
Abstract

BERMAN, PETER HILLEL. Computing Galois Groups for Certain Classes of Ordinary

Differential Equations. (Under the direction of Michael Singer.)

As of now, it is an open problem to find an algorithm that computes the Galois group

G of an arbitrary linear ordinary differential operator L ∈ C(x)[D]. We assume that C
is a computable, characteristic-zero, algebraically closed constant field with factorization

algorithm. In this dissertation, we present new methods for computing differential Galois

groups in two special cases.

An article by Compoint and Singer presents a decision procedure to compute G in case

L is completely reducible or, equivalently, G is reductive. Here, we present the results

of an article by Berman and Singer that reduces the case of a product of two completely

reducible operators to that of a single completely reducible operator; moreover, we give an

optimization of that article’s core decision procedure. These results rely on results from

cohomology due to Daniel Bertrand.

We also give a set of criteria to compute the Galois group of a differential equation of

the form y(3) + ay′ + by = 0, a, b ∈ C[x]. Furthermore, we present an algorithm to carry

out this computation in case C = Q̄, the field of algebraic numbers. This algorithm applies

the approach used in an article by M. van der Put to study order-two equations with one

or two singular points. Each step of the algorithm employs a simple, implementable test

based on some combination of factorization properties, properties of associated operators,

and testing of associated equations for rational solutions. Examples of the algorithm and a

Maple implementation written by the author are provided.
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Chapter 1

Introduction

A differential field is a field k equipped with a specified derivation operator. The subfield

C = Ck of constants in k is assumed to be algebraically closed and of characteristic zero. An

equation L(y) = 0 corresponds to an element L of the ring of differential operators k[D],

which is noncommutative in general. There exists a Picard-Vessiot extension KL/k of differ-

ential fields, generated over k by the solution space VL of L; it is the analogue of a splitting

field extension in polynomial Galois theory. The group GL is the group of differential field

automorphisms of KL/k. This group has a faithful representation as an algebraic subgroup

of GL(VL); thus, the groups in this case are linear algebraic groups. There is a full Galois

correspondence in this setting. See [Mag94] for an extensive introduction to differential

Galois theory. Chapter 2 of this dissertation presents basic results and notation from linear

algebra, algebraic groups and differential algebra.

As of now, there does not exist an algorithm to compute the group of a differential

operator L in general. There exist algorithms to compute the group in certain special cases.

There also exist algorithms to perform related tasks. These related tasks include factoring

operators, computing associated operators, and testing for rational solutions. See [Sin99]

for an overview of these algorithms.

[CS99] presents a decision procedure to compute the group in case L is completely

reducible or, equivalently, G is a reductive group. [BS99] shows how to reduce the case of

a product of two completely reducible operators to that of a single completely reducible

operator; this article relies on results from cohomology presented in [Ber90] and [Ber92].

Chapter 3 of this dissertation presents the results from [BS99] and an optimization of the



core decision procedure.

Chapter 3 is organized as follows: Section 3.1 discusses connections and D-modules and

their relation to differential equations and systems. Section 3.2 presents the results from

Section 2 of [BS99]. This section includes Algorithm I, which computes the group of the

inhomogeneous equation L(y) = b, L ∈ C(x)[D] completely reducible, b ∈ C(x). Section 3.3

presents the results from Section 3 of [BS99]. This section includes Algorithm II, which

computes the group of L1(L2(y)) = 0, L1, L2 ∈ C(x) completely reducible. Algorithm II

works by computing an associated inhomogeneous equation L̂(y) = b, where L̂ is completely

reducible, and applying part of Algorithm I to that equation. Section 3.4 presents Algo-

rithm III, an optimization of Algorithm I: Whereas Algorithm I relies on parameterizing

all factorizations of L to compute the group of L(y) = b, Algorithm III only requires a

single expression of L as the least common left multiple of a set of irreducible operators.

Note that Algorithm III is presented in terms of inhomogeneous first-order systems rather

than inhomogeneous equations; the results of Section 3.1 show that the two settings are

interchangeable in our case.

In Chapter 4, we give a set of criteria to compute the Galois group of a differential

equation of the form y(3) + ay′ + by = 0, a, b ∈ C[x], where C is a computable, algebraically

closed constant field of characteristic zero. Moreover, we present an algorithm to carry out

this computation in case C = Q̄, the field of algebraic numbers. This algorithm applies the

approach used in [dP98b] to study order-two equations with one or two singular points.

Our method relies on a result of Ramis that says that the group of such an equation

must be connected and have defect zero (c.f. [MS96] and [dP98a]). In Section 4.1, we state

this result; we also state the main theorem of Chapter 4. In sections 4.2, 4.3 and 4.4,

we enumerate the tori, unipotent groups, and semisimple groups that can be embedded in

SL3(C) along with their conjugacy classes in SL3(C). In Section 4.5, we use the results from

Sections 4.2-4.4 to produce a complete list of conjugacy classes of all subgroups of SL3(C)
that occur as Galois groups of equations of the prescribed form. In Section 4.6, we give an

algorithm to compute the group of an equation of this form, in the case where C = Q̄. Each

step of the algorithm employs a simple, implementable test. Examples of this algorithm are

given in Section 4.7. The author has implemented this algorithm in Maple. The code is

provided in an appendix.
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Chapter 2

Basic definitions and facts

2.1 Notation and results from linear algebra

This section is a review of certain facts from basic linear algebra (see, for instance, [HK71]),

included here to establish notation for the remainder of the document.

Let V (resp., W ) be an m- (resp., n-) dimensional vector space over a field k with ordered

basis E = {e1, . . . , em} (resp., F = {f1, . . . , fn}). For any vector v =
∑m

i=1 viei ∈ V, we write

[v]E = (v1, . . . , vm)T ∈ km.

Given φ ∈ Homk(V,W ), suppose

φ(ei) =
n∑

j=1

ajifj , aji ∈ k.

Then we define the matrix [φ]E,F by

[φ]E,F = (aij) ∈ kn×m;

this formula yields the matrix-by-vector multiplication formula

[φ(v)]F = [φ]E,F [v]E for all v ∈ V.

In the special case V = W (i.e., φ ∈ Endk(V )) and E = F , we write [φ]E in place of [φ]E,F . In

the special case V = W, φ = id, E 6= F , let P = [id]E,F ; we see that P is the change-of-basis

matrix from coordinates in E to coordinates in F .
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The following facts are well-known: If X is a k-vector space with ordered basis B =

{b1, b2, . . . , bq} and ψ ∈ Homk(W,X), then

[ψ ◦ φ]E,B = [ψ]F,B[φ]E,F .

If V = W, then [id]F,E and [id]E,F are inverses of each other and

[φ]F = [id]E,F [φ]E [id]F,E

for arbitrary φ.

Next, we make choices for the expression of tensor products of matrices, vector spaces,

and transformations. Our choices will correspond to the ordering on

{1, . . . , m} × {1, . . . , n} = {ik : i ∈ {1, . . . , m} , k ∈ {1, . . . , n}}

given by i1k1 ≤ i2k2 if i1 < i2 or i1 = i2, k1 ≤ k2. Under this ordering, a column vector

v ∈ kmn×1 will be written

v = (v11, . . . , v1n, v21, . . . , v2n, . . . , vm1, . . . , vmn)T .

Given matrices A = (aij) ∈ km′×m, B = (bkl) ∈ kn′×n, we define A⊗B = (cik,jl), where

cik,jl = aijbkl for ik ∈ {1, . . . , m′} × {1, . . . , n′} , jl ∈ {1, . . . , m} × {1, . . . , n} . This yields

A⊗B = (aijbkl)

=




a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
. . .

...

am′1B am′2B · · · am′mB



∈ km′n′×mn. (2.1)

For the vector spaces V and W, define the ordered basis E ⊗ F of V ⊗W by

E ⊗ F = {e1 ⊗ f1, . . . , e1 ⊗ fn, e2 ⊗ f1, . . . , e2 ⊗ fn,

. . . , em ⊗ f1, . . . , em ⊗ fn}. (2.2)

Suppose V ′ and W ′ are k-vector spaces with bases E ′ = {e′1, . . . , e′m′}, F ′ = {f ′1, . . . , f ′n′},
respectively. In the ordered bases E ⊗ F and E ′ ⊗ F ′ defined according to (2.2), if T ∈
Homk(V, V ′) has matrix [T ]E,E′ = A = (aij) and U ∈ Homk(W,W ′) has matrix [U ]F,F ′ =

B = (bij), then T ⊗ U ∈ Homk(V ⊗W,V ′ ⊗W ′) has matrix [T ⊗ U ]E⊗F,E′⊗F ′ = A ⊗ B,
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where A⊗B is as given in (2.1). Indeed, if T (ej) =
∑

i aije
′
i and U(fl) =

∑
k bklf

′
k, then

(T ⊗ U) (ej ⊗ fl) =

(∑
i

aije
′
i

)
⊗

(∑
k

bklf
′
k

)

=
∑
i,k

aijbkle
′
i ⊗ f ′k

and therefore the coefficient of e′i ⊗ f ′k in the expansion of (T ⊗ U) (ej ⊗ fl) is aijbkl, as

desired.

Finally, we recall the following facts about matrices of dual transformations: Given

T : V → W, then the dual transformation T ∗ : W ∗ → V ∗ is given by T ∗(ψ) = ψ ◦ T ∈ V ∗

for ψ ∈ W ∗. Given an ordered basis E (resp., F) of V (resp., W ), suppose [T ]E,F = A ∈
km×n. Then we may give V ∗ (resp., W ∗) the ordered basis E∗ (resp., F∗), and we have

[T ∗]F∗,E∗ = AT . In particular, if V = W and T = id, we have T ∗ = id and

[id]F∗,E∗ = AT , [id]E∗,F∗ =
(
AT

)−1
. (2.3)

2.2 Algebraic groups

The following basic facts are taken from [Hum81]. The material on Levi decomposition is

detailed in [Mos56].

We define the following notation: If G is a group and y ∈ G, then Int y is the inner

automorphism of G defined by (Int y)(x) = yxy−1. If H is a normal subgroup of G, then

Int y|H is an automorphism of H. When the context is clear, we will abbreviate Int y|H as

Int y.

Throughout this document, C is an algebraically closed field of characteristic zero. An

algebraic group over C is an affine algebraic set defined over C, equipped with group opera-

tions which are continuous in the Zariski topology. We suppress the phrase “over C” when

the field of definition is clear from context. A morphism in the category of algebraic groups

is a Zariski-continuous map which is also a group homomorphism.

Examples of algebraic groups are as follows:

1. C = (C,+), the additive group. Note that this group has no proper nontrivial algebraic

subgroups.

2. An arbitrary finite-dimensional vector space (e.g., Cn) is generated as an additive

algebraic group by an arbitrary vector-space basis; such a group is called a vector

group. The only closed subgroups of such a group are its vector subspaces.
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3. C∗ = (C \ {0} , ·), the multiplicative group.

4. GLn = GLn(C), the group of n×n matrices with nonzero determinant. GLn is an open

subset of affine n2-space with coordinates sij , 1 ≤ i, j ≤ n.

5. Any closed subgroup of GLn. Examples:

(a) SLn, the group of n× n matrices with determinant 1.

(b) PSLn, the quotient of SLn by its center.

(c) Tn, the group of upper-triangular nonsingular n × n matrices. We have Tn =

{(aij) ∈ GLn : aij = 0 if j < i} .

(d) Un, the group of unipotent upper-triangular n × n matrices. We have Tn =

{(aij) ∈ Tn : aii = 1 for all i} .

(e) Dn, the group of diagonal nonsingular n× n matrices.

An arbitrary algebraic group G is called a linear algebraic group if it is isomorphic to

a subgroup of GLn(C) for some n.

Given an n-dimensional C-vector space V, let E0 = {e1, e2, . . . , en} be a fixed basis

of V. Then there is a one-to-one correspondence between GL(V ) and GLn whereby

φ ∈ GL(V ) corresponds with [φ]E0 ∈ GLn. This correspondence induces an algebraic

group structure on GL(V ). One checks that this structure is independent of choice of

basis of V, so that GL(V ) is given a unique structure of linear algebraic group.

We say that a subgroup G ⊆ GLn is the expression of the subgroup G ⊆ GL(V ) in the

basis F , and we write G = [G]F , if G = {[φ]F : φ ∈ G} . It follows from the results of

the previous section that two subgroups G, G̃ ⊆ GLn are conjugate if and only if there

exists a subgroup G ⊆ GL(V ) and a basis B of V such that G = [G]E0 , G̃ = [G]B.

Note that the matrix P = [id]E,F centralizes G = [G]E (i.e., PMP−1 = M for all

M ∈ G) if and only if [φ]E = [φ]F for all φ ∈ G.

6. GoH = GoφH, the semidirect product of G by H via φ, where G and H are algebraic

groups and φ : G×H → G is the mapping corresponding to an algebraic group action

of H on G (cf. [Hu, Sec. 8.2]) having the property that φ(•, y) is an automorphism of

G for all y ∈ H. As a set, we have G oφ H = G×H. The structure of G oφ H is given

by

(x1, y1)(x2, y2) = (x1φ(x2, y1), y1y2)

6



for (xi, yi) ∈ G ×H, i = 1, 2. It is easy to see that G o H includes a copy of G as a

normal subgroup and a copy of H as a subgroup and, moreover, that

(x, 1)(1, y) = (x, y), (Int(1, y)) (x, 1) = (φ(x, y), 1)

for all x ∈ G, y ∈ H.

If the algebraic group A has normal subgroup R and subgroup S with R ∩ S =

{1} , RS = A, then one can construct a semidirect product R o S using inner auto-

morphisms of A. If the map from R o S to q given by (r, s) 7→ rs is an isomorphism

of algebraic groups, then we say that A = RS is the semidirect product of R by S.

Note that if ψ is an automorphism of H, then Goφ H is isomorphic to Goφ̃ H, where

φ̃(x, y) = φ(x, ψ(y)), via the map (x, y) 7→ (x, ψ−1(y)).

Remark: One can show that if G ' C o C∗ = C oφ C∗ for some φ, then φ is given by

(Int y)(x) = φ(x, y) = ydx for some fixed integer d. One can also show that C oφ C∗ '
C oφ̃ C∗ if φ(x, y) = ydx and φ̃(x, y) = y−dx for all x ∈ C, y ∈ C∗.

7. The group closure of a subset S (resp., of an element g) of an algebraic group G is

the smallest closed subgroup of G including S (resp., containing g), and we denote it

closG(S) (resp., closG(g)). We will omit the subscript when the context is clear.

8. The centralizer of an element g (resp., an algebraic subset S) of an algebraic group G

is an algebraic subgroup of G, and we denote it CenG(g) (resp., CenG(S)).

9. The normalizer of an algebraic subgroup H in an algebraic group G is an algebraic

subgroup of G, and we denote it NorG(H).

Let G be an algebraic group. The commutator (x, y) of two elements x, y in G is the

element (x, y) = xyx−1y−1. The commutator subgroup of G is the group generated by all

(x, y), x, y ∈ G, and is denoted (G,G). It is a normal algebraic subgroup of G. Define the

derived series of G to be the series of subgroups

G ⊇ D1G ⊇ D2G ⊇ · · · ,

where Di+1G = (DiG,DiG) for i ≥ 0. G is solvable if its derived series terminates in {1} .

The Lie-Kolchin theorem states that if G is a connected solvable subgroup of GL(V ) for

some nontrivial finite-dimensional C-vector space V, then G has a common eigenvector in V.
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A corollary states that if G has these properties, then G can be embedded in Tn(C), where

n = dim V.

Let V be a nontrivial finite-dimensional vector space over C. A linear transformation

φ ∈ End(V ) is nilpotent if φd = 0 for some d > 0. We say φ is unipotent if φ = idV +ψ

for some nilpotent linear transformation ψ ∈ End(V ). An algebraic subgroup G of GL(V )

is unipotent if all of its elements are unipotent. Kolchin’s Theorem, an analogue of Engel’s

theorem for Lie algebras (see [Hum81], Theorem 17.5), states that a unipotent subgroup

of GL(V ) has a common eigenvector having eigenvalue 1. A corollary states that such a

subgroup can be embedded in U(n, C).

The radical (resp., unipotent radical) of an algebraic group G is the maximal connected

solvable normal subgroup (resp., the maximal connected unipotent normal subgroup) of G.

It is denoted R(G) (resp., Ru(G)); it is an algebraic subgroup of G. We say G is semisimple

(resp., reductive) if R(G) (resp., Ru(G)) is trivial.

A linear algebraic group G admits a Levi decomposition G = Ru(G)P (semidirect prod-

uct), where P is a maximal reductive subgroup of G. P is called a Levi subgroup of G.

An algebraic group G is a torus if it is isomorphic to Dn(C) for some n. A reductive

group is the product of its commutator subgroup (which is semisimple) and a torus.

A Borel subgroup of an algebraic group G is a maximal closed connected solvable sub-

group. All Borel subgroups of G are conjugate to each other.

Given an algebraic group G and a vector space V, a representation of G on V is a

morphism from G to GL(V ).

2.3 Differential algebra

The development of the following basic facts is based on [Sin96] and [CS99].

In what follows, unless otherwise specified, all rings are commutative, contain a unit

element, and have characteristic zero.

A derivation on a ring R is a map D : R → R such that D(a + b) = D(a) + D(b) and

D(ab) = D(a) b + aD(b) for all a, b ∈ R. We also write a′ or ∂(a) for D(a).

A differential ring is a pair (R,D), where R is a ring and D a derivation on R. A

differential field is a differential ring (k,D) such that k is a field. When the derivation is

clear from context, we will often abbreviate (R,D) (resp., (k,D)) to R (resp., k). We will

often work with the differential field (Q̄(x), d
dx ).

8



A constant in a differential field k is an element c ∈ k such that c′ = 0. One checks that

the set C = Ck ⊆ k of constants forms a subfield of k.

In what follows, we assume that k = (k,D) is a differential field and that C = Ck is

a computable field with factorization algorithm — i.e., that we have algorithms to carry

out addition, subtraction, multiplication, division and equality testing in C and polynomial

factorization in C[x]. We moreover assume that char(C) = 0 and C = C̄. For example, the

algebraic closure of a finitely generated extension of Q has the above properties; see [dW53].

When appropriate, we will assume that C ( k.

The ring of differential operators over k, written D = k[D], is the set of polynomials in

the indeterminate D with coefficients in k, with a noncommutative multiplication operation

◦ determined by the following rule:

D ◦ f = f ◦D + f ′ for all f ∈ k.

Given L1, L2 ∈ D, we will write either L1 ◦ L2 or L1L2 for their product. The ring D acts

on the field k as follows: Given a typical element

L = anDn + an−1D
n−1 + · · ·+ a1D + a0 ∈ D, ai ∈ k,

and an element y ∈ k, then

L(y) = any(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y.

We see that there is a one-to-one correspondence between homogeneous linear ordinary

differential equations L(y) = 0 over k and elements L of D. The order ord(L) of a differ-

ential operator L is defined to be the degree of D in L or, equivalently, the order of the

corresponding equation L(y) = 0.

The ring D is a left (resp., right) Euclidean domain. In particular, there is an extended

Euclidean algorithm that takes as input U, V ∈ D and computes operators A,B ∈ D with

ord A < ord V and ord B < ord U such that AU + BV = GCRD(U, V ).

Let K/k be an extension of differential fields with CK = Ck. Then we may view a

homogeneous linear ordinary differential equation over k (resp., an operator L ∈ D = k[D])

as an equation over K (resp., an operator in K[D]). Let SolnK(L) denote the set of solutions

of L(y) = 0 in K. Then SolnK(L) is a C-vector space.

Lemma 2.3.1 Given L1, L2 ∈ D, ord(Li) = mi for i = 1, 2. Let K/k be a differential field

extension with CK = Ck. Then, the following statements hold:

9



1. dimC SolnK(L1) ≤ m1.

2. Suppose dimC SolnK(L1) = m1 and SolnK(L1) ⊆ SolnK(L2). Then L2 = L3L1 for

some L3 ∈ D.

3. Suppose dimC SolnK(L2) = m2 and L2 = L3L1 for some L3 ∈ D. Then:

(a) dimC SolnK(L1) = m1.

(b) SolnK(L1) ⊆ SolnK(L2).

Proof. This is Lemma 2.1 of [Sin96].

¥

Given L ∈ D, a Picard-Vessiot extension for L is a minimal extension KL/k of differential

fields such that CKL
= Ck and dimC SolnKL

(L) = ord(L). Such an extension exists and is

unique up to isomorphism. If KL/k is a Picard-Vessiot extension, then the (full) solution

set of L in KL is VL = SolnKL
(L). The Galois group G = GL = Gal(KL/k) of L over k is

the group of differential automorphisms of KL which fix k elementwise. An automorphism

σ ∈ G maps VL to itself, and one can show that the action of σ on VL determines σ uniquely.

Thus, there is a faithful representation G ↪→ GL(VL) that gives G the structure of linear

algebraic group. When discussing this representation, we often say that V is a G-invariant

vector space, or G-module.

Lemma 2.3.2 Let K/k be a Picard-Vessiot extension, G = Gal(K/k).

1. Let V ⊆ K be a finite-dimensional C-vector space. Then, V = VL for some L ∈ D if

and only if V is G-invariant.

2. Suppose L ∈ D is a linear operator with VL ⊆ K. Let W ⊆ VL be a C-vector subspace.

Then W = VL̃ for some right factor L̃ of L if and only if W is G-invariant.

Proof. This is Lemma 2.2 of [Sin96] and an easy corollary.

¥

10



Chapter 3

Computing the group of

L1 ◦ L2, L1, L2 completely

reducible

3.1 Connections and D-Modules

The following is taken from Sections 2.1-2.3 of [CS99]; see also [Hae87].

A connection over k is a pair (M,∇M), where M is a finite-dimensional k-vector space

and ∇ : M→M satisfies the following properties for all u, v ∈M, f ∈ k :

∇(u + v) = ∇(u) +∇(v)

∇(fu) = f ′u + f∇(u).

We will omit the phrase “over k” when k is clear from context. We will use M (resp., ∇)

to refer to (M,∇) (resp., ∇M) when the context is clear. The dimension of (M,∇) is the

dimension of M as a k-vector space.

If (M1,∇1) and (M2,∇2) are connections, then a morphism from (M1,∇1) to (M2,∇2)

is defined to be a map φ ∈ Homk(M1,M2) such that ∇2 ◦ φ = φ ◦ ∇1.

Let D = k[D]. A connection (M,∇) can be given a D-module structure via D.u = ∇(u)

for u ∈M. Conversely, a D-module M can be given a connection structure via ∇(u) = D.u

for u ∈M.

11



One example of a connection is (kn,∇A), where n ∈ Z>0, A ∈ kn×n and ∇A(Y ) =

Y ′ − AY for Y ∈ kn. Here, Y is viewed as a column vector and AY is the product of

multiplication of an n × n matrix by an n × 1 matrix. We have ∇A(Y ) = 0 ⇔ Y ′ = AY,

so this connection corresponds to a system of first-order linear differential equations over k.

Conversely, given a first-order system of equations

Y ′ = AY, Y = (y1, y2, . . . , yn)T , A ∈ kn×n,

we may consider the connection (kn,∇A).

Given a differential field extension K/k with CK = Ck, we may view Y ′ = AY as a

system over K. That is, we may consider the connection (Kn,∇A). The solution space of

the system in Kn is the set of all Y ∈ Kn such that ∇A(Y ) = 0; it is a C-vector space of

dimension at most n. A Picard-Vessiot extension K/k for the system is a minimal extension

containing the full n-dimensional set of solutions of the system. G = Gal(K/k) acts on Kn

by

σ.ζ = (σ(ζ1), σ(ζ2), . . . , σ(ζm)) (3.1)

for all σ ∈ G, ζ = (ζ1, ζ2, . . . , ζm) ∈ Km.

Given a connection (M,∇), let E = {e1, . . . , en} be an ordered k-basis of M. For 1 ≤
i, j ≤ n, define aij by

∇(ei) = −
n∑

j=1

ajiej .

It follows that if u =
∑

i uiei ∈ M, ui ∈ k, then ∇(u) =
∑

i(u
′
i −

∑
j aijuj)ei. We call

the matrix [∇]E = (aij) ∈ kn×n the matrix of (M,∇) with respect to E . Observe that if

A = [∇]E , then u 7→ [u1u2 · · ·un]T defines an isomorphism from (M,∇) onto (kn,∇A). If

N ⊆ M is a k-subspace such that ∇(N ) ⊆ N , then (N ,∇
∣∣∣∣
N

) is a connection; moreover,

one checks that (M/N ,∇M/N ) is a connection, where ∇M/N (m +N ) = ∇(m) +N .

In the following observations and definitions, (M1,∇1) and (M2,∇2) are two connec-

tions; E = {e1, . . . , em} (resp., F = {f1, . . . , fn}) is a basis of M1 (resp., M2); A = (aij) =

[∇1]E and B = [∇2]F .

(M1 ⊕M2,∇1 ⊕∇2) is a connection.

(M1⊗M2,∇1⊗ idM2 + idM1 ⊗∇2) is a connection. It can be shown that ∇M1⊗M2 has

matrix

[∇M1⊗M2 ]E⊗F = A⊗ In + Im ⊗B

12



=




a11In a12In · · · a1mIn

a21In a22In · · · a2mIn

...
...

. . .
...

am1In am2In · · · ammIn




+




B 0 · · · 0

0 B · · · 0
...

...
. . .

...

0 0 · · · B




. (3.2)

(Homk(M1,M2),∇Hom), where

∇Hom(φ) = ∇2 ◦ φ− φ ◦ ∇1,

is a connection. Suppose φ ∈ Homk(M1,M2) is such that [φ]E,F = U. Then a calculation

shows that

[∇Hom(φ)]E,F = U ′ −BU + UA. (3.3)

(M∗
1,∇∗) is a connection, where M∗

1 = Homk(M1, k) is the vector space dual of M1

and ∇∗(φ) = ′ ◦ φ − φ ◦ ∇1. Observe that this definition coincides with the definition of

∇Hom in the case (M2,∇2) = (k, f 7→ f ′). One checks that [∇∗]E∗ = −AT .

There is a natural isomorphism Ψ : Homk(M1,M2) → M∗
1 ⊗M2. Given a homomor-

phism φ ∈ Homk(M1,M2) with [φ]E,F = U = (uij), then Ψ(φ) =
∑

i,j ujie
∗
i ⊗ fj . In the

ordered basis given by (2.2), we have

[Ψ(φ)]E∗⊗F = (u11, u21, . . . , un1, u12, u22, . . . , un2,

. . . , u1m, u2m, . . . , unm)T

= (UT
1 , UT

2 , . . . , UT
n )T , (3.4)

where Ui is the ith column vector of U.

We apply the preceding observations to obtain the following matrix for M∗
1 ⊗M2 :

[∇M∗
1⊗M2 ]E∗⊗F = −AT ⊗ In + Im ⊗B

= −




a11In a21In · · · am1In

a12In a22In · · · am2In

...
...

. . .
...

a1mIn a2mIn · · · ammIn



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+




B 0 · · · 0

0 B · · · 0
...

...
. . .

...

0 0 · · · B




. (3.5)

One checks that a linear transformation φ ∈ Homk(M1,M2) is a morphism of connec-

tions if and only if ∇Hom(φ) = 0.

Suppose φ : M1 →M2 is a vector space isomorphism. Let E1 (resp., E2) be a basis of

M1 (resp., M2). Then one checks that φ is an isomorphism of connections if and only if

A2 = P ′P−1 + PA1P
−1, (3.6)

where P = [φ]E1,E2 and Ai = [∇i]Ei
for i = 1, 2.

Given an equation L(y) = 0, where

L = Dn + an−1D
n−1 + · · ·+ a1D + a0 ∈ D, (3.7)

we associate the the D-module M = (D/DL)∗ and define ∇L to be the induced connection

operator. Let E =
{
1, D,D2, . . . , Dn−1

}
be a basis of D/DL, where n = ord(L). Then one

checks that [∇L]E∗ = AL, where

AL =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −an−1




. (3.8)

We see that ((D/DL)∗,∇L) ' (kn, AL). So, L corresponds to a first-order system Y ′ = ALY.

Note that this is the system obtained from L(y) = 0 by Y = (y1, y2, . . . , yn)T , where y1 = y

and yi = y′i−1 for 2 ≤ i ≤ n. We call AL the companion matrix of L.

Given a connection (M,∇), it is a fact ([Kat87]) that if Ck ( k, then M contains a

cyclic vector, i.e., an element u ∈M such that the set

E =
{
u,∇(u),∇2(u), . . . ,∇n−1(u)

}
is a basis of M, where n = dim(M). Applying this fact to (M∗,∇∗), let u∗ be an element

and

F =
{
u∗,∇(u∗),∇2(u∗), . . . ,∇n−1(u∗)

}
14



a basis of M∗. Then, one checks that

[∇∗]F =




0 0 0 · · · a0

−1 0 0 · · · a1

0 −1 0 · · · a2

...
...

...
. . .

...

0 0 0 · · · an−1




for some a0, . . . , an−1 ∈ k. Let B = [∇∗]F . It follows that (M∗∗,∇∗∗) ' (M,∇) has matrix

[∇]F∗ = −BT = AL, where L is given by (3.7); that is, [∇]F∗ is the companion matrix of

L. We note that there are algorithms to find a cyclic vector for a given system; one of these

is given in [Kat87].

Given a homogeneous equation L(y) = 0, L ∈ D, and a system Y ′ = AY,A ∈ kn×n,

we say that L(y) = 0 and Y ′ = AY are equivalent to each other over k if (D/DL)∗ and

(kn,∇A) are isomorphic connections. Evidently L(y) = 0 and Y ′ = ALY are equivalent to

each other. If L(y) = 0 and Y ′ = AY are equivalent to each other, then the extension K/k

is a Picard-Vessiot extension for L(y) = 0 if and only if it is a Picard-Vessiot extension for

Y ′ = AY.

We say two operators L1, L2 ∈ D are equivalent over k if the D-modules D/DL1 and

D/DL2 are isomorphic.

Proposition 3.1.1 Given L ∈ D with ord(L) > 0. Then, there exist r ∈ k, L1, L2, . . . , Lm ∈
D, Li monic and irreducible for 1 ≤ i ≤ m, such that L = rL1L2 · · ·Lm. If L = r̃L̃1L̃2 · · · L̃m̃

is another such factorization, then r = r̃, m = m̃, and there exists a permutation σ ∈ Sm

such that Li is equivalent over k to L̃σ(i) for all i, 1 ≤ i ≤ m.

Proof. This is Proposition 2.11 of [Sin96].

¥

We say that the first-order systems Y ′ = A1Y and Y ′ = A2Y are equivalent over k if

they have the same order n and the connections (kn,∇A1) and (kn,∇A2) are isomorphic.

Proposition 3.1.2 Given L1, L2 ∈ D, A1, A2 ∈ kn×n. Suppose the equation Li(y) = 0 is

equivalent to the system Y ′ = AiY for i = 1, 2. Let Ki/k (resp., Vi) be the Picard-Vessiot

extension (resp., the full solution space) of Li(y) = 0 for i = 1, 2. Then, the following are

equivalent:

15



1. L1 and L2 are equivalent operators.

2. There exist operators R,S ∈ D of orders less than n such that

GCRD(R,L1) = 1, L2R = SL1. (3.9)

3. If K/k is a Picard-Vessiot extension containing KL1 and KL2 , then V1 ' V2 as G-

modules, where G = Gal(K/k).

4. Y ′ = A1Y and Y ′ = A2Y are equivalent systems.

5. There exists a matrix P ∈ GLn(k) such that (3.6) holds.

Proof. Equivalence of the first three statements is proved in Corollary 2.6 of [Sin96]. Observe

that if (3.9) holds, then the map 1 7→ R yields an isomorphism from D/DL2 to D/DL1.

Equivalence of the first and fourth statements follows from definitions. Equivalence of the

fourth and fifth statements follows from the discussion given immediately before and after

(3.6).

¥

We define reducibility over k in various settings as follows: An operator L ∈ D is

reducible over k if there exist operators L1, L2 of lower order such that L = L1L2. A system

Y ′ = AY is reducible over k if it is equivalent over k to a system of the form

Y ′ =


 B1 0

B2 B3


Y.

A module is reducible if it has a nontrivial proper submodule. A connection (M,∇) is

reducible if it includes a proper nontrivial subconnection, i.e., a vector subspace N ⊆ M
that is closed under ∇. In each setting, we suppress the phrase “over k” when k is clear

from context.

Proposition 3.1.3 Let Y ′ = AY be a first-order system over k. Let K/k be a Picard-

Vessiot extension for this system and G = Gal(K/k). Let L ∈ D be an operator that is

equivalent to this system. Then, the following are equivalent:

1. The connection (kn,∇A) contains a proper nonzero subconnection.

2. The D-module kn, where DY = ∇A(Y ), is reducible.

16



3. The D-module D/DL is reducible.

4. L is reducible over k.

5. Y ′ = AY is reducible over k.

6. The solution space of Y ′ = AY in K is a reducible G-module.

Proof. This is Proposition 2.1 of [CS99].

¥

We define complete reducibility over k in various settings as follows: An operator L ∈ D
is completely reducible over k if is the least common left multiple of irreducible operators.

A system Y ′ = AY is completely reducible over k if it is equivalent over k to a system of

the form

Y ′ = diag(B1, B2, . . . , Bt)Y,

where the system Z ′ = BiZ is irreducible for 1 ≤ i ≤ t. A module is completely reducible if

it is the direct sum of irreducible submodules. In each setting, we suppress the phrase “over

k” when k is clear from context.

Proposition 3.1.4 Let Y ′ = AY be a first-order system over k. Let K/k be a Picard-

Vessiot extension for this system and G = Gal(K/k). Let L ∈ D be an operator that is

equivalent to this system. Then, the following are equivalent:

1. The connection (kn,∇A) is completely reducible.

2. The D-module kn, where DY = ∇A(Y ), is completely reducible.

3. The D-module D/DL is completely reducible.

4. L is completely reducible over k.

5. Y ′ = AY is completely reducible over k.

6. The solution space of Y ′ = AY in K is a completely reducible G-module.

7. G is a reductive group.

Proof. This is Proposition 2.2 of [CS99].

¥
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3.2 Computing the group of L(y) = b, L completely re-

ducible

Consider the inhomogeneous equation L(y) = b, b ∈ k. Let L̂ = (D − b′/b) ◦ L. Define the

Picard-Vessiot extension KI (resp., the Galois group GI) of L(y) = b to be KL̂ (resp., GL̂).

Note that L is a right factor of L̂, so that VL̂ ⊆ KI includes a full solution set of L(y) = 0.

Thus, we may write KH ⊆ KI and VL ⊆ VL̂. Moreover, if f ∈ VL̂ \ VL, then there exists a

nonzero constant c such that f0 = cf and L(f0) = b. Since any two solutions of L(y) = b

differ by an element of VL, we see that the full solution set of L(y) = b is f0 +VL. Moreover,

if E is a basis of VL, then E ∪ {f} is a basis of VL̂. It follows that KI/k is the minimal

differential field extension containing the full solution set of L(y) = b.

Proposition 3.2.1 Given:

1. k a differential field, Ck algebraically closed of characteristic zero

2. L ∈ D = k[D] a completely reducible operator

3. b ∈ k

4. KI/k (resp., VI, GI) is the Picard-Vessiot extension (resp., full solution space, group)

of L(y) = b

5. KH/k (resp., VH, GH) is the Picard-Vessiot extension (resp., full solution space, group)

of L(y) = 0

6. L1, L0 ∈ D are monic operators satisfying the following conditions:

(a) L1(y) = b has a k-rational solution.

(b) L = L1L0 for some L0 ∈ D.

(c) L1 is of maximal order.

Then GI has Levi decomposition GI ' W o GH, where W ' VL0 as vector groups. In

addition, the pair (L1, L0) given in Item 6 above is unique.

Proof. This is Proposition 2.1 of [BS99]; it is an adaptation of Théorème 1 of [Ber92]. We

reproduce it here, with some changes of notation.

First, let L1 = 1, L0 = L. We see that Properties 6(ab) are satisfied, so that there exists

a pair (L1, L0) satisfying those properties with L1 of maximal order.
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Next, note that if L = L1L0, then KI includes the full solution set VL1 (resp., VL0) of

L1(y) = 0 (resp., L0(y) = 0).

Let f ∈ K be a particular solution of L(y) = b. Let σ ∈ GI. Then σ(f)− f ∈ VH. Thus,

we may define Φ : GI → VL by Φ(σ) = σ(f)− f. Let H = Gal(KI/KH). Then H is normal

in GI. Since KI/KH is generated by f, we see that Φ is injective on H.

For any σ ∈ GI, τ ∈ H, we have

Φ(στσ−1) = στσ−1(f)− f

= σ[τ(σ−1(f)− f) + τ(f)]− f

= σ[σ−1(f)− f ] + στ(f)− f since τ fixes VL ⊆ KL elementwise

= σ[τ(f)− f ]

= σΦ(τ).

This calculation (from the proof of Théorèm 1 of [Ber92]) implies that Φ is a GI-module

morphism, where GI acts on H by conjugation. Therefore, Φ(H) is a GI-invariant subspace

W ⊆ VH. Since GI/H is isomorphic to the reductive group GH and H is unipotent, it

follows that GI has Levi decomposition GI = HP (semidirect product of subgroups), where

H = Ru(GI) and P ' GH.

Let L̃0 ∈ D be the unique monic operator such that VL̃0
= W and let L̃1 ∈ D be such that

L = L̃1L̃0. Since τ(f)− f ∈ W for all τ ∈ H, we have that L̃0(τ(f)) = L̃0(f) for all τ ∈ H;

it follows that L̃0(f) ∈ KH. Let W1 = VL̃1
⊆ KH and let WL̃0(f) = W1 + CL̃0(f) ⊆ KH.

Given σ ∈ GH, we have that σ(L̃0(f)) is another particular solution of that L̃1(y) = b, so

that σ(L̃0(f)) = L̃0(f) + w for some w ∈ W1. It follows that WL̃0(f) is GH-invariant and,

moreover, that WL̃0(f)/W1 is a trivial one-dimensional GH-module. Since GH is a reductive

group, we see that W1 has a GH-invariant complement in WL̃0(f). This implies that there

exists f0 ∈ KH such that f0 = L̃0(f) + w̃ for some w̃ ∈ W1 and σ(f0) = f0 for all σ ∈ GH.

From these properties, we conclude that f0 ∈ k and L̃1(f0) = b.

Now let L0, L1 ∈ D satisfy Properties 6(abc). Let W̄1 = VL1 ⊆ KH. Since L1(L0(f)) = b,

we have L0(f) = f1 + w̄ for some w̄ ∈ W̄1. It follows that L0(f) ∈ KH. Thus, given τ ∈ H,

we have

L0(Φ(τ)) = L0(τ(f)− f) = τ(L0(f)− f) = τ(f − f)

= 0.
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This yields φ(H) = VL̃0
⊆ VL0 . This implies that L̃0 divides L0 on the right. We then see

that ord(L1) ≤ ord(L̃1). In case ord(L1) = ord(L̃1) and L1 is monic, then L̃0 = L0 and

therefore L1 = L̃1.

¥

The following examples appeared in [BS99] and were computed by the first author.

Example 3.2.2 Let k = C(x) and L = D2 − 4xD + (4x2 − 2) = (D − 2x) ◦ (D − 2x). A

basis for the solution space of the equation L(y) = 0 is {ex2
, xex2}, so that GH ' C∗.

For any (c, d) ∈ C2, (c, d) 6= (0, 0), we have that (c + dx)ex2
is a solution of L(y) = 0,

so that L has a right factor of the form D − (2x + d
c+dx ). Furthermore, all right factors of

order one are of this form. Therefore the formula

L = (D − (2x− d

c + dx
)) ◦ (D − (2x +

d

c + dx
))

with (c, d) 6= (0, 0) yields a parameterization of all irreducible factorizations of L.

We shall now compute the Galois groups of L(y) = b where b = 4x2 − 2, 1 and 1
x .

(i) b = 4x2 − 2. In this case the equation L(y) = b has the rational solution y = 1. This

implies that L0 = 1, where L0 is as defined in Proposition 3.2.1. Thus, VL0 is trivial, and

we conclude that the Galois group of L(y) = b is C∗.
(ii) b = 1. A partial fraction computation shows that L(y) = 1 has no rational solutions.

Now let us search for first order left factors L1 of L such that L1 = 1 has a rational solution.

A calculation shows that the equation

y′ − (2x− d

c + dx
)y = 1 (3.10)

has a rational solution y = f if and only if z = (c + dx)f is a rational solution of

z′ − 2xz = c + dx (3.11)

(c.f., Lemma 3.2.4). The rational solutions of (3.11) must be polynomials, and we see that

this has a polynomial solution if and only if c = 0. Therefore the operator L0 as defined

in Proposition 3.2.1 is equal to D − (2x + 1
x ); its solution space is spanned by VL0 = xex2

.

Therefore the Galois group of L(y) = 1 is C o C∗, where t.u = tu for t ∈ C∗, u ∈ C.
(iii) b = 1

x . We shall show that for any (c, d) 6= (0, 0), the equation

y′ − (2x− d

c + dx
)y =

1
x

(3.12)
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has no rational solution. This implies that L(y) = 1
x also has no rational solution and so

the W of Proposition 3.2.1 is the full solution space of L(y) = 0. Therefore the Galois group

of L(y) = 1
x is C2 o C∗, where t.(u, v) = (tu, tv) for t = inC∗, (u, v) ∈ C2. Equation (3.12)

has a rational solution y = f if and only if z = (c + dx)f is a rational solution of

z′ − 2xz =
c + dx

x
. (3.13)

If c 6= 0 then any rational solution of (3.13) must have a pole at x = 0. Comparing orders of

the left and right hand side of this equation yields a contradiction. Therefore c = 0. Similar

considerations show that z′ − 2xz = d can never have a rational solution if d 6= 0.

¥

Proposition 3.2.1 lets us describe KI as follows.

Corollary 3.2.3 Given k, L, b,KI,KH, L1, L0 as in Proposition 3.2.1. Write

L0 = Dt − bt−1D
t−1 − . . .− bo, bi ∈ k.

Then KI = KH(z0, z1, . . . , zt−1), where z0, z1, . . . , zt−1 are algebraic indeterminates, z′i =

zi+1 for 0 ≤ i ≤ t− 2, and z′t−1 = f1 +
t−1∑
i=0

bizi.

Proof. Let L̂ = (D− b′/b)L. Then KI/k is a Picard-Vessiot extension for L̂(y) = 0, with full

solution space VL̂. We see that L0, viewed as a linear operator on KI, maps VL̂ onto the full

solution space of L̂1(y) = 0, where L̂1 = (D − b′/b)L1. Therefore, there exists an element

z ∈ VL̂ with L0(z) = f1. We see that L(z) = b and therefore that K = KL < z > . Since

Gal(KI/KH) is a vector group of dimension t, we have that K is a purely transcendental

extension of KL of transcendence degree t. It follows that K = KL(z, z′, . . . , z(t−1)). The

desired result follows easily after setting zi = z(i). satisfy the conclusion of the Corollary.

¥

To compute GI for a given inhomogeneous equation L(y) = b using Proposition 3.2.1, it

suffices to perform the following tasks:

1. Compute GH.

2. Find L1, L0 satisfying the conditions given in Proposition 3.2.1.
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The first of these two tasks is addressed in [CS99] and lies outside the scope of this

dissertation. The second task is dealt with in [BS99], and below we summarize the relevant

results from that article.

Let L ∈ D be completely reducible. Then, by definition, there exist operators T1, . . . , Ts

such that L = LCLM(T1, . . . , Ts). Proposition 3.1.1 then implies that any left or right factor

of L will be equivalent to the least common left multiple of some subset of {T1, . . . , Ts} .

Suppose k is a finite algebraic extension of C(x), where C is a computable algebraically

closed field of characteristic zero, then (cf. [CS99] and [Sin96]) one can effectively perform

the following tasks:

1. Factor an arbitrary element L ∈ D = k[D] as a product of irreducible operators.

2. Decide whether L is completely reducible.

3. In case L is completely reducible, compute a set {T1, . . . , Ts} ⊆ D such that L =

LCLM(T1, . . . , Ts).

The article [BS99] approaches the second task above, as follows. First, find a set T =

{T1, . . . , Ts} such that L = LCLM(T1, . . . , Ts). If L1 is a monic left factor of L, then L1

is equivalent to the least common left multiple of elements from some subset of T . Let

S =
{
Ti1 , . . . , Tiµ

}
⊆ T be a fixed subset and let L2 = LCLM(Ti1 , . . . , Tiµ

). A sequence of

lemmas shows that one can:

A. Parameterize the set ML2 of pairs (L1, S) with ord S < ord L1 = ord L2 such that

L1 is a left factor of L and, moreover, (3.9) holds for some R; and

B. Determine whether there exists (L1, S) ∈ML2 such that L1(y) = b admits a solution

in k.

If these steps are carried out for all subsets S ⊆ T , then one finds operators L1, L0 satisfying

conditions 6(abc) of Proposition 3.2.1. [BS99] then shows how to describe the action of GH

on VL1 .

Below, Lemmas 3.2.4, 3.2.5, 3.2.6, 3.2.7 describe how to compute ML2 for a given L2,

and Lemma 3.2.8 will be used to decide whether L1(y) = b admits a k-rational solution for

a given (L1, S) ∈ ML2 . Lemmas 3.2.5, 3.2.6 and 3.2.7 are proved by technical means that

lie outside the scope of this dissertation; we omit the proofs here.
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Lemma 3.2.4 Given L1, L2, R, S ∈ D such that ord(L1) = ord(L2) = n, ord(R) <

n, ord(S) < n, and (3.9) holds. Then, the equation L1(y) = b, b ∈ k has a solution in

k if and only if the equation L2(y) = S(b) has a solution in k.

Proof. The extended Euclidean algorithm yields R̃ and L̃1 in D such that R̃R + L̃1L1 = 1

and ord R̃1 < ord L1. The map v 7→ R(v) is an isomorphism of VL1 onto VL2 , and the map

w 7→ R̃(w) is the inverse of this isomorphism. Since L1R̃ and RR̃ − 1 vanish on VL2 , we

have that L2 divides both of these operators. Therefore there exist S̃ and L̃2 ∈ D such that

L1R̃ = S̃L2 and RR̃ + L̃2L2 = 1.

We now claim that S̃S + L1L̃1 = 1. We have that

(S̃S + L1L̃1)L1 = S̃SL1 + L1L̃1L1

= S̃L2R + L1(1− R̃R)

= S̃L2R + L1 − L1R̃R

= S̃L2R + L1 − S̃L2R

= L1,

and the equation follows after cancelling L1 on the right.

To prove one direction of the lemma, suppose L1(f) = b for some f ∈ k. If h = R(f) ∈ k,

then L2(h) = SL1(f) = S(b) as desired. To prove the other direction, suppose L2(h) = S(b)

for some h ∈ k. Let f = R̃(h) + L̃1(b) ∈ k. Then

L1(f) = L1R̃(h) + L1L̃1(b)

= S̃L2(h) + (1− S̃S)(b)

= S̃S(b) + b− S̃S(b)

= b,

completing the proof.

¥

Let k = C(x). Given a = p
q ∈ k, p, q ∈ C[x] with (p, q) = 1, define deg a to be the

maximum of deg p and deg q. Given L = anDn + an−1D
n−1 + . . . + a0 ∈ D, define deg L =

max1≤i≤n(deg ai). Given operators L and L2, we will want to parameterize all pairs of

operators (L1, S) satisfying:

1. L1 is a monic operator equivalent to L2 that divides L on the left, and
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2. ord S ≤ ord L2 − 1 and L2R = SL1 for some R ∈ D, GCRD(L1, R) = 1.

Lemma 3.2.5 Let T1 and T2 be operators with coefficients in C(x) of orders n and m

and degrees N and M respectively. If T3 is an operator with coefficients in C(x) such that

T3T2 = T1, then deg T3 ≤ (n−m + 1)2M + N.

Proof. See Lemma 2.5 of [BS99].

¥

Lemma 3.2.6 Let k = C(x) and L,L2 be monic operators in D of orders n and m respec-

tively.

1. For any i, 0 ≤ i ≤ ord L, one can effectively find an integer ni such that if L = L1L0

with monic L1, L0 ∈ D and ord L1 = i, then deg L0 ≤ ni.

2. One can effectively find an integer N such that if L2R̃ = S̃L for some R̃, S̃ ∈ D with

ord R̃ < ord L and ord S̃ < ord L2, then deg S̃ ≤ N.

3. One can effectively find an integer M such that if L1 is a monic operator equiva-

lent to L2, dividing L on the left, then there exist R and S in D such that L2R =

SL1, ord R < ord L1, ord S < ord L2 and deg R,deg S ≤ M.

Proof. See Lemma 2.6 of [BS99].

¥

The next lemma relies on the following notion. Consider the set Fn,m ⊆ C(x)[D] of

operators of order n and degree at most m. We define a bijection between Fn,m and a

subset of C2(n+1)(m+1) as follows: Suppose L =
∑n

i=0 aiD
i ∈ Fn,m. Suppose moreover that,

for each i, we have

ai =

∑m
j=0 bi,jx

j∑m
j=0 ci,jxj

, bi,j , ci,j ∈ C, (
∑

j

bi,jx
j ,

∑
l

ci,lx
l) = 1.

Then identify L with the vector (b0,0, b0,1, . . . , cn−1,m) ∈ C2(n+1)(m+1). Define a set L ⊆ Fn,m

to be constructible if, under this identification, L corresponds to a constructible subset of

C2(n+1)(m+1).

Lemma 3.2.7 Let k, L and L2 be as in the hypotheses of Lemma 3.2.6.
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1. The set of pairs of monic operators (L1, L0), ord L1 = m, ord L0 = n − m such

that L = L1L0 forms a constructible set whose defining equations can be explicitly

computed.

2. Let nm be as in Lemma 3.2.6.1 and M be as in Lemma 3.2.6.3. The set PL2 of triples

of operators (L1, R, S) where

(a) ord L1 = m; deg L1 ≤ nm; ord R,S ≤ m− 1; deg R,S ≤ M,

(b) L1 divides L on the the left,

(c) GCRD(L1, R) = 1,

(d) L2R = SL1 (and so L1 is equivalent to L2)

is constructible. Furthermore, one can effectively calculate the defining equations of

PL2 .

3. The set ML2 of pairs (L1, S) such that for some R ∈ D, (L1, R, S) ∈ PL2 is a

constructible set. Furthermore, one can effectively calculate the defining equations of

ML2 .

Proof. See Lemma 2.7 of [BS99].

¥

Lemma 3.2.8 Let k = C(x), N an integer and L = y(n) + . . . + a0y ∈ D. The set V of

(c0, . . . , cN , d0, . . . , dN ) ∈ C2N+2 such that

L(y) =
cNxN + . . . + c0

dNxN + . . . + d0
(3.14)

has a solution in k, is constructible. Furthermore, one can effectively find the defining

equations of V.

Proof. See Lemma 2.8 of [BS99].

¥

It is a fact that Lemma 3.2.8 holds in the case where k is an algebraic extension of C(x)

and the parameterized rational function given in the right-hand side of (3.14) is replaced

by a parameterized member of k. [BS99] restricts attention to the case where k = C(x) for

convenience. Also remark that the above lemmas represent an extension of known methods
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for expressing the set of factorizations of a given operator as a constructible set; see [Gri90]

and [Tsa96].

The above lemmas now provide sufficient machinery for a decision procedure to calcu-

late the Galois group of L(y) = b. Here is the algorithm, as stated in [BS99] with slight

modifications:

Algorithm I

Input: A completely reducible nth order operator L ∈ C(x)[D] and an element b ∈ C(x).

Output: A set of equations in n2 variables defining the Galois group GL of L(y) = 0, an

integer t and a rational homomorphism Φ : GL → GLt(C) such that the Galois group G of

L(y) = b is Ct o GL where the action of GL on Ct by conjugation is given by Φ.

1. Write L as a least common left multiple of a set T = {T1, . . . , Ts} of irreducible

operators (using, for example, the algorithms in the Appendix of [CS99]).

2. If L = L1L0 then complete reducibility implies that L1 is equivalent to the least

common left multiple of some subset of T . Fix some subset of T and let L2 be the

least common left multiple of its elements. For this operator, apply Lemma 3.2.7.3 to

construct the set ML2 .

3. Let (L1, S) ∈ML2 . Lemma 3.2.4 implies that L1(y) = b has a solution in C(x) if and

only if the equation

L2(y) = S(b) (3.15)

has a solution y ∈ C(x). Apply Lemma 3.2.8 to equation (3.15) to determine the set

of (L1, S) for which this equation has a rational solution.

4. Repeat steps 2. and 3. until one finds an L2 of maximal order so that the set RL2 of

(L1, S) ∈ ML2 for which the equation (3.15) has a rational solution is nonempty. In

this case, Proposition 3.2.1 implies that there exists a unique L1 such that (L1, S) ∈
RL2 for some S.

5. We write L = L1L0 and let t be the order of L0. Find defining equations of the Galois

group GL of L with respect to a basis of the solution space that includes a basis of

the solution space of L0(y) = 0 (the results of [CS99] allow one to do this). In this

basis, an automorphism σ ∈ G will have the form


 A B

0 C


 , where A represents the
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action of σ on W = VL0 . Restriction to the space W ' Ct (i.e., selecting A from σ)

yields the desired rational map Φ : GL → GLt(C) that gives the action of GL on Ct in

Ct o GL.

¥

We make the following additional remarks:

1. The calculations of Example 3.2.2 can be viewed as an application of the above al-

gorithm. In that example, we have L = (D − 2x) ◦ (D − 2x), so that all first-order

left (resp., right) factors of L are equivalent to D − 2x. The set of first-order left fac-

tors is
{

L1,(c,d) = D − (2x− d
c+dx ) : (c, d) 6= (0, 0)

}
. The algorithm calls for deciding

whether L1,(c,d)(y) = b admits a k-rational solution for some suitable (c, d). A calcu-

lation using Lemma 3.2.4 as in Step 3 of the algorithm shows that the above problem

is equivalent to deciding whether y′ − 2xy = (c + dx) · b admits a k-rational solution

for some (c, d) 6= (0, 0). Lemma 3.2.8 can then be applied to solve that problem.

2. [CS99] presents an algorithm to compute KH/k, the Picard-Vessiot extension of L(y) =

0. This algorithm, together with Algorithm 1 above and Corollary 3.2.3, yields an

algorithm to compute KI/k, the Picard-Vessiot extension of L(y) = b.

3.3 Computing the group of L1 ◦ L2, L1, L2 completely

reducible

The problem of computing the group of L1◦L2, L1, L2 completely reducible, can be reduced

to that of computing the group of L(y) = b, L completely reducible. In [Ber90], D. Bertrand

accomplishes this in terms of D-modules. In [BS99], the process is made explicit in terms

of operators and systems, and a decision procedure is provided. We recapitulate the results

from [BS99] below.

First, consider the inhomogeneous first-order system

Y ′ = AY + B, Y = (y1, . . . , yn)T , A ∈ kn×n, B = (b1, . . . , bn)T ∈ kn, (3.16)

where the yi are indeterminates. Let KH/k (resp., VH, GH) be the Picard-Vessiot extension

(resp., the solution space; the group) of the associated homogeneous system Y ′ = AY.

Before defining the extension and the group of (3.16), we define a new homogeneous system
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as follows: Define a new variable yn+1, and consider the following system of equations:

Y ′ = AY + (b1yn+1, b2yn+1, . . . , bnyn+1)T , y′n+1 = 0.

If we define Ỹ = (y1, . . . , yn, yn+1)T , we obtain the following homogeneous first-order system:

Ỹ ′ =


 A B

0 0


 Ỹ . (3.17)

Define the Picard-Vessiot extension KI (resp., the Galois group GI) of (3.16) to be the

Picard-Vessiot extension (resp., the group) of (3.17).

Note that if Y = (y1, . . . , yn) ∈ VH, then (y1, . . . , yn, 0) satisfies (3.17). Thus, we may

write KH ⊆ KI. If η̃ = (η1, . . . , ηn, 1) is a solution of (3.17), then η = (η1, . . . , ηn) is a

solution of (3.16). Any two solutions of (3.16) differ by a member of VH, so that the full

solution set of (3.16) is η+VH. Moreover, the full solution space of (3.17) over KI is spanned

by η and those solutions of the form (y1, . . . , yn, 0), (y1, . . . , yn) ∈ VH. It follows that KI/k

is the minimal differential field extension containing the full solution set of (3.16) and that

KI = KH〈η1, . . . , ηn〉.
We define equivalence for inhomogeneous systems as follows: We say that the systems

Y ′ = A1Y + B1 and Y ′ = A2Y + B2 are equivalent (over k) if they have the same dimen-

sion n and there exist isomorphisms φ : (kn,∇A1) → (kn,∇A2) and ψ : (kn+1,∇Ã1
) →

(kn+1,∇Ã2
), where

Ãi =


 Ai Bi

0 0




for i = 1, 2, such that ψ
∣∣
kn⊕0

is identical to φ. We see that if Y ′ = A1Y + B1 and Y ′ =

A2Y +B2 are equivalent systems, then a Picard-Vessiot extension associated with one system

is also a Picard-Vessiot extension for the other system and, moreover, that Y ′ = A1Y and

Y ′ = A2Y are equivalent.

We say that the inhomogeneous equation L(y) = b and the system Y ′ = AY + B are

equivalent (over k) if the systems Y ′ = ALY +(0, . . . , 0, b)T and Y ′ = AY +B are equivalent

(over k).

Given an inhomogeneous first-order system Y ′ = AY +B. We may compute an equivalent

equation L(y) = b by the following method: Let E (resp., E∗) be the standard ordered basis

of kn (resp., of (kn)∗). Find a cyclic vector v of ((kn)∗,∇∗A), so that

Bv =
{
v,∇∗A(v), . . . , (∇∗A)n−1(v)

}
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is an ordered basis of (kn)∗. Using the fact that [∇∗A]E∗ = −AT , compute the matrix

P = [id]Bv,E∗ = [v|∇∗A(v)| · · · |(∇∗A)n−1(v)].

Note that if B∗v is the dual ordered basis of Bv in kn, then [id]E,B∗v = PT by (2.3). Compute

(∇∗A)n(v), then compute the column vector v̄ = [(∇∗A)n(v)]Bv
by solving the matrix equation

P v̄ = (∇∗A)n(v). Let Q = [∇∗A]Bv
. We see that

Q =




0 0 0 · · · a0

−1 0 0 · · · a1

0 −1 0 · · · a2

...
...

...
. . .

...

0 0 0 · · · an−1




,

where v̄ = −(a0, . . . , an−1)T . Define Ã = −QT = [∇A]B∗v . We claim that Y ′ = AY + B and

Y ′ = ÃY + B̃ are equivalent systems, where B̃ = PT B. Indeed, one checks that the map

ψ : kn+1 → kn+1 given by

ψ(Ŷ ) =


 PT 0

0 1


 Ŷ

is an isomorphism that has the properties required for equivalence of inhomogeneous sys-

tems. The system Y ′ = ÃY + B̃ has the form

Y ′ =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −an−1




Y + B̃, (3.18)

where ai ∈ k. Write Y = (y1, . . . , yn)T , B̃ = (b̃1, . . . , b̃n)T . This yields

y′i = yi+1 + b̃i for 1 ≤ i ≤ n− 1 (3.19)

and

y′n = −
n∑

j=1

ajyj + b̃n. (3.20)

By solving for yi+1 in (3.19) and applying to (3.20), we may eliminate the variable yi+1

from (3.20) for i = n− 1, n− 2, . . . , 1. If we write y = y1, we obtain an equation L(y) = b,

where L = Dn +
∑n−1

i=0 ai and

b =

[
n∑

i=1

b̃
(n−i)
i

]
+


n−1∑

j=1

aj

j∑
i=1

b̃
(j+1−i)
i


 ∈ k. (3.21)
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We claim that Y ′ = ÃY + B̃ and Y ′ = ÃY + (0, . . . , 0, b)T are equivalent systems. Indeed,

define a map ψ̂ : kn+1 → kn+1 given by

ψ̂(Ŷ ) =


 In w

0 1


 Ŷ ,

where

w = (0, b̃1, b̃
′
1 + b̃2, b̃

′′
1 + b̃′2 + b̃3, . . . ,

n∑
i=1

b̃
(n−i)
i )T ;

one checks that this mapping is an isomorphism that has the properties required for equiv-

alence of inhomogeneous systems. This shows that Y ′ = AY + B is equivalent to L(y) = b,

as desired.

Given a homogeneous equation L(y) = 0, L = L1 ◦ L2, L2 = Dm + ãm−1D
m−1 + · · ·+

ã1D+ ã0, L1 = Dn +an−1D
n−1 + · · ·+a1D+a0. Consider the following system of equations

in y1, . . . , yn+m :

y′m = −
m∑

i=1

ãi−1yi + ym+1

y′n+m = −
n∑

i=1

ai−1ym+i

y′i = yi+1 for i /∈ {m,n + m} .

Written in matrix form, this system is

Y ′ =


 AL2 C0

0 AL1


 Y,

where C0 ∈ km×n is the matrix having 1 in the m, 1 position and zero everywhere else.

In what follows, we will show how to compute the group of a system of the form

Y ′ =


 A2 C

0 A1


Y,A2 ∈ km×m, A1 ∈ kn×n, C ∈ km×n, (3.22)

where Y ′ = AiY is completely reducible for i = 1, 2 and C is an arbitrary given matrix.

Proposition 3.3.1 Given a system of the form (3.16). Suppose that the associated homo-

geneous system Y ′ = AY is completely reducible. Let U = Gal(KI/KH) ⊆ GI. Then the

following statements hold:

1. Fix an arbitary particular solution η ∈ Kn
I of Y ′ = AY +B. Then, the map Φη : U →

VH given by Φη(τ) = τ.η − η is an injective GH-module homomorphism, where the
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action of GH on U (resp., on VH) is by conjugation (resp., by the usual representation

of Galois group on solution space). In particular, U is a vector group over C.

2. GI is isomorphic to U o GH, where GH acts on U by conjugation. This is a Levi

decomposition of GI, i.e., U is the unipotent radical of GI and GI has a maximal

reductive subgroup isomorphic to GH.

Proof. These statements follow from the proof of Proposition 3.2.1, suitably rewritten in

terms of first-order systems.

¥

The following result is adapted from Lemma 1 and the discussion in Section 2 of [Ber90].

A fundamental solution matrix of a first-order homogeneous system is a matrix whose column

vectors form a basis of the solution space.

Lemma 3.3.2 Let Y1 (resp., Y2) be a fundamental solution matrix of Y ′ = A1Y (resp.,

Y ′ = A2Y ). Then, the matrix

Y =


 Y2 UY1

0 Y1


 (3.23)

is a fundamental solution matrix of equation (3.22) if and only if U satisfies

U ′ = A2U − UA1 + C. (3.24)

Proof. This statement is verified by direct calculation.

¥

The following definitions provide an interpretation of (3.24) in terms of connections. Let

Mi = (D/DLi)∗ for i = 1, 2. Then [∇Mi
]Ei

= Ai, where Ei is a suitable basis of Mi for

i = 1, 2. Let ψ0 : M1 →M2 be such that [ψ0]E1,E2 = C. Applying (3.3), we conclude that

(3.24) is a matrix expression of the equation ∇Hom(φ) = ψ0, where φ is an unknown member

of Homk(M1,M2).

We compute another matrix expression of this equation as follows: Let K/k be a field

extension with CK = Ck. Given V ∈ Km×n, let vi be the ith column of V. Then define

Ṽ ∈ Cmn by Ṽ = (vT
1 , . . . , vT

n )T . Formulas (3.4) and (3.5) imply that V satisfies V ′ =

A2V − V A1 if and only if Ṽ satisfies Ṽ ′ = (−AT
1 ⊗ Im + In ⊗ A2)Ṽ . Furthermore, if Y1
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(resp., Y2) is a fundamental solution matrix of the system Y ′ = A1Y (resp., Y ′ = A2Y ),

then a calculation shows that (Y −1
1 )T ⊗ Y2 is a fundamental solution matrix of the system

Ṽ ′ = (−AT
1 ⊗ Im + In ⊗ A2)Ṽ , where Ṽ ∈ Cmn is a column vector of unknowns. Define

ci ∈ Cm to be the ith column vector of C. We see that the equation ∇Hom(φ) = ψ0 also has

the matrix expression

Ṽ ′ = (−AT
1 ⊗ Im + In ⊗A2)Ṽ + C̃, (3.25)

where C̃ = (cT
1 , . . . , cT

n )T .

Lemma 3.3.3 Assume that C ( k. Let Y ′ = A1Y and Y ′ = A2Y be completely reducible

systems and let K/k be the Picard-Vessiot extension of k corresponding to equation (3.22).

Let F/k, F ⊂ K, be the Picard-Vessiot extension corresponding to

Y ′ =


 A2 0

0 A1


 Y. (3.26)

Then, the following statements hold:

1. The system

Ṽ ′ = (−AT
1 ⊗ Im + In ⊗A2)Ṽ (3.27)

admits a full set of F -rational solutions, so there exists a tower of fields k ⊆ E ⊆ F

with E/k a Picard-Vessiot extension for (3.27). In particular, Gal(E/k) is a quotient

of Gal(F/k).

2. K = F (η̃), where η̃ is a particular solution of (3.25).

3. E(η̃)/k is a Picard-Vessiot extension with Gal(E(η̃)/k) ' W oGal(E/k), where W is a

vector group. Moreover, we have Gal(K/k) ' W oGal(F/k). The action of Gal(F/k)

on W is induced from the action of Gal(E/k) on W by the equality σ.w = (σ|E) .w

for σ ∈ Gal(F/k).

Proof. The first two statements follow immediately from the discussion preceding the

Lemma.

We prove the third statement as follows: Complete reducibility of the systems Y ′ = A1Y

and Y ′ = A2Y implies that Gal(F/k) is reductive; it follows that Gal(E/k) is reductive as

well. The first part of the third statement now follows from Proposition 3.3.1.

To prove the second part, we consider the following diagram:
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´́ QQ

HH ´́

F(η̃) =K

F E(η̃)

E

k

Define W̃ = Gal(K/F ). Define a map ψ : W̃ → Gal(E(η̃)/E) by composing the inclusion

map W̃ ↪→ Gal(K/E) with the restriction map Gal(K/E) ³ Gal(E(η̃)/E). We claim that

ψ maps W̃ isomorphically onto W, so that

W̃ = Gal(F (η̃)/F ) ' Gal(E(η̃)/E) ' W.

To prove this claim, it suffices to show that F ∩E(η̃) = E (see Lemma 5.10 of [Kap76] and

its proof). Note that Gal(E(η̃)/E) ' W is abelian. It follows that Gal(E(η̃)/(F ∩ E(η̃)) is

a normal subgroup of W and therefore that (F ∩E(η̃))/E is a Picard-Vessiot extension. We

have that Gal((F ∩E(η̃))/E) is a quotient of W and so is unipotent. Since Gal(F ∩E(η̃)/E)

is also a quotient of the reductive group Gal(F/k) it is also reductive and therefore must be

trivial. Therefore F ∩ E(η̃) = E.

Since Gal(K/F )/W̃ ' G(F/k) is reductive, we have that W̃ is the unipotent radical of

Gal(K/k). It follows that G = Gal(K/k) has Levi decomposition G = W̃P (semidirect prod-

uct of subgroups), where the restriction map G ³ Gal(F/k) maps P ⊆ G onto Gal(F/k).

Note also that Gal(E(η̃)/k) has Levi decomposition Gal(E(η̃)/k) = WQ (semidirect prod-

uct of subgroups), where Q ⊆ Gal(E(η̃)/k) is the image of P under the restriction map

G ³ Gal(E(η̃)/k). Moreover, we have natural isomorphisms Q ' Gal(E/k) ' P/PE given

by restriction maps.

Let PE = P ∩ Gal(K/E), so that the image of PE under the restriction map G ³
Gal(F/k) is the subgroup Gal(F/E) ⊆ Gal(F/k). We see that PE is normal in P and

so is reductive. The image of PE under the restriction homomorphism Gal(K/E) ³
Gal(E(η̃)/E) ' W is a unipotent group and is therefore trivial. This means that PE

fixes η̃. Since an automorphism in W̃ = Gal(F (η̃)/F ) is determined by its action on η̃,

we see that PE commutes elementwise with W̃ and therefore that the conjugation action

of PE on W̃ is trivial. It follows that the map ψ : W̃ → W is an isomorphism not only

of P -modules but of P/PE-modules. The desired result now follows after considering the

natural isomorphism P/PE ' Gal(E/k).

¥
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This last result and its proof tell us how to compute the Galois group of equation (3.22)

when k = C(x). Here is the algorithm, followed by examples, as stated in [BS99]:

Algorithm II

Input: A system of linear differential equations (3.22) where Y ′ = A1Y and Y ′ = A2Y are

completely reducible with A1 ∈ C(x)n×n, A2 ∈ C(x)m×m.

Output: A system of equations in m + n variables defining the Galois group G(F/k) ⊂
GLn+m(C) of the Picard-Vessiot extension corresponding to the system (3.26), an integer t

and a rational homomorphism Φ : G(F/k) → GLt(C) such that the Galois group of (3.22) is

Ct o G(F/k) where the action of G(F/k) on Ct by conjugation is given by Φ.

1. One first calculates the Galois group G̃ of equation (3.26) using the results of [CS99].

This Galois group will be represented as matrices acting on diag(Y1, Y2) where Y1

is a fundamental solution matrix of Y ′ = A1Y and Y2 is a fundamental solution

matrix of Y ′ = A2Y . One can easily calculate the action of G(F/k) on (Y −1
1 )T ⊗ Y2

and so calculate the Galois group G(E/k) of equation (3.27) as well as the map

G(F/k) → G(E/k).

2. Find a scalar equation L̂(y) = 0 equivalent to the equation (3.27) as well as an element

b̂ ∈ k so that equation (3.25) is equivalent to L̂(y) = b̂ (an algorithm to do this is

presented in [Kat87]; in the examples below ad hoc methods are used). Using the

transformation of Y ′ = AL̂Y to Ṽ ′ = (−AT
1 ⊗ In + Im ⊗ A2)Ṽ allows us to calculate

the action of G(E/k) on the solution space of L̂(y) = 0.

3. Proposition 3.2.1 allows us to calculate a vector group W so that the Galois group of

L̂(y) = b̂ (and so of equation (3.25)) is W o G(E/k).

4. Lemma 3.3.3 now tells us that the Galois group of equation (3.22) is the group

W o G(F/k) where the action of G(F/k) on W (i.e., the homomorphism Φ) can

be calculated from the information we have.

Remark: As in the case of the equation L(y) = b, the algorithms of [CS99] can be

combined with the above to give a presentation of the Picard-Vessiot extension corresponding

to L1(L2(y)) = 0.

We will now give three examples of this method. In these examples we will start with an

equation of the form L1(L2(y)) = 0 with coefficients in k = C(x). The Galois group G(F/k)

— that is the Galois group of equation (3.26) in Lemma 3.3.3 — is the same as the Galois
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group of LCLM(L1, L2). In the examples we shall apply ad hoc methods to calculate this

Galois group. We will then calculate a scalar equation equivalent to the system (3.27) as

well as the matrix B defining this equivalence. This will allow us to find a scalar equation

L̂(y) = b̂ equivalent to the system (3.25). We then apply the methods of Section 3.2 to

calculate the vector space W.

Example 3.3.4 Consider the equation L(y) = 0, where L = L1 ◦ L2, L1 = D2 − x, L2 =

D2 + 1
xD + 1.

The Galois group of this equation is an extension of the Galois group GL̃ of L̃ =

LCLM(L1, L2). Since L1 and L2 are both known to have Galois group isomorphic to

SL2(C) (L1 is a form of Airy’s equation and L2 is a Bessel equation), GL̃ is a subgroup

of SL2(C)× SL2(C).
We claim that if GL̃ is a proper subgroup of SL2(C)×SL2(C), then the operators Ls2

1 and

Ls2
2 are equivalent over C(x). We prove this claim as follows: Let {y1, y2} (resp., {z1, z2}) be

a basis for VL1 (resp., VL2). Before proceeding, we make the following auxiliary calculations

related to the basis
{
z2
1 , z1z2, z

2
2

}
of VLs2

2
. For i = 1, 2, we have

(z2
i )′ = 2ziz

′
i

⇒ (z2
i )′′ = 2(ziz

′′
i + (z′i)

2)

= 2(zi(−
1
x

z′i − zi) + (z′i)
2),

from which a straightforward simplification yields

(z′i)
2 = z2

i +
1
2x

(z2
i )′ +

1
2
(z2

i )′′. (3.28)

A similar set of computations involving the first and second derivatives of z1z2 yields

z′1z
′
2 = z1z2 +

1
2x

(z1z2)′ +
1
2
(z1z2)′′. (3.29)

Now suppose GL̃ is a proper subgroup of SL2(C)× SL2(C). Then, according to ([Kol68], p.

1158), there exist a quadratic extension k̃/C(x), an element α ∈ k̃, and a matrix S = (sij) ∈
GL2(C(x)) such that α2 ∈ C(x) and

Wr(y1, y2) = diag(α, α) · S ·Wr(z1, z2).

For i = 1, 2, we have

yi = α(s11zi + s12z
′
i)
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⇒ y2
i = α2(s2

11z
2
i + 2s11s12ziz

′
i + s2

12(z
′
i)

2)

= α2(s2
11z

2
i + s11s12(z2

i )′ + s2
12(z

2
i +

1
2x

(z2
i )′ +

1
2
(z2

i )′′)) by (3.28)

= α2(s2
11 + s2

12)z
2
i + α2(s11s12 +

1
2x

s2
12)(z

2
i )′ +

1
2
α2s2

12(z
2
i )′′, (3.30)

y1y2 = α2(s2
11z1z2 + s11s12(z1z

′
2 + z′1z2) + s2

12z
′
1z
′
2)

= α2(s2
11z1z2 + s11s12(z1z2)′ + s2

12(z1z2 +
1
2x

(z1z2)′ +
1
2
(z1z2)′′)) by (3.29)

= α2(s2
11 + s2

12)z1z2 + α2(s11s12 +
1
2x

s2
12)(z1z2)′ +

1
2
α2s2

12(z1z2)′′. (3.31)

From (3.30) and (3.31), it follows that the linear operator

1
2
α2s2

12D
2 + α2(s11s12 +

1
2x

s2
12)D + α2(s2

11 + s2
12) ∈ C(x)[D]

maps the ordered basis
{
z2
1 , z1z2, z

2
2

}
of VLs2

2
onto the ordered basis

{
y2
1 , y1y2, y

2
2

}
of VLs2

1
.

The claim now follows immediately.

In our case, we claim that Ls2
1 and Ls2

2 are inequivalent (and therefore that GL̃ =

SL2(C) × SL2(C)). The expanded version of DEtools developed by Mark van Hoeij for

MapleV.5 allows one to calculate symmetric powers, LCLM’s and a basis of the ring of D-

module endomorphisms of D/DL for an operator L ∈ D = C(x)[D]. Using this we proceed

as follows. A calculation shows that

M = LCLM(Ls2
1 , Ls2

2 )

is of order 4. If Ls2
1 and Ls2

2 were equivalent then D/DM would be the direct sum of two

isomorphic D-modules. The endomorphism ring of D/DM would therefore have dimension

4. Using the eigenring command in DEtools one sees that this ring has dimension 2 and

the desired result follows.

We now consider the equation

Ṽ ′ = HṼ + C̃,

where

H = −AT
1 ⊗ I2 + I2 ⊗A2,

A1 =


 0 1

x 0


 ,

A2 =


 0 1

−1 − 1
x


 ,

C̃ = (0, 1, 0, 0)T .
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A cyclic-vector computation shows that the system Ṽ ′ = HṼ is equivalent to Z ′ = KZ,

where

K =




0 1 0 0

0 0 1 0

0 0 0 1

−g1 −g2 −g3 −g4




,

g1 =
x6 + 3x5 + 3x4 + 5x3 + 6x2 + 3x− 3

x(x3 + x2 + 1)
,

g2 = −x6 + 5x5 + 3x3 − 7x2 − 1
x3(x3 + x2 + 1)

,

g3 = −2x3 − 2x2 + 1
x2

,

g4 = − x3 − 2
x(x3 + x2 + 1)

.

The equivalence is given by the equation Z = BṼ , where

B =




1 0 0 0

0 1 −x 0

−1 + x − 1
x −1 −2x

2 + 1
x

3x3−x2+2
x2 3x− x2 0




.

Therefore, the equation Ṽ ′ = HṼ + C̃ is equivalent to

Z ′ = KZ + BC̃. (3.32)

(The reader can verify that K = B′B−1 + BHB−1.) Since K is in companion-matrix form,

it is easy to convert (3.32) into the inhomogeneous scalar equation L̂(y) = b̂, where

L̂ = D4 + g4D
3 + g3D

2 + g2D + g1 (gi as above),

b̂ =
x4 + 2x3 + x2 + 4x + 3

x3 + x2 + 1
.

Computations using the DFactor and ratsols commands in DEtools show that L̂ is ir-

reducible over C(x) and that this equation admits no rational solutions. Thus, the vector

space W referred to in the third statement of Lemma 3.3.3 is all of C4. We conclude that

the Galois group GL is (SL2(C))× SL2(C)) n C4.

Example 3.3.5 Consider the equation L(y) = 0, where L = L1 ◦ L2, L1 = D2 + 1
xD +

1, L2 = D2 −D.
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As in the previous example, the Galois group GL of L is an extension of GL̃, the group

of L̃ = LCLM(L1, L2). To calculate GL̃ note that the Galois group GL1 of L1 is SL2 and

the Galois group GL2 of L2 is the multiplicative group C∗. The group GL̃ is a subgroup of

GL1×GL2 that projects surjectively onto each factor. The Theorem of [Kol68] implies that,

in this case, GL̃ = GL1 ×GL2 .

We now consider the equation

Ṽ ′ = HṼ + C̃,

where

H = −AT
1 ⊗ I2 + I2 ⊗A2,

A1 =


 0 1

−1 − 1
x


 ,

A2 =


 0 1

0 1


 ,

C̃ = (0, 1, 0, 0)T .

A cyclic-vector computation shows that the system Ṽ ′ = HṼ is equivalent to Z ′ = KZ,

where

K =




0 1 0 0

0 0 1 0

0 0 0 1

−g1 −g2 −g3 −g4




,

g1 =
10x4 + 5x3 − 6x2 + 6x + 3

x2(5x2 − 3)
,

g2 = −10x3 + 15x2 + 9x + 12
x(5x2 − 3)

,

g3 = 3
5x2 + 5x + 2

5x2 − 3
,

g4 = −2
5x2 + 5x− 3

5x2 − 3
.

The equivalence is given by the equation Z = BṼ , where

B =




1 0 0 0

0 1 1 0

−1 1 1
x 2

− 1
x −2 −1 3 + 3

x




.
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Therefore, the system Ṽ ′ = HṼ + C̃ is equivalent to

Z ′ = KZ + BC̃.

(The reader can again verify that K = B′B−1 +BHB−1.) Conversion to an inhomogeneous

scalar equation yields L̂(y) = b̂, where

L̂ = D4 + g4D
3 + g3D

2 + g2D + g1 (gi as above),

b̂ = −2 +
5x2 + 5x + 12

5x2 − 3
.

Using the eigenring command of DEtools, one sees that the dimension of the endomor-

phism ring of D/DL̂ is two. Since L̂ is completely reducible, this implies that D/DL̂ is the

direct sum of two nonisomorphic irreducible D-modules. This furthermore implies that L̂

has exactly two nontrivial irreducible right (resp., left) factors. A computation using the

command endomorphism charpoly yields two different right factors. From these one cal-

culates the unique left factors and then one can show that for neither of these left factors

L̄ does the equation L̄(y) = b̂ have a rational solution. Since L̂(y) = b̂ also has no rational

solutions, we conclude that GL is (SL2(C)× C∗) n C4.

Example 3.3.6 Consider the equation L(y) = 0, where L = L1 ◦ L2, L1 = LCLM(D −
2x,D), L2 = D2.

Here it is clear that GL̃, the group of L̃ = LCLM(L1, L2), is C∗.

We now consider the equation

Ṽ ′ = HṼ + C̃,

where

H = −AT
1 ⊗ I2 + I2 ⊗A2,

A1 =


 0 1

0 2x + 1
x


 ,

A2 =


 0 1

0 0


 ,

C̃ = (0, 1, 0, 0)T .

A cyclic-vector computation shows that the system Ṽ ′ = HṼ is equivalent to Z ′ = KZ,
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where

K =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 −h1 −h2




,

h1 = 2
8x6 − 12x4 + 18x2 + 9

4x4 + 3
,

h2 = 4
x(4x4 − 4x2 + 3)

4x4 + 3
.

The equivalence is given by the equation Z = BṼ , where

B =




0 −x −x 0

x −1 2x2 −x

−2x2 + 1 2x −2x(2x2 − 1) 4x2

2x(2x2 − 3) −6x2 + 3 4x2(2x2 − 3) −6x(2x2 − 1)




.

Therefore, the equation Ṽ ′ + HṼ = −C̃ is equivalent to

Z ′ = KZ + BC̃.

(The reader can once again verify that K = B′B−1 + BHB−1.) In this example, the equiv-

alent inhomogeneous scalar equation is L̂(y) = b̂, where

L̂ = D4 + h2D
3 + h1D

2,

b̂ = 3− 6x2 + 6
4x4 − 8x2 − 5

4x4 + 3
.

The eigenring command shows that the corresponding endomorphism ring has dimension

10 and yields a basis of this ring. Applying the command endomorphism charpoly to each

of these will yield a list of right factors and a simple calculation yields their corresponding

left factors. Despite the fact that in this case there is an infinite set of left factors, there is

a third order operator

L0 = D3 +
8x6 − 12x4 + 6x2 + 3

x(4x4 + 3)
D2 − 2

8x6 + 3
x2(4x4 + 3)

D + 2
8x6 + 12x4 − 6x2 + 3

x3(4x4 + 3)

on this list of left factors such that L0(y) = b̂ admits the rational solution y = −1
4
x(6x2+5).

Meanwhile, another computation shows L̂(y) = b̂ admits no rational solutions. We are

therefore able to avoid a calculation involving parameterized operators. Thus, we have

GL = C o C∗.
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3.4 Computing the group of Y ′ = AY + B, Y ′ = AY

completely reducible

The author would like to thank Daniel Bertrand for suggesting the approach given in this

section.

The goal of this section is to present an improvement on Algorithm I. We work in terms

of systems in this section, but these are interchangeable with equations provided C ( k.

We begin with two lemmas on modules over reductive groups. The first result is standard;

see, e.g., Proposition XVII.1.1 and Lemma XVIII.5.9 of [Lan84].

Lemma 3.4.1 Let G be a group defined over C, and let V, V1 and V2 be irreducible finite-

dimensional G-modules. Then:

1. If φ : V1 → V2 is a morphism of G-modules, then φ is either an isomorphism of V1

onto V2 or the zero map.

2. If ψ : V → V is a G-module automorphism, then ψ = c idV for some c ∈ C.

Proof. The first statement of the conclusion is known as Schur’s lemma. It follows from

the irreducibility hypothesis and the fact that the kernel (resp., the image) of a G-module

morphism φ is a G-submodule of the domain (resp., the range) of φ. The second statement

follows from the fact that ψ must have an eigenvalue in the algebraically closed field C; this

implies that the corresponding eigenspace is a G-submodule, which must be all of V.

¥

Lemma 3.4.2 Given:

• G is a reductive linear algebraic group.

• V̂1, V̂2, . . . , V̂s are finite-dimensional irreducible G-modules that are pairwise noniso-

morphic.

• V is a finite-dimensional G-module such that

V '
⊕

1≤i≤s

V̂ νi
i =

{
(vT

1,1, . . . , v
T
i,j , . . . , v

T
s,νs

)T : vi,j ∈ V̂i

}
.

• W is a submodule of V.
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Then, the following statements hold:

1. There exist matrices Rl = (rl,ij) ∈ Cνl×νl for 1 ≤ l ≤ s such that

W =
{
v = (vT

1,1, . . . , v
T
l,m, . . . , vT

s,νs
)T ∈ V :

νl∑
j=1

rl,mjvl,j = 0 for all l,m, 1 ≤ l ≤ s, 1 ≤ m ≤ νl


 .

2. Suppose s = 1, and write ν = ν1, V̂ = V̂1, vj = v1,j . Then there exists a vector subspace

S ⊆ Cν such that

W =


(vT

1 , . . . , vT
ν )T :

ν∑
j=1

cjvj = 0 for all (c1, . . . , cν) ∈ S


 .

We have W ' V̂ ν−dim(S).

Proof. We prove the first statement as follows: Complete reducibility implies that W is

the kernel of a projection mapping π : V → W̃ for some subspace W̃ ⊆ V. This projection

mapping is a morphism of G-modules. Applying a well-known result that characterizes the

endomorphism ring of a completely reducible module (see Proposition XVII.1.2 of [Lan84])

and the second statement of Lemma 3.4.1, we see that there exist matrices R1, . . . , Rs such

that

π((vT
1,1, . . . , v

T
l,m, . . . , vT

s,νs
)T ) = (

∑
j

r1,1jv1,j , . . . ,
∑

j

rl,mjvl,j , . . . ,
∑

j

rs,νsjvs,j).

The first statement of the conclusion of the lemma follows immediately. The second state-

ment then follows after defining S ⊆ Cν = Cν1 to be the row space of the matrix R = R1.

¥

We are interested in inhomogeneous systems of the form Y ′ = ÃY + B̃ such that the

associated homogeneous system Y ′ = ÃY is completely reducible. A system having this

property is equivalent to a system of the form

Y ′ = AY + B,

A = diag(A1, A2, . . . , As),

B = (BT
1 , BT

2 , . . . , BT
s )T ,

Ai = diag(Mi, . . . , Mi) (νi copies),

Mi ∈ kmi×mi ,

Z ′ = MiZ irreducible, 1 ≤ i ≤ s,

and pairwise inequivalent




(3.33)
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For the remainder of this section, we make the following assumptions:

1. Y ′ = AY + B is an inhomogeneous system of order n defined over k such that the

associated homogeneous system Y ′ = AY is completely reducible.

2. KI/k (resp., GI = Gal(KI/k)) is the Picard-Vessiot extension (resp., the group) of

Y ′ = AY + B.

3. KH/k (resp., VH ⊆ Kn
H; GH = Gal(KH/k)) is the Picard-Vessiot extension (resp., the

full solution set; the group) of the associated homogeneous system Y ′ = AY, with

KH ⊆ KI.

4. U is the subgroup of GI fixing KH elementwise, so that

U ' Gal(KI/KH) ⊆ GI

and GH ' GI/U.

Lemma 3.4.3 The following are equivalent for Y ′ = AY + B :

1. The system admits a k-rational solution.

2. The system admits a KH-rational solution.

3. Every solution of the system is KH-rational.

4. The subgroup U is trivial, i.e., KH = KI.

Proof. It is clear that the first and third statements each imply the second statement. Since

the solution set of a system generates that system’s Picard-Vessiot extension, it is also clear

that the third and fourth statements are equivalent to each other.

Notice that any two solutions of Y ′ = AY + B differ by an element of VH ⊆ Kn
H. Using

this fact, one checks that the second statement implies the third statement.

We now show that the second statement implies the first statement. This implication is

proved in Proposition 3.2.1; for convenience we reproduce the proof here using the termi-

nology and notation of systems.

Suppose η is a KH-rational solution of Y ′ = AY + B. Let W = VH + spanC {η} ⊆ Kn
H.

Since σ ∈ GH maps η to η + v for some element v ∈ VH, we see that W is GH-invariant and

includes VH as a GH-invariant subspace. Moreover, W/VH is a trivial GH-module. Since GH

is reductive by assumption, we see that VH has a one-dimensional complement Ṽ in W that
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is trivial as a GH-module. Moreover, since W is spanned by η and VH, we may assume that

Ṽ is generated by η̃ = η+v0 for some v0 ∈ VH. It follows that η̃ is a solution of Y ′ = AY +B

that is fixed by every element of GH and therefore is rational over k. This completes the

proof.

¥

Lemma 3.4.4 Assume Y ′ = AY + B is irreducible. Then, as a GH-module, U is either

trivial or isomorphic to VH.

Proof. If U is nontrivial, then Proposition 3.3.1 implies that U is isomorphic to a nonzero

G-submodule of VH. By hypothesis, VH is irreducible; the desired result follows.

¥

Lemma 3.4.5 Suppose Y ′ = AY + B is of the form (3.33). Then, for each i, the following

statements hold:

1. There exists a tower of subfields k ⊆ Ki,H ⊆ KH such that Ki,H/k is the Picard-Vessiot

extension for the system Ỹ ′ = AiỸ .

2. VH has a νi-dimensional GH-invariant subspace Vi,H consisting of vectors of the form

(0, . . . , 0, Yi, 0, . . . , 0), where Yi satisfies Y ′i = AiYi.

3. Let Ṽi,H ⊆ Kνi

i,H be the full solution space of Ỹ ′ = AiỸ . Then there is an isomorphism

Ξ : Vi,H → Ṽi,H. Moreover, we have VH '
s⊕

i=1

Ṽi,H.

Proof. Define ξi : VH → Kνi

H by ξ((Y T
1 , . . . , Y T

s )T ) = Yi. We see that ξ is a GH-invariant

surjection of VH onto V̄i, a full solution space in Kνi

H of Ỹ ′ = AiỸ . The first statement of

the conclusion of the lemma follows after defining Ki,H/k to be the extension generated by

components of vectors in V̄i. The second and third statements then follow easily.

¥

Lemma 3.4.6 Suppose Y ′ = AY + B is of the form (3.33), and let Ki,H/k and Vi,H be as

in Lemma 3.4.5. Write η = (ηT
1 , . . . , ηT

s )T , ηi ∈ Kνi

I , so that ηi is a particular solution of

the system

Ỹ ′ = AiỸ + Bi. (3.34)
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Then, for each i, there is a tower of subfields Ki,H ⊆ Ki,I ⊆ KI with Ki,I/k a Picard-Vessiot

extension for the system (3.34), with Ki,I/Ki,H generated by the coordinates of ηi.

Proof. This result is clear from definitions.

¥

Lemma 3.4.7 Suppose Y ′ = AY +B is of the form (3.33). Then U '
s⊕

i=1

Ui (direct sum of

GH-modules), where Ui is the unipotent radical of the group of Ỹ ′ = AiỸ +Bi for 1 ≤ i ≤ s.

Proof. Applying Proposition 3.3.1 to Y ′ = AY + B, we see that there is an embedding

Φ : U → VH. Let W = Φ(U) ⊆ VH.

Let Ki,H/k and Vi,H be as in Lemma 3.4.5. Lemma 3.4.5 and basic Galois theory yield

VH '
s⊕

i=1

Ṽi,H (direct sum of GH-modules), where Ṽi,H is the solution space of Ỹ ′ = AiỸ .

Lemma 3.4.2 implies that W '
s⊕

i=1

πi(W ), where πi : VH → Ṽi,H is projection from VH onto

Ṽi,H. We need to show that πi(W ) ' Ui.

Fix i, 1 ≤ i ≤ s. Consider Ỹ ′ = AiỸ + Bi as an equation over KH and let K̃i/KH be

the Picard-Vessiot extension. We have that Gal(K̃i/KH) is a quotient of U and K̃i/KH is

generated by the coordinates of ηi. By considering the map Ξ given in Lemma 3.4.5, one

checks that Gal(K̃i/KH) ' πi(W ).

Now consider the following diagram:

½½ ZZ

QQ ´́

K̃i

KH Ki,I

KH ∩Ki,I

Ki,H

By definition we have Ui = Gal(Ki,I/Ki,H). Thus, to show that πi(W ) ' Ui, it suffices

to show that Gal(K̃i/KH) ' Gal(Ki,I/Ki,H). In turn, to do this it suffices to show that

KH ∩Ki,I = Ki,H (see Lemma 5.10 of [Kap76]).

Ui is a vector group and in particular an abelian group. It follows that (KH∩Ki,I)/Ki,H

is a Picard-Vessiot extension with unipotent Galois group. At the same time, Gal((KH ∩
Ki,I)/Ki,H) is a quotient of Gal(KH/Ki,H), which is a subgroup of the reductive group GH

and therefore reductive. This implies that Gal((KH∩Ki,I)/Ki,H) is also reductive. It follows

that Gal((KH ∩Ki,I)/Ki,H) = {1} , and we conclude that KH ∩Ki,I = Ki,H as desired.
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¥

Lemma 3.4.8 Assume that A = diag (M,M, . . . , M) , where M ∈ km×m and there are

ν ≥ 1 copies of M along the diagonal. Assume moreover that Z ′ = MZ is an irreducible

system. Let VM ⊆ Km
H be the solution space of Z ′ = MZ, so that VH = V ν

M . Write B =

(BT
1 , BT

2 , . . . , BT
ν )T , Bi ∈ km. Let η = (ηT

1 , ηT
2 , . . . , ηT

ν )T , ηi ∈ Km
I , be a fixed particular

solution of Y ′ = AY + B. Let Φη : U → VH be the map defined in Proposition 3.3.1 and let

W = Φη(U) ⊆ VH. Let S ⊆ Cν be the vector space defined in the second statement of the

conclusion of Proposition 3.4.2 (assuming V = VH). Define T ⊆ Cν by

T = {(c1, . . . , cν) ∈ Cν : the system Z ′ = MZ +
ν∑

j=1

cjBj

has a k-rational solution} .

Then, the following statements hold:

1. T is a C-vector space.

2. T = S.

3. U ' V ν−dimC T
M as GH-modules.

Proof. The first statement of the conclusion is easily verified, and the third statement follows

directly from the second statement. We prove the second statement as follows:

We see that there is an injection U ↪→ ⊕jUj , where Uj is the unipotent radical of

the group of Z ′ = MZ + Bj . For 1 ≤ j ≤ ν, we have that ηj is a particular solution of

Z ′ = MZ + Bj , and we may define Φηj
: Uj → VM by Φηj

(τ) = τ.ηj − ηj or, equivalently,

by writing

Φ(τ) = (Φη1(π1(τ)), . . . ,Φην
(πν(τ))) ∈ V ν

M = VH,

where πj : U → Uj is projection onto the jth factor. Also observe that, given c1, . . . , cν ∈ C,
we have that

∑
j cjηj is a particular solution of the system Z ′ = MZ +

∑
j cjBj . We now

make the following calculation:

(c1, . . . , cν) ∈ S ⇔
∑

j

cjΦηj
(τ) = 0 for all τ ∈ U

⇔
∑

j

cj(τ.ηj − ηj) = 0 for all τ ∈ U

⇔
∑

j

cjτ.ηj =
∑

j

cjηj for all τ ∈ U
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⇔ τ.(
∑

j

cjηj) =
∑

j

cjηj for all τ ∈ U

⇔
∑

j

cjηj ∈ Km
H (since KH is the fixed field of U)

⇔ The system Z ′ = MZ +
∑

j cjBj has

a k-rational solution (by Lemma 3.4.3)

⇔ (c1, . . . , cν) ∈ T .

This gives us the desired result.

¥

For the remainder of this section, assume k = C(x).

Lemma 3.4.9 There exists an algorithm that takes as input a matrix M ∈ km×m and a

set of vectors B1, . . . , Bν ∈ km and computes dimC(T ), where T ⊆ Cν is the vector space

defined in Lemma 3.4.8.

Proof. Let A = diag(M, . . . , M) with ν copies of M on the diagonal, and let B =

(BT
1 , . . . , BT

ν )T . Consider the following conceptually simple algorithm:

1. Compute a cyclic vector for the system Z ′ = MZ; obtain a system of the form (3.18),

and use this system to define an operator L such that L(y) = 0 is equivalent to

Z ′ = MZ.

2. For each i, use (3.18) and (3.21) to compute an element bi ∈ k such that Z ′ = MZ+Bi

is equivalent to L(y) = bi.

3. Define a new operator L̂ by

L̂ = LCLM
(

D − b′1
b1

, . . . , D − b′ν
bν

)
◦ L.

4. Compute a basis F of k-rational solutions of the equation L̂(y) = 0. For each element

f in this basis, test whether f satisfies L(f) = 0.

5. Return the number of elements of F that are not solutions of L(y) = 0.

We prove the correctness of this algorithm as follows. For a given (c1, . . . , cν) ∈ Cν , we have

that Z ′ = MZ +
∑

j cjBj admits a k-rational solution if and only if the equation L(y) =∑
j cjbj does. Suppose f ∈ k satisfies L(f) =

∑
j cjbj for some (c1, . . . , cν) ∈ Cν . It follows
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that L̂(f) = 0. Conversely, we see that if L̂(f) = 0 and L(f) 6= 0, then L(f) =
∑

j cjbj for

some (c1, . . . , cν) ∈ Cν . The desired result now follows easily.

¥

We note that it is possible to write a more efficient algorithm than the above, using

methods similar to those of Lemma 2.8 of [BS99].

We are now ready to present the main algorithm of this section.

Algorithm III.

Input: A matrix A ∈ C(x)n×n and a vector B ∈ C(x)n

Output: An explicit description of the Galois group of the system Y ′ = AY + B

1. Using a cyclic-vector computation, redefine A and compute Ai, Bi,Mi,mi so that the

system (3.33) is equivalent to the original system.

2. For 1 ≤ i ≤ s, write Bi = (BT
i,1, . . . , B

T
i,νi

)T . Using Lemma 3.4.9, compute ri = dimC Ti,

where

Ti =
{

(ci,1, . . . , ci,νi
) : the system Z ′ = MiZ +

∑
j

ci,jBi,j

admits a k-rational solution
}

.

Let r̃i = νi − ri.

3. Using [CS99], compute a set H of defining equations for Ψ(GH), where Ψ : GH →
GLn(C) is a matrix representation of GH on VH with respect to some basis of VH

having the following property: Given a matrix Q = Ψ(σ), σ ∈ GH, then we have

Q = diag(Q1, . . . , Qs) with Qi = diag(Q̄i, . . . , Q̄i) (νi copies) and Q̄i gives the action

of σ on VMi
with respect to some fixed basis of VMi

for 1 ≤ i ≤ s. Here, VMi
is the

solution space of Z ′ = MiZ.

4. Return H, m1, . . . , ms, r̃1, . . . , r̃s. The group of Y ′ = AY + B is

C
∑

i r̃imi o ĜH,

where:

• ĜH ⊆ GLn(C) is defined by H
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• The action of Q ∈ ĜH on v ∈ C
∑

i r̃imi is given by Q.v = Q̃v (matrix-by-vector

multiplication), where

Q̃ = diag(Q̃1, . . . , Q̃s),

Q̃i = diag(Q̄1, . . . , Q̄1) (r̃i copies),

where Q̄i is as described above.

We prove the correctness of this algorithm as follows:

Proof. First, we recall that equivalent systems have identical Picard-Vessiot extensions

(resp., Galois groups). This algorithm computes the group of (3.33) and thus group of the

original system.

Computing GH is accomplished by [CS99], so by Proposition 3.3.1 we need to compute

the unipotent radical U and the action of GH on U. Write U =
⊕

i Ui as in Lemma 3.4.7.

Then Lemma 3.4.8 implies that Ui ' V r̃i

Mi
as modules over the group of Ỹ ′ = ÃY and thus

over GH. Correctness of Algorithm III is now immediate.

¥

We now present examples of this algorithm.

Example 3.4.10 Consider the equation L(y) = b, where

L = D2 − 4xD + (4x2 − 2) = (D − 2x) ◦ (D − 2x)

and b ∈ C(x) as in Example 3.2.2. This equation is equivalent to the system Y ′ = AY +

B, where A =


 0 1

−4x2 + 2 4x


 and B = (0, b)T . A computation shows that another

equivalent system is Ỹ ′ = ÃỸ + B̃, where Ã = diag(2x, 2x) and B̃ = (−xb, b)T . The

transformation from one system to the other is obtained by writing Ỹ = PY, where P =
 1 + 2x2 −x

−2x 1


 . Applying Lemma 3.4.8, we see that U ' C2−r, where

r = dimC

{
(c1, c2) : y′ = 2xy − c1xb + c2b

admits a C(x)-rational solution
}

.

This computation is essentially identical to the one obtained in the first remark at the end

of Section 3.2. Thus, for this particular example, Algorithm III essentially coincides with

Algorithm I.
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Example 3.4.11 Consider the first-order system

Y ′ = diag(M,M,M,M,M)Y + (0, x2, 0, x, 0, 1, 0, 1/x, 0, 1/x2)T ,

where M =


 0 1

x 0


 . In this case, we see that GH is the group of the equation y′′−xy = 0.

From Example 3.3.4 above, we conclude that GH ' SL2. To compute U, we consider the

equation

y′′ − xy = c1x
2 + c2x + c3 + c4/x + c5/x2.

Applying the algorithm given in the proof of Lemma 3.4.9, we consider the equation L̂(y) =

0, where

L̂ = LCLM(D − 2/x,D − 1/x,D,D + 1/x,D + 2/x) ◦ (D2 − x).

A ratsols computation in Maple shows that the space of rational solutions of L̂(y) = 0 is

spanned by the elements 1 and x, which furthermore fail to satisfy y′′ − xy = 0. Applying

Lemma 3.4.8, we now see that GI ' C6 o SL2, where

Q.(vT
1 , vT

2 , vT
3 )T =

(
(Qv1)T , (Qv2)T , (Qv3)T

)T

for Q ∈ SL2, v1, v2, v3 ∈ C2, and Qvi is the standard matrix-by-vector product.

Example 3.4.12 Consider the matrix equation

Y ′ = diag(A1, A2)Y + (BT
1 , BT

2 )T ,

A1 = diag(M,M,M,M,M), M =


 0 1

x 0


 ,

A2 = diag(2x, 2x),

B1 = (0, x2, 0, x, 0, 1, 0, 1/x, 0, 1/x2)T ,

B2 = (−x, 1)T .

Evidently GH is the group of the equation L(y) = 0, where L = LCLM(D2 − x,D − 2x).

We see that GH is a subgroup of SL2 ×C∗ that projects surjectively onto each factor. As in

Example 3.3.5, the Theorem of [Kol68] yields GH = SL2 × C∗. Next, Lemma 3.4.7 implies

that U ' U1⊕U2 (direct sum of GH-modules), where U1 (resp., U2) is the unipotent radical

of the system given in Example 3.4.11 (resp., Example 3.4.10 with b = 1). After applying

the results of Example 3.4.11 and 3.2.2, we conclude that GI ' C7 o (SL2 × C∗), where

(Q, t).(v1, v2, v3, w)T =
(
(Qv1)T , (Qv2)T , (Qv3)T , tw

)T
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for (Q, t) ∈ SL2 × C∗, v1, v2, v3 ∈ C2, w ∈ C.
Note that applying the method of Algorithm I to this system (or rather, more precisely,

to an equivalent inhomogeneous scalar equation) would involve computing all factorizations

of a twelfth-order completely reducible operator; this step alone would require solving a very

large system of equations, in contrast with the simple steps performed above.
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Chapter 4

Computing the group of

D3 + aD + b, a, b ∈ C[x]

4.1 Definitions and main results

In this chapter, except where otherwise specified, C is an algebraically closed constant field

of characteristic zero.

We define the defect of a connected group, using the definition given in [Sin99], as

follows: Assume G is a connected linear algebraic group with Levi decomposition G = RuP

(semidirect product of subgroups), where Ru is the unipotent radical and P a Levi subgroup

of G. Note that the group Ru/(Ru, Ru) is commutative and unipotent, hence isomorphic to a

vector group Cn for some n. We see that the conjugation action of P on Ru leaves (Ru, Ru)

invariant and therefore induces a representation of P on the vector group Ru/(Ru, Ru).

Write Ru/(Ru, Ru) ' Un1
1 ⊕ · · · ⊕ Uns

s , where each Ui is an irreducible P -module. Suppose

U1 is the trivial one-dimensional P -module. Then the defect of G is the number n1.

Proposition 4.1.1 Given L ∈ C(x)[D] of order three such that all singularities of L in the

finite plane are apparent singularities and the group GL of L(y) = 0 over C(x) is included

in SL3. Then GL is connected and has defect zero.

Proof. This result follows from Proposition 11.20 and Theorem 11.21 of [dPS].

¥
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The following well-known result allows us to apply Proposition 4.1.1 to operators of the

form L = D3 + aD + b, a, b ∈ C[x].

Lemma 4.1.2 Given L = Dn + an−1D
n−1 + · · · + a1D + a0 ∈ D. Then the group GL is

isomorphic to a subgroup of SLn if and only if an−1 = f ′/f for some f ∈ C(x).

Proof. Let B = {y1, . . . , yn} be a basis of VL. Then the fundamental solution matrix

associated to B is ZB = (y(i−1)
j ) ∈ GLn. It is well-known (see, e.g., [Mag94]) that if Z = ZB

is a fundamental solution matrix of L, then an−1 is the logarithmic derivative of detZ. Also,

given σ ∈ GL, one checks that σ(detZ) = det([σ]B) detZ. It then follows from basic Galois

theory that detZ is contained in C(x) if and only if det([σ]B) = 1 for all σ ∈ GL, i.e.,

[GL]B ⊆ SLn. The desired result then follows easily.

¥

Corollary 4.1.3 Given L = D3 + aD + b ∈ C(x)[D], a, b ∈ C[x]. Then GL is included in

SL3, is connected, and has defect zero.

Proof. This result follows easily from Proposition 4.1.1 and Lemma 4.1.2.

¥

In light of the above results, we define a subgroup G ⊆ SL3 to be admissible if it is

connected and has defect zero. Theorem 4.1.5 below enumerates the admissible subgroups

of SL3 up to conjugation.

Before proceeding, we define some specific algebraic subgroups of SL3 using certain

parameterizations. Remark that these parameterizations are noncanonical; we use them

in this section for clarity of description only. See Lemmas 4.2.2 and 4.3.1 for equivalent

definitions of these subgroups that do not use parameterizations.

T(d1,d2) =
{
diag(yd1 , yd2 , y−d1−d2) : y ∈ C∗

}
,

d1, d2 ∈ Z, d1 ≥ d2 ≥ 0, d1 > 0,GCD(d1, d2) = 1

U1
(0,0) =







1 0 x

0 1 0

0 0 1


 : x ∈ C



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U1
(1,1) =







1 x 1
2x2

0 1 x

0 0 1


 : x ∈ C




U2
(1,0) =







1 x y

0 1 0

0 0 1


 : x, y ∈ C




U2
(0,1) =







1 0 x

0 1 y

0 0 1


 : x, y ∈ C




U2
(1,1) =







1 x 1
2x2 + y

0 1 x

0 0 1


 : x, y ∈ C




= U1
(0,0)U

1
(1,1)

Let S3 be the group of permutations of the ordered set {1, 2, 3} . Given σ ∈ S3, then we

define the permutation matrix Pσ to be the matrix whose (i, j)th entry is 1 if i = σ(j), 0

otherwise.

Given an ordered basis E = {e1, e2, e3} and a permutation σ ∈ S3, then Eσ is the ordered

basis given by

Eσ =
{
eσ−1(1), eσ−1(2), eσ−1(3)

}
.

That is, if σ(Ij) = j for 1 ≤ j ≤ 3, then Eσ = {eI1 , eI2 , eI3} . Otherwise stated, if Eσ =

{ẽ1, ẽ2, ẽ3} , then ej = ẽσ(j) for 1 ≤ j ≤ 3. It is a fact that Pσ = [id]E,Eσ
. For example, if

σ = (1 2 3), then Eσ = {e3, e1, e2} and

Pσ = [id]E,Eσ
=




0 0 1

1 0 0

0 1 0


 .

The following lemma is easily verified.

Lemma 4.1.4 1. If [φ]E = M, then [φ]Eσ
= PσMP−1

σ .

2. If σ = ω̃ ◦ ω, then Eσ = (Eω)ω̃ and Pσ = Pω̃Pω.

In what follows, the groups C, C∗,U3,SL2,GL2,PSL2,SL3,T3 and D3 and the inner auto-

morphism Int y, defined for a member y of a group G, are as defined in Section 2.2.

The following result is the main theorem of this chapter.
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Theorem 4.1.5 Let G ⊆ SL3 be an admissible subgroup. Then G is conjugate to exactly

one of the following subgroups of SL3. The subgroups are classified according to Levi decom-

position and decomposition of a reductive group into product of torus and semisimple group;

they are also classified in Table 4.1 below by number of invariant subspaces of C3 of dimen-

sion 1 (resp., 2), denoted n1 (resp., n2). Assume G = RuP is a Levi decomposition with P

(resp., Ru) a maximal reductive subgroup (resp., the unipotent radical) of G; H = (P, P ) is

semisimple and T = Z(P )◦ is a torus.

1. Subgroups satisfying H ' 1.

(a) Subgroups satisfying T ' 1 : {diag(1, 1, 1)} . Here, we have G ' {1} and n1 =

n2 = ∞.

(b) Subgroups satisfying T ' C∗.

i. Subgroups satisfying Ru ' 0 : T(d1,d2). Here, we have G ' C∗. If d1 > d2,

then n1 = n2 = 3; otherwise, n1 = n2 = ∞.

ii. Subgroups satisfying Ru ' C :

A. U1
(0,0) · PσT(d1,d2)P

−1
σ , d1 > d2 ≥ 0,GCD(d1, d2) = 1, σ ∈ S3, σ ∈

{id, (1 2), (2 3)} if (d1, d2) = (1, 0). In this case, we have G ' C o C∗

with

(Int y)(x) = ydσ−1(1)−dσ−1(3)x for y ∈ C∗, x ∈ C;

we also have n1 = n2 = 2.

B. U1
(1,1) · T(1,0). In this case, we have G ' C o C∗ with

(Int y)(x) = yx for y ∈ C∗, x ∈ C;

we also have n1 = n2 = 1.

C. U1
(0,0) · T(1,1). In this case, we have G ' C o C∗ with

(Int y)(x) = y3x for y ∈ C∗, x ∈ C;

we also have n1 = ∞, n2 = 2.

D. U1
(0,0) · P(1 3)T(1,1)P

−1
(1 3). In this case, we have G ' C o C∗ with

(Int y)(x) = y−3x for y ∈ C∗, x ∈ C;

we also have n1 = 2, n2 = ∞.
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iii. Subgroups satisfying Ru ' C2 :

A. U2
(1,0) · PσT(d1,d2)P

−1
σ , where d1 > d2 ≥ 0,GCD(d1, d2) = 1, and σ ∈

{id, (1 2), (1 2 3)} . In this case, we have G ' C2 o C∗ with

(Int y)(w, x) = (ydσ−1(1)−dσ−1(2)w, ydσ−1(1)−dσ−1(3)x)

for y ∈ C∗, (w, x) ∈ C2; we also have n1 = 1, n2 = 2.

B. U2
(0,1) · PσT(d1,d2)P

−1
σ , where d1 > d2 ≥ 0,GCD(d1, d2) = 1, and σ ∈

{id, (2 3), (1 3 2)} . In this case, we have G ' C2 o C∗ with

(Int y)(w, x) = (ydσ−1(1)−dσ−1(3)w, ydσ−1(2)−dσ−1(3)x)

for y ∈ C∗, (w, x) ∈ C2; we also have n1 = 2, n2 = 1.

C. U2
(1,1) · T(1,0). In this case, we have G ' C2 o C∗ with

(Int y)(w, x) = (yw, y2x) for y ∈ C∗, (w, x) ∈ C2;

we also have n1 = n2 = 1.

D. U2
(1,0) · P(1 3)T(1,1)P

−1
(1 3). In this case, we have G ' C2 o C∗ with

(Int y)(w, x) = (y−3w, y−3x) for y ∈ C∗, (w, x) ∈ C2;

we also have n1 = 1, n2 = ∞.

E. U2
(0,1) · T(1,1). In this case, we have G ' C2 o C∗ with

(Int y)(w, x) = (y3w, y3x) for y ∈ C∗, (w, x) ∈ C2;

we also have n1 = ∞, n2 = 1.

iv. Subgroups satisfying Ru ' U3 :

A. U3 · PσT(d1,d2)P
−1
σ , d1 > d2 ≥ 0, GCD(d1, d2) = 1, σ ∈ S3, σ ∈

{id, (1 2), (2 3)} if (d1, d2) = (1, 0). We have G ' U3 o C∗ with

(Int y)







1 v w

0 1 x

0 0 1





 =




1 yκ1v yκ2w

0 1 yκ3x

0 0 1


 ,

where κ1 = dσ−1(1) − dσ−1(2), κ2 = dσ−1(1) − dσ−1(3),

κ3 = dσ−1(2) − dσ−1(3), for

y ∈ C∗,




1 v w

0 1 x

0 0 1


 ∈ U3;
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we also have n1 = n2 = 1.

B. U3 · P(2 3)T(1,1)P
−1
(2 3). We have G ' U3 o C∗ with

(Int y)







1 v w

0 1 x

0 0 1





 =




1 y3v w

0 1 y−3x

0 0 1




for

y ∈ C∗,




1 v w

0 1 x

0 0 1


 ∈ U3;

we also have n1 = n2 = 1.

(c) Subgroups satisfying T ' C∗ × C∗.

i. Subgroups satisfying Ru ' 0 : D3 ∩ SL3. Here, we have G ' C∗ × C∗ and

n1 = n2 = 3.

ii. Subgroups satisfying Ru ' C : U1
(0,0) · (D3 ∩ SL3). Here, we have G ' C o

(C∗ × C∗) with

(Int(y1, y2))(x) = y2
1y2x for y1, y2 ∈ C∗, x ∈ C;

we also have n1 = n2 = 2.

iii. Subgroups satisfying Ru ' C2 :

A. U2
(1,0) · (D3 ∩ SL3). In this case, we have G ' C2 o (C∗ × C∗) with

(Int(y1, y2))(w, x) = (y1y
−1
2 w, y2

1y2x) for y1, y2 ∈ C∗, w, x ∈ C;

we also have n1 = 1, n2 = 2.

B. In this case, we have G ' C2 o (C∗ × C∗) with

(Int(y1, y2))(w, x) = (y2
1y2w, y1y

2
2x) for y1, y2 ∈ C∗, w, x ∈ C;

we also have n1 = 2, n2 = 1.

iv. Subgroups satisfying Ru ' U3 : T3 ∩ SL3. Here, we have G ' U3 o (C∗ × C∗)
with

(Int(y1, y2))







1 v w

0 1 x

0 0 1





 =




1 y1y
−1
2 v y2

1y2w

0 1 y1y
2
2x

0 0 1



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for

y1, y2 ∈ C∗,




1 v w

0 1 x

0 0 1


 ∈ U3;

we also have n1 = n2 = 1.

2. Subgroups satisfying H ' SL2.

(a) Subgroups satisfying T ' 1.

i. Subgroups satisfying Ru ' 0 :

(tij) ∈ SL3 : t13 = t23 = t31 = t32 = 0, t33 = 1.

We have G ' SL2 and n1 = n2 = 1.

ii. Subgroups satisfying Ru ' C2 :

A. {(tij) ∈ SL3 : t31 = t32 = 0, t33 = 1} . In this case, we have G ' C2 o SL2

with conjugation given by the unique irreducible representation of SL2 on

C2; we also have n1 = 0, n2 = 1.

B. {(tij) ∈ SL3 : t21 = t31 = 0, t11 = 1} . In this case, we have G ' C2 o SL2

with conjugation given by the unique irreducible representation of SL2 on

C2; we also have n1 = 1, n2 = 0.

(b) Subgroups satisfying T ' C∗.

i. Subgroups satisfying Ru ' 0 :

{(tij) ∈ SL3 : t13 = t23 = t31 = t32 = 0} .

We have G ' GL2 and n1 = n2 = 1.

ii. Subgroups satisfying Ru ' C2 :

A. {(tij) ∈ SL3 : t31 = t32 = 0} . We have G ' C2 o GL2 with conjugation

given by

M.v = (det M)Mv for M ∈ GL2, v ∈ C2;

we also have n1 = 0, n2 = 1.

B. {(tij) ∈ SL3 : t21 = t31 = 0} . We have G ' C2 o GL2 with conjugation

given by

M.v = (detM)−1(M−1)T v for M ∈ GL2, v ∈ C2;

we also have n1 = 1, n2 = 0.

59



3. Subgroups satisfying H ' PSL2 :

{(tij) ∈ SL3 : t212 = t11t13, t221 = 4t11t31, t223 = 4t13t33,

t232 = t31t33, (t22 + 1)2 = 4t11t33, (t22 − 1)2 = 4t13t31}.

We have G ' PSL2 and n1 = n2 = 0.

4. Subgroups satisfying H ' SL3 : In this case we have G = SL3 and n1 = n2 = 0.

n2 0 1 2 3 ∞

n1 0
PSL2,

SL3

C2 o SL2,

C2 o GL2

1
C2 o SL2,

C2 o GL2

C o C∗

C2 o C∗

U3 o C∗

T3 ∩ SL3

SL2

GL2

C2 o C∗

C2 o C∗2
C2 o C∗

2
C2 o C∗

C2 o C∗2
C o C∗

C o C∗2
C o C∗

3
C∗

C∗2

∞ C2 o C∗ C o C∗
C∗

{1}

Table 4.1: Admissible subgroups of SL3. “C∗2” stands for C∗ × C∗.

Below, in Section 4.2 (resp., Section 4.3; Section 4.4), we enumerate the ways in which

tori (resp., unipotent groups; semisimple groups) can be embedded in SL3, up to conjugation.

Then, in Section 4.5, we prove Theorem 4.1.5, primarily by considering the ways in which an

admissible subgroup can be built from a torus, a semisimple group and a unipotent group.

In Section 4.6, we give an algorithm to compute the group of D3 + aD + b, a, b ∈ C[x]. The

main step of this algorithm relies on Theorem 4.1.5.
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4.2 Tori embedded in SL3

Lemma 4.2.1 The only (algebraic group) endomorphisms of C∗ are the maps x 7→ xd, d ∈
Z. The only automorphisms of C∗ are the identity and the map x 7→ x−1.

Proof. The first statement is an easy exercise in the theory of rational functions on P1. The

second statement follows easily from the first statement.

¥

Throughout the remainder of this section, V = C3 is a three-dimensional vector space

with fixed basis E0 = {e1, e2, e3} ; this yields a bijection between GL3 and GL(V ).

Lemma 4.2.2 Assume G ⊆ SL(V ) and F is a basis of V. Let ni be the number of i-

dimensional G-invariant subspaces of V for i = 1, 2.

1. Define T(d1,d2) =
{

(tij) ∈ D3 ∩ SL3 : td2
11 = td1

22

}
, d1, d2 ∈ Z, d1 ≥ d2 ≥ 0, d1 > 0,

GCD(d1, d2) = 1, and assume [G]F = T(d1,d2). Then, the following statements hold:

(a) T(d1,d2) has a faithful parameterization

y 7→ diag(yd1 , yd2 , y−d1−d2), y ∈ C∗,

so in particular T(d1,d2) ' C∗.

(b) If d1 > d2, then the only G-invariant subspaces of V are 〈f1〉 , 〈f2〉 , 〈f3〉 , and

〈fi, fj〉 , 1 ≤ i < j ≤ 3. In particular, we have n1 = n2 = 3.

(c) If d1 = d2 = 1, then the G-invariant subspaces are 〈αf1 + βf2〉 , where (α : β) ∈
P1; 〈f3〉 ; 〈f1, f2〉 ; and 〈αf1 + βf2, f3〉 , where (α : β) ∈ P1. In particular, we have

n1 = n2 = ∞.

2. The group D3 ∩ SL3 has a faithful parameterization

(y, z) 7→ diag(y, z, (yz)−1), y, z ∈ C∗,

so in particular it is isomorphic to C∗ × C∗. If [G]F = D3 ∩ SL3, then the G-invariant

subspaces are 〈f1〉 , 〈f2〉 , 〈f3〉 , and 〈fi, fj〉 , 1 ≤ i < j ≤ 3. In particular, we have n1 =

n2 = 3.

Proof. A set of straightforward calculations verifies that each of the given parameterizations

is correct for the corresponding algebraic group. The statements about invariant subspaces

61



follow from further calculations. We remark that in the case of T(d1,d2), the three integers

d1, d2 and −d1 − d2 are distinct if d1 6= d2.

¥

Lemma 4.2.3 If G = [G]E0 ⊆ SL3 is isomorphic to a torus, then there exist a basis F =

{f1, f2, f3} of V and a unique subgroup Ĝ ⊆ SL3 such that Ĝ = [G]F and Ĝ is one of the

following groups:

1. 1 = {diag(1, 1, 1)} .

2. T(d1,d2) ' C∗, d1, d2 ∈ Z, d1 ≥ d2 ≥ 0, d1 > 0,GCD(d1, d2) = 1.

3. D3 ∩ SL3 ' C∗ × C∗.

Proof. It is known ([HK71]) that a commuting group of diagonalizable operators can be

simultaneously diagonalized. We may therefore assume that G ⊆ D3. Since SL3 ∩ D3 '
C∗ × C∗, it follows that G is isomorphic to a torus of dimension at most 2.

Suppose G ' C∗. Let φ : C∗ → G be an isomorphism. It follows from Lemma 4.2.1

and the fact that D3 ' C∗ × C∗ × C∗ that there exist integers d1, d2, d3 such that φ(y) =

diag(yd1 , yd2 , yd3) for all y ∈ C∗. Note that φ(ζ) = diag(1, 1, 1) if ζ is a dth root of unity,

where d is a common divisor of d1, d2, d3. It follows that GCD(d1, d2, d3) = 1. Since G ⊆ SL3,

we also have d1 + d2 + d3 = 0. Let σ be the automorphism of C∗ given by σ(x) = x−1. We

have

(φ ◦ σ)(x) = diag(x−d1 , x−d2 , x−d3), x ∈ C∗.

After replacing φ with φ◦σ if necessary, we may assume that two of {d1, d2, d3} are nonneg-

ative. After reordering indices if necessary, we may assume that d1 ≥ d2 ≥ 0 > d3. If d2 = 0,

then G = T(1,0). If d1 = d2, then G = T(1,1). Otherwise, G = T(d1,d2) with d1 > d2 > 0.

Next we show that the subgroups T(d1,d2) are distinct. Let T(d1,d2), T(d̂1,d̂2) be two such

subgroups. Define φ, φ̂ : C∗ → SL3 ∩ D3 by

φ(y) = diag(yd1 , yd2 , y−d1−d2), φ̂(y) = diag(yd̂1 , yd̂2 , y−d̂1−d̂2),

and suppose that φ(C∗) = φ̂(C∗). It follows that φ−1 ◦ φ̂ is an automorphism of C∗. If this

map is the identity, then φ = φ̂. Otherwise, by Lemma 4.2.1, φ−1 ◦ φ̂ is the inverse map σ,

i.e., φ̂ = φ ◦ σ. This implies (d1, d2,−d1 − d2) = −(d̂1, d̂2,−d̂1 − d̂2) ∈ Z3, a contradiction

since d1, d̂1 > 0. We conclude that any two of these parameterizations have distinct images

in D3 ∩ SL3, and the T(d1,d2) are distinct.
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It remains to be shown that no two of these subgroups are conjugate. Suppose T(d1,d2)

and T(d̃1,d̃2) are conjugate. Then there exist a basis Ẽ = {ẽ1, ẽ2, ẽ3} and a subgroup G ⊆
GL(V ) such that T(d1,d2) = [G]E0 , T(d̃1,d̃2) = [G]Ẽ . Let T(d1,d2) (resp., T(d̃1,d̃2)) have the

parameterization y
φ7→ diag

(
yd1 , yd2 , y−d1−d2

)
(resp., z

φ̃7→ diag
(
zd̃1 , zd̃2 , z−d̃1−d̃2

)
). Let

P = [id]E0,Ẽ ; define ω : GL3 → GL3 by ω(M) = PMP−1, so that ω(T(d1,d2)) = T(d̃1,d̃2).

Then the map τ = φ̃−1 ◦ ω ◦ φ is an automorphism of C∗. As above, Lemma 4.2.1 implies

that either τ = id or τ = σ. We may replace φ̃ with φ̃ ◦ σ if necessary so that τ = id . This

implies that φ̃ = ω ◦ φ, i.e.,

diag(yd̃1 , yd̃2 , y−d̃1−d̃2) = P diag(yd1 , yd2 , y−d1−d2)P−1 for all y ∈ C∗.

Now, if V includes infinitely many one-dimensional G-invariant subspaces, then it is easy

to see that T(d1,d2) = T(d̃1,d̃2) = T(1,1). Therefore, we may assume that V includes exactly

three one-dimensional G-invariant subspaces. It follows that

ẽ1 = c1ej1 , ẽ2 = c2ej2 , ẽ3 = c3ej3

where the cj are nonzero constants and the ordered 3-tuple (j1, j2, j3) is a permutation of

(1, 2, 3). This implies that the change-of-coordinates matrix P is a product of a diagonal

matrix by a permutation matrix. From this, we see that

diag(yd̃1 , yd̃2 , y−d̃1−d̃2) = diag(yd̄1 , yd̄2 , yd̄3)

for all y ∈ C∗, where the ordered 3-tuple
(
d̄1, d̄2, d̄3

)
is a permutation of the ordered 3-tuple

(d1, d2, d3), d3 = −d1 − d2. This yields d̄i = d̃i for 1 ≤ i ≤ 3. Since d1 > d2 > 0 and

d̃1 > d̃2 > 0, we see that (d1, d2) = (d̃1, d̃2), so that the parameterizations and in particular

their images are identical.

Finally, suppose G ' C∗ × C∗. Then G ⊆ D3 is a two-dimensional connected subgroup

of the two-dimensional torus SL3 ∩ D3 and therefore must be all of SL3 ∩ D3.

¥

4.3 Unipotent subgroups of SL3

As in the previous section, V = C3 is a three-dimensional vector space with fixed basis

E0 = {e1, e2, e3} , yielding a bijection between GL3 and GL(V ).

Lemma 4.3.1 Assume G ⊆ SL(V ) and B is a basis of V.
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1. Define U1
(0,0) = {(tij) ∈ U3 : t12 = 0, t23 = 0} .

(a) U1
(0,0) has a faithful parameterization

x 7→




1 0 x

0 1 0

0 0 1


 , x ∈ C,

so in particular U1
(0,0) ' C.

(b) If [G]B = U1
(0,0), then the G-invariant subspaces of V are:

• 〈αb1 + βb2〉 , where (α : β) ∈ P1(C); fixed elementwise

• 〈b1, b2〉 ; fixed elementwise

• 〈b1, γb2 + b3〉 , where γ ∈ C.

2. Define U1
(1,1) =

{
(tij) ∈ U3 : t12 = t23, t13 = 1

2 t212
}

.

(a) U1
(1,1) has a faithful parameterization

x 7→




1 x 1
2x2

0 1 x

0 0 1


 : x ∈ C,

so in particular U1
(1,1) ' C.

(b) If [G]B = U1
(1,1), then the G-invariant subspaces of V are 〈b1〉 and 〈b1, b2〉 .

3. Define U2
(1,0) = {(tij) ∈ U3 : t23 = 0} .

(a) U2
(1,0) has a faithful parameterization

(x, y) 7→




1 x y

0 1 0

0 0 1


 , x, y ∈ C,

so in particular U2
(1,0) ' C2.

(b) If [G]B = U2
(1,0), then the G-invariant subspaces are 〈b1〉 and 〈b1, αb2 + βb3〉 ,

where (α : β) ∈ P1(C).

4. Define U2
(0,1) = {(tij) ∈ U3 : t12 = 0} .
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(a) U2
(0,1) has a faithful parameterization

(x, y) 7→




1 0 x

0 1 y

0 0 1


 , x, y ∈ C,

so in particular U2
(0,1) ' C2.

(b) If [G]B = U2
(0,1), then the G-invariant subspaces are 〈αb1 + βb2〉 , where (α : β) ∈

P1(C), and 〈b1, b2〉 , all fixed elementwise.

5. Define U2
(1,1) = {(tij) ∈ U3 : t12 = t23} .

(a) U2
(1,1) has a faithful parameterization

(x, y) 7→




1 x y + 1
2x2

0 1 x

0 0 1


 , x, y ∈ C,

so in particular U2
(1,1) ' C2.

(b) If [G]B = U2
(1,1), then the G-invariant subspaces are 〈b1〉 and 〈b1, b2〉 .

6. If [G]B = U3, then the G-invariant subspaces are 〈b1〉 and 〈b1, b2〉 .

The above listed subgroups are pairwise nonconjugate; in particular, they are distinct.

Proof. These statements are verified by straightforward calculations.

¥

We shall see that every nontrivial unipotent subgroup of SL3 is conjugate to one of the

groups listed above. First we need two technical lemmas.

Lemma 4.3.2 Given a nontrivial matrix

M =




1 a b

0 1 c

0 0 1


 ∈ U3, (4.1)

then the group closure of M in U3 is

clos(M) =




(tij) ∈ U3 :

ct12 − at23 = 0
1
2at12t23 + bt12 − at13 − 1

2a2t23 = 0
1
2ct12t23 − 1

2c2t12 − ct13 + bt23 = 0




.
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Moreover, clos(M) has a faithful parameterization

x 7→




1 xa xb + x(x−1)
2 ac

0 1 xc

0 0 1


 , x ∈ C,

so in particular it is isomorphic to C.

Proof. A sequence of straightforward computations shows that the given set is a group con-

taining M, that it has the given parameterization, and that it is isomorphic to C. The desired

result then follows from the fact that C includes no nontrivial proper closed subgroup.

¥

Lemma 4.3.3 Define q : U3 → C2 by

q







1 x y

0 1 z

0 0 1





 = (x, z).

Then, the following statements hold:

1. q is an algebraic group homomorphism with kernel U1
(0,0).

2. U1
(0,0) is identical to (U3,U3), the commutator subgroup of U3.

3. Two matrices M1,M2 ∈ U3 commute if and only if there is a one-dimensional subspace

of C2 containing both q(M1) and q(M2), i.e., q(M1) and q(M2) differ by a scalar

multiple.

4. U1
(0,0) is identical to the center of U3.

5. Given a nontrivial matrix M of the form (4.1). Then the centralizer of M in U3 is

Cen
U3

(M) = clos(M) · U1
(0,0).

Moreover, this subgroup is isomorphic to Cr, where r is equal to 1 if clos(M) = U1
(0,0), 2

otherwise.
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Proof. Item 1 can be verified by direct computation. The reader can verify that if M1 =


1 a1 b1

0 1 c1

0 0 1


 and M2 =




1 a2 b2

0 1 c2

0 0 1


 , then

M1M2M
−1
1 M−1

2 =




1 0 a1c2 − c1a2

0 1 0

0 0 1


 ; (4.2)

Items 2 and 3 follow easily from this identity. Item 4 follows easily from Item 3. To prove

Item 5, let M̃ ∈ U3. Suppose M̃ commutes with M. Then, by Item 3, we have

M̃ =




1 xa b̃

0 1 xc

0 0 1




for some x, b̃ ∈ C. Write b̃ = xb +
x(x− 1)

2
ac + b̂, b̂ ∈ C. It is easy to check that

M̃ =




1 xa xb + x(x−1)
2 ac

0 1 xc

0 0 1







1 0 b̂

0 1 0

0 0 1


 .

Consider the right-hand side of this identity. By Lemma 4.3.2, the first matrix is a member

of clos(M); by Lemma 4.3.1, the second matrix is a member of U1
(0,0). Thus, M̃ ∈ clos(M) ·

U1
(0,0); this yields one inclusion. To prove the other inclusion, notice that elements of the

group closure clos(M) commute with M ; meanwhile, Item 4 of the lemma implies that

U1
(0,0) ⊆ CenU3(M). Moreover, by Lemma 4.3.2 (resp., Lemma 4.3.1), the subgroup clos(M)

(resp., the subgroup U1
(0,0)) is isomorphic to C. The desired result now follows easily.

¥

Lemma 4.3.4 Let G = [G]E0 ⊆ SL3 be a unipotent group. Let E ′ = {e1, e2, e3} be such that

G′ = [G]E′ ⊆ U3. Let q : U3 → C2 be the map defined in Lemma 4.3.3. Then, exactly one of

the following cases holds:

1. If q(G′) = C2, then G′ = U3.

2. Suppose q(G′) = 〈(a, c)〉 is a one-dimensional vector subgroup of C2 for some (a : c) ∈
P1, and U1

(0,0) ⊆ G′.
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(a) If a = 0, then G′ = U2
(0,1).

(b) If c = 0, then G′ = U2
(1,0).

(c) If a and c are nonzero, then there exists a basis B such that [G]B = U2
(1,1).

3. Suppose q(G′) = 〈(a, c)〉 is a one-dimensional vector subgroup of C2 for some (a : c) ∈
P1, and U1

(0,0) is not included in G′.

(a) If a = 0 or c = 0, then there exists a basis B such that [G]B = U1
(0,0).

(b) If a and c are both nonzero, then there exists a basis B such that [G]B = U1
(1,1).

4. Suppose q(G′) = 0. Then either G′ = U1
(0,0) or G′ = 1.

In particular, if G is nontrivial, then there exists a basis B and a unique subgroup Ĝ such

that [G]B = Ĝ and Ĝ is one of the subgroups listed in Lemma 4.3.1.

Proof.

1. Suppose q(G′) = C2. Let M1,M2 ∈ G′ be such that q(M1) = (1, 0), q(M2) = (0, 1). It

follows from (4.2) that M1M2M
−1
1 M−1

2 generates U1
(0,0) and therefore that U1

(0,0) ⊆ G′.

We now see that the closed subgroup G′ is three-dimensional, hence identical to U3.

To prove Items 2 and 3 of the lemma, suppose q(G′) = 〈(a, c)〉 as stated, and let

M =




1 a b

0 1 c

0 0 1


 = [φ]E′ ∈ G′,

where b ∈ C and φ ∈ G. It follows from Item 3 of Lemma 4.3.3 that G′ is abelian; it then

follows from Item 5 of that lemma that G′ ⊆ clos(M)·U1
(0,0). Since clos(M)·U1

(0,0) ' C2

and M ∈ clos(M) ⊆ G′, we see that G′ is either clos(M) or clos(M) · U1
(0,0).

2. Suppose U1
(0,0) ⊆ G′. Here, we see that G′ = clos(M) · U1

(0,0) ' C2.

(a) If a = 0, then it’s clear that G′ ⊆ U2
(0,1); a dimension count yields equality.

(b) If c = 0, then it’s clear that G′ ⊆ U2
(1,0); a dimension count yields equality.

(c) Assume a and c are nonzero. Write


1 0 1

0 1 0

0 0 1


 = [ψ0]E′ , ψ0 ∈ G,
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so in particular φ, ψ0 generate G. We may assume without loss of generality that

a = 1. Let B = {b1, b2, b3} , where bi = e′i for i = 1, 2 and b3 = c−1e′3. Then, one

calculates [φ]B =




1 1 bc−1

0 1 1

0 0 1


 and [ψ0]B ∈ U1

(0,0). This implies [G]B ⊆ U2
(1,1),

and a dimension count yields equality.

3. Suppose U1
(0,0) is not included in G′. Here, we see that G′ = clos(M) ' C and that G′

(resp., G) is generated by M (resp., φ).

(a) If a = 0, then let B = {b1, b2, b3} , where b1 = be′1 + ce′2, b2 = e′1, and b3 = e′3

for i = 1, 3. Then, one calculates [φ]B ∈ U1
(0,0), and it follows that [G]B = U1

(0,0).

If c = 0, then let B = {b1, b2, b3} , where b1 = e′1, b2 = a−1be′2 − e′3, b3 = e′2. In

this case also, one calculates [φ]B ∈ U1
(0,0) and obtains [G]B = U1

(0,0).

(b) If both a and c are nonzero, then we may assume without loss of generality

that a = 1. Let B̃ =
{

b̃1, b̃2, b̃3

}
, where b̃i = e′i for i = 1, 2 and b̃3 = c−1e′3.

Then one checks that [φ]B̃ =




1 1 bc−1

0 1 1

0 0 1


 . Define B = {b1, b2, b3} , where

b2 = b̃2 + (bc−1 − 1
2
)b̃1 and bi = b̃i for i = 1, 3. One calculates

[φ]B =




1 1 1
2

0 1 1

0 0 1


 .

By Lemmas 4.3.1 and 4.3.2, we see that U1
(1,1) is the group closure of the above

matrix; it follows that [G]B = U1
(1,1).

4. Item 4 of the lemma follows easily from Item 1 of Lemma 4.3.3.

¥

Lemma 4.3.5 Let G ⊆ SL3 be one of the two-dimensional unipotent subgroups listed in

Lemma 4.3.4.

1. If G = U2
(1,0), then

Nor
GL3

(G) = {(tij) ∈ GL3 : t21 = t31 = 0}
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and

Nor
SL3

(G) =
{

(tij) ∈ Nor
GL3

(G) : t11(t22t33 − t23t32) = 1
}

.

2. If G = U2
(0,1), then

Nor
GL3

(G) = {(tij) ∈ GL3 : t31 = t32 = 0}

and

Nor
SL3

(G) =
{

(tij) ∈ Nor
GL3

(G) : (t11t22 − t12t21)t33 = 1
}

.

3. If G = U2
(1,1), then NorGL3(G) = T3, NorSL3(G) = T3 ∩ SL3.

Proof. These statements are proved by straightforward calculations.

¥

4.4 Semisimple subgroups of SL3

The author would like to thank Mohan Putcha for his help in proving the following lemma.

Lemma 4.4.1 The only semisimple algebraic groups that can be embedded in SL3 are SL2,

PSL2 and SL3.

Proof. This proof relies on results from [FH91] and [Hum81]. The relevant results in

[FH91] are stated in [FH91] for the case in which C = C; these results are known to extend

to arbitrary algebraically closed fields of characteristic zero. We will use basic terminology

from Lie theory without detailed explanation here, since it is only needed in this section.

Let G be a semisimple group and T a maximal torus of G. Then, the Weyl group WG is

defined in [FH91], Sec. 14.1 to be the group generated by certain vector space involutions

on the dual of the Lie algebra of T. G also has a unique root system associated to it, and

this root system uniquely determines the Weyl group (ibid., Sec. 21.1). It is a fact (ibid,

Sec. 23.1) that WG is isomorphic to NG(T )/T. If B is a Borel subgroup of G and S is a full

set of coset representatives of T in NG(T ), then G has a Bruhat decomposition ([Hum81],

Sec. 28.3) given by G =
⋃
s∈S

BsB (disjoint union).

The group SL3 has maximal torus T = D3 ∩ SL3. Its root system is referred to as (A2)

([FH91], Sec. 21.1 and 23.1). The reader can verify that NSL3(T ) is the group of matrices

in SL3 with exactly one nonzero entry in each row (resp., column); it is then easy to show

that

WSL3 ' NSL3(T )/T ' S3. (4.3)

70



Now, let G0 ⊆ SL3 be semisimple, and let T0 be a maximal torus of G0. Then T0 has

rank either 1 or 2, i.e., either T0 ' C∗ or T0 ' C∗ × C∗. In the former case, it follows from

(ibid., Sec. 21.1 and 23.1) that G0 has root system (A1) and therefore is isomorphic to

either SL2 or PSL2.

Suppose T0 has rank 2; we wish to show that G0 = SL3. We may assume that T0 is

included in, hence equal to, D3 ∩ SL3. Also, by (ibid., Sec. 21.1), the root system of G0 is

one of (A1×A1), (A2), (B2), (G2). By inspection of the diagrams given in (ibid.), the Weyl

groups associated to these root systems are dihedral groups of order 4, 6, 8, 12, respectively.

In our case, we have that T0 = T = D3 ∩ SL3 is the maximal torus of both G0 and

SL3, so that WG0 ' NG0(T )/T is isomorphic to a subgroup of NSL3(T )/T. Of the dihedral

groups listed above, the only one whose order divides 6 is the one whose order is exactly 6,

i.e., S3. It now follows from (4.3) that G has root system (A2), that WG0 ' WSL3 , and that

NG0(T ) = NSL3(T ).

Since G0 has the same maximal torus and root system as SL3, it follows from [Hum81],

Sec. 28.1, that G0 and SL3 have the same maximal unipotent subgroup U3 and thus the

same Borel subgroup B = T3. Finally, we see that G0 and SL3 have identical Bruhat

decompositions, hence are identical.

¥

4.5 Admissible subgroups of SL3

We begin with a technical lemma.

Lemma 4.5.1 Given:

• M is a nontrivial matrix of the form (4.1)

• v ∈ C∗ is a nonroot of unity

• d1, d2, d3 are integers such that d1 ≥ d2 ≥ 0, d1 > 0, GCD(d1, d2) = 1, d1+d2+d3 = 0

• A1, A2, A3 are three distinct integers such that 1 ≤ Ai ≤ 3 for 1 ≤ i ≤ 3

• The matrix Q is given by

Q = diag
(
vdA1 , vdA2 , vdA3

)
. (4.4)

1. Suppose QMQ−1 ∈ clos(M). Then, the following statements hold:
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(a) If a = 0, b 6= 0, and c 6= 0, then d1 = d2 = 1 and A3 = 3.

(b) If a 6= 0, b 6= 0, and c = 0, then d1 = d2 = 1 and A1 = 3.

(c) If d1 > d2 and either a = 0 or c = 0, then two of {a, b, c} are zero.

(d) If a 6= 0 and c 6= 0, then d1 = 1, d2 = 0, A2 = 2, and b =
1
2
ac.

2. Suppose QMQ−1 ∈ clos(M) · U1
(0,0) and a 6= 0, c 6= 0. Then d1 = 1, d2 = 0, and

A2 = 2.

Proof. We compute

QMQ−1 =




1 vdA1−dA2 a vdA1−dA3 b

0 1 vdA2−dA3 c

0 0 1


 .

Let us first assume that this matrix is a member of clos(M).

Suppose a = 0. Then, by Lemma 4.3.2, there exists x ∈ C such that vdA1−dA3 b = xb

and vdA2−dA3 c = xc. If both b and c are nonzero, then vdA1−dA3 = x = vdA2−dA3 . It quickly

follows that dA1 = dA2 , which (due to hypotheses on the dj) implies d1 = d2 = 1. Also, A1

(resp., A2) is either 1 or 2, so that A3 = 3. This proves Item (1a) of the lemma. Item (1b)

is proved by similar logic.

Next, suppose a = 0 (resp., c = 0) and the other two parameters are nonzero. Then

Item (1a) (resp., Item (1b)) implies that d1 = d2. This proves Item (1c) by contrapositive.

Now suppose a 6= 0 and c 6= 0. In this case, our computation of QMQ−1, together with

Lemma 4.3.2, implies that

vdA1−dA2 = x = vdA2−dA3 for some x ∈ C. (4.5)

This yields dA1 −2dA2 +dA3 = 0, which together with dA1 +dA2 +dA3 = 0 implies dA2 = 0.

The hypotheses on the dj now easily yield d1 = 1, d2 = 0. We also have dA2 = 0, dA1 =

ε, dA3 = −ε, where ε = ±1; this implies x = vε. Lemma 4.3.2 also implies that the (1, 3)

coordinate of QMQ−1 is

vdA1−dA3 b = xb +
x(x− 1)

2
ac.

We may rewrite this identity as

v2εb = vεb +
v2ε − vε

2
ac.

Item (1d) of the lemma now follows after subtracting vεb from both sides and dividing by

v2ε − vε.
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To prove Item Two, it follows from Lemma 4.3.3 that

clos(M) · U1
(0,0) =







1 xa y

0 1 xc

0 0 1


 : x, y ∈ C




.

Therefore, (4.5) holds in this case, and the listed conclusions follow as in the previous case.

¥

The following seven lemmas establish conjugacy classes for subgroups having certain Levi

decompositions. Lemma 4.5.2 (resp., Lemma 4.5.4; Lemma 4.5.6) enumerates a list of sub-

groups having trivial semisimple part and describes some of their properties. Lemma 4.5.3

(resp., Lemma 4.5.5; Lemma 4.5.7) shows that these subgroups form a set of conjugacy class

representatives. Lemma 4.5.8 addresses the case in which the reductive part is either SL2

or GL2 and the unipotent radical is C2. In each lemma, ni is the number of i-dimensional

G-invariant subspaces for i = 1, 2.

Lemma 4.5.2 Given G = [G]A ⊆ SL3, where G is a subgroup of SL3(V ) and A = {a1, a2, a3}
is a basis of V.

1. Suppose G = U1
(0,0) · PσT(d1,d2)P

−1
σ , d1 > d2 ≥ 0,GCD(d1, d2) = 1, σ ∈ S3, σ ∈

{id, (1 2), (2 3)} if (d1, d2) = (1, 0). Then G has a faithful parameterization

(x, y) 7→




ydI1 0 x

0 ydI2 0

0 0 ydI3


 ,

where d3 = −d1 − d2 and σ(Ij) = j for 1 ≤ j ≤ 3. Under this parameteriza-

tion, we have (Int y)(x) = ydI1−dI3 x. Moreover, the G-invariant subspaces of V are

〈a1〉 , 〈a2〉 , 〈a1, a2〉 and 〈a1, a3〉 , so that n1 = n2 = 2.

2. Suppose G = U1
(1,1) · T(1,0). Then G has a faithful parameterization

(x, y) 7→




y x 1
2x2

0 1 x

0 0 y−1


 .

Under this parameterization, we have (Int y)(x) = yx. The G-invariant subspaces are

〈a1〉 and 〈a1, a2〉 , so that n1 = n2 = 1.
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3. Suppose G = U1
(0,0) · T(1,1). Then G has a faithful parameterization

(x, y) 7→




y 0 x

0 y 0

0 0 y−2




under which (Int y)(x) = y3x. The G-invariant subspaces are 〈αa1 + βa2〉 , where (α :

β) ∈ P1; 〈a1, a2〉 ; and 〈a1, a3〉 . Thus, we have n1 = ∞, n2 = 2.

4. Suppose G = U1
(0,0) · P(1 3)T(1,1)P

−1
(1 3). Then G has a faithful parameterization

(x, y) 7→




y−2 0 x

0 y 0

0 0 y




under which (Int y)(x) = y−3x. The G-invariant subspaces are 〈a1〉 , 〈a2〉 , and

〈a1, αa2 + βa3〉 , (α : β) ∈ P1.

Thus, we have n1 = 2, n2 = ∞.

5. Suppose G = U2
(1,0) · PσT(d1,d2)P

−1
σ , where d1 > d2 ≥ 0,GCD(d1, d2) = 1, and σ ∈

{id, (1 2), (1 2 3)} . This group has a faithful parameterization

(w, x, y) 7→




ydI1 w x

0 ydI2 0

0 0 ydI3


 ,

where d3 = −d1−d2 and σ(Ij) = j for 1 ≤ j ≤ 3. Under this parameterization, we have

(Int y)(w, x) = (ydI1−dI2 w, ydI1−dI3 x). The G-invariant subspaces are 〈a1〉 , 〈a1, a2〉 and

〈a1, a3〉 , so that n1 = 1, n2 = 2.

6. Suppose G = U2
(0,1) · PσT(d1,d2)P

−1
σ , where d1 > d2 ≥ 0,GCD(d1, d2) = 1, and σ ∈

{id, (2 3), (1 3 2)} . Then G has a faithful parameterization

(w, x, y) 7→




ydI1 0 w

0 ydI2 x

0 0 ydI3


 ,

where d3 = −d1 − d2 and σ(Ij) = j for 1 ≤ j ≤ 3. Under this parameterization, we

have (Int y)(w, x) = (ydI1−dI3 w, ydI2−dI3 x). The G-invariant subspaces are 〈a1〉 , 〈a2〉
and 〈a1, a2〉 , so that n1 = 2, n2 = 1.
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7. Suppose G = U2
(1,1) · T(1,0). Then G has a faithful parameterization

(w, x, y) 7→




y w x + 1
2w2

0 1 w

0 0 y−1


 .

Under this parameterization, we have (Int y)(w, x) = (yw, y2x). The G-invariant sub-

spaces are 〈a1〉 and 〈a1, a2〉 , so that n1 = n2 = 1.

8. Suppose G = U2
(1,0) · P(1 3)T(1,1)P

−1
(1 3). Then G has a faithful parameterization

(w, x, y) 7→




y−2 w x

0 y 0

0 0 y


 .

Under this parameterization, we have (Int y)(w, x) = (y−3w, y−3x). The G-invariant

subspaces are 〈a1〉 and 〈a1, αa2 + βa3〉 , where (α : β) ∈ P1. Thus, we have n1 = 1, n2 =

∞.

9. Suppose G = U2
(0,1) · T(1,1). Then G has a faithful parameterization

(w, x, y) 7→




y 0 w

0 y x

0 0 y−2


 .

Under this parameterization, we have (Int y)(w, x) = (y3w, y3x). The G-invariant sub-

spaces are 〈αa1 + βa2〉 , where (α : β) ∈ P1; and 〈a1, a2〉 . Thus, we have n1 = ∞, n2 =

1.

The above listed subgroups are pairwise nonconjugate; in particular, they are distinct.

Proof. The statements in this lemma are verified by straightforward computations, as is

the fact that the above listed sets are subgroups. Nonconjugacy of the various groups

follows after studying their actions on invariant subspaces. In Item 1, the stipulation that

σ ∈ {id, (1 2), (2 3)} if (d1, d2) = (1, 0) is necessary because P(1 3)T(1,0)P
−1
(1 3) = T(1,0).

¥

Lemma 4.5.3 Suppose G = [G]E0 is a subgroup of SL3 that is isomorphic to Cr oC∗, where

r is either 1 or 2. Let G have Levi decomposition G = RuT, where Ru ' Cr and T ' C∗. Let
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F (resp., B) be a basis of V such that [T]F (resp., [Ru]B) is one of the subgroups listed in

Lemma 4.2.3 (resp., Lemmas 4.3.1 and 4.3.4).

1. Suppose [T]F = T(d1,d2) for some d1, d2 ∈ Z with d1 > d2 ≥ 0,GCD(d1, d2) = 1.

(a) If [Ru]B = U1
(0,0), then there exists a basis A such that [G]A = U1

(0,0)·PσT(d1,d2)P
−1
σ

for some σ ∈ S3. If (d1, d2) = (1, 0), then σ can be taken to be one of the

permutations {id, (1 2), (2 3)} .

(b) If [Ru]B = U1
(1,1), then d1 = 1, d2 = 0, and there exists a basis A such that

[G]A = U1
(1,1) · T(1,0).

(c) If [Ru]B = U2
(1,0), then there exists a permutation σ ∈ {id, (1 3), (1 2 3)} such that

[G]Fσ
= U2

(1,0) · PσT(d1,d2)P
−1
σ .

(d) If [Ru]B = U2
(0,1), then there exists a permutation σ ∈ {id, (2 3), (1 3 2)} such that

[G]Fσ
= U2

(0,1) · PσT(d1,d2)P
−1
σ .

(e) If [Ru]B = U2
(1,1), then d1 = 1, d2 = 0, and there exists a basis A such that

[G]A = U2
(1,1) · T(1,0).

2. Suppose [T]F = T(1,1). Then [Ru]B is one of
{

U1
(0,0), U

2
(1,0), U

2
(0,1)

}
. Moreover, the

following statements hold:

(a) If [Ru]B = U1
(0,0), then there exist a basis A and a permutation σ ∈ {id, (1 3)}

such that [G]A = U1
(0,0) · PσT(1,1)P

−1
σ .

(b) If [Ru]B = U2
(1,0), then [G]F(1 3) = U2

(1,0) · P(1 3)T(1,1)P
−1
(1 3).

(c) If [Ru]B = U2
(0,1), then [G]F = U2

(0,1) · T(1,1).

In particular, there exists a basis A and a unique subgroup Ĝ such that [G]A = Ĝ and Ĝ is

one of the subgroups listed in Lemma 4.5.2.

Proof. By the Lie-Kolchin theorem, there exists a flag

0 ( V1 ( V2 ( V

that is preserved by the action of G.

1. Suppose [T]F = T(d1,d2) for some d1, d2 ∈ Z with d1 > d2 ≥ 0,GCD(d1, d2) = 1. Let

d3 = −d1− d2. Now, V1 ⊆ V is a G-invariant subspace and in particular a T-invariant

subspace, so that by Lemma 4.2.2 we have V1 = 〈fA1〉 for some index A1. An analogous
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argument shows that V2 = 〈fA1 , fA2〉 for some index A2. Let ω ∈ S3 be the permutation

such that ω(Aj) = j for j = 1, 2; define A3 so that ω(A3) = 3. Following the notational

convention established in Section 2.1, we consider the ordered basis

Fω = {fA1 , fA2 , fA3} .

Fix a nonroot of unity v ∈ C∗. From the parameterization given in Lemma 4.2.2, we

see that [T]Fω
is generated by the matrix Q, where Q is given by (4.4).

We will next consider the subgroup [Ru]Fω
. Since V1 and V2 are G-invariant, we see

that [G]Fω
⊆ T3. This fact, together with the identity

[G]Fω
= [Ru]Fω

[T]Fω
, (4.6)

implies that [Ru]Fω
⊆ U3.

• Assume Ru ' C. Let φ ∈ SL(V ) be a generator of Ru. Then [Ru]Fω
is generated

by a nontrivial matrix M = [φ]Fω
of the form (4.1). Since (4.6) is a Levi decom-

position, we have QMQ−1 ∈ [Ru]Fω
, where Q is the generator of [T]Fω

specified

above.

Suppose [Ru]B = U1
(0,0). Then [Ru]Fω

is conjugate to U1
(0,0). Let q : U3 → C2 be

the mapping defined in Lemma 4.3.3. Then q(M) = (a, c) ∈ C2. Since U1
(0,0) is

nonconjugate to U1
(1,1) by Lemma 4.3.1, it follows from Item 3 of Lemma 4.3.4

that either a = 0 or c = 0. Lemma 4.5.1 now implies that two of {a, b, c} are zero.

Define τ ∈ S3 to be (2 3) if a 6= 0, id if b 6= 0, (1 2) if c 6= 0. Define σ = τ ◦ ω.

It is now an exercise involving the definitions and Lemma 4.1.4 to check that

[G]Fσ
= U1

(0,0) · PσT(d1,d2)P
−1
σ . If (d1, d2) = (1, 0), then PσT(1,0)P

−1
σ is one of the

following three groups:

{
t, 1, t−1

}
= T(1,0),

{
1, t, t−1

}
= P(1 2)T(1,0)P

−1
(1 2),

{
t, t−1, 1

}
= P(2 3)T(1,0)P

−1
(2 3).

Item 1(a) of the conclusion now follows easily.

Now suppose [Ru]B = U1
(1,1), i.e., a 6= 0 and c 6= 0. Here, Lemma 4.5.1 implies that

d1 = 1, d2 = 0, A2 = 2, and b =
1
2
ac. Define A = {a1, a2, a3} by a1 = afA1 , a2 =

f2, a3 = c−1fA3 . It is easy to check that [φ]A =




1 1 1/2

0 1 1

0 0 1


 , from which we
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obtain [Ru]A = U1
(1,1). Next, from A2 = 2 we see that ω is either id or (1 3). In

either case, we claim that [T]Fω
= T(1,0). Indeed, this statement is trivial in case

ω = id; if ω = (1 3), one checks that

P(1 3)T(1,0)P
−1
(1 3) = T(1,0),

and the claim follows easily in this case as well. From [T]Fω
= T(1,0) we obtain

[T]A = [id]Fω,A[T]Fω
[id]A,Fω

= diag(a−1, 1, c)T(1,0) diag(a, 1, c−1) = T(1,0).

We conclude that [G]A = [Ru]A[T]A = U1
(1,1) · T(1,0) as desired.

• Now assume Ru ' C2. If [Ru]B = U2
(1,0), then Lemma 4.3.1 implies that V1 = 〈b1〉

and Ru acts trivially on V/V1. It follows that b1 and fA1 differ by a scalar multiple

and that φ(fAj
) ∈ fAj

+ V1 for φ ∈ Ru and j ∈ {2, 3} . This implies that [Ru]Fω
=

U2
(1,0). Moreover, we may swap fA2 and fA3 if necessary so that A2 < A3. Since

Aj = σ−1(j), this means that we only need consider the permutations id, (1 3)

and (1 2 3). Item 1(c) of the lemma is now clear.

If [Ru]B = U2
(0,1), then Lemma 4.3.1 implies that

V2 = 〈fA1 , fA2〉 = 〈b1, b2〉

and Ru acts trivially on V2 and V/V2. It follows that [Ru]Fω
= U2

(0,1). Moreover,

in this case, we may swap fA1 and fA2 if necessary so that A1 < A2. Thus, we

need only consider the permutations id, (2 3) and (1 3 2). Item 1(d) of the lemma

follows.

Next, suppose [Ru]B = U2
(1,1). Since [Ru]Fω

⊆ U3, the proof of Lemma 4.3.4 implies

that [Ru]Fω
= clos(M) ·U1

(0,0) for some matrix M of the form (4.1) with a 6= 0, c 6=
0. Here, Lemma 4.5.1 yields d1 = 1, d2 = 0, A2 = 2. Define A = {a1, a2, a3} by

a1 = afA1 , a2 = f2, a3 = c−1fA3 . Then, a computation analogous to that used in

the case [Ru]B = U1
(1,1) shows that [G]A = U2

(1,1) · T(1,0), as stated in Item 1(e).

2. Suppose [T]F = T(1,1), so that d1 = d2 = 1 and we define d3 = −2. In this case,

[T]F is generated by a matrix of the form diag(v, v, v−2), v ∈ C∗ a nonroot of unity.

Recall that V1 is a G-invariant subspace and in particular a T-invariant subspace.

Therefore V1 is either 〈f3〉 or 〈αf1 + βf2〉 for some nonzero (α, β). In order to narrow
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down our list of choices, note that our choice of basis F is arbitrary, so long as

[T]F = T(1,1). Therefore, in case V1 6= 〈f3〉 , we may swap f1 and f2 in F or replace

f1 with f1 + γf2 (γ ∈ C) if necessary so that V1 = 〈f1〉 ; Lemma 4.2.2 then implies

that either V2 = 〈f1, f2〉 or V2 = 〈f1, f3〉 . In case V1 = 〈f3〉 , we may perform a similar

operation if necessary so that V2 = 〈f2, f3〉 . Thus, without loss of generality, we may

assume that one of the following holds:

• V1 = 〈f1〉 , V2 = 〈f1, f2〉 (ω = id)

• V1 = 〈f1〉 , V2 = 〈f1, f3〉 (ω = (2 3))

• V1 = 〈f3〉 , V2 = 〈f2, f3〉 (ω = (1 3))

We now see that [G]Fω
is included in T3, where ω is the appropriate permutation

defined above. Let Aj = ω−1(j) for 1 ≤ j ≤ 3, so that [T]Fω
is generated by a matrix

Q of the form (4.4).

• Assume Ru ' C. Let φ ∈ SL(V ) be a generator of Ru. Then [Ru]Fω
is generated

by a nontrivial matrix M = [φ]Fω
of the form (4.1). Since (4.6) is a Levi decom-

position, we have QMQ−1 ∈ [Ru]Fω
, where Q is the generator of [T]Fω

specified

above.

Suppose [Ru]B = U1
(0,0), i.e., either a = 0 or c = 0. We distinguish three subcases:

– If a = c = 0, then [Ru]Fω
= U1

(0,0) and we have [G]Fω
= U1

(0,0) · T(1,1).

– If a = 0, b 6= 0, c 6= 0, then Lemma 4.5.1 implies that A3 = 3, so that ω = id

by hypothesis. If we now let a1 = bf1+cf2, a2 = f2, a3 = f3, then [T]A = T(1,1)

since T acts in the same way on all subspaces of the form αf1 +βf2, α, β ∈ C.
Meanwhile, it is easy to check that [φ]A ∈ U1

(0,0), so that [Ru]A = U1
(0,0); we

conclude that [G]A = U1
(0,0) · T(1,1).

– If a 6= 0, b 6= 0, c = 0, then Lemma 4.5.1 implies that A1 = 3, so that

ω = (1 3) by hypothesis; if we now let a1 = f3, a2 = a−1bf2− f1, a3 = f2, then

a sequence of calculations similar to the previous case shows that [G]A =

U1
(0,0) · P(1 3)T(1,1)P(1 3).

Each subcase is consistent with Item (2a) of the lemma. Note that [Ru]B cannot

be U1
(1,1) if [T]F = T(1,1), by Item (1d) of Lemma 4.5.1.

• Assume Ru ' C2.

Note that [Ru]B cannot be U2
(1,1) if [T]F = T(1,1), by Item 2 of Lemma 4.5.1.
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Suppose [Ru]B = U2
(1,0). Then, by Lemma 4.3.4, we have

V1 = 〈b1〉 = 〈fA1〉

and Ru acts trivially on V/V1. We conclude that [Ru]Fω
⊆ U2

(1,0) and hence

[Ru]Fω
= U2

(1,0). A defect argument then implies that ω = (1 3), and we con-

clude that [G]F(1 3) = U2
(1,0) · P(1 3)T(1,1)P

−1
(1 3).

Suppose [Ru]B = U2
(0,1). Here, Ru fixes V2 elementwise. We conclude that [Ru]Fω

=

U2
(0,1). A defect argument implies ω = id . We conclude that [G]F = U2

(0,1) ·T(1,1).

¥

Lemma 4.5.4 Given G = [G]A ⊆ SL3, where G is a subgroup of SL3(V ) and A = {a1, a2, a3}
is a basis of V.

1. Suppose G = U1
(0,0) · (D3 ∩ SL3). Then G admits a faithful parameterization

(x, y1, y2) 7→




y1 0 x

0 y2 0

0 0 (y1y2)−1


 ,

under which (Int(y1, y2))(x) = y2
1y2x. The G-invariant subspaces are 〈a1〉 , 〈a2〉 , 〈a1, a2〉

and 〈a1, a3〉 , so that n1 = n2 = 2.

2. Suppose G = U2
(1,0) · (D3 ∩ SL3). Then G has a faithful parameterization

(w, x, y1, y2) 7→




y1 w x

0 y2 0

0 0 (y1y2)−1


 ,

under which (Int(y1, y2))(w, x) = (y1y
−1
2 w, y2

1y2x). The G-invariant subspaces are

〈a1〉 , 〈a1, a2〉 and 〈a1, a3〉 , so that n1 = 1, n2 = 2.

3. Suppose G = U2
(0,1) · (D3 ∩ SL3). Then G has a faithful parameterization

(w, x, y1, y2) 7→




y1 0 w

0 y2 x

0 0 (y1y2)−1


 ,

under which (Int(y1, y2))(w, x) = (y2
1y2w, y1y

2
2x). The G-invariant subspaces are 〈a1〉 ,

〈a2〉 and 〈a1, a2〉 , so that n1 = 2, n2 = 1.
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The above listed subgroups are pairwise nonconjugate; in particular, they are distinct.

Proof. The statements in this lemma are verified by straightforward computations, as is the

fact that the above listed sets are subgroups. Nonconjugacy of the various groups follows

after studying their actions on invariant subspaces.

¥

Lemma 4.5.5 Suppose G = [G]E0 is a subgroup of SL3 that is isomorphic to Cr o (C∗×C∗),
where r is either 1 or 2. Let G have Levi decomposition G = RuT, where Ru ' Cr and T '
C∗×C∗. Let F (resp., B) be a basis of V such that [T]F (resp., [Ru]B) is D3∩SL3 (resp., one of

the subgroups listed in Lemmas 4.3.1 and 4.3.4). Then [Ru]B is one of
{

U1
(0,0), U

2
(1,0), U

2
(0,1)

}
.

Moreover, the following statements hold:

1. If [Ru]B = U1
(0,0), then there exists a permutation σ ∈ S3 such that [G]Fσ

= U1
(0,0) ·

(D3 ∩ SL3).

2. If [Ru]B = U2
(1,0), then there exists a permutation σ ∈ S3 such that [G]Fσ

= U2
(1,0) ·

(D3 ∩ SL3).

3. If [Ru]B = U2
(0,1), then there exists a permutation σ ∈ S3 such that [G]Fσ

= U2
(0,1) ·

(D3 ∩ SL3).

In particular, there exists a basis A and a unique subgroup Ĝ such that [G]A = Ĝ and Ĝ is

one of the subgroups listed in Lemma 4.5.4.

Proof. By the Lie-Kolchin theorem, there exists a flag

0 ( V1 ( V2 ( V

that is preserved under the action of G.

It follows from Lemma 4.2.2 that (after reordering the basis vectors of F if necessary)

V1 = 〈f1〉 , V2 = 〈f1, f2〉 . It follows that [Ru]F ⊆ U3. Let M be a member of [Ru]F , where M

is as described in (4.1). If [Ru]F 6= U1
(0,0), then assume M /∈ U1

(0,0).

Let Q = diag
(
v1, v2, (v1v2)−1

)
∈ [T]F with v2 a nonroot of unity. We compute

QMQ−1 =




1 v1v
−1
2 a v2

1v2b

0 1 v1v
2
2c

0 0 1


 .
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If both a and c are nonzero, then the proof of Lemma 4.3.3 and the fact that QMQ−1 ∈ [Ru]F

imply that v1v
−1
2 = x = v1v

2
2 for some x ∈ C, which in turn implies that v3

2 = 1. This

contradicts hypothesis on v2, and we conclude that either a = 0 or c = 0.

In case Ru ' C2, we may apply Lemma 4.3.3 and its proof to show that [Ru]F = clos(M)·
U1

(0,0); the desired result then follows easily. In case Ru ' C, an additional normalization

argument shows that two of {a, b, c} are zero. Thus, we may reorder the vectors of F if

necessary so that R′u = U1
(0,0), and the result follows.

¥

Lemma 4.5.6 Given G = [G]A ⊆ SL3, where G is a subgroup of SL3(V ) and A = {a1, a2, a3}
is a basis of V.

1. Suppose G = U3 · PσT(d1,d2)P
−1
σ , d1 > d2 ≥ 0,GCD(d1, d2) = 1, σ ∈ S3, σ ∈

{id, (1 2), (2 3)} if (d1, d2) = (1, 0). Then G has a faithful parameterization





1 v w

0 1 x

0 0 1


 , y


 7→




ydI1 v w

0 ydI2 x

0 0 ydI3


 ,

where d3 = −d1 − d2 and σ(Ij) = j for 1 ≤ j ≤ 3. Under this parameterization, we

have

(Int y)







1 v w

0 1 x

0 0 1





 =




1 ydI1−dI2 v ydI1−dI3 w

0 1 ydI2−dI3 x

0 0 1


 .

2. Suppose G = U3 · P(2 3)T(1,1)P
−1
(2 3). This subgroup has a faithful parameterization





1 v w

0 1 x

0 0 1


 , y


 7→




y v w

0 y−2 x

0 0 y


 .

Under this parameterization, we have

(Int y)







1 v w

0 1 x

0 0 1





 =




1 y3v w

0 1 y−3x

0 0 1


 .

In either case, the G-invariant subspaces are 〈a1〉 and 〈a1, a2〉 , so that n1 = n2 = 1. These

subgroups are pairwise nonconjugate; in particular, they are distinct.
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Proof. The statements in this lemma are verified by straightforward computations, as is the

fact that the above listed sets are subgroups. Nonconjugacy of the various groups follows

after studying their actions on invariant subspaces.

¥

Lemma 4.5.7 Suppose G = [G]E0 is a subgroup of SL3 that is isomorphic to U3 oC∗. Let G

have Levi decomposition G = RuT, where Ru ' U3 and T ' C∗. Let F (resp., B) be a basis

of V such that [T]F (resp., [Ru]B) is one of the subgroups listed in Lemma 4.2.3 (resp., U3).

1. If [T]F = T(d1,d2), d1 > d2 ≥ 0, GCD(d1, d2) = 1, then there exists a basis A such

that [G]A = U3 · PσT(d1,d2)P
−1
σ for some σ ∈ S3. If (d1, d2) = (1, 0), then we may take

σ to be one of {id, (1 2), (2 3)} .

2. If [T]F = T(1,1), then there exists a basis A such that [G]A = U3 · P(2 3)T(1,1)P
−1
(2 3).

In particular, there exists a basis A and a unique subgroup Ĝ such that [G]A = Ĝ and Ĝ is

one of the subgroups listed in Lemma 4.5.6.

Proof. By the Lie-Kolchin theorem, there exists a flag 0 ( V1 ( V2 ( V that is preserved

by the action of G.

Let F be as in Lemma 4.2.3 and let [T]F = T(d1,d2) for some d1, d2, d1 ≥ d2 ≥ 0. If

d1 > d2, then there exists a permutation ω such that [G]Fω
⊆ T3. It follows that [G]Fω

is one of the groups listed in Item 1. If (d1, d2) = (1, 0), then PωT(1,0)P
−1
ω is one of the

following three groups:

{
t, 1, t−1

}
= T(1,0),

{
1, t, t−1

}
= P(1 2)T(1,0)P

−1
(1 2),

{
t, t−1, 1

}
= P(2 3)T(1,0)P

−1
(2 3).

Item 1 of the conclusion now follows easily.

If d1 = d2 = 1, then we may alter our definition of the basis F if necessary so that V1 is

generated by either f1 or f3. Therefore, there exists a permutation ω such that [G]Fω
⊆ T3

in this case as well. Now, a defect argument implies that ω = (2 3), and we conclude that

[G]Fω
is the group listed in Item 2.

¥

Lemma 4.5.8 Suppose G = [G]E0 is a subgroup of SL3 that is isomorphic to C2 o P, where

P = [P]E0 is isomorphic to either SL2 or GL2. Then there exist a basis A and a unique

subgroup Ĝ ⊆ SL3 such that Ĝ = [G]A is one of the following subgroups:
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1. If P ' SL2 :

(a) {(tij) ∈ SL3 : t31 = t32 = 0, t33 = 1} ' C2 o SL2, in which conjugation is given

by the unique irreducible representation of SL2 on C2. In this case, the only G-

invariant subspace is 〈a1, a2〉 , so that n1 = 0, n2 = 1.

(b) {(tij) ∈ SL3 : t21 = t31 = 0, t11 = 1} ' C2 o SL2, in which conjugation is given

by the unique irreducible representation of SL2 on C2. In this case, the only G-

invariant subspace is 〈a1〉 , so that n1 = 1, n2 = 0.

2. If P ' GL2 :

(a) {(tij) ∈ SL3 : t31 = t32 = 0} ' C2 o GL2, in which conjugation is given by

M.v = (det M)Mv for M ∈ GL2, v ∈ C2.

In this case, the only G-invariant subspace is 〈a1, a2〉 , so that n1 = 0, n2 = 1.

(b) {(tij) ∈ SL3 : t21 = t31 = 0} ' C2 o GL2, in which conjugation is given by

M.v = (detM)−1(M−1)T v for M ∈ GL2, v ∈ C2.

In this case, the only G-invariant subspace is 〈a1〉 , so that n1 = 1, n2 = 0.

Proof. By Lemma 4.3.4, there exists a basis B such that the subgroup [Ru]B is one of{
U2

(1,0), U
2
(0,1), U

2
(1,1)

}
. Let P ′ = [P]B. Then P ′ is included in NorSL3([Ru]B). The desired

result now follows easily from Lemma 4.3.5; note that [Ru]B cannot be U2
(1,1) because the

normalizer of the latter group is included in T3 while P cannot be upper-triangularized.

The statements about invariant subspaces are verified by calculations.

¥

We give one more technical lemma before proceeding.

Lemma 4.5.9 1. For d ≥ 0, define Xd ' Cd+1 to be the space of homogeneous polyno-

mials of degree d in C[x, y], where x and y are indeterminates. Define
 a b

c d


 .(xiyd−i) = (ax + cy)i(bx + dy)d−i

for a typical element


 a b

c d


 ∈ SL2 and a typical basis vector xiyd−i of Xd, 0 ≤ i ≤

d. Then, up to isomorphism, the induced action of SL2 on Xd is the unique irreducible
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(d + 1)-dimensional representation of SL2. If d is odd, then this representation is

faithful. If d is even and greater than zero, then the representation has kernel {±I2}
and thus induces a faithful (d + 1)-dimensional representation of PSL2. Moreover, the

only nontrivial irreducible representations of PSL2 are the ones which arise in this

way.

2. If G0 is an algebraic group and the vector space W is an irreducible G0-module, then

any G0-module endomorphism of W is a scalar multiple of the identity.

3. Given a faithful representation SL2 → SL(W ) with W ' C3. Then there exists a

decomposition

W = W1 + W2 (direct sum of SL2-invariant subspaces),

where Wr ' Xr−1 ' Cr, Xr−1 as described in Item 1, for r = 1, 2. Moreover, W1 and

W2 are the only nonzero proper SL2-invariant subspaces of W.

4. Let G0 be one of {SL2,PSL2} and let A be one of {C, C∗} . Then it is impossible to

embed G0 ×A in SL3.

Proof. The first statement is proved in Section 23.1 of [FH91]. The second statement is a

special case of Lemma 3.4.1.

To prove the third statement, notice that SL2 is reductive and therefore W is completely

reducible over SL2. Since the representation is faithful, we can rule out W ' X2 as well as

W ' X0 ⊕ X0 ⊕ X0. Thus, we must have W ' X0 ⊕ X1; this yields the first part of the

statement. To prove the second part, let w ∈ W \ (W1∪W2); we will show that the smallest

SL2-invariant subspace of W containing w is W itself. Write w = w1 + w2 ∈ W,w1 ∈
W1, w2 ∈ W2, and assume w1, w2 6= 0. Then, it is easy to show that there exist φ1, φ2 ∈ SL2

such that the set

{w, φ1(w) = w1 + φ1(w2), φ2(w) = w1 + φ2(w2)}

is linearly independent. This proves the desired result.

We prove the fourth statement as follows: In this situation we may identify SL3 with

SL(W ), where W ' C3 is a vector space. Suppose Φ : G0 × A → SL(W ) is an embedding,

where G0 (resp., A) is one of the groups listed in the statement. Then Φ({1} × A) is the

group closure of some operator ψ ∈ SL(W ). Also, G0 ' G0 × {id} acts faithfully on W via

Φ.
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Suppose G0 = SL2, so that W = W1+W2 as in Item 3 of the lemma. Since Φ(SL2×{id})
commutes with ψ, we see that ψ(W2) is a SL2-invariant subspace of W, which by Item 3

must then be W2 itself. Moreover, ψ|W2 is a SL2-module endomorphism. Item 2 of the

lemma then implies that ψ|W2 = α · id |W2 for some α ∈ C∗. It quickly follows that, with

respect to some suitable basis B of W,

[Φ(A)]B =







c−2 0 0

0 c 0

0 0 c


 : c 6= 0




.

Setting c = −1 in the above formula, we see that the matrix diag(1,−1,−1) is contained

in Φ(A) ∩ Φ(SL2), contradicting the hypothesis that the product of G0 and A is a direct

product.

Now suppose G0 = PSL2. By Item 1 of the lemma, we see that W is isomorphic to the

vector space X2 ' C3, viewed as a PSL2-module. In particular, W is irreducible over PSL2.

We also see that ψ is a PSL2-module endomorphism of W. As in the previous case, Item 2

implies that ψ is a scalar multiple of the identity, so that Φ(A) = D3 is the group of scalar

matrices. Here, we see that the matrix diag(ζ3, ζ3, ζ3), where ζ3 is a primitive cube root of

unity, is contained in Φ(A) ∩ Φ(PSL2), contradicting hypothesis as in previous case.

¥

We are now ready to prove Theorem 4.1.5.

Proof of Theorem 4.1.5. In what follows, G ⊆ SL3 is an admissible subgroup; G = RuP is

a Levi decomposition with P (resp., Ru) a maximal reductive subgroup (resp., the unipotent

radical) of G; H = (P, P ) is semisimple and T = Z(P )◦ is a torus. Let G = [G]E0 , where

E0 = {e1, e2, e3} is a fixed basis of the vector space V ' C3 and G ⊆ SL(V ). Also let

Ru = [Ru]E0 , P = [P]E0 ,H = [H]E0 , and T = [T]E0 .

By Lemma 4.2.3, there exist a basis F = {f1, f2, f3} and a unique subgroup T ′ ⊆ SL3

such that T ′ = [T]F is one of the subgroups listed in Lemma 4.2.3. By Lemma 4.3.4, there

exist a basis B = {b1, b2, b3} and a unique subgroup R′u ⊆ SL3 such that R′u = [Ru]B is one

of the subgroups listed in Lemma 4.3.4.

We study the admissible subgroups by cases according to decomposition, as follows:

1. H ' 1.

(a) T ' 1. In this case, the zero-defect property of admissible groups implies that
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G ' 1.

(b) T ' C∗.

i. Ru ' 0. Here, G ' C∗ is as described in Lemma 4.2.3.

ii. Ru ' C. Here, G ' C o C∗. See Lemma 4.5.3.

iii. Ru ' C2. Here, G ' C2 o C∗. See Lemma 4.5.3.

iv. Ru ' U3. Here G ' U3 o C∗. See Lemma 4.5.7.

(c) T ' C∗ × C∗.

i. Ru ' 0. Here, G ' C∗ × C∗ is conjugate to D3 ∩ SL3, cf. Lemma 4.2.3.

ii. Ru ' C. Here, G ' C o (C∗ × C∗). See Lemma 4.5.5.

iii. Ru ' C2. Then G ' C2 o (C∗ × C∗). See Lemma 4.5.5.

iv. Ru ' U3. Then G ' U3o(C∗×C∗). In this case, it is clear that G is conjugate

to [G]A = T3 ∩ SL3 for some suitable basis A. The G-invariant subspaces are

〈a1〉 and 〈a1, a2〉 .

2. H ' SL2.

(a) T ' 1.

i. Ru ' 0. Here, G ' SL2, and it follows from Lemma 4.5.9 that there exists a

basis A of V such that

[G]A =




(tij) ∈ SL3 :

t13 = t23 = 0

t31 = t32 = 0

t33 = 1




.

By Lemma 4.5.9, the G-invariant subspaces are 〈a1, a2〉 and 〈a3〉 .

ii. Ru ' C. Here, by Lemma 4.5.9, the only possible conjugation action of SL2

on C is the trivial action. Therefore, by hypothesis on the defect of G, we

conclude that this case does not arise.

iii. Ru ' C2. See Lemma 4.5.8.

iv. Ru ' U3. In this case, we have G ' U3 o SL2. Then, it is not hard to show

that G has Borel subgroup B ' U3 o (T2 ∩ SL2). It is also straightforward

to show that the unipotent radical R of B is isomorphic to U3 o U2. If G

can be embedded in SL3, then (by Kolchin’s theorem) R can be embedded

in U3. But R has dimension 4; we obtain a contradiction and conclude that

this case does not arise.
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(b) T ' C∗ or T ' C∗ × C∗. By Item 3 of Lemma 4.5.9, V has exactly two nontrivial

proper H-invariant subspaces V1 and V2, where V = V1 + V2 (direct sum) and Vr

has dimension r for r = 1, 2. Since T commutes with H, we have that the image

of V1 (resp., of V2) under T is an H-invariant subspace of V, which must be either

0 or V1 or V2. Moreover, T is a group of automorphisms of V ; thus, for r = 1, 2,

we have that T maps Vr to a subspace of equal dimension; it follows that T maps

Vr onto Vr. Item 2 of Lemma 4.5.9 then implies that T acts as scalar multiples

of the identity on V1 (resp., on V2). Since T is connected, it then follows that

T|V2 ⊆ GL(V2) is either 1 or the full group of scalar-multiple operators on V2.

Note that T must act nontrivially on one of V1, V2.

Suppose T ' C∗. If T|V2 is trivial, then we see that T|V1 ' C∗; this implies

P ' SL2 × C∗, an impossibility by Item 4 of Lemma 4.5.9. Assume instead that

T acts as the full group of scalar-multiple operators on V2. In this case, we see

that P |V2 = GL(V2) and therefore P is conjugate to the subgroup

{(tij) ∈ SL3 : t13 = t23 = t31 = t32 = 0} ' GL2. (4.7)

Now suppose T ' C∗ × C∗. Since H ∩ T is finite, we see that the Levi subgroup

P = HT contains a 3-dimensional torus. This contradicts the fact that any torus

embedded in SL3 has dimension at most 2. We conclude that this case does not

arise.

We consider the following cases for Ru, assuming P ' GL2 :

i. Ru ' 0. Here, we have G = P ' GL2 conjugate to the group described in

(4.7). If A is a suitable basis, then one checks that the G-invariant subspaces

are 〈a1, a2〉 and 〈a3〉 .

ii. Ru ' C. Here, we have G ' C o GL2. Then G includes a copy of C o SL2.

By Item 1 of Lemma 4.5.9, SL2 can only act trivially on C; it follows that G

includes a copy of C × SL2. But (by Item 4 of Lemma 4.5.9) C × SL2 cannot

be embedded in SL3; we obtain a contradiction and conclude that this case

does not arise.

iii. Ru ' C2. See Lemma 4.5.8.

iv. Ru ' U3. Here, it follows from our result in the case (H ' SL2, T = 1, Ru '
U3) that this case does not arise.

3. H ' PSL2. In this case, it follows from Lemma 4.5.9 and its proof that T = 1.
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(a) Ru = 0. Here, G ' PSL2. Lemma 4.5.9 implies that, for some suitable basis A,

the subgroup Ĝ = [G]A has a faithful parametrization


 a b

c d


 7→




a2 ab b2

2ac ad + bc 2bd

c2 cd d2


 ,


 a b

c d


 ∈ PSL2.

A calculation shows that this subgroup is cut out of SL3 by the equations t212 =

t11t13, t221 = 4t11t31, t223 = 4t13t33, t232 = t31t33, (t22 + 1)2 = 4t11t33, and

(t22 − 1)2 = 4t13t31. It follows from Lemma 4.5.9 that there are no nontrivial

proper G-invariant subspaces in this case.

(b) Ru = C or Ru = C2 or Ru = U3. In this case, we have that G ' Ru o PSL2.

Let V be the vector group Ru/(Ru, Ru), and note that V has dimension at

most 2. Now consider the representation Ψ : PSL2 → GL(V ) induced by the

conjugation action of PSL2 on Ru. Recall that Item 1 of Lemma 4.5.9 implies

that all nontrivial irreducible representations of PSL2 have dimension at least

3. Since PSL2 is reductive, it follows that V is built from copies of the trivial

representation of PSL2, i.e., that Ψ is the trivial map. This contradicts the

hypothesis that G has defect zero, and we conclude that this case does not arise.

4. H ' SL3. In this case it is clear that G = SL3 and that there are no nontrivial proper

G-invariant subspaces.

This exhausts the possibilities for H,T and Ru, and we conclude that our list of admissible

subgroups of SL3 is complete.

¥

4.6 Computing the group of D3 + aD + b, a, b ∈ C[x]

In this section, unless and until specified otherwise, C is a computable, algebraically closed

constant field of characteristic zero with factorization algorithm; k = C(x) unless otherwise

specified; and D = k[D].

Given an operator L =
∑

i fiD
i ∈ D, define the adjoint of L (see [Sin96]) to be

adjL =
∑

i(−1)iDifi. We have that adj : D → D is an anti-automorphism of D and

that D/D adjL ' (D/DL)∗ as D-modules.
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Given an equation L(y) = 0, we may define the associated Riccati equation RiccL (see

[Sin96]) as follows: Formally substitute the formula y = exp(
∫

u) into L(y) = 0, then divide

by exp(
∫

u). The resulting nonlinear equation in u is Ricc L. We see that the following are

equivalent for a given f ∈ k :

1. f is a solution of RiccL.

2. F is a solution of L(y) = 0, where F ′/F = f.

3. D − f is a right factor of L.

Given L ∈ C[x] of order 3. By computing rational solutions of RiccL (resp., Ricc(adjL)),

we can compute n1, the number of first-order right factors (resp., n2, the number of first-

order left factors — which is also the number of second-order right factors) of L. Corol-

lary 4.1.3 implies that the group of L is one of the groups listed in the appropriate category

in Theorem 4.1.5 or, equivalently, the appropriate cell in Table 4.1. The following results

enable us to compute the group of a given operator L once n1 and n2 are known, in those

cases in which there is more than one entry in Table 4.1. Below, Lemma 4.6.1 addresses the

case where n1 = n2 = 0. The remaining lemmas in this section address the case in which

GL is solvable.

Lemma 4.6.1 Let L ∈ D be a third-order differential operator and let G be the group of

the equation L(y) = 0. Suppose G is known to be isomorphic to either SL3 or PSL2. If Ls2

has order 5 or factors, then G ' PSL2; otherwise G ' SL3.

Proof. This is a special case of Theorem 4.7 in [SU93].

¥

Before proceeding, remark that if

L = D3 + a2D
2 + a1D + a0

= (D − r3) ◦ (D − r2) ◦ (D − r1),

where a2, a1, a0, r1, r2, r3 ∈ C(x), then a straightforward calculation yields r3 = −a2−r1−r2.

In particular, suppose GL ⊆ SL3, so that a2 = h′/h for some h ∈ C(x) by Lemma 4.1.2;

then r3 = −r1 − r2 + h′/h.

Lemma 4.6.2 Given L = (D + r1 + r2 − h′/h) ◦ (D − r2) ◦ (D − r1) ∈ D, r1, r2, h ∈ k.
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1. The Picard-Vessiot extension KL/k is generated by elements R1, R2, y2, ξ, y3, where:

(a) R′i = riRi for i = 1, 2

(b) y′2 = r1y2 + R2

(c) ξ′ = r2ξ + R−1
1 R−1

2 h

(d) y′3 = r1y3 + ξ.

The full solution space VL has ordered basis F(r1,r2) = {y1, y2, y3} , where y1 = R1.

2. Let K1 = k(R1, R2) ⊆ KL. Then K1/k is a Picard-Vessiot extension for the operator

Lred = LCLM(D − r1, D − r2, D + r1 + r2 − h′/h), so that we may write KLred = K1.

3. Define T = {σ ∈ GL : σ(yi)/yi ∈ C∗ for i = 1, 2, 3} ⊆ GL. Then T is a maximal torus

of GL. We have

σ(yi)/yi = σ(Ri)/Ri, i = 1, 2, 3, for all σ ∈ T. (4.8)

The map σ 7→ σ|KLred
gives an isomorphism of T onto GLred .

Proof. Items 1 and 2 are proved by straightforward calculations. We prove Item 3 as

follows. First note that VD−r1 = spanC {y1} and V(D−r2)◦(D−r1) = spanC {y1, y2} are GL-

invariant subspaces of VL, so that [GL]F(r1,r2) ⊆ T3. It is now clear that [GL]F(r1,r2) has

Levi decomposition

[GL]F(r1,r2) = ([GL]F(r1,r2) ∩ U3)([GL]F(r1,r2) ∩ D3) semidirect product of subgroups.

We now see that T = [GL]F(r1,r2) ∩ D3 is a Levi subgroup of GL. Next, notice that

y1 = R1, (D − r1)(y2) = R2, ((D − r2) ◦ (D − r1))(y3) = R−1
1 R−1

2 h.

Given σ ∈ T, suppose σ(yi) = tiyi for some ti ∈ C∗ for i = 1, 2, 3. We compute

σ(R2) = σ((D − r1)(y2))

= (D − r1)(σ(y2)) = (D − r1)(t2y2)

= t2(D − r1)(y2) = t2R2,

and a similar computation shows that σ(R−1
1 R−1

2 h) = t3R
−1
1 R−1

2 h; (4.8) follows easily. The

last statement follows from the fact that a member of T (resp., of GLred) is determined by

its action on F(r1,r2) (resp., on
{
R1, R2, R

−1
1 R−1

2 h
}
).
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¥

The following three lemmas will be used to decide the Galois group of an operator

L = D3 + aD + b, a, b ∈ C[x], in case L has a unique monic factor Li of order i for i = 1, 2

such that GL is solvable and acts trivially on VL2/VL1 . Remark that these results can be

easily generalized to the case in which L is a third-order operator whose only singularities

in the finite plane are apparent singularities and whose Galois group is unimodular.

Lemma 4.6.3 Let k be a differential field whose constant field is algebraically closed and

has characteristic zero. Let r ∈ k. Then there is a unique ring automorphism shiftr : k[D] →
k[D] such that shiftr(D) = D − r and shiftr(h) = h for all h ∈ k. Moreover, if k(η)/k is a

Picard-Vessiot extension such that η′/η = r, then

shiftr(L) = η ◦ Lη−1 ∈ k(η)[D] for all L ∈ k[D].

Proof. This lemma is an easy exercise using the relevant definitions.

¥

Lemma 4.6.4 Given: L = D3 + aD + b = (D + r1 + r2) ◦ (D − r2) ◦ (D − r1), a, b ∈
C[x], r1, r2 ∈ C(x), and g ∈ C(x) \ {0} such that r2 = g′/g and the only monic right factors

of L are

1, L1 = D − r1, L2 = (D − r2) ◦ (D − r1), and L.

Let y1, y2, ξ, y3 be as defined in Lemma 4.6.2.

1. Define L̃2 = (D + r1 + r2) ◦ (D − r2), the unique monic left factor of L of order 2.

Then g, ξ span a full set of solutions of L̃2 in KL, so we may write k ⊆ KL̃2
⊆ KL.

D − r2 is the only monic right factor of L̃2 of order 1.

2. Define L]
2 = (D− 3r2) ◦ (D− r1 − 2r2) = shift2r2(L2). Then g2y1, g

2y2 span a full set

of solutions of L]
2 in KL, so we may write k ⊆ KL]

2
⊆ KL. D − r1 − 2r2 is the only

monic right factor of L]
2 of order 1.

3. Define L̃]
2 = D ◦ (D − r1 − 2r2) = shiftr1+r2(L̃2). Then g2y1, gy1ξ span a full set of

solutions of L̃]
2 in KL, so we may write k ⊆ KL̃]

2
⊆ KL. D−r1−2r2 is the only monic

right factor of L̃]
2 of order 1.
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4. Define ŷ3 = 1
2y−1

1 y2
2 and let L̂ = (D − 2r2 + r1) ◦ L2. Then B̂ = {y1, y2, ŷ3} is an

(ordered) basis of solutions of L̂ in KL, so we may write k ⊆ KL̂ ⊆ KL.

Proof. These statements are all verified by straightforward computations using known facts.

¥

Lemma 4.6.5 Given: L = D3 + aD + b = (D + r1 + r2) ◦ (D − r2) ◦ (D − r1), a, b ∈
C[x], r1, r2 ∈ C(x), and g ∈ C(x) \ {0} such that r2 = g′/g and the only monic right factors

of L are

1, L1 = D − r1, L2 = (D − r2) ◦ (D − r1), and L.

Let the elements y1, y2, ξ, y3 be as defined in Lemma 4.6.2. Let the operators L̃2, L
]
2, L̃

]
2 and

L̂ be as defined in Lemma 4.6.4.

1. There exists a basis A = {η1, η2, η3} of VL such that [GL]A is one of

{
U1

(1,1)T(1,0), U
2
(1,1)T(1,0),U3T(1,0)

}
.

2. We have y1, y2, ξ, y3 /∈ C(x).

3. The following are equivalent:

(a) [GL]A = Ud
(1,1)T(1,0) for d = 1 or 2.

(b) L]
2 is equivalent to L̃]

2 over C(x).

(c) The equation (D− r1− 2r2)(y) = g3 + c admits a C(x)-rational solution for some

c ∈ C \ {0} .

(d) The equation
(
D ◦ (D − r1 − 2r2)

)
(y) = r2g

3 admits a C(x)-rational solution.

4. The following are equivalent:

(a) [GL]A = U1
(1,1)T(1,0).

(b) L and L̂ are equivalent over C(x).

(c) The equation
(
(D− r1− 2r2) ◦ (D− 2r1− r2)

)
(y) = g3 + c admits a C(x)-rational

solution for some c ∈ C \ {0} .

(d) The equation
(
D◦(D−r1−2r2)◦(D−2r1−r2)

)
(y) = r2g

3 admits a C(x)-rational

solution.

Proof.
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1. By Corollary 4.1.3 and Theorem 4.1.5, there exists a basis A = {η1, η2, η3} of VL such

that [GL]A is one of the subgroups listed in Theorem 4.1.5 having exactly one invariant

subspace of dimension 1 (resp., 2). Moreover, since L1 maps VL2 onto VD−r2 =

spanC {g} ⊆ C(x), we see that GL acts trivially on VL2/VL1 . The only subgroups listed

in Theorem 4.1.5 having these properties are U1
(1,1)T(1,0), U

2
(1,1)T(1,0) and U3T(1,0).

2. Let A = {η1, η2, η3} be as described in Item 1 of the conclusion of the lemma. From

the possibilities for [GL]A, we see that there exist σ0, τ0 ∈ GL such that

[σ0]A = diag(t0, 1, t−1
0 ), t0 ∈ C∗,

and

[τ0]A =




1 a0 b0

0 1 c0

0 0 1


 , a0, b0, c0 ∈ C, a0 6= 0, c0 6= 0.

One checks that, for all v ∈ VL\{0} , either σ0(v) 6= v or τ0(v) 6= v, so that v lies outside

the fixed field C(x) of GL. This yields y1, y2, y3 /∈ C(x). Finally, notice that L1 maps A
onto a basis of VL̃2

and that L1(η1) = 0; it follows that the set Ã2 = {L1(η2), L1(η3)}

is an (ordered) basis of VL̃2
. Moreover, we have that [τ ]Ã2

=


 1 c0

0 1


 with c0 6= 0;

it follows that VL̃2
6⊆ C(x). By Item 2 of Lemma 4.6.4, another basis of VL̃2

is {g, ξ} .

Since g ∈ C(x) and VL̃2
6⊆ C(x), we have ξ /∈ C(x).

3. First of all, we show that the first and second conditions are equivalent, as follows.

Let A2 = {η1, η2} ; it is clear that A2 is an (ordered) basis of VL2 . We also see that

A]
2 =

{
g2η1, g

2η2

}
(resp., Ã]

2 = {gη1L1(η2), gη1L1(η3)}) is an (ordered) basis of VL]
2

(resp., VL̃]
2
). Let GL have Levi decomposition GL = RuT (semidirect product of

subgroups). From Item 1 of the conclusion of the lemma, we see that [Ru]A ⊆ U3 and

[T ]A = T(1,0). Let σ be a typical element of T, and write

[σ]A = diag(tσ, 1, t−1
σ ), tσ ∈ C∗. (4.9)

One checks that

[σ]Ã2
=


 1 0

0 t−1
σ


 , [σ]A2 = [σ]A]

2
= [σ]Ã]

2
=


 tσ 0

0 1


 .

It follows that VL]
2

and VL̃]
2

are isomorphic as T -modules. Thus, they are isomorphic

as GL-modules if and only if they are isomorphic as Ru-modules. Let τ be a typical
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element of Ru, and write

[τ ]A =




1 aτ bτ

0 1 cτ

0 0 1


 , aτ , bτ , cτ ∈ C. (4.10)

A calculation shows that

[τ ]A2 = [τ ]A]
2

=


 1 aτ

0 1


 , [τ ]Ã2

= [τ ]Ã]
2

=


 1 cτ

0 1


 .

From here, one checks that VL]
2

and VL̃]
2

are isomorphic as Ru-modules if and only

if there exists a nonzero constant α such that aτ = αcτ for all τ ∈ Ru. The latter

condition holds (with α = 1) if Ru ⊆ U2
(1,1) and fails if Ru = U3. Equivalence of the

first two statements is now clear.

Before proceeding, we make some auxiliary computations:

(D − r1 − 2r2)(g2y1) = (g2)′y1 + g2y′1 − (r1 + 2r2)g2y1

= 2r2g
2y1 + r1g

2y′1 − (r1 + 2r2)g2y1

= 0; (4.11)

(D − r1 − 2r2)(g2y2) = (g2)′y2 + g2y′2 − (r1 + 2r2)g2y2

= 2r2g
2y2 + g2(r1y2 + g)− (r1 + 2r2)g2y2

= g3; (4.12)

(D − r1 − 2r2)(gy1ξ) = (gy1)′ξ + gy1ξ
′ − (r1 + 2r2)gy1ξ

= (r1 + r2)gy1ξ + gy1(r2ξ + g−1y−1
1 )− (r1 + 2r2)gy1ξ

= 1. (4.13)

Next we show that the second condition implies the third condition. Suppose R,S ∈ D
are operators of order at most 1 such that L]

2R = SL̃]
2. Then R maps VL̃]

2
isomor-

phically onto VL]
2

in KL. From Items 3 and 4 of Lemma 4.6.4, we see that R maps

VD−r1−2r2 = spanC
{
g2y1

}
isomorphically onto itself; since this is an irreducible GL-

module, it follows that R|VD−r1−2r2
= c0 idVD−r1−2r2

for some c0 ∈ C \ {0} . This in

turn implies that R = f(D − r1 − 2r2) + c0 ∈ D for some f ∈ C(x). We have that

R maps the basis element gy1ξ of VL̃]
2

onto some element of VL]
2
\ VD−2r2 . Using the

basis of VL]
2

given in Item 4 of Lemma 4.6.4, we see that R(gy1ξ) = αg2y1 + βg2y2 for

some α, β ∈ C, β 6= 0.

95



We now compute:

R(gy1ξ) =
(
f(D − r1 − 2r2) + c0

)
(gy1ξ)

= f(D − r1 − 2r2)(gy1ξ) + c0gy1ξ

= f + c0gy1ξ by (4.13),

so that

f + c0gy1ξ = αg2y1 + βg2y2, α, β ∈ C, β 6= 0.

Applying D − r1 − 2r2 to each side of this equation yields

(D − r1 − 2r2)(f) + c0 = α(D − r1 − 2r2)(g2y1) + β(D − r1 − 2r2)(g2y2)

= βg3 by (4.11), (4.12) and (4.13).

It follows that y = β−1f ∈ C(x), c = −β−1c0 ∈ C \ {0} satisfy

(D − r1 − 2r2)(y) = g3 + c,

so that the third condition holds.

Next we show that the third condition implies the second condition. Suppose (D −
r1−2r2)(f) = g3+c for some f ∈ C(x), c ∈ C\{0} . Define R = f(D−r1−2r2)−c ∈ D.

The following computations show that R maps VL̃]
2

isomorphically onto VL]
2
, so that

the second condition holds. Consider the action of R on the basis
{
g2y1, gy1ξ

}
of VL̃]

2

given in Item 4 of Lemma 4.6.4. First we compute

R(g2y1) =
(
f(D − r1 − 2r2)− c

)
(g2y1)

= −cg2y1 by (4.11). (4.14)

Next, we claim that R(gy1ξ) is a solution of the equation (D − r1 − 2r2)(y) = g3.

Indeed, we have

(D − r1 − 2r2)(R(gy1ξ)) =
(
(D − r1 − 2r2) ◦R

)
(gy1ξ)

=
(
(D − r1 − 2r2) ◦

(
f(D − r1 − 2r2)− c

))
(gy1ξ)

=
(
(D − r1 − 2r2) ◦ f(D − r1 − 2r2)

)
(gy1ξ)−

c(D − r1 − 2r2)(gy1ξ)

= (D − r1 − 2r2)(f)− c by (4.13)

= (g3 + c)− c by hypothesis

= g3.
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This result, together with (4.12), implies that g2y2 and R(gy1ξ) differ by a member

of VD−r1−2r2 . By (4.11), we have that VD−r1−2r2 = spanC
{
g2y1

}
. Thus, we have

R(gy1ξ) = g2y2 + c̃g2y1 for some c̃ ∈ C. (4.15)

By Item 3 of Lemma 4.6.4, we have that
{
g2y1, g

2y2

}
is a basis of VL]

2
. In light of this

fact, we conclude from formulas (4.14) and (4.15) that R maps
{
g2y1, gy1ξ

}
onto a

basis of VL]
2
; the desired result follows.

To prove that the third condition implies the fourth condition, simply differentiate

both sides of the equation given in the third condition and divide by 3.

Finally we show that the fourth condition implies the third condition. Suppose

(D ◦ (D − r1 − 2r2))(f̄) = r2g
3

for some f̄ ∈ C(x). This condition can be rewritten (after defining f = 3f̄) as

[
(D − r1 − 2r2)(f)

]′ = [g3]′,

or
(
(D− r1− 2r2)(f)− g3

)′ = 0, which in turn implies that (D− r1− 2r2)(f) = g3 + c

for some c ∈ C. We must show that c 6= 0. Suppose instead that c = 0. This yields

(D − r1 − 2r2)(f) = g3. One then checks that f ∈ VL]
2
. Recall that g ∈ C(x) and

(by Item 2 of the lemma) y1, y2 /∈ C(x). It follows from Item 3 of Lemma 4.6.4 that

VL]
2
∩ C(x) = {0} , so that f = 0. This yields

g3 = (D − r1 − 2r2)(f) = 0

and therefore g = 0, contradicting hypothesis on g. This completes the proof.

4. First of all, we compute a matrix representation of the action of GL on VL̂ with

respect to a certain basis; this will be useful in proving that the first two conditions

are equivalent. Let A = {η1, η2, η3} be as in Item 1 of the conclusion of the lemma.

Let η̂3 =
1
2
η−1
1 η2

2 . One checks that (D − r1)(η1) = 0 and (D − r1)(η2) = α0g for

some α0 ∈ C \{0} ; using these facts, a straightforward set of computations shows that

Â = {η1, η2, η̂3} is an (ordered) basis of VL̂. Let GL = RuT be a Levi decomposition

as above. Let σ ∈ T and let tσ ∈ C∗ be as in (4.9). Thus σ(η1) = tση1 and σ(η2) =

η2; it follows that σ(η̂3) = t−1
σ η̂3, so that [σ]Â = diag(tσ, 1, t−1

σ ). We conclude that

[T ]Â = T(1,0). Next let τ ∈ Ru and let aτ , bτ , cτ ∈ C be as in (4.10). Thus τ(η1) = η1
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and τ(η2) = η2 + aτη1. We compute

τ(η3) =
1
2
η−1
1 (η2 + aτη1)2

=
1
2
η−1
1 (η2

2 + 2aτη1η2 + a2
τη2

1)

= η̂3 + aτη2 +
1
2
a2

τη1.

We now see that

[τ ]A =




1 aτ
1
2a2

τ

0 1 aτ

0 0 1




and therefore that [Ru]Â = U1
(1,1). We conclude that [GL]Â = U1

(1,1)T(1,0).

Now, suppose the first condition holds. Then, it is clear that the map from VL to VL̂

defined on basis elements by

ηi 7→ ηi for i = 1, 2, η3 7→ η̂3,

gives an isomorphism of GL-modules, so that the second condition holds.

Suppose now that the first condition fails. Then, Item 1 of the conclusion of the

lemma implies that the unipotent radical of GL has dimension 2 or 3. By contrast, we

have [GL]Â = U1
(1,1)T(1,0), so that GL̂ ' U1

(1,1)T(1,0) has a one-dimensional unipotent

radical; we now see that the second condition fails. By contrapositive, we conclude

that the second condition implies the first condition.

Next we show that the second condition implies the third condition. Let Φ,Ψ ∈ D
be operators of order at most 2 such that L̂Φ = ΨL. We have that VL2 is the unique

2-dimensional GL-invariant subspace of VL (resp., of VL̂) by hypothesis (resp., by

examining [GL]Â). It follows that Φ|VL2
is a GL-invariant automorphism of VL2 . Thus,

we have that [Φ]A2 commutes with [GL]A2 = U2T2, where T2 = {diag(t, 1) : t ∈ C∗} .

A straightforward set of computations shows that

Cen
GL2

(U2) =





 α β

0 α


 : α ∈ C∗, β ∈ C


 ,

Cen
GL2

(T2) = D2.

Since [Φ]A2 is contained in the intersection of these two subgroups of GL2, we conclude

that Φ|VL2
= α idVL2

for some α ∈ C \ {0} . This implies that Φ = hL2 + α for some
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h ∈ C(x). Next we consider the basis {y1, y2, y3} of VL and the basis {y1, y2, ŷ3} of VL̂

as defined in Lemma 4.6.4. Since Φ is an isomorphism that restricts to α id on VL2 ,

we see that

Φ(y3) = βŷ3 + y0 for some β ∈ C∗, y0 ∈ VL2 .

Before proceeding further, remark that

L2(y3) = g−1y−1
1 (4.16)

and

L2(ŷ3) = g2y−1
1 ; (4.17)

these equalities can be verified by direct computation. Putting facts together, we

obtain

L2(Φ(y3)) = βg2y−1
1

⇒ βg2y−1
1 = L2(Φ(y3)) = L2((hL2 + α)(y3))

= (L2 ◦ (hL2 + α))(y3) = L2(hL2(y3)) + αL2(y3)

= L2(hg−1y−1
1 ) + αg−1y−1

1 by (4.16)

⇒ βg3 = gy1L2(hg−1y−1
1 ) + α (after multiplying by gy1)

= (gy1 ◦ L2 ◦ g−1y−1
1 )(h) + α

= (shiftr1+r2(L2))(h) + α.

The third condition now follows easily after observing that

shiftr1+r2(L2) = (D − r1 − 2r2) ◦ (D − 2r1 − r2).

Next we show that the third condition implies the second condition. Suppose

(shiftr1+r2(L2))(h) = g3 + c

for some c ∈ C \ {0} . Define Φ = hL2 − c. Then Φ(yi) = −cyi for i = 1, 2. Also, we

compute

Φ(y3) = (hL2 − c)(y3) = hg−1y−1
1 − cy3 by (4.16)

⇒ L2(Φ(y3)) = L2(hg−1y−1
1 )− cg−1y−1

1 by (4.16)

= g−1y−1
1 (gy1L2(hg−1y−1

1 )− c)(after distributing out g−1y−1
1 )
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= g−1y−1
1 ((shiftr1+r2(L2))(h)− c)

= g−1y−1
1 ((g3 + c)− c) by hypothesis

= g2y−1
1 .

This result, together with (4.17), implies that Φ(y3) = ŷ3 + y0 for some y0 ∈ VL2 . We

now see that Φ maps a basis of VL isomorphically onto a basis of VL̂, and the second

condition follows.

To prove that the third condition implies the fourth condition, simply differentiate

both sides of the equation given in the third condition and divide by 3.

To prove that the fourth condition implies the third condition, suppose

(D ◦ (D − r1 − 2r2) ◦ (D − 2r1 − r2))(h̄) = r2g
3

for some h̄ ∈ C(x). Let h = 3h̄. It is then easy to check that

((D − r1 − 2r2) ◦ (D − 2r1 − r2))(h) = g3 + c

for some c ∈ C. We must show that c 6= 0. Suppose instead that c = 0. Then the

rational function h̃ = (D − 2r1 − r2)(h) satisfies (D − r1 − 2r2)(h̃) = g3. As in the

last step of the proof of Item 3 of the lemma, we see that h̃ ∈ VL]
2
∩ C(x) = {0} and

therefore that g = 0, contradicting hypothesis. This completes the proof.

¥

Below, we state the Kolchin-Ostrowski theorem (Theorem 4.6.6) and a corollary (Corol-

lary 4.6.7). In case C = Q̄, these results lead to an effective criterion (Lemma 4.6.9) to

compute the maximal torus of GL and its representation [T ]F(r1,r2) , where T and F(r1,r2)

are as defined in Lemma 4.6.2, in case GL is solvable.

Theorem 4.6.6 Given a Picard-Vessiot extension K/k and a set S = {f1, . . . , fν} ∈ K

such that f ′i
fi
∈ k for 1 ≤ i ≤ ν. Then S is algebraically dependent over k if and only if there

exist integers mi, not all zero, such that
ν∏

i=1

fmi
i = g for some g ∈ k.

Proof. This result is stated and proved in [Kol68].

¥
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Corollary 4.6.7 Given: L is an operator of the form

L = LCLM(D − s1, D − s2, D + s1 + s2 − h′/h), s1, s2, h ∈ C(x),

such that GL is isomorphic to either C∗ or C∗ × C∗. Then, the following are equivalent:

1. GL ' C∗

2. S1 and S2 are algebraically dependent over C(x), where S′i/Si = si for i = 1, 2

3. m1s1 + m2s2 = g′

g for some m1,m2 ∈ Z, not both zero, and g ∈ C(x) \ {0} .

Proof. First, observe that VL is spanned by S1, S2 and S−1
1 S−1

2 h. It follows that KL/k is

generated by S1 and S2. Equivalence of the first two conditions now follows from the well-

known fact (see, for instance, [Mag94]) that the transcendence degree of a Picard-Vessiot

extension is equal to the dimension of the corresponding Galois group. Equivalence of

the second and third conditions follows easily from Theorem 4.6.6 after taking logarithmic

derivatives.

¥

Before proceeding, we provide an example of the criterion for algebraic dependence

given in Corollary 4.6.7. Given: S1, S2 are members of a Picard-Vessiot extension of Q̄(x)

satisfying

S′1
S1

= s1 = 6x2 +
7 + 9

√
2

x
,

S′2
S2

= s2 = 2x2 +
1 + 3

√
2

x
.

Are S1 and S2 algebraically dependent over Q(x)? To answer this question, we write

s1 =
(

7
x

)
+

(
6x2 +

9
√

2
x

)
,

s2 =
(

1
x

)
+

(
2x2 +

3
√

2
x

)
.

It is now easy to see that s1 − 3s2 = 4/x and therefore that S1/S3
2 = x4. We conclude that

S1 and S2 are indeed algebraically dependent over Q(x).

What follows can be viewed as a generalization of the steps taken in the above example.
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Let C0 be a finite algebraic extension of Q, specified by a set of generators z1, . . . , zλ and

minimal polynomials

p1 ∈ Q[x], p2 ∈ Q(z1)[x], . . . , pλ ∈ Q(z1, . . . , zλ−1)[x].

It is a fact (cf. [Bro96]) that every rational function f ∈ C0(x) admits a unique partial

fraction or “PF” decomposition over C0, written as follows:

f = P +
t∑

j=1

µj∑
d=1

Aj,d

Qd
j

, (4.18)

where:

1. P ∈ C0[x]

2. t is a nonnegative integer and µj is a positive integer for all j

3. Qj ∈ C0[x] is monic and irreducible for all j

4. Aj,d ∈ C0[x] for all j, d

5. deg Aj,d < deg Qj for all j, d.

There are effective algorithms to carry out this decomposition ([Bro96]). We can also carry

out the PF decomposition of f ∈ C0(x) over Q̄ :

f = P +
s∑

i=1

νi∑
d=1

ci,d

(x− αi)d
, (4.19)

where:

1. P is as in (4.18)

2. s is a nonnegative integer and νi is a positive integer for all i

3. αi ∈ Q̄ for all i

4. ci,d ∈ Q̄ for all i, d.

Lemma 4.6.8 Given f ∈ C0(x). Suppose the PF decomposition of f over C0 (resp., over

Q̄) is as given in (4.18) (resp., (4.19)). The following are equivalent:

1. f = g′/g for some g ∈ Q̄(x)

2. The following three conditions hold:
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(i) P = 0

(ii) ci,d = 0 for all d > 1 and all i

(iii) For all i, we have ci,1 ∈ Z.

3. The following three conditions hold:

(i′) P = 0

(ii′) Aj,d = 0 for all d > 1 and all j

(iii′) For all j, there exists nj ∈ Z such that Aj,1 = njQ
′
j .

4. f = g′/g for some g ∈ C0(x)

Proof. Equivalence of the conditions numbered 1 and 2 follows after considering Laurent

series expansions of the equation y′−fy = 0 over Q̄(x) at its singularities in the finite plane

and at infinity.

Next, we show that Condition 2 implies Condition 3. Condition (i′) follows immediately

from Condition (i). Condition (ii) implies that the denominator of f is squarefree; this

yields Condition (ii′). We prove Condition (iii′) as follows: Condition 2 implies that

f =
∑

i

ci

x− αi
, αi ∈ Q̄, ci ∈ Z for each i.

We see that for each i, the minimal polynomial of αi over C0 is Qj for some j. Thus, we

may write

f =
∑

j

∑
i:Qj(αi)=0

ci

x− αi
. (4.20)

We claim that for each j, there exists nj ∈ Z such that ci = nj for all i such that Qj(αi) = 0.

Indeed, define Q =
∏

j Qj and let CQ/C0 be a splitting field extension for Q. Let σ ∈
Gal(CQ/C0). We may apply σ to members of CQ(x); in particular, we have σ(h) = h for all

h ∈ C0(x). Applying this fact to (4.20) yields

∑
j

∑
i:Qj(αi)=0

ci

x− αi
= f

= σ(f) since f ∈ C0(x)

=
∑

j

∑
i:Qj(αi)=0

σ

(
ci

x− αi

)

=
∑

j

∑
i:Qj(αi)=0

ci

x− σ(αi)
.
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The claim follows easily after observing that Gal(CQ/C0) acts transitively on the roots of

Qj for each j.

We now have

f =
∑

j

∑
i:Qj(αi)=0

nj

x− αi
. (4.21)

We also have that

Qj =
∏

i:Qj(αi)=0

(x− αi)

⇒ Q′j/Qj =
∑

i:Qj(αi)=0

1
x− αi

⇒
∑

j

njQ
′
j/Qj =

∑
j

∑
i:Qj(αi)=0

nj

x− αi

= f.

Condition 3 now follows from uniqueness of PF decomposition over C0.

Next we show that Condition 3 implies Condition 4. Assume Condition 3 holds and let

g =
∏

j Q
nj

j ∈ C0(x). A straightforward calculation implies that f = g′/g, so that Condition

4 holds.

Finally, it is clear that Condition 4 implies Condition 1.

¥

The following calculations yield an alternative partial fraction or “APF” decomposition

for rational functions defined over C0. As we shall see, the APF decomposition is more useful

than the PF decomposition for deciding whether a Z-linear combination of two rational

functions is the logarithmic derivative of another rational function; thus, APF is more

useful than PF for making Corollary 4.6.7 effective.

Given f ∈ C0(x) having PF decomposition (4.18) over C0. For each j, compute γj ∈
C0, Bj ∈ C0[x] such that Aj,1 = γjQ

′
j + Bj and deg Bj < deg Q′j . Then compute a decom-

position γj = αj + βj having the following properties:

1. αj ∈ Q

2. βj is a Q-linear combination of nontrivial power products of the zi, where C0 =

Q(z1, . . . , zλ).
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This decomposition is unique for a given γj . Applying these computations to (4.18) yields

f = P +


∑

j

Aj,1

Qj


 +


 ∑

j,d:d>1

Aj,d

Qd
j




= P +


∑

j

(αj + βj)Q′j + Bj

Qj


 +


 ∑

j,d:d>1

Aj,d

Qd
j




=
(∑

j

αjQ
′
j

Qj

)
+

(
P +

(∑
j

βjQ
′
j + Bj

Qj

)
+

( ∑
j,d:d>1

Aj,d

Qd
j

))

= frat + firrat. (4.22)

We refer to (4.22) as the APF decomposition of f over C0. Note that this decomposition is

unique for a given f ∈ C0(x).

For the remainder of this section, we assume that C = Q̄.

Before stating the next lemma, we make a new definition which involves a minor abuse

of notation: Given m1,m2 ∈ Z,GCD(m1,m2) = 1, define

T(m1,m2) =
{
diag(tm1 , tm2 , t−m1−m2) : t ∈ C∗

}
' C∗.

This definition differs from the definition of T(d1,d2) given in Lemma 4.2.2 only in that we

place fewer restrictions on the subscripts m1,m2.

Lemma 4.6.9 Given L a third-order operator whose only singularities in the finite plane

are apparent singularities, such that GL is nontrivial and L = (D+r1+r2−h′/h)◦(D−r2)◦
(D−r1), r1, r2, h ∈ Q̄(x). Let C0/Q be a finite algebraic extension such that r1, r2, h ∈ C0(x).

Let ri = rirat +riirrat be the APF decomposition of ri over C0(x) for i = 1, 2. Let F(r1,r2), Lred

and T ⊆ GL be as defined in Lemma 4.6.2.

1. If r1irrat and r2irrat are linearly dependent over Q, then there exist m1,m2 ∈ Z such

that GCD(m1,m2) = 1 and [T ]F(r1,r2) = T(m1,m2) ' C∗. The values of m1,m2 can be

computed as follows:

(a) If r2irrat = 0, then [T ]F(r1,r2) = T(1,0).

(b) If r1irrat/r2irrat = µ1/µ2 ∈ Q, µ1, µ2 ∈ Z,GCD(µ1, µ2) = 1, then [T ]F(r1,r2) =

T(µ1,µ2).

2. If r1irrat and r2irrat are linearly independent over Q or, equivalently, if r1irrat/r2irrat /∈ Q,

then [T ]F(r1,r2) = D3 ∩ SL3 ' C∗ × C∗.
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Proof. First of all, by Lemma 4.6.2, we have that T ' GLred . Moreover, after considering

Table 4.1, we see that all nontrivial solvable groups listed in Theorem 4.1.5 have Levi

subgroup isomorphic to either C∗ or C∗ ×C∗; it follows that T is isomorphic to one of those

groups. Thus, we may apply Corollary 4.6.7 to the problem of computing T in this case.

Suppose r2irrat = 0. This yields

r2 = r2rat =
∑

j

αjQ
′
j

Qj
,

where αj ∈ Q and Qj ∈ C0[x] is irreducible for each j. We claim that αj ∈ Z for each j.

Indeed, if αj ∈ Q \ Z for some j, then we see that R2 ∈ K2 \ k for some finite algebraic

extension K2/k, so that T has a finite quotient; this contradicts the fact that T is isomorphic

to either C∗ or C∗ × C∗. We conclude that R2 =
∏

j Q
αj

j ∈ C0(x), from which Item 1(a) of

the conclusion follows easily.

Next suppose r1irrat/r2irrat = µ1/µ2 ∈ Q, µ1, µ2 ∈ Z,GCD(µ1, µ2) = 1. We compute

µ2r1irrat − µ1r2irrat = 0

⇒ µ2r1 − µ1r2 = µ2r1rat − µ1r2rat

=
∑

j

αjQ
′
j

Qj
,

where αj ∈ Q and Qj ∈ C0[x] is irreducible for each j. As in the previous case, one checks

that αj ∈ Z for each j. It follows that Rµ2
1 R−µ1

2 =
∏

j Q
αj

j ∈ C0(x). This means that, for

σ ∈ T with [σ]F(r1,r2) = diag(tm1 , tm2 , t−m1−m2), t not a root of unity, we have

Rµ2
1 R−µ1

2 = σ
(
Rµ2

1 R−µ1
2

)
= (tm1R1)µ2(tm2R2)−µ1

= tm1µ2−m2µ1Rµ2
1 R−µ1

2

⇒ 1 = tm1µ2−m2µ1

⇒ 0 = m1µ2 −m2µ1

⇒ m2µ1 = m1µ2

⇒ µ1

µ2
=

m1

m2
.

Item 1(b) of the conclusion now follows easily.

Finally, suppose r1irrat/r2irrat /∈ Q, i.e., r1irrat and r2irrat are linearly independent over Q.

Then, for all pairs of integers m1,m2 not both zero, we have that the APF decomposition

of r = m1r1 + m2r2 over C0(x) satisfies rirrat 6= 0. On the other hand, let g ∈ C0(x)
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and write g =
∏

j Q
nj

j , nj ∈ Z, Qj ∈ C0[x] irreducible; then the APF decomposition of

g′/g =
∑

j njQ
′
j/Qj over C0(x) satisfies (g′/g)irrat = 0. It follows that there do not exist

(m1,m2) ∈ Z2 \ {(0, 0)} and g ∈ C(x) such that m1r1 + m2r2 = g′/g. Corollary 4.6.7

now implies T ' C∗ × C∗. Since T is an algebraic subgroup of D3 ∩ SL3, we conclude that

T = D3 ∩ SL3, and Item 2 of the conclusion is proved.

¥

We are now ready to present our algorithm and prove its correctness.

Algorithm IV

Input: Two polynomials a, b ∈ Q̄[x], representing the operator L = D3 +aD+b ∈ Q̄(x)[D].

Output: An explicit description of GL, the group of L(y) = 0.

Steps: First compute n1 and n2, where ni is the number of monic ith order right factors

of L in D. This step can be carried out by computing rational solutions of RiccL and

Ricc(adj L). Next, if (n1, n2) = . . .

• (0, 0) : Compute Ls2. If ord(Ls2) = 5, then return GL ' PSL2. Otherwise, test

whether Ls2 is reducible. If so, then return GL ' PSL2; otherwise, return GL ' SL3.

• (0, 1) (resp., (1, 0)): Here, L has an irreducible (left or right) factor of the form

L2 = D2 + b1D + b0, b0, b1 ∈ Q̄(x). (4.23)

Compute b1. Test whether b1 = f ′

f for some f ∈ Q̄(x). If so, then return GL ' Q̄2oSL2

with the unique conjugation action; otherwise, return GL ' Q̄2oGL2 with conjugation

as described in Item 2(a) (resp., Item 2(b)) of Lemma 4.5.8.

• (1, 2) (resp., (2, 1)): Compute r1, r2 ∈ Q̄(x) such that

L = (D + r1 + r2) ◦ (D − r2) ◦ (D − r1). (4.24)

Apply Lemma 4.6.9 to compute the maximal torus T of GL. If T ' Q̄∗ × Q̄∗, then

return GL ' Q̄2 o (Q̄∗ × Q̄∗) with conjugation as described in Item 2 (resp., Item

3) of Lemma 4.5.4. Otherwise, apply Lemma 4.6.9 to compute m1,m2 such that

[T ]F(r1,r2) = T(m1,m2) ⊆ D3 ∩ SL3. Return GL ' Q̄2 o Q̄∗, with:

1. (Int t)(u, v) = (tm1−m2u, t2m1+m2v) for t ∈ Q̄∗, u, v ∈ Q̄, in case (n1, n2) = (1, 2)

2. (Int t)(u, v) = (t2m1+m2u, tm1+2m2v) for t ∈ Q̄∗, u, v ∈ Q̄, in case (n1, n2) =

(2, 1).
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• (1,∞) (resp., (∞, 1)): Return Q̄2 oQ̄∗ with conjugation as described in Item 8 (resp.,

Item 9) of Lemma 4.5.2.

• (2,∞) (resp., (∞, 2)): Return Q̄ o Q̄∗ with conjugation as described in Item 4 (resp.,

Item 3) of Lemma 4.5.2.

• (2, 2) : Compute r1, r2 ∈ Q̄(x) such that (4.24) holds. Apply Lemma 4.6.9 to compute

the maximal torus T of GL. If T ' Q̄∗ × Q̄∗, then return GL ' Q̄ o (Q̄∗ × Q̄∗) with

conjugation as described in Item 1 of Lemma 4.5.4. Otherwise, apply Lemma 4.6.9 to

compute m1,m2 such that [T ]F(r1,r2) = T(m1,m2) ⊆ D3 ∩ SL3. Compute n[
1 (resp., n[

2),

the number of first-order right factors of (D− r2) ◦ (D− r1) (resp., of (D + r1 + r2) ◦
(D − r2)).

– If n[
1 = 1, n[

2 = 2 : Return GL ' Q̄ o Q̄∗ with (Int t)(u) = tm1−m2u.

– If n[
1 = 2, n[

2 = 1 : Return GL ' Q̄ o Q̄∗ with (Int t)(u) = tm1+2m2u.

– If n[
1 = 2, n[

2 = 2 : Return GL ' Q̄ o Q̄∗ with (Int t)(u) = t2m1+m2u.

• (3, 3) : Apply Lemma 4.6.9 to compute the maximal torus T ; return GL = T.

• (∞,∞) : Find the dimension of the Q̄-vector space of Q̄(x)-rational solutions of L(y) =

0. If this dimension is 3, then return GL ' {1} ; otherwise, return GL ' Q̄∗.

• (1, 1) : Let Ld be the unique monic dth-order right factor of L for d = 1, 2.

1. If L1 fails to right-divide L2 : Then GL = GL2 is isomorphic to either SL2 or GL2.

Decide using method given in “(0, 1) or (1, 0)” case.

2. If L1 right-divides L2 : Compute r1, r2 ∈ Q̄(x) such that (4.24) holds. Apply

Lemma 4.6.9 to compute the maximal torus T of GL.

(a) If T ' Q̄∗ × Q̄∗ : Return GL ' T3 ∩ SL3.

(b) If T ' Q̄∗ : Apply Lemma 4.6.9 to compute the appropriate subgroup

T(m1,m2) ⊆ D3∩SL3. If T(m1,m2) 6= T(1,0), then return GL ' U3oQ̄∗, with con-

jugation as described in Item 1 or 2 of Lemma 4.5.6. In case T(m1,m2) = T(1,0),

compute g ∈ Q̄(x) such that g′/g = r2. Test whether the equation

(D ◦ (D − r1 − 2r2))(y) = r2g
3
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admits a Q̄(x)-rational solution. If no such solution exists, then return GL '
U3T(1,0). Otherwise, test whether the equation

(D ◦ (D − r1 − 2r2) ◦ (D − 2r1 − r2))(y) = r2g
3

admits a Q̄(x)-rational solution. If no such solution exists, then return GL '
U2

(1,1)T(1,0). Otherwise, return GL ' U1
(1,1)T(1,0).

Proof of correctness of algorithm: Corollary 4.1.3 implies that we may apply Theorem 4.1.5.

Proposition 3.1.3 and its proof provide a correspondence between right factors of L and

GL-invariant subspaces of VL. Let R1, R2, y2, ξ, y3, T, Lred and F(r1,r2) be as defined in

Lemma 4.6.2 and let Ru be the unipotent radical of GL. We consider the various cases

according to Table 4.1 as follows.

• (0, 0) : Correctness in this case follows from Lemma 4.6.1.

• (0, 1) or (1, 0) : Correctness follows from Lemma 4.1.2.

• (1, 2) : In case T ' Q̄∗ × Q̄∗, correctness follows from the fact that there is only

one subgroup listed in Theorem 4.1.5 for which n1 = 1, n2 = 2 and T ' Q̄∗ ×
Q̄∗. Suppose now that T ' Q̄∗. Note that VD−r1 is the unique 1-dimensional GL-

invariant subspace of VL. Furthermore, by Theorem 4.1.5, we have that [GL]F(r1,r2)

is conjugate to U2
(1,0) · PσT(d1,d2)P

−1
σ for some d1, d2, σ. From this fact, we see that

Ru is two-dimensional and acts trivially on VL/VD−r1 ; we conclude that [Ru]F(r1,r2) =

U2
(1,0). Thus, we have [GL]F(r1,r2) = U2

(1,0) · T(m1,m2); correctness now follows after a

straightforward calculation.

• (2, 1) : In case T ' Q̄∗ × Q̄∗, correctness follows from the fact that there is only

one subgroup listed in Theorem 4.1.5 for which n1 = 2, n2 = 1 and T ' Q̄∗ × Q̄∗.

Suppose now that T ' Q̄∗. Note that V(D−r2)◦(D−r1) is the unique 2-dimensional GL-

invariant subspace of VL. Furthermore, by Theorem 4.1.5, we have that [GL]F(r1,r2) is

conjugate to U2
(0,1) ·PσT(d1,d2)P

−1
σ for some d1, d2, σ. From this fact, we see that Ru is

two-dimensional and acts trivially on V(D−r2)◦(D−r1); we conclude that [Ru]F(r1,r2) =

U2
(0,1). Thus, we have [GL]F(r1,r2) = U2

(0,1) · T(m1,m2); correctness now follows after a

straightforward calculation.

• (2, 2) : In case T ' Q̄∗ × Q̄∗, correctness follows from the fact that there is only one

subgroup listed in Theorem 4.1.5 for which n1 = n2 = 2 and T ' Q̄∗×Q̄∗. Suppose now
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that T ' Q̄∗. Then, after considering the relevant subgroups listed in Theorem 4.1.5,

we see that [GL]F(r1,r2) is conjugate to U1
(0,0) · PσT(d1,d2)P

−1
σ for some d1, d2, σ with

d1 > d2. This implies that [Ru]F(r1,r2) = clos(M) for some M =




1 a b

0 1 c

0 0 1


 ∈ U3

with M conjugate to M0 =




1 0 1

0 1 0

0 0 1


 . We claim that either a = 0 or c = 0 :

Indeed, this claim follows easily from Lemma 4.3.4. Applying Item 1 of Lemma 4.5.1

with

Q = diag(tm1 , tm2 , t−m1−m2),

t some nonroot of unity, we now see that two of a, b, c are zero. It follows that

[Ru]F(r1,r2) is one of the following subgroups:

U1
(1,0) =







1 u 0

0 1 0

0 0 1







, U1
(0,0) =







1 0 u

0 1 0

0 0 1







, U1
(0,1) =







1 0 0

0 1 u

0 0 1







.

One checks that the following are equivalent:

1. [Ru]F(r1,r2) = U1
(1,0)

2. y2 /∈ KLred , ξ ∈ KLred

3. D−r1 is the unique right factor of (D−r2)◦(D−r1), and (D+r1 +r2)◦(D−r2)

is completely reducible

4. n[
1 = 1, n[

2 = 2

In case any of the above equivalent conditions holds, we see that [GL]F(r1,r2) = U1
(1,0) ·

T(m1,m2) ' Q̄oQ̄∗, and a calculation shows that the conjugation action is as described

in the algorithm; thus, the algorithm is correct in this case. Correctness in case

[Ru]F(r1,r2) is equal to U1
(0,0) or U1

(0,1) is proved by similar means.

• (3, 3) : Correctness is clear in this case.

• (∞,∞) : Correctness is clear in this case.

• (1, 1) : Suppose GL is isomorphic to either SL2 or GL2. Then L1 fails to right-divide

L2. Correctness then follows from Lemma 4.1.2.
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Suppose that GL is solvable, i.e., L1 right-divides L2. In case T ' Q̄∗×Q̄∗, correctness

follows from the fact that there is only one subgroup listed in Theorem 4.1.5 for which

n1 = n2 = 1 and T ' Q̄∗ × Q̄∗.

Suppose now that T ' Q̄∗. Let A be a basis of VL such that [GL]A ⊆ SL3 is one

of the relevant subgroups listed in Theorem 4.1.5. Note that each of the solvable

subgroups listed in Theorem 4.1.5 satisfying n1 = n2 = 1 has unipotent radical either

U1
(1,1), U

2
(1,1) or U3. In particular, [Ru]A includes U1

(1,1); thus, there exists τ ∈ Ru such

that

[τ ]A =




1 1 1
2

0 1 1

0 0 1


 ∈ U3.

Let M0 = [τ ]A, and let

M = [τ ]F(r1,r2) =




1 a b

0 1 c

0 0 1


 ∈ U3, a, b, c ∈ Q̄.

We claim that a 6= 0 and c 6= 0 : Indeed, this claim follows easily from Lemma 4.3.4

and the fact that clos(M0) = U1
(1,1).

Suppose [T ]F(r1,r2) = T(m1,m2) is such that T(m1,m2) 6= T(1,0). Then we claim that

[Ru]F(r1,r2) = U3, so that the algorithm is correct in this case. Indeed, if [Ru]F(r1,r2) (

U3, then Ru ' Q̄d for d = 1 or 2, and we see by Item 5 of Lemma 4.3.3 that

[Ru]F(r1,r2) ⊆ clos(M) · U1
(0,0). Applying Item 2 of Lemma 4.5.1 with

Q = diag(tm1 , tm2 , t−m1−m2),

t some nonroot of unity, we obtain T(m1,m2) = T(1,0) (note that T(−1,0) = T(1,0)),

contradicting hypothesis. This proves the claim.

Finally, suppose T(m1,m2) = T(1,0). Then one checks that r2 = g′/g for some g ∈ Q̄(x).

Correctness now follows from Lemma 4.6.5.

This exhausts the list of subgroups listed in Theorem 4.1.5 satisfying n1 = n2 = 1.

• (1,∞) (resp., (∞, 1); (2,∞); (∞, 2)): Correctness follows from the fact that there is

exactly one subgroup listed in Theorem 4.1.5 having these values for n1 and n2.

¥
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4.7 Examples

Before presenting examples related to this algorithm, we state the following result:

Theorem 4.7.1 Let G be a connected linear algebraic group defined over an algebraically

closed field C of characteristic zero. Let d(G) (resp., e(G)) be the defect (resp., the excess

— cf. [MS96]) of G. Then G is the Galois group of a Picard-Vessiot extension of C(x)

corresponding to a system of the form

Y ′ =
(

A1

x− α1
+ · · ·+

Ad(G)

x− αd(G)
+ A∞

)
Y,

where Ai is a constant matrix for i = 1, . . . , d(G), and A∞ is a matrix with polynomial

entries of degree at most e(G). In particular, the only possible singularities of this system

are d(G) regular singular points in the finite plane and a (possibly irregular) singular point

at infinity.

Proof. This is Theorem 1.2 in [MS96].

¥

This theorem, suitably rewritten in terms of operators, implies that each algebraic group

named in Theorem 4.1.5 arises as the Galois group of a third order operator whose only

singularities in the finite plane are apparent singularities.

For each group G ⊆ SL3 named in Theorem 4.1.5, we would like to find an operator of

the form L = D3 + aD + b, a, b ∈ Q̄[x], such that GL ' G. Unfortunately, it is not known

whether such an operator exists in each case. Below, for each such subgroup G ⊆ SL3, we

name a third-order operator L such that GL ' G; L has nonzero D2 term and one or more

apparent singularities in the finite plane in general. In each case, we apply either Algorithm

IV or a modified version of Algorithm IV. For each example, ni denotes the number of

ith-order right factors of L for i = 1, 2.

1. Examples satisfying H ' 1.

(a) Examples satisfying T ' 1. Let L = D3. Applying Algorithm IV, we compute

n1 = n2 = ∞, and
{
1, x, x2

}
is a basis of Q̄(x)-rational solutions. Algorithm IV

then returns the trivial group.

(b) Examples satisfying T ' Q̄∗.
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i. Examples satisfying Ru ' 0. Let

L = D3 + (−a2
1 − a1a2 − a2

2)D + (a2
1a2 + a1a

2
2)

= (D + a1 + a2) ◦ (D − a2) ◦ (D − a1),

a1, a2 ∈ Z \ {0} , GCD(a1, a2) = 1, a1 + a2 6= 0,

a1 6= −a1 − a2, a2 6= −a1 − a2.

One checks that n1 = n2 = 3. Moreover, we easily see that GL ' Q̄∗. Varying

a1 and a2 yields the different representations of Q̄∗ described in Lemma 4.2.3.

ii. Examples satisfying Ru ' Q̄. Here, we seek examples in which G ' Q̄ o Q̄∗,

as in Items 1-4 of Lemma 4.5.2 and Item 1 of Lemma 4.5.3.

A. Let

L = LCLM
(
(D − a2x) ◦ (D − a1x), D + (a1 + a2)x

)
,

a1, a2 ∈ Z \ {0} , GCD(a1, a2) = 1, a1 + a2 6= 0,

a1 6= −a1 − a2, a2 6= −a1 − a2.

It can be shown that n1 = n2 = 2, that applying Lemma 4.6.9 yields

[T ]F(r1,r2) = T(a1,a2), and that n[
1 = 1, n[

2 = 2; we conclude that Return

GL ' Q̄ o Q̄∗ with (Int t)(u) = ta1−a2u.

Alternatively, let Ri ∈ KL be such that R′i/Ri = aix for i = 1, 2.

Let y2 ∈ KL be such that y′2 − a1xy2 = R2. Then one checks that

F =
{
R1, y2, R

−1
1 R−1

2

}
is an ordered basis of VL. One further checks

that [GL]F has unipotent radical U1
(1,0) and maximal torus T(a1,a2). A

computation then shows that GL ' Q̄ o Q̄∗, with (Int t)(u) = ta1−a2u.

Note that by varying a1 and a2, one can obtain any of the semidirect

product structures described in Item 1 of Lemma 4.5.2.

B. Let L = D3+(−x2−2)D−x = (D+x)◦D◦(D−x). Maple computations

show that n1 = n2 = 1, that r2 = g′/g for g = 1 and that the equations

given in Item 3(d) and 4(d) of Lemma 4.6.5 admit Q̄(x)-rational solu-

tions. We conclude that GL ' Q̄ o Q̄∗ with (Int t)(u) = tu as in Item 2

of Lemma 4.5.2.

C. Let L = D3+(−3x2+3)D+(2x3−6x) = (D−x)◦(D−x)◦(D+2x). Maple

computations yield n1 = 2, n2 = ∞, and we conclude that GL ' Q̄o Q̄∗,
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with (Int t)(u) = t−3u as in Item 4 of Lemma 4.5.2. Taking adjL yields

the subgroup given in Item 3 of Lemma 4.5.2.

iii. Examples satisfying Ru ' Q̄2.

A. Let

L =
(
LCLM(D − a1x,D − a2x)

)
◦ (D + (a1 + a2)x), (4.25)

a1, a2 ∈ Z \ {0} , GCD(a1, a2) = 1, a1 + a2 6= 0,

a1 6= −a1 − a2, a2 6= −a1 − a2.

Here, it can be shown that n1 = 1 and n2 = 2 and that applying

Lemma 4.6.9 yields [T ]F(r1,r2) = T(−a1−a2,a1). We conclude that GL '
Q̄2 o Q̄∗ with (Int t)(u, v) = (ta1−a2u, t2a1+a2v).

Alternatively, let Ri ∈ KL be such that R′i/Ri = aix for i = 1, 2. Let

yj ∈ KL be such that y′j + (a1 + a2)xyj = Rj−1 for j = 2, 3. Then

one checks that F =
{
R−1

1 R−1
2 , y2, y3

}
is an ordered basis of VL. One

further checks that [GL]F has unipotent radical U2
(1,0) and maximal torus

T(−a1−a2,a1). A computation then shows that GL ' Q̄2 o Q̄∗, with

(Int t)(u, v) = (t−2a1−a2u, t−a1−2a2v)

for t ∈ Q̄∗, u, v ∈ Q̄.

By varying a1 and a2, one can obtain any of the semidirect product

structures described in Item 5 of Lemma 4.5.2.

B. Let L̄ = adjL, where L is as defined in (4.25). Arguments similar to

those used in computing GL show that GL̄ ' Q̄2 o Q̄∗ is as described in

Item 6 of Lemma 4.5.2.

C. Let L = D3 + (−x4 − 5x)D + (−3x3 − 3) = (D + x2) ◦ (D + 1/x) ◦ (D−
x2−1/x). Maple computations show that n1 = n2 = 1, that r2 = g′/g for

g = 1/x, that the equation given in Item 3(d) of Lemma 4.6.5 admits a

Q̄(x)-rational solution but the equation given in Item 4(d) of that lemma

does not. We conclude that GL ' Q̄2 o Q̄∗, with (Int t)(u, v) = (tu, t2v)

as in Item 7 of Lemma 4.5.2.

D. Let

L = D3 + (−3x4 + 6x)D + (2x6 − 12x3 + 4)

= (D − x2) ◦ (D − x2) ◦ (D + 2x2). (4.26)
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Maple computations show that n1 = 1, n2 = ∞, and we conclude that

GL ' Q̄2 o Q̄∗, with (Int t)(u, v) = (t−3u, t−3v) as described in Item 8 of

Lemma 4.5.2.

E. Let L̄ = adjL, where L is as defined in (4.26). Arguments similar to

those used in computing GL show that GL̄ ' Q̄2 o Q̄∗ is as described in

Item 9 of Lemma 4.5.2.

iv. Examples satisfying Ru ' U3.

A. Let

L = (D + (a1 + a2)x) ◦ (D − a2x) ◦ (D − a1x),

a1, a2 ∈ Z \ {0} , GCD(a1, a2) = 1, a2 6= 0.

It can be shown that n1 = n2 = 1 and that applying Lemma 4.6.9 yields

[T ]F(r1,r2) = T(a1,a2). We conclude that GL ' U3 · T(a1,a2).

Alternatively, it can be shown that KL/k is generated by elements R1,

R2, y2, ξ, y3 ∈ KL satisfying R′i/Ri = aix for i = 1, 2, y′2 − a1xy2 =

R2, ξ′ − a2xξ = R−1
1 R−1

2 and y′3 − a1xy3 = ξ. It can moreover be shown

that VL has ordered basis B = {R1, y2, y3} ; that [GL]B has maximal torus

T(a1,a2) and unipotent radical U3. These facts yield GL ' U3 · T(a1,a2).

Varying a1 and a2 yields the different conjugation actions described in

Item 1 of Lemma 4.5.6.

B. Let

L = D3 + (−x4 − 2x3 − x2 − 5x− 3)D + (−3x3 − 5x2 − 2x− 3)

= (D + x2 + x) ◦ (D + 1/x) ◦ (D − x2 − x− 1/x).

Maple computations show that n1 = n2 = 1, that r2 = g′/g for g = 1/x,

and that the equation given in Item 3(d) of Lemma 4.6.5 fails to admit

a Q̄(x)-rational solution. We conclude that GL ' U3 o Q̄∗, with

(Int t)







1 b c

0 1 d

0 0 1





 =




1 tb t2c

0 1 td

0 0 1




as in Lemma 4.5.6 with σ = id, T(d1,d2) = T(1,0).

(c) Examples satisfying T ' Q̄∗ × Q̄∗.
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i. Examples satisfying Ru ' 0. Let L = LCLM(D− x,D− 1, D + x + 1). Here,

it is easy to see that GL ' Q̄∗ × Q̄∗.

ii. Examples satisfying Ru ' Q̄. Let L = LCLM((D − x) ◦ (D − 1), D + x + 1).

A Maple computation shows that n1 = n2 = 1. It is easy to see that T '
Q̄∗ × Q̄∗. We conclude from Theorem 4.1.5 that GL ' Q̄ o (Q̄∗ × Q̄∗), with

(Int(t1, t2))(u) = t21t2u as in Item 1 of Lemma 4.5.4.

iii. Examples satisfying Ru ' Q̄2. Let L = (LCLM(Dx−x,Dx−1))◦(D+x+1).

A Maple computation shows that n1 = 1, n2 = 2. It is easy to see that

T ' Q̄∗ × Q̄∗. We conclude from Theorem 4.1.5 that GL ' Q̄2 o (Q̄∗ ×
Q̄∗), with (Int(t1, t2))(u, v) = (t1t−1

2 u, t21t2v) as in Item 2 of Lemma 4.5.4.

Similar computations show that the group of adjL is as described in Item 3

of Lemma 4.5.4.

iv. Examples satisfying Ru ' U3. Let L = D3 +(−x2−x−2)D +(x2 +x+1) =

(D + x + 1) ◦ (D− x) ◦ (D− 1). Maple computations show that n1 = n2 = 1

and that T ' Q̄∗ × Q̄∗. We conclude that GL ' T3 ∩ SL3.

2. Examples satisfying H ' SL2.

(a) Examples satisfying T ' 1.

i. Examples satisfying Ru ' 0. Let L = LCLM(D2 − x,D). A Maple com-

putation shows that n1 = n2 = 1; we see that GL is nonsolvable and that

GD2−x ' SL2. From Theorem 4.1.5 we conclude that GL ' SL2.

ii. Examples satisfying Ru ' Q̄2. Let L = D3 − xD − 1 = D ◦ (D2 − x). Maple

computations show that n1 = 1, n2 = 0, and GD2−x ' SL2; we conclude that

GL ' Q̄2 o SL2, with the unique conjugation action. Similar computations

show that adjL satisfies n1 = 0, n2 = 1 and also has group Q̄2 o SL2 with

the unique conjugation action. See Lemma 4.5.8.

(b) Examples satisfying T ' Q̄∗, so that P ' GL2.

i. Examples satisfying Ru ' 0. Let L = D3 + (−3x2 + 1)D + (2x3 − 4x) =

LCLM(D2 + xD− 2x2, D− x). Maple computations show that n1 = n2 = 1,

that GL is nonsolvable and that GD2+xD−2x2 ' GL2. We conclude that

GL ' GL2.

ii. Examples satisfying Ru ' Q̄2. Let L = D3 + (−x4 + 2x + 1)D − x2 =

(D − x2) ◦ (D2 + x2D + 1). Maple computations show that n1 = 1, n2 = 0.
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It is easy to see that GL ' Q̄2 o GL2 with M.v = (detM)−1(M−1)T v as

in Item 2(b) of Lemma 4.5.8. Similar computations show that the group of

adjL is as described in Lemma 4.5.8.

3. Examples satisfying H ' PSL2. Let L = D3 − 4xD − 2 = (D2 − x)s2. A Maple

computation shows that Ls2 has order 5. We conclude that GL ' PSL2.

4. Examples satisfying H ' SL3. Let L = D3−x. A Maple computation shows that Ls2

is irreducible of order 6. We conclude that GL ' SL3.
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Appendix A

Maple code, documentation

A.1 README file

File o3np.README: information about o3np.mpl, by Peter Berman.
Version 1.0. July 23, 2001. Compatible with Maple 6.

EXAMPLES:

> read("o3np.mpl");
Warning, the protected names norm and trace have been redefined and
unprotected
Warning, the name adjoint has been redefined

> dom := [Dx,x];
dom := [Dx, x]

> L := mult(Dx^2 - 2*x, Dx, dom);
3

L := Dx - 2 x Dx

> order_3_no_pole(-2*x,0,x);
The group of Dx^3-2*x*Dx is a semidirect product of C^2 by SL2.

The conjugation action of SL2 on C^2 is given as follows:
M.v = multiply( transpose(v), inverse(M) )

for M in SL2, v in C^2.
(multiplication of vector transpose by matrix inverse).

> # Note: The third argument, x, is the independent variable
> o3np(-2*x,0,x);

[C^2, SL2, vector_transpose_matrix_inverse]
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> order_3_no_pole(2*x,1,x);
The group of Dx^3+2*x*Dx+1 is PSL2.

> o3np(2*x,1,x);
[0, PSL2, 0]

To use o3np.mpl, make sure that your copy of that file is
in a directory that’s accessible to MAPLE, then type

> read("o3np.mpl");

from the MAPLE command line. The file contains code for
initialization and function defitions.

The remainder of this README file contains the declarations
and comment lines for the two main functions defined in the
o3np file.

order_3_no_pole := proc( f, g, x )
#
# This procedure takes as input the polynomials f and g in x,
# and returns as output a paragraph describing the Galois group
# of the operator D^3 + fD + g over C(x), where C is the
# field of algebraic numbers.
#
# It is a wrapper function for o3np, providing a text description
# for the output of that procedure; see o3np code and comments
# for details.
#

o3np := proc( a, b, x )
#
#
#
#
# Takes as input the polynomials a and b in the
# indeterminate x, with algebraic number coefficients.
#
#
# Computes the Galois group of Dx^3 + a*Dx + b over the field
# of rational functions with algebraic number coefficients.
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#
#
# Returns as output a list of the form
#
# [ U, P, Conj ].
#
# where U is the name of a unipotent group, P is the name of a
# reductive group, and the conjugation action of P on U is
# described by Conj.
#
#
# A nontrivial unipotent group U is one of the following:
#
# "U3", "C^2", "C", "0".
#
#
# A reductive group P is one of the following:
#
# "SL3", "PSL2", "GL2", "SL2", "C*^2" (i.e., C* x C*), "C*", "1".
#
#
#
# The conjugation action Conj for a semidirect product
# is represented in one of the following ways, depending on U and P:
#
# *** If U = 0, then Conj = "0"
#
# *** C^2 by SL2 or GL2:
# Conj = "matrix_vector" or "vector_transpose_matrix_inverse"
#
# *** C by C*:
# Conj = d, where t.u = t^d * u for t in C*, u in C
#
# *** C by C*^2:
# Conj = [d1,d2], where (t1,t2).u = t1^d1 * t2^d2 * u
# for t1, t2 in C*, u in C
#
# *** C^2 by C*:
# Conj = [d1,d2], where t.(u1,u2) = (t^d1 * u1, t^d2 * u2)
# for t in C*, u1, u2 in C
#
# *** C^2 by C*^2:
# Conj = [ [d1,d2], [e1,e2] ] where
#
# (t1,t2).(u,v) = ( t1^d1 * t2^d2 * u, t1^e1 * t2^e2 * v )
#
# for t1, t2 in C*, u, v in C
#
# *** U3 by C*:
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# Conj. = [d1, d2], where C* embeds in SL3 via
# t |--> diag( t^d1, t^d2, t^(-d1-d2) ) and
# U3 is the group of upper triangular matrices in SL3 with
# 1s along the diagonal.
#
# *** U3 by C*^2:
# Conj. = "standard". In this case, the group is conjugate to
# T3 intersect SL3, the group of upper triangular matrices in
# SL3. Thus there is only one possible conjugation action.
#
#

A.2 Maple code

# File o3np.mpl
# by Peter Berman.
# Version 1.0. July 23, 2001. Compatible with Maple 6.

#
# CONTENTS:
#
# I. Initialization, general tools
# II. compute_torus code
# III. o3np code
# IV. order_3_no_pole code
#

#
# I. Initialization, general tools
#

with(linalg):
with(DEtools):

logDiff := proc( f, x );
#
# logDiff stands for LOGarithmic DIFFerentiation
#
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return diff( f, x ) / f ;
end:

rfldtest := proc( f, x )
#
# rfld stands for Rational Function Logarithmic Derivative.
# This procedure returns TRUE if f = g’/g for some rational
# function g, FALSE otherwise.
#
local s;
s := ratsols(diff(y(x),x) - f*y(x), y(x));
if not ( s = [] ) then

return true ;
fi;
return false ;

end:

numES := proc( L, dom )
#
# numES stands for NUMber of Exponential Solutions.
# This procedure returns either a nonnegative integer
# or infinity, equal to the number of solutions of
# L(y) = 0 of the form exp(int(g)), g a rational function.
#
local Lde, es, esx, esld, n, i, j, y, t, x;
Lde := diffop2de( L, y(t), dom );
es := expsols( Lde = 0, y(t) );
n := nops( es );
if ( n = 0 ) then

return 0 ;
fi;
x := op( 2, dom );
esx := subs( t=x, es );
esld := map( logDiff, esx, x );
for i from 1 to n do

for j from (i+1) to n do
if ( rfldtest( op(i, esld) - op(j, esld), x ) ) then

return infinity ;
fi;

od;
od;
return n ;

end:

129



#
# II. compute_torus code
#

make_monic := proc( Llist, dom )
#
# Input: Llist, a list of three first-order
# operators over the domain dom whose
# product is monic
#
# Converts Llist to a list of monic first-order operators
# whose product is also equal to L. (Note: This
# is a precautionary measure. The elements of Llist
# are assumed to have been computed using the DEtools
# DFactor command, which might automatically return
# its factor list in this form.)
#
# Output: a list M of three monic first-order
# operators such that
# mult(Llist[1], Llist[2], Llist[3], dom) =
# mult(M[1], M[2], M[3], dom).
#
#
local M, f, s, Dx, x;
Dx := dom[1];
x := dom[2];
f := map( coeff, Llist, Dx, 1 );
s := map( coeff, Llist, Dx, 0 );
if ( f = [1,1,1] ) then return Llist ; fi;
M := [0,0,0];
M[1] := Dx + s[1]/f[1] + logDiff( f[2]*f[3], x );
M[2] := Dx + s[2]/f[2] + logDiff( f[3], x );
M[3] := Dx + s[3]/f[3];
M;

end:

Llist2rlist := proc( Llist, dom )
#
# Input: Llist, a list [L3, L2, L1] of first-order operators
# over dom, such that
#
# Dx^3 + a*Dx + b = mult(L3,L2,L1,dom)
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#
# Output: A list [r3, r2, r1] of rational functions such that
#
# mult( L3, L2, L1, dom ) = mult( Dx - r3, Dx - r2, Dx - r1, dom )
#
local Mlist, Rlist, Dx, x;
Dx := dom[1];
x := dom[2];
Mlist := make_monic( Llist, dom );
Rlist := map( coeff, Mlist, Dx, 0 );
Rlist := map( x -> (-1)*x, Rlist );
Rlist;

end:

cf2 := proc( fn )
#
# Helper function; see coefficient_field below.
# This function recursively computes and returns a set
# containing all RootOfs appearing in fn.
#
local u, s;
if type( fn, RootOf ) then

return { fn } ;
fi;
if nops( fn ) = 1 then

return {} ;
fi;
s := {};
for u in fn do

s := s union cf2( u );
od;
s;

end:

coefficient_field := proc( f )
#
# Takes as input either a rational function with
# algebraic-number coefficients -- i.e., a function
# built up from rational numbers, RootOfs and symbols
# using addition, subtraction, multiplication and addition --
# or a list or set of such functions.
#
# Returns an ordered list [ s[1], s[2], ..., s[n] ]
# of the RootOfs that appear in f.
# s[j] fails to appear in s[i] if i < j.
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#
local fcollection, g, gnormal, s;
if type( f, list ) or type( f, set ) then

fcollection := f;
else

fcollection := { f };
fi;
s := {};
for g in fcollection do

gnormal := evala( Normal ( g ) );
s := s union cf2( gnormal );

od;
s := [op(s)];
s := sort( s, proc(a,b) return not evalb( has( a, b ) ) end );
s;

end:

parfrac_summand_decomp := proc( f, x, C_0 )
#
# Takes as input f, a summand of a partial fraction decomposition
# in the indeterminate x over the field C_0. It is assumed that
# f has nontrivial denominator. That is, it is assumed that we can
# write f = N/Q^d, where:
#
# * N and Q are polynomials over C_0
# * degree(N) < degree(Q)
# * Q is monic and irreducible over C_0
# * d is an integer, d >= 1
#
# Returns as output the list [N, Q, d].
#
local N1, D1, L, u, Q1, d, c;
N1 := numer( f );
D1 := denom( f );
L := evala( Factors( D1, C_0 ) );
u := L[1];
if nops( L[2] ) > 1 then

error "Too many factors in denominator of \
partial fractions summand %1" , f ;

fi;
Q1 := L[2][1][1];
d := L[2][1][2];
# f = N1 / (u*Q1^d)
c := lcoeff( Q1, x );
# f = N1 / (u*(c*Q2)^d) = N1 / (u * c^d * Q2^d)
# = (N1 / u / c^d) / Q2^d
return [ N1/u/c^d, Q1/c, d ] ;

end:
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rational_number_summand_in := proc( a_input )
#
# Takes as input an algebraic number a_input. Suppose
# a_input = a1 + a2, where a1 is a rational number and
# a2 is a Q-linear combination of nontrivial power products
# of RootOfs. Then this procedure returns a1.
#
local a_normal, u;
a_normal := evala( Normal( a_input ) );
if not type( a_normal, algnum ) then

error "%1 is not an algebraic number", a_input;
fi;
if not type( a_normal, ‘+‘ ) then

#
# There is only one summand in a_normal. Replace a_normal
# with { a_normal } so that the subsequent loop through the
# operands of a_normal treats a_normal as a summand.
#
a_normal := { a_normal };

fi;
#
# a_normal is an expanded element of the polynomial algebra
# determined by the RootOfs that appear in a_input. The
# following loop searches the operands that appear in a_normal.
# If one of the summands is a rational number, then the procedure
# returns this number (which is unique); otherwise the procedure
# returns zero.
#
for u in a_normal do

if type( u, rational ) then
return u ;

fi;
od;
return 0 ;

end:

ratfun_relation := proc( s1, s2, x )
#
# Takes the rational functions s1 and s2 with algebraic number
# coefficients as input.
#
# It is assumed that the distinct RootOfs appearing in s1 and s2
# are independent.
#
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# Returns as output a list [j1,j2] of integers such that
#
# j1*s1 + j2*s2 = h’/h
#
# for some rational function h.
#
# The list will be nonzero if possible; i.e., if there exist
# integers n1, n2, not both zero, such that n1*s1 + n2*s2 = g’/g
# for some rational function g, then the output of
# ratfun_relation is UNEQUAL to [0,0].
#
# If j1,j2 are not both zero, then [j1,j2] will be
# in lowest possible terms. That is, if [j1,j2] = [c*k1,c*k2]
# for some integers c, k1, k2 such that k1*s1 + k2*s2 = f’/f
# for some rational function f, then c is equal to
# either 1 or -1.
#
local C_0, sp, i, u, s_fld, s_cancel, psd, A, Q, Qprime,

alpha, B, alpha1, alpha2, scq, fld_denoms, n;
if s1 = 0 then return [1,0] ; fi;
if s2 = 0 then return [0,1] ; fi;
C_0 := coefficient_field( [ s1, s2 ] );
sp := [0,0];
s_fld := [0,0];
s_cancel := [0,0];
fld_denoms := [{},{}];
#
#
# sp will be a two-element list consisting of the
# partial-fraction decompositions of s1 and s2 over C_0.
# s_fld (for Fraction of a Logarithmic Derivative) will be
# a two-element list such that s_fld[i] is the "part" of
# sp[i] which is the log-derivative of an nth root of a
# rational function over C_0 for some n. s_cancel will be a
# two-element list such that
#
# sp[i] = s_fld[i] + s_cancel[i];
#
# we will want s_cancel[1] and s_cancel[2] to "cancel" in
# the sense that some Z-linear combination of these two
# rational functions should be zero; i.e., that they differ
# multiplicatively by a rational number.
#
#
sp[1] := convert( s1, parfrac, x, C_0 );
sp[2] := convert( s2, parfrac, x, C_0 );
for i from 1 to 2 do

if not type( sp[i], ‘+‘ ) then
#
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# There is only one summand in the partial-fraction
# decomposition of s_i. Replace s_i with { s_i } so that
# the subsequent loop through the operands of s_i treats
# s_i as a summand.
#
sp[i] := { sp[i] };

fi;
for u in sp[i] do

if type( u, polynom ) then
#
# Summand is of the form c*x^d with d >= 0;
# place in s_cancel[i]
#
s_cancel[i] := s_cancel[i] + u;
next;

fi;
psd := parfrac_summand_decomp( u, x, C_0 );
if psd[3] > 1 then

#
# Summand is of the form A/Q^d with d > 1;
# place in s_cancel[i]
#
s_cancel[i] := s_cancel[i] + u;

else
#
# Summand is of the form A/Q, Q irreducible over C_0;
# write A = alpha*diff(Q,x) + B, where deg B < deg Q’.
# Then write alpha = alpha1 + alpha2, where
# alpha1 is a rational number and alpha2 is a
# Q-linear combination of nontrivial power products of
# RootOfs. Then,
#
# A/Q = ((alpha1+alpha2)*Q’ + B)/Q
# = (alpha1 * Q’ / Q) + (alpha2*Q’+B)/Q
# = f1 + f2.
#
# Add f1 to s_fld[i], f2 to s_cancel[i].
#
#
#
A := psd[1];
Q := psd[2];
Qprime := diff( Q, x );
alpha := quo( A, Qprime, x, ’B’ );
if degree( alpha, x ) > 0 then

error "Unexpected high-degree numerator in \
partial fractions summand %1", A/Q;

fi;
alpha1 := rational_number_summand_in( alpha );

135



fld_denoms[i] := fld_denoms[i] union { denom( alpha1 ) };
alpha2 := alpha - alpha1;
s_fld[i] := s_fld[i] + alpha1 * Qprime / Q;
s_cancel[i] := s_cancel[i] + (alpha2 * Qprime + B)/Q;

fi;
od;

od;
if s_cancel[1] = 0 then

return [ lcm(op(fld_denoms[1])), 0 ] ;
fi;
if s_cancel[2] = 0 then

return [0, lcm(op(fld_denoms[2]))] ;
fi;
scq := evala( Normal( s_cancel[1]/s_cancel[2] ) );
if type( scq, rational ) then

#
# The s_cancel parts differ by a multiplicative rational number, scq.
# Say scq = n1/n2; then s_cancel[1]/s_cancel[2] = n1/n2, so that
# n2*s_cancel[1] - n1*s_cancel[2] = 0 and therefore (by hypotheses)
# n2*s1 - n1*s2 is the log-derivative of the nth root of
# a rational function, so that
# n*n2*s1 - n*n1*s2 is the log-derivative of a rational function.
# Here, n is the LCM of the denominators of the rational numbers
# alpha1 found above.
#
n := lcm( op(fld_denoms[1]), op(fld_denoms[2]) );
return [ n * denom( scq ), (-1) * n * numer( scq ) ] ;

else
#
# The s_cancel parts fail to cancel
#
return [0, 0] ;

fi;
end:

compute_torus := proc( r1, r2, x )
#
# This procedure assumes that r1 and r2 are rational functions
# in the indeterminate x satisfying the following property:
# Let
#
# L = mult( Dx + r1 + r2, Dx - r2, Dx - r1, dom ),
#
# where dom = [Dx,x]. Then there exist polynomials a, b
# such that
#
# L = Dx^3 + a*Dx + b.
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#
# This procedure computes the group of
#
# Lred = LCLM( Dx + r1 + r2, Dx - r2, Dx - r1, dom).
#
# Moreover, if this group is a one-dimensional torus, then
# the procedure computes the matrix representation
# of this group on the solution space of Lred, relative to
# the ordered basis {R1, R2, 1/R1/R2}. Here, R_i is a
# function whose logarithmic derivative is r_i for i = 1,2.
# This ordered basis is chosen because it corresponds
# with a basis of the solution space of L, relative to which
# the group of L is upper-triangular. In particular, R1
# is a solution of L.
#
#
# This procedure returns as output a list of one of
# the following types:
#
#
# [0] -- if the group of Lred is trivial (0-dimensional).
#
#
# [2] -- if the group of Lred is C* x C* (2-dimensional).
# In this case, the group is represented as
#
# { diag( u, v, w ) : uvw = 1}.
#
#
# [1, [e1, e2]] -- if the group of Lred is C* (1-dimensional).
# In this case, the matrix representation
# referred to above has image
#
# { diag(u,v,w): u^e2 = v^e1, uvw = 1 }.
#
# Moreover, it is parameterized by the mapping
#
# t |--> diag( t^e1, t^e2, t^(-e1-e2) )
#
# for t in C*. Also, e1 >= 0; this is
# guaranteed in the procedure by replacing
# (e1, e2) with (-e1, -e2) if necessary.
#
#
local jlist, elist;

if ( rfldtest( r1, x ) and rfldtest( r2, x ) ) then
#
# group is trivial
#
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return [0] ;
fi;
jlist := ratfun_relation( r1, r2, x );
if ( jlist = [0, 0] ) then

#
# group is C* x C*
#
return [2] ;

fi;
#
# ratfun_relation returns [j1, j2] such that j1*r1 + j2*r2 = h’/h
# for some rational function h, i.e., R1^j1 * R2^j2 = h.
#
# Define [e1,e2] = [-j2, j1], so that replacing R1 with t^e1 * R1
# and R2 with t^e2 * R2 preserves the relation R1^j1 * R2^j2 = h.
# Then make sure that e1 >= 0.
#
elist := [ (-1) * jlist[2], jlist[1] ];
if elist[1] < 0 then

elist := [ (-1)*elist[1], (-1)*elist[2] ];
fi;
[ 1, elist ];

end:

#
# III. o3np code
#

sl2test := proc( L, dom )
#
# Input: L, an irreducible
# second-order differential operator
# over dom whose group is known to be
# either SL_2 or GL_2
#
# Output: Returns true if the group is SL_2,
# false if GL_2
#
local x, Dx, f;
Dx := dom[1];
x := dom[2];
f := coeff( L, Dx );
rfldtest( f, x );

end:
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o3np := proc( a, b, x )
#
#
#
#
# Takes as input the polynomials a and b in the
# indeterminate x, with algebraic number coefficients.
#
#
# Computes the Galois group of Dx^3 + a*Dx + b over the field
# of rational functions with algebraic number coefficients.
#
#
# Returns as output a list of the form
#
# [ U, P, Conj ].
#
# where U is the name of a unipotent group, P is the name of a
# reductive group, and the conjugation action of P on U is
# described by Conj.
#
#
# A nontrivial unipotent group U is one of the following:
#
# "U3", "C^2", "C", "0".
#
#
# A reductive group P is one of the following:
#
# "SL3", "PSL2", "GL2", "SL2", "C*^2" (i.e., C* x C*), "C*", "1".
#
#
#
# The conjugation action Conj for a semidirect product
# is represented in one of the following ways, depending on U and P:
#
# *** If U = 0, then Conj = "0"
#
# *** C^2 by SL2 or GL2:
# Conj = "matrix_vector" or "vector_transpose_matrix_inverse"
#
# *** C by C*:
# Conj = d, where t.u = t^d * u for t in C*, u in C
#
# *** C by C*^2:
# Conj = [d1,d2], where (t1,t2).u = t1^d1 * t2^d2 * u
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# for t1, t2 in C*, u in C
#
# *** C^2 by C*:
# Conj = [d1,d2], where t.(u1,u2) = (t^d1 * u1, t^d2 * u2)
# for t in C*, u1, u2 in C
#
# *** C^2 by C*^2:
# Conj = [ [d1,d2], [e1,e2] ] where
#
# (t1,t2).(u,v) = ( t1^d1 * t2^d2 * u, t1^e1 * t2^e2 * v )
#
# for t1, t2 in C*, u, v in C
#
# *** U3 by C*:
# Conj. = [d1, d2], where C* embeds in SL3 via
# t |--> diag( t^d1, t^d2, t^(-d1-d2) ) and
# U3 is the group of upper triangular matrices in SL3 with
# 1s along the diagonal.
#
# *** U3 by C*^2:
# Conj. = "standard". In this case, the group is
# conjugate to T3 intersect SL3,
# the group of upper triangular matrices in SL3.
# Thus there is only one possible conjugation action.
#
#
local Dx, dom, L, Ladj, Lfactors, rlist, r1, r2, r3, L1, L2,

L2sharp, Ltest, n1, n2, Ls2, Ls2factors,
t, GredList, f, g, s, Ltemp, Ltemp1, elist;

dom := [Dx, x];
L := Dx^3 + a*Dx + b;
Ladj := DEtools[adjoint]( L, dom );
Lfactors := DFactor( L, dom );
n1 := numES( L, dom );
n2 := numES( Ladj, dom );
if ( n1 = 0 ) then

if ( n2 = 0 ) then
#
# n1 = n2 = 0
#
Ls2 := symmetric_power(L, 2, dom);
if ( degree( Ls2, Dx ) = 5 ) then

return [ "0", "PSL2", "0" ] ;
fi;
Ls2factors := DFactor( Ls2, dom );
if ( nops( Ls2factors ) > 1 ) then

return [ "0", "PSL2", "0" ] ;
else

return [ "0", "SL3", "0" ] ;
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fi;
elif ( n2 = 1 ) then

#
# n1 = 0, n2 = 1
#
L2 := Lfactors[2];
if ( sl2test( L2, dom ) ) then

return [ "C^2", "SL2", "matrix_vector" ] ;
else
return [ "C^2", "GL2", "matrix_vector" ] ;
fi;

else
error "for n1 = 0, unexpected n2: %1", n2;

fi;
elif ( n1 = 1 ) then

if ( n2 = 0 ) then
#
# n1 = 1, n2 = 0
#
L2 := Lfactors[1];
if ( sl2test( L2, dom ) ) then

return [ "C^2", "SL2", "matrix_vector" ] ;
else

return [ "C^2", "GL2", "vector_transpose_matrix_inverse" ] ;
fi;

elif ( n2 = 1 ) then
#
# n1 = n2 = 1
#
if ( nops( Lfactors ) = 2 ) then

#
# L is a LCLM of an irreducible 2nd-order and a
# 1st-order operator
#
L1 := Lfactors[1];
L2 := Lfactors[2];
#
# Define Ltest to be the second-order factor of L,
# then apply sl2test. NOTE: Could also seek rational
# solutions of the first-order factor of L
#
#
if ( degree( L1, Dx ) = 2 ) then

Ltest := L1;
else

Ltest := L2;
fi;
if ( sl2test( Ltest, dom ) ) then

return [ "0", "SL2", "0" ] ;
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else
return [ "0", "GL2", "0" ] ;

fi;
else

#
# L is a product of three first-order operators
#
rlist := Llist2rlist( Lfactors, dom );
r2 := rlist[2];
r1 := rlist[3];
GredList := compute_torus( r1, r2, x );
if ( GredList[1] = 2 ) then

#
# torus is C*^2
#
return [ "U3", "C*^2", "standard" ] ;

elif (GredList[1] = 1 ) then
#
# torus is C*
#
elist := GredList[2];
if ( elist[2] = 0 ) then

#
# Torus representation is t |--> [t,1,1/t]
#
g := ratsols( diff(y(x),x) - r2*y(x), y(x) )[1];
#
# The next line rules out the case where g is a constant.
# This ensures that the subsequent calls to ratsols will be
# for inhomogeneous differential equations.
#
if ( diff( g, x ) = 0 ) then

return [ "C", "C*", 1 ] ;
fi;
Ltemp := mult(Dx,Dx-r1-2*r2,dom);
Ltemp1 := diffop2de(Ltemp,y(x),dom);
s := ratsols( Ltemp1 = r2*g^3,y(x) );
if ( nops(s) = 1 ) then

#
# inhomogeneous equation has no rational solutions;
# Maple has returned only a list of solutions to the
# homogeneous equation
#
return [ "U3", "C*", [ 1, 0 ] ] ;

else
#
# decide between C and C^2 for unipotent radical
#
Ltemp := mult(Dx,Dx-r1-2*r2,Dx-2*r1-r2,dom);
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Ltemp1 := diffop2de(Ltemp,y(x),dom);
s := ratsols( Ltemp1 = r2*g^3, y(x) );
if ( nops(s) = 1 ) then

#
# inhomogeneous equation has no rational solutions;
# Maple has returned only a list of solutions to
# the homogeneous equation
#
return [ "C^2", "C*", [ 1, 2 ] ] ;

else
return [ "C", "C*", 1 ] ;

fi;
fi;

else
#
# Torus representation is NOT [t,1,1/t];
# unipotent radical must be U3
#
return [ "U3", "C*", elist ] ;

fi;
else

error "unexpected trivial torus in case n1 = n2 = 1" ;
fi;

fi;
elif ( n2 = 2 ) then

#
# n1 = 1, n2 = 2
#
rlist := Llist2rlist( Lfactors, dom );
r2 := rlist[2];
r1 := rlist[3];
GredList := compute_torus( r1, r2, x );
if ( GredList[1] = 2 ) then

#
# torus is C*^2
#
return [ "C^2", "C*^2", [ [1, -1], [2, 1] ] ] ;

elif ( GredList[1] = 1 ) then
#
# torus is C*
#
elist := GredList[2];
return [ "C^2", "C*", [ elist[1] - elist[2], \

2*elist[1] + elist[2] ] ] ;
else

error "unexpected trivial torus in case n1 = 1, n2 = 2" ;
fi;

elif ( n2 = infinity ) then
#
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# n1 = 1, n2 = infinity
#
return [ "C^2", "C*", [ -3, -3 ] ] ;

else
error "for n1 = 1, unexpected n2: %1", n2 ;

fi;
elif ( n1 = 2 ) then

if ( n2 = 1 ) then
#
# n1 = 2, n2 = 1
#
rlist := Llist2rlist( Lfactors, dom );
r2 := rlist[2];
r1 := rlist[3];
GredList := compute_torus( r1, r2, x );
if ( GredList[1] = 2 ) then

#
# torus is C*^2
#
return [ "C^2", "C*^2", [ [ 2, 1 ], [ 1, 2 ] ] ] ;

elif (GredList[1] = 1 ) then
#
# torus is C*
#
elist := GredList[2];
return [ "C^2", "C*", [ 2*elist[1] + elist[2], \

elist[1] + 2*elist[2] ] ] ;
else

error "unexpected trivial torus in case n1 = 2, n2 = 1" ;
fi;

elif ( n2 = 2 ) then
#
# n1 = n2 = 2
#
rlist := Llist2rlist( Lfactors, dom );
r2 := rlist[2];
r1 := rlist[3];
GredList := compute_torus( r1,r2, x );
if ( GredList[1] = 2 ) then

#
# torus is C*^2
#
return [ "C", "C*^2", [ 2, 1 ] ] ;

elif ( GredList[1] = 1 ) then
#
# torus is C*
#
elist := GredList[2];
L2 := mult( Lfactors[2], Lfactors[3], dom);
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L2sharp := mult( Lfactors[1], Lfactors[2], dom);
if ( numES( L2, dom) = 1 ) then

return [ "C", "C*", elist[1] - elist[2] ] ;
elif ( numES( L2sharp, dom) = 1 ) then

return [ "C", "C*", elist[1] + 2*elist[2] ] ;
fi;
return [ "C", "C*", 2*elist[1] + elist[2] ];

else
error "unexpected trivial torus in case n1 = 2, n2 = 2";

fi;
elif ( n2 = infinity ) then

#
# n1 = 2, n2 = infinity
#
return [ "C", "C*", -3 ] ;

else
error "for n1 = 2, unexpected n2: %1", n2;

fi;
elif ( n1 = 3 ) then

if ( n2 = 3 ) then
#
# n1 = n2 = 3
#
rlist := Llist2rlist( Lfactors, dom );
r2 := rlist[2];
r1 := rlist[3];
GredList := compute_torus( r1,r2, x );
if ( GredList[1] = 2 ) then

return [ "0", "C*^2", "0" ] ;
elif ( GredList[1] = 1 ) then

return [ "0", "C*", "0" ] ;
else

error "unexpected trivial torus in case n1 = 3, n2 = 3" ;
fi;

else
error "for n1 = 3, unexpected n2: %1", n2 ;

fi;
else

if ( n2 = 1 ) then
#
# n1 = infinity, n2 = 1
#
return [ "C^2", "C*", [ 3, 3 ] ] ;

elif ( n2 = 2 ) then
#
# n1 = infinity, n2 = 2
#
return [ "C", "C*", 3 ] ;

elif ( n2 = infinity ) then
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#
# n1 = n2 = infinity
#
rlist := Llist2rlist( Lfactors, dom );
r2 := rlist[2];
r1 := rlist[3];
GredList := compute_torus( r1, r2, x );
if ( GredList[1] = 1 ) then

return [ "0", "C*", "0" ] ;
elif ( GredList[1] = 0 ) then

return [ "0", "1", "0" ] ;
else

error "unexpected 2-dimensional torus in case\
n1 = n2 = infinity";

fi;
else

error "for n1 = infinity, unexpected n2: %1", n2 ;
fi;

fi;
end:

#
# IV. order_3_no_pole code
#

translate_matrix_text := proc( s, txt )
#
# This procedure takes as input s, a Maple name that describes
# a certain type of conjugation action. See the comments
# for o3np, under conjugation action of SL2 or GL2 on C^2.
#
# It returns as output an English-language description
# of that action.
#
if ( s = "matrix_vector" ) then

return cat( "M.v = Mv for M in ", txt, ", v in C^2.\
(matrix-vector multiplication)") ;

elif ( s = "vector_transpose_matrix_inverse" ) then
return cat( "M.v = multiply( transpose(v), inverse(M) )\n\

for M in ",txt, ", v in C^2.\n (multiplication of vector\
transpose by matrix inverse)" ) ;

else
error "Incorrect call to translate_matrix_text";

fi;
end:
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order_3_no_pole := proc( f, g, x )
#
# This procedure takes as input the polynomials f and g in x,
# and returns as output a paragraph describing the Galois group
# of the operator D^3 + fD + g over C(x), where C is the
# field of algebraic numbers.
#
# It is a wrapper function for o3np, providing a text description
# for the output of that procedure; see o3np code and comments
# for details.
#
local G, L, Dx, U, P, Conj, ConjText;
G := o3np( f, g, x );
L := Dx^3 + f*Dx + g;
U := G[1];
P := G[2];
Conj := G[3];
if ( U = "0" ) then

printf("\nThe group of %A is %A.\n\n", L, G[2] );
return;

fi;
if ( U = "U3" ) then

if ( P = "C*" ) then
printf( "\nThe group of %A is a semidirect product\

of U3 by C*.\nIt is isomorphic to the subgroup of\
GL3 given by\nthe equations t21 = t31 = t32 = 0,\
t11 * t22 * t33 = 1, t11^%d = t22^%d.\n\n",
L, Conj[2], Conj[1] );
return ;

elif ( P = "C*^2" ) then
printf( "\nThe group of %A is a semidirect product\

of U3 by C* x C*.\nIt is isomorphic to T3 intersect SL3,\
i.e., the subgroup of GL3 given by\nthe equations\
t21 = t31 = t32 = 0, t11 * t22 * t33 = 1.\n\n", L );

return ;
else

error "In case U = U3, unexpected reductive subgroup: %1", P;
fi;

elif ( U = "C" ) then
if ( P = "C*" ) then

ConjText := sprintf( "t.u = t^%d * u for t in C*, u in C", Conj );
elif( P = "C*^2" ) then

ConjText := sprintf( "(t1, t2).u = t1^%d * t2^%d * u\n\
for t1, t2 in C*, u in C", Conj[1], Conj[2] );

else
error "In case U = C, unexpected reductive subgroup: %1", P;

fi;
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elif ( U = "C^2" ) then
if ( P = "GL2" or P = "SL2" ) then

ConjText := translate_matrix_text( Conj, convert(P,string) );
elif ( P = "C*^2" ) then

ConjText := sprintf( "(t1,t2).(u,v) = (t1^%d * t2^%d * u,\
t1^%d * t2^%d * v)\nfor t1, t2 in C*, u, v in C",\
Conj[1][1], Conj[1][2], Conj[2][1], Conj[2][2] );

elif ( P = "C*" ) then
ConjText := sprintf( "t.(u,v) = (t^%d * u, t^%d * v)\n\

for t in C*, u, v in C", Conj[1], Conj[2] );
else

error "In case U = C^2, unexpected reductive subgroup: %1", P;
fi;

else
error "Unexpected unipotent subgroup: %1", U ;

fi;
printf("\nThe group of %A is a semidirect product of %A by %A.\n\

The conjugation action of %A on %A is given as follows:\n\
%s.\n\n", L, U, P, P, U, ConjText );

end:
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