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Solving Difference Equations in Finite Terms
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We define the notion of a Liouvillian sequence and show that the solution space of a dif-
ference equation with rational function coefficients has a basis of Liouvillian sequences iff
the Galois group of the equation is solvable. Using this we give a procedure to determine
the Liouvillian solutions of such a difference equation.
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1. Introduction

One of the main results in the Galois theory of linear differential equations is that the
Galois group of an equation L(y) = 0 has a solvable subgroup of finite index iff the
equation can be solved in terms of Liouvillian functions, that is, in terms of functions
built up from the coefficients of L(y) iterating field operations, differentiation, integration,
exponentials of integrals and taking roots of polynomials (see Kaplansky (1976), Kolchin
(1948), Kolchin (1976), Magid (1994)). Furthermore, much work has been devoted to
developing algorithms to decide if a linear differential equation has Liouvillian solutions
and, if so, find them (see Singer (1997) for a history of this problem).

In this paper we consider difference equations with rational function coefficients. For-
mally, this is done by considering fields of the form C(x), C ⊂ C, the complex numbers,
with an automorphism defined by φ(x) = x + 1 and equations of the form L(y) =
φn(y)+an−1φ

n−1(y)+ · · ·+a0y = 0. One can associate to any such equation a “splitting
ring”, called the Picard–Vessiot ring, that contains C(x) as well as a basis for the solution
space of L(y) = 0. The group of C(x)-automorphisms of this ring that commute with φ
is called the Galois group of L(y) = 0. We show that L(y) = 0 can be solved in terms of
“Liouvillian sequences” (see Section 3.2 for a definition) iff the Galois group is a solvable
group and give an algorithm to find all such solutions. The notion of solvable in terms of
Liouvillian sequences generalizes the notion of solvable in hypergeometric closed form of
Petkovsek et al. (1996, p. 141). The algorithm presented here generalizes algorithms that
find hypergeometric solutions (e.g. Hyper in Petkovsek (1992), Petkovsek et al. (1996)),
or the algorithm presented in van Hoeij (1998a,b).

The paper is organized as follows. In Section 2, we review the basics of the Galois the-
ory of difference equations. In Section 3 we discuss rings of sequences, define Liouvillian
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sequences and give the Galois theoretic characterization of solvability in terms of Liouvil-
lian sequences. In Section 4 we study equations of the form φm−a. An understanding of
these equations and their Galois groups is the key to the algorithm for finding Liouvillian
solutions of equations L(y) = 0. In Section 5, we present this algorithm. The paper ends
with two appendices. The first appendix discusses properties of the Casoratian determi-
nant, the difference analogue of the Wronskian determinant. The second appendix shows
the equivalence between systems φ(Y ) = AY, A ∈ GLn(k) and equations L(y) = 0 with
coefficients in k where k is a difference field containing an element a such that φn(a) 6= a
for all n ∈ Z− {0}, where Z is the integers.

2. Galois Theory

In this section we will review the basic notions from the Galois theory of difference
equations that are needed in the rest of the paper. A complete treatment can be found
in van der Put and Singer (1997).

Let k be a difference field of characteristic 0, that is, a field k with an automorphism
φ. Let C = {c ∈ k | φ(c) = c} be the field of constants of k. We shall consider systems of
difference equations of the form

φ(Y ) = AY (2.1)
where A ∈ GLn(k). If R is a difference ring† extension of k, a fundamental matrix for (2.1)
is an element U = (uij) ∈ GLn(R) such that φ(U) = AU . A difference ring extension
R of k is called a Picard–Vessiot extension of k for (2.1) if R is a simple difference
ring (i.e. the only φ-invariant ideals are (0) and R) and R = k[u11, . . . , unn, (det U)−1]
where U ∈ GLn(R) is a fundamental matrix for (2.1). When C is algebraically closed,
the Picard–Vessiot extension R or k for (2.1) exists and is unique up to k-difference
isomorphism (Proposition 1.9 of van der Put and Singer (1997)).

