step. Assume that the theorem is true for differential
fields E*, F'* such that the transcendence degree of E* over F'* is
less than n. Again let K be a generalized elementary extension of
F, containing FE, whose transcendence degree m over F' is minimal
with respect to all such extensions. Assume m > and choose a
transcendence basis 6,, ---, 8, of K over F such that each 6, is a
good elementary integral or a good exponential of an elementary
integral with respect to an algebraic extension of F(4,, - -, 0;,).

I will first show that for each j, with 0<j7<n—1,0,_; is
algebraic over F(60,, +++, On_j_i, ¥, ¥, +++, ¥¥) and that this last field
has transcendence degree m over F. This is a standard replacement
argument with the above induection hypothesis in a supporting role.
For 7 =0, we know y is not algebraic over F(4,, ---, 0,_,), for other-
wise F'(y, ¥, ---, ¥™) would lie in a generalized elementary extension
of F of transcendence degree m — 1. Since y is algebraic cover
F@, ---,40,), we get 0, algebraic over F(@, -+, 0,._,, y) which then
must have transcendence degree m over F. Now assume 4,_, is
algebraic over F(0,, +++, Opr1, ¥, Y, +++, y*) for k < s and that this
latter field has transcendence degree m over F. F@, ---,0,) is
therefore algebraic over F(#,, +-+, 0pu_j, ¥, ¥, -+, y¥ ™) and therefore
y¥ is algebraic over this latter field. If y“ were algebraic over
F(O,yo+30pm iy Yy ++,y¥™Y), then letting F'* be the algebraic closure
of F(6,, -+, 0,_;_,) in K and E* = F*(y, ¥, -+, y¥) we would have
a field E* of transcendence degree j < m over F'* which lies in K,
a generalized elementary extension of F™*, so F*(y, ¥, ---, ¥y™) would
lie in a generalized elementary extension K* of F* of transcendence
degree j over F*. K* would then be a generalized elementary
extension of F of transcendence degree m — 1 over F which contains
F(y,y', ---, y™), a contradiction. So ¥’ must not be algebraic over
F@O, -++,0n i,y Y, -,y ™) and therefore 6,_; is algebraic over
F@, -, 0n_ iy, -+, ¥y") and this latter field still has transcendence
degree m over F.
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In particular, we can conclude that 4,_,,, is algebraic over
F@y, o) 0pnn 9,9, -, y* ") and so 6, and 6,_,., are algebraically
dependent over F(,, -+, 0pn_r, ¥, ¥, -+, y" ). We will now apply
the lemma. Let k& be the algebraic closure of F(4,, ---, 0,,_,-,) in K,
L be the algebraic closure of k(y, ---,y"™*) in K,{=86,_,, and
N =0, nsr By the lemma, there is a & in K such that ¢ is an
elementary integral or an exponential of an elementary integral with
respect to k and 6,_,.., 0., are algebraically dependent over k(£).
¢ is algebraic over F(6,, -++, Opn_s, ¥, -+, y*V) but it is not algebraic
over F(6y, +++, 0pn_1, ¥, -+, Y™ ?). If it were, then F(@,, ---, Op_n_s
& Onny Omenis Yy »++, Y™ ) would have transcendence degree m — 1
over F, contradicting the fact proven in the previous paragraph.
Thus y™ ™ is algebraic over F(0, +++, Opon_s, &Y, +++, Yy ). If we
now let E* be the algebraic closure of this latter field in K and F'*
be the algebraic closure of F'(6, «+-, 0prn_y, £) in K, we see E* is a
differential field of transcendence degree n — 1 over F'* which lies
in a generalized elementary extension of F'*. Therefore E* lies in
a generalized elementary extension of F'* of transcendence degree
n—1 over F'*. We can conclude that E = F(y, ---, y™) lies in a
generalized elementary extension of F of transcendence degree
m—n+n—1=m— 1, contradicting our choice of m.

The proofs of the final two assertions of this theorem are the
same as the one above, keeping in mind the final sentence of the
lemma. These last two assertions were first noticed by Koenigsberger
[1], who outlined an analytic proof for the cases » = 1 and 2.

In the next two corollaries, C(x) will be the field of rational
functions over the complex numbers whose derivation is given by
2 =1and ¢ =0 for all ¢ in C.

COROLLARY 1. If a first order differential equation over C(x)
has a solution which is elementary but not algebraic over C(x), then
the equation has either a one parameter family of solutions of the
type

¥y = Gz, Po(x) + a,log pi(x) + -+ + a, log ?.(x) + ¢)

with ¢ an arbitrary constant, the a,’s constants and G and the @,’s
algebraic functions or the equation has a one parameter family of
solutions

y = G(z, exp(P(®) + a,log @,(x) + --- + a, log .(x) + ¢))

of stmilar descriptions

Proof. This theorem was first proven by Mordukhai-Boltovski,
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[2] and [4, p. 86], using analytic techniques. Let y be an elementary
but nonalgebraic solution of the equation F(zx, y,%’) =0. By the
theorem, we know that y lies in a generalized elementary extension
of C(x), of transcendence degree one over C(x). This means that y
can be considered as an algebraic function G(x, ) where 6 is an
elementary integral or exponential of an elementary integral with
respect to some algebraic extension K of C(x). If 6 is an elementary
integral with respect to K and ¢ is any element of C, I claim that
G(x, 6 + ¢) is a solution of the same differential equation as y. This
can be stated algebraically. The map which takes 6 to ¢ 4+ ¢ induces
differential automorphism (i.e. a field theoretic isomorphism which
preserves the differential structure) of K(f). This map can be ex-
tended to a (field theoretic) isomorphism is K(@, y) into K(0), the
algebraic closure of K(0). It is known [5], that the differential
structure of an algebraic extension of a differential field of charac-
teristic zero, is uniquely determined, so the isomorphism of K(4, )
into K(f) is a differential isomorphism. Therefore the image of ¥
satisfies the same differential relationships over K as y does. The
image of y = G(z, 0) is just G(z, 6 + ¢) so this proves the claim. If
0 is an exponential of an elementary integral, then for any nonzero
d in C the map which takes 8 to df induces a differential automor-
phism of K(§). The same kind of reasoning tells us that G(x, dd)
satisfies the same equation as G(x, §). We therefore have the con-
clusion of the corollary.

COROLLARY 2. Let f(y) be a rational function in the indeter-
minant y with coefficients in the complex numbers. If y' = f(y)
has a monconstant solution, elementary over C(z), then 1/f(y) s
etther of the form

dw®) ,, L@@)dy
dy u(y)

where v(y), u(y) are rational functions of y with coeffictents in the
complexes and ¢ s a nonzero complex number. Conversely, if
f@) # 0 and 1/f(y) is of one of the two above forms, then y' = f(y)
has a monconstant solution, elementary over C(x).

Proof. We prove the converse first. If 1/f(y) is of the first
form, we let y be defined by the equation v(y) = x. If y is of the
second form, we let y be defined by the equation u(y) = exp (z/c).
In both cases, ¥ will be a nonconstant solution elementary of C(z).

Now let y be a nonconstant element of some elementary extension
of C(x) such that ¥’ = f(y). We then can conclude that the simple
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transcendental extension C(y), with the induced derivation ’, is a
differential field. Expanding 1/f(y) in partial factions with respect
to y we get

1= Yy _ a(v(y)) . b id(ui(y))/dy ,
@ ay T ww
= v(y) + Zci(u"(y))'
u(y)

where u,(y), v(y) are in C(y) and the ¢,’s are in C. As before, we
can assume that the ¢;’s are linearly independent over Q. Since ¥
lies in an elementary extension of C(x) we are reduced to one of the
following three cases:

(1) y is algebraic over C(x). In this case we have a relation
of the form ¢ + Ze¢,(wj/u;) =1 in an algebraic extension of C(z).
Applying the proposition, with L = C and { = x, we see that the u,
are in C, so u; = 0. Therefore

Y _de®),, . 1 _ d®)
@' T a U T

(2) vy is algebraic over L(f) where L is an algebraic extension
of C(x) and 6 is an elementary integral with respect to L. Since
0'e L, we can apply the proposition to { = ¢ and get that each wu,
is algebraic over C(x). If d(u;(y))/dy # 0 for some %, then y would
be algebraic over C(x) and we would be reduced to the provious case.
So we can assume d(u,(¥))/dy = 0 for all 7 and therefore (u.,(y)) = 0.
As before we can then conclude that 1/f(y) = d(v(¥))/dy.

(3) v is algebraic over L(f) where L is an algebraic extension
of C(x) and 0 is a good exponential of an elementary integral with
respect to L. First notice that if we write

g s; p
7= Z’di—i + ¢
with s; and ¢ in L and d, in C, then since 6 and x are algebraically
dependent over C(y) and ' = 1€ C(y), we can apply the proposition
and get that each s, must be algebraic over C(y). Thus each s; is
algebraic over both C(x) and C(y) and so must be in C if we are
not to be reduced to the case where y is algebraic over C(x). So
s; =0 for each s;,, and ¢/ = t'. Our next step is to notice that we
have a relation of the form

e ity =1

3

in an algebraic extension of L(f). Since 6'/6 is in L, we can apply
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the proposition and conclude that there are integers v, # 0, v, --+, v,
such that each wu2»0* and v is algebraic over C(x). Again if
d(v(y))/dy # 0 then y would be algebraic over C(x) and we would be
reduced to the first case. So we can assume v = (d(v(¥))/dy)y’ = 0.
If we let u6* = A, then

b

U; Y, AL 7 0 i
S0
1=Ye, % 4+ v =Lye i Ligepyr.
Uy v, A, Y,

Each A, and ¢ is algebraic over C(x) and =’ € C so applying the lemma
for the final time we can conclude that each A, is in C. Thus, for
each u,,

U} y;, ¢

u—i Y, 0
If all the v, where 0, then each u, = 0, so we would have

1=+ v =0

2

a contradiction. We can therefore assume y, = 0 and then wi/u, =
(vi/v)(ui/u,) so

’ ’
ZciEE = (ZGL&>& .
u; ) ST
Finally we get
’ ! ’
Y —3e,™ 4 v =¢X where ¢ =S¢,
f @) U ! 5

Thus 1/f(y) = c(d(u.(y)/dy)/uw.(y).

We can use Corollary 2 to show certain differential equations
have no elementary solutions. First notice that if we can write
1/f(y) = d(v(y))/dy for some v(y) in C(y), then by expanding v(y) in
powers of y and differentiating term by term we see that 1/f(y) could
not have any term of the form 1/y, when we expand 1/f(y) in powers
of y. Similarly if 1/f(y) = (d(u(y))/dy)/u(y), when we expand 1/f(y)
in powers of ¥y, no terms of the form %® for 7 < —1 can appear.
In particular ¥’ = %*/(y + 1) has no nonconstant elementary solutions
since (y + 1)/y* = (1/v®) + (1/y). In general if f(y)eQ(y), we can
decide if 1/f(y) is of one of the two forms described in the corollary
as was shown by Risch [3].
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