Let R be a Picard–Vessiot extension of k. The group of k-difference automorphisms
Gal(R/k) has a natural structure of a linear algebraic group defined over C (Theorem
1.13 of van der Put and Singer (1997)). The set of solutions V in Rn of (2.1) is an
n-dimensional vector space over C that is left invariant by Gal(R/k) and so yields a
representation Gal(R/k)→ GLn(C).

Let φ(Y ) = AY, φ(Y ) = BY with A,B ∈ GLn(k) be two systems. Let RA and RB
be the corresponding Picard–Vessiot extensions and let VA and VB be the corresponding
solution spaces. We say the two systems are equivalent if there exists a T ∈ GLn(k)
such that B = φ(T )AT−1. In this case, if U ∈ GLn(RA) is a fundamental matrix for
φ(Y ) = AY , then TU is a fundamental matrix for φ(Y ) = BY . Therefore, we can identify
the two Picard–Vessiot rings RA = RB = R and the two spaces VA and VB are isomorphic
as Gal(R/k)-modules. Conversely, if RA and RB are k-isomorphic as difference rings and
VA and VB are isomorphic as Gal-modules, then the two systems are equivalent.

When k = C(x), C algebraically closed and φ(x) = x+ 1 the following results contain
the essential facts concerning Galois groups that we shall use in the rest of the paper (cf.
Propositions 1.20 and 1.21 of van der Put and Singer (1997)). The following notation is
used. If X is a variety defined over a field k0 and S is any ring containing k0, we denote
by X(S) the points of X with coefficients in S. We say that a subvariety Y ⊂ X is a
k0-subvariety (or in the case of an algebraic subgroup, a k0-subgroup) if Y is defined by
equations whose coefficients lie in k0.

†All rings in this paper are assumed (except when otherwise noted) to be commutative with an identity.
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Theorem 2.1. Let k = C(x), C algebraically closed and φ(x) = x + 1. Let G be the
Galois group of the Picard–Vessiot extension for (2.1). Then

(1) G/G0 is a finite cyclic group where G0 is the identity component of G.
(2) There exists a B ∈ G(k) such that (2.1) and φ(Y ) = BY are equivalent.

It is conjectured that every linear algebraic group G with G/G0 finite cyclic is the
Galois group of a system (2.1) over C(x). In Hendriks (1998, 1996), it is shown that this
conjecture is true for n = 1, 2 by giving explicit examples. In van der Put and Singer
(1997), this conjecture is shown to be true for connected G and further partial results
are given. The following result gives a theoretical characterization of the Galois group.

Theorem 2.2. Let k = C(x), C algebraically closed and φ(x) = x + 1. Let G be an
algebraic subgroup of GLn defined over C and let (2.1) be a system with A ∈ G(k). Then

(1) the Galois group of (2.1) over k is a subgroup of G(C), and
(2) the Galois group of (2.1) over k is G iff for any T ∈ G(k) and any proper C-subgroup

H of G one has that φ(T )AT−1 6∈ H(k).

We will also work with difference operators L = φm + am−1φ
m−1 + · · ·+ a0 and scalar

equations L(y) = φm(y)+am−1φ
m−1(y)+ · · ·+a0y = 0, ai ∈ k.† Given such an equation,

one can form the system φ(Y ) = ALY where

AL =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

−a0 −a1 . . . . . . −am−1

 .

One easily sees that y is a solution of L(y) = 0 iff (y, φ(y), . . . , φm−1(y))T is a solution
of φ(Y ) = ALY . We call the matrix AL the companion matrix of the equation L(y) = 0
and the system φ(Y ) = ALY the companion system. In Appendix B, we show that for a
large class of the difference fields, any system φ(Y ) = AY is equivalent to the companion
system of a scalar equation. We define the Picard–Vessiot extension of k corresponding
to L to be the Picard–Vessiot extension of the companion system and the Galois group
of L to be the Galois group of this ring.

The set of linear difference operators, that is polynomials in φ, forms a noncommutative
ring where φa = φ(a)φ for all a ∈ k. This ring is both left and right Euclidean. One can
define the notions of left factor, right factor, least common left multiple (LCLM), greatest
common right divisor (GCRD), etc. in the usual way (see Bronstein and Petkovsek (1994,
1996)). We say that two operators L1 and L2 are equivalent if their companion systems
are equivalent. One can verify that two operators L1 and L2 of the same orders n are
equivalent iff there are two operators R,S of orders at most n − 1 such that R and L2

have no nontrivial common right factors and L1R = SL2 (cf. the similar notions for
differential operators in Singer (1996)).

†Since φ is an automorphism of k, we can restrict our attention to operators L with a0 6= 0. Throughout
this paper we shall assume that this is the case.
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3. Sequence Spaces

3.1. the ring S of germs of sequences

Let C ⊂ C be a field and let SeqC be the ring of sequences a = (a(0),a(1), . . .), a(i) ∈ C
where addition and multiplication are defined coordinatewise. Let J be the ideal of all
sequences with at most a finite number of nonzero terms and let SC = Seq /J (cf. Chapter
4 of van der Put and Singer (1997)). We shall sometimes drop the subscript C and use
the notation S when there is no confusion as to the field C. We shall frequently identify a
sequence a with its equivalence class in S. The map φ(a(0),a(1), . . .) = (a(1),a(2), . . .) is
well defined on S and defines an automorphism of S (note that φ has a nontrivial kernel
on Seq).

Let k∞ = C({x−1}) be the fraction field of convergent series at infinity with automor-
phism φ(x−1) = x−1

1+x−1 . We can embed k∞ in SC by mapping f ∈ k∞ to the sequence
sf = (s(0), s(1), . . .) where s(i) = f(i) for all but a finite number of i. By selecting a
branch for x−

1
m that is real and positive on the positive real axis and mapping x−

1
m to

the sequence defined by evaluating this branch at sufficiently large integers, we define
an embedding of C({x− 1

m }) into SC. This is a difference embedding where the auto-
morphism on C({x− 1

m }) is defined by φ(x−
1
m ) = x−

1
m /(1 + x−1)

1
m . This allows us to

embed the algebraic closure of k∞ into SC. Using this we can embed C(x) ⊂ k∞ and its
algebraic closure into SC̃ where C̃ is the algebraic closure of C.

Let C ⊂ C be an algebraically closed field and let S = SC . The following result
(Proposition 4.1 of van der Put and Singer (1997)) allows one to assume that any Picard–
Vessiot extension of C(x) ⊂ SC also lies in SC .

Proposition 3.1. Let C be an algebraically closed field of characteristic zero and let
C ⊂ k ⊂ S be a difference field such that the algebraic closure of k also lies in S and is
invariant under φ. Let A ∈ GLn(k) and consider the equation φ(Y ) = AY . Let N be such
that A = (A(0), A(1), . . .) considered as an element of GLn(S) satisfies A(m) ∈ GLn(C)
for m ≥ N . Define Z = (Zij) ∈ GLn(S) by Z(N) = id and Z(m + 1) = A(m)Z(m) for
m ≥ N . Then

(1) φ(Z) = AZ and R = k
[
Zij ,

1
det(Z)

]
⊂ S is the Picard–Vessiot ring for φ(Y ) = AY .

(2) Every Y ∈ Sn that is a solution of φ(Y ) = AY is a C-linear combination of the
columns of Z.

One of the striking differences between the theories of linear difference and linear
differential equations is the phenomenon of interlacing which we define here.

Definition 3.2. (1) Let m be a positive integer and 0 ≤ i ≤ m − 1. We say that b is
the ith m-interlacing of a with zeroes if b(mn+ i) = a(n) and b(r) = 0 if r 6≡ i mod m.

(2) We define the interlacing c of sequences c0, c1, . . . , cm−1 to be the sum of sequences
b0,b1, . . . ,bm−1 where each bi is the ith m-interlacing of ci with zeroes.

(3)We say that a is the ith m-section of b if a(mn + i) = b(mn + i) and a(r) = 0 if
r 6≡ i mod m.

Remarks. (1) If a satisfies L(y) = φn(y) + an−1φ
n−1(y) + · · · + a0y = 0 then the ith

m-interlacing of a with zeroes satisfies Lim(y) = φnm(y) + φ−iτ−1(an−1)φ(n−1)m(y) +
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· · · + φ−iτ−1(a0)y = 0, where τ(x) = mx. In terms of operators, if L = P (φ) for some
polynomial P with coefficients in k, then Lim = (φ−iτ−1P )(φm), where φ−iτ−1P denotes
the polynomial obtained by applying φ−iτ−1 to each coefficient of P .

(2) Concretely, if v is the interlacing of a,b, . . . , f , then v = (a(0),b(0), . . . , f(0), a(1),
b(1), . . . , f(1), . . .) and (a(0), 0, . . . , 0,a(1), 0, . . .) is the zeroth m-section of v, (0,b(0),
. . . , 0, 0,b(1), 0, . . .) is the first m-section of v, etc.

(3) If k is a differential field and a is an element in an algebraic extension of k, then a
satisfies a linear differential equation over k. In contrast, the difference field C(x), C ⊂ C
algebraically closed with φ(x) = x+ 1 has no proper difference extension fields of finite
dimension (van der Put and Singer, 1997, Lemma 1.19). In fact, a sequence a satisfies
both a linear difference and a polynomial equation over C(x) iff a is the interlacing of
elements of C(x) (van der Put and Singer, 1997, Proposition 4.4).

3.2. the ring L of Liouvillian sequences

One defines the ring of Liouvillian sequences recursively. Let k = C(x), C an alge-
braically closed subfield of C. Most of the results of this section are contained in Hendriks
(1996).

Definition 3.3. The ring L of Liouvillian sequences is the smallest subring of S such
that

(1) k ⊂ L,
(2) a ∈ L iff φ(a) ∈ L,
(3) a ∈ k implies that b ∈ L if φ(b) = ab,
(4) a ∈ L implies that b ∈ L if φ(b) = a + b,
(5) a ∈ L implies that b ∈ L where for some m, i, 0 ≤ i ≤ m − 1, b is an ith

m−interlacing of a with zeroes.

Remarks. (1) The sequences defined by equations of the form φ(y) = ay, a ∈ k are
called hypergeometric sequences (cf. Petkovsek et al. (1996, 1992), van der Put and Singer
(1997, Definition 4.2)). The sequences defined by equations of the form φ(y) = y+a, a ∈
S are the indefinite sums of a

(2) The interlacing of Liouvillian sequences is Liouvillian.
(3) Condition (2) above implies that we can replace condition (5) with the weaker

condition a ∈ L implies that the zeroth m-interlacing of a is in L.
(4) Since 1 = (1, 1, . . .) ∈ L, the ith m-interlacing of 1 with zeroes is in L for any m

and i. Since L is a ring, we have that any section (cf. Definition 3.2) of an element of L
is also in L.

We will also say that a vector Y1 ∈ Sn is the ith m-interlacing of a vector Y0 ∈ Sn with
zeroes if each component of Y1 is the ith m-interlacing with zeroes of the corresponding
component of Y0. The above definition yields the following theorem

Theorem 3.4. Suppose a ∈ S. The following are equivalent.

(1) a ∈ L.
(2) The sequence a satisfies a linear difference equation over k whose Galois group G

is solvable.
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Proof. Note that G/G0 is cyclic so G is solvable iff G0 is solvable.
(2) ⇒ (1) Consider the system (2.1) with A ∈ GLn(k). Let VA = {Y ∈ Sn | φ(Y ) =

AY } be the solution space for this system. We will prove that if the Galois group of this
system is solvable then VA is a subspace of Ln. This statement is slightly more general
than the (2)⇒ (1) part of the theorem.

Suppose now that the difference Galois group G is solvable and G/G0 is finite cyclic of
order m. We assume that A ∈ G(k). This is without loss of generality since if φ(Y ) = ÃY
is an equivalent system then VA ⊂ Ln iff VÃ ⊂ Ln.

Let B = φm−1(A) · · ·φ(A)A. We then have B ∈ G0(k). We may further assume that
B is an upper triangular matrix. If not, then by the Lie–Kolchin Theorem, there is a
matrix T ∈ GLn(C) such that B̃ = T−1BT is upper triangular and we can continue with
B̃ instead of B. Consider the system of difference equations φm(Y ) = BY . The solution
space VB = {Y ∈ Sn | φm(Y ) = BY } is an nm-dimensional C-vector space and VA ⊂ VB .
We will prove that VB ⊂ Ln. Let Si = {a ∈ S | aj = 0 if j 6≡ imodm} for i = 0, . . . ,m−1.
Then we have S = S0⊕· · ·⊕Sm−1. Let V iB = VB ∩Sni for i = 0, . . . ,m−1. We then have
that V iB is an n-dimensional C-vector space for i = 0, . . . ,m−1 and VB = V 0

B⊕· · ·⊕V m−1
B .

Let τ : k → k be the map defined by x 7→ mx. Then τ ◦ φm = φ ◦ τ . Let C = τ(B) ∈
GLn(k). Note that C is also an upper triangular matrix. Consider the system φ(Y ) = CY .
The solution space VC is n-dimensional and one has that Y0 ∈ VC iff Y1 ∈ V 0

B , where
Y1 is the zeroth m-interlacing of Y0 with zeroes. We will show by induction on n that
there exists an upper triangular fundamental matrix U = (uij) ∈ GLn(L) for the system
φ(Y ) = CY .

If n = 1 then we are considering a single equation of the form φ(y) = ay. Since a 6= 0,
any nonzero solution y is invertible in S. Furthermore, part (3) of the definition implies
that such a y ∈ L. Since y−1 satisfies φ(z) = a−1z, we have that y−1 ∈ L.

Now assume n > 1 and write C =
(
C0 D
0 C1

)
where C0 ∈ GLn−1(k) is upper tri-

angular and C1 ∈ GL1(k). By induction we have that there exist U0 ∈ GLn−1(L) and
U1 ∈ GL1(L) satisfying φ(Ui) = CiUi. Let W be an (n−1)×1 matrix whose entries are to

be determined and let U =
(
U0 U0W
0 U1

)
. A computation shows that a necessary and suf-

ficient condition that U satisfy φ(Y ) = CY is that W satisfy φ(W ) = W +U−1
0 C−1

0 DU1.
By our induction hypothesis, the entries of Y −1

0 C−1
0 DY1 lie in L. If W = (w1, . . . , wn−1)T

then each wi satisfies φ(wi) = wi + li for some li ∈ L. Condition (4) of the definition of
L insures that these equations have solutions in L. Therefore φ(Y ) = CY has a solution
as desired.

(1)⇒ (2) We will prove this part of the theorem case-by-case.
(1) Suppose a ∈ k − {0}. Then a satisfies the first-order linear difference equation

φ(y) = (φ(a)/a)y. The difference Galois group of this equation is trivial.
(2) We have that a ∈ S − {0} satisfies a linear difference equation iff φ(a) satisfies

an equivalent equation of the same order. Hence the Galois groups associated to both
equations coincide.

(3) Suppose b ∈ S − {0} satisfies the first-order difference equation φ(y) = ay, where
a ∈ k− {0}. The difference Galois group G associated with this equation is an algebraic
subgroup of GL1(C) = C∗ and so is solvable.

(4) Suppose L is an nth-order linear difference operator with coefficients in k such
that L(a) = 0. Let G be the difference Galois group associated to the equation L(y) = 0.
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Let b ∈ S satisfy φ(b) − b = a. Then L̃(b) = (L ◦ (φ − 1))(b) = 0. Hence b satisfies a
difference equation order n + 1 whose difference Galois group of L̃ is a subgroup of the
semidirect product of G and Cn and so is solvable.

(5) Suppose a ∈ S satisfies the difference equation L(y) = φn(y) + cn−1φ
n−1y + · · ·+

c0y = 0, with cn−1, . . . , c0 ∈ k, c0 6= 0. Consider the associated system φ(Y ) = CY where

C =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−c0 −c1 −c2 . . . −cn−1


is the companion matrix of L. Let G ⊂ GLn be the difference Galois group of this system.
Theorem 2.1 implies that there exists a matrix T ∈ GLn(k) such that B = φ(T )CT−1 ∈
G(k). Now let b be the zeroth m-interlacing of a with zeroes. Then b satisfies the
linear difference equation L̃(y) = φnm(y) + (τ−1cn−1)φ(n−1)my + · · · (τ−1c0)y = 0 where
τ : k → k is the map defined by x 7→ mx. Note that τ−1 ◦ φ = φm ◦ τ−1. The equation
L̃(y) = 0 can be identified with the nm× nm system φ(Y ) = C̃Y where

C̃ =


0 I 0 . . . 0
0 0 I . . . 0
...

...
...

...
...

0 0 0 . . . I
τ−1(C) 0 0 . . . 0

 ∈ GLnm(k).

Let T̃ = diag(τ−1T, φ(τ−1T ), . . . , φm−1(τ−1T )) ∈ GLnm(k). Then

B̃ = φ(T̃ )C̃T̃−1 =


0 I 0 . . . 0
0 0 I . . . 0
...

...
...

...
...

0 0 0 . . . I
τ−1(B) 0 0 . . . 0

 .

Therefore Theorem 2.1 implies that the difference Galois group G̃ of this latter equation
is a subgroup of a cyclic extension of order m of m copies of G and so is also solvable.

We still must show that if a and b satisfy linear difference equations over k whose
Galois groups are solvable then ab and a− b also satisfy linear difference equation over
k whose Galois groups are solvable. We give a constructive proof of this in Lemma A.8
of Appendix B. 2

Remarks. One can define an a priori larger class of sequences, the generalized Liouvil-
lian sequences. One says that a sequence a is a generalized Liouvillian sequence if there
exists a sequence of rings C(x) = R0 ⊂ · · · ⊂ Rm ⊂ S such that a ∈ Rm and for each
i = 0, . . . ,m,Ri+1 = Ri(. . . , φ−1(bi),bi, φ(bi), . . .) where either (1) φ(bi) = aibi for
some ai ∈ Ri, or (2) φ(bi) = ai + bi for some ai ∈ Ri, or (3) bi is the interlacing
of sequences in Ri. Clearly a Liouvillian sequence is generalized Liouvillian. We con-
jecture that a linear difference equation has a nonzero Liouvillian solution iff it has a
nonzero generalized Liouvillian solution. This conjecture is motivated by the fact that in
the definition of Liouvillian function using towers of fields, one allows at each stage the
introduction of exponential of integrals, yet one can show that to solve a linear differen-
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tial equations in terms of Liouvillian functions one only needs exponentials of algebraics
(together with field theoretic operations and iterations of integration).

4. The Operator φm − a
The key to understanding Liouvillian solutions of difference equations can be found in

the structure of the solution space of the operator φm−a. In this section we will investigate
this operator. For the next result recall that a torus is a connected diagonalizable linear
algebraic group. Throughout this section, k will denote the field C(x) where C is an
algebraically closed subfield of C and φ(x) = x+ 1.

Lemma 4.1. (1) A necessary and sufficient condition that the Galois group of an ir-
reducible mth-order system φ(Y ) = AY is a finite cyclic extension of a torus is that
φ(Y ) = AY is equivalent to an equation

φ(Y ) = BY =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 . . . . . . 1
a 0 0 . . . 0

Y (4.1)

for some nonzero a ∈ k.
(2) A necessary and sufficient condition that the Galois group of an irreducible dif-

ference operator L be a finite cyclic extension of a torus is that L be equivalent to an
operator of the form φm − a for some nonzero a ∈ k.

Proof. (1) Assume that φ(Y ) = AY is equivalent to (4.1). One sees that Bm lies in
the diagonal subgroup of GLm(k) so Theorem 2.1 implies that the identity component
of the Galois group is a torus.

Now assume that the Galois group G is a finite cyclic extension of a torus and let V
be the solution space of φ(Y ) = AY . Let g ∈ G be an element whose image in G/G0

generates this latter group and let V = V0⊕V1⊕· · ·⊕Vt−1 where each Vi is a weightspace
of G0 of weight λi. Since V is irreducible and g permutes the Vi, we can assume that
the g(Vi) = Vi+1 mod t. Let v ∈ V0 be an eigenvector of gt and let W be the span of
{v, gv, . . . , gt−1v}. Since W is G-invariant, we must have t = m and W = V . Therefore
we may assume that G is generated by the diagonal group G0 and a matrix of the form

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 . . . . . . 1
c 0 0 . . . 0


for some c ∈ C. Theorem 2.1 implies that φ(Y ) = AY is equivalent to a system φ(Y ) =
B0Y with B0 a k-point of this group. After conjugation by a constant matrix if necessary,
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we can assume that

B0 =


0 a1 0 . . . 0
0 0 a2 . . . 0
...

...
...

...
...

0 0 . . . . . . am−1

am 0 0 . . . 0

 .

If T = diag(1, a1, φ(a1)a2, . . . , φ
m−2(a1)φm−3(a2) · · · am−1), then

B = φ(T )B0T
−1 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 . . . . . . 1
a 0 0 . . . 0


for some nonzero a ∈ k. This gives the conclusion of (1).

(2) This follows from applying (1) to the companion system of L. 2

Remark. The proof of Lemma 4.1 demonstrates that, without the assumption of irre-
ducibility, if φ(Y ) = AY is equivalent to (4.1) (or L is equivalent to φm − a) then the
Galois group is a finite cyclic extension of a torus.

Corollary 4.2. (1) A necessary and sufficient condition that the Galois group of a
system φ(Y ) = AY is a finite cyclic extension of a torus is that φ(Y ) = AY is equivalent
to an equation φ(Y ) = BY where B is block diagonal with each block of the form given
in (4.1).

(2) A necessary and sufficient condition that the Galois group of a difference operator
L be a finite cyclic extension of a torus is that L be equivalent to the least common left
multiple of operators of the form φm − a for some nonzero a ∈ k.

Proof. (1) If φ(Y ) = AY is equivalent to the system φ(Y ) = BY of the prescribed form
then some power of B is diagonal and so the identity component of the Galois group of
B is a torus. Conversely, if the Galois group G is a finite cyclic extension of a torus,
then it is a fortiori a completely reducible group. Therefore, after a possible change of
basis, we can assume that G is in block diagonal form where each block is irreducible.
Theorem 2.1 implies that φ(Y ) = AY is equivalent to a system whose matrix is of the
same form. An application of Lemma 4.1 to each block yields the conclusion of the first
part of the corollary.

(2) From the above one sees that the Galois group of an operator of the form φm − a
is a finite cyclic extension of a torus. If L is the least common left multiple of operators
Li of the prescribed form then its Galois group G leaves the solution space Vi of each Li
invariant. Furthermore,G has a faithful representation into GL(V ) where V = V1⊕· · ·⊕Vt
such that the image in each GL(Vi) is a finite cyclic extension of a torus. Therefore G
is a subgroup of the direct product of the groups that are finite cyclic extensions of tori
and so we must have that G0 is a torus. Therefore, G is a finite cyclic extension of a
torus.

Conversely, if the Galois group of L is a finite extension of a torus, then as before it is
completely reducible and we can write V = V1⊕· · ·⊕Vt where each Vi is a G-irreducible
module. Each Vi is the solution space of an operator Li and L is the least common left
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multiple of the Li. Lemma 4.1 implies that each Li is equivalent to an operator of the
prescribed form. 2

The following will allow us to characterize linear difference operators with Liouvil-
lian solutions as well as being the basis for algorithms to determine if an operator has
Liouvillian solutions.

Corollary 4.3. Let L be an irreducible difference operator with coefficients in k. Then
L is equivalent to an operator of the form φm − a, a ∈ k iff L has a nonzero solution
in S that is the m-interlacing of hypergeometric sequences. Furthermore, if this is the
case, then the solution space of L has a basis each of whose members is the interlacing
of hypergeometric sequences.

Proof. Assume that L is equivalent to φm − a. The solution space of L has a basis
b1, . . . ,bm where each bi is the ith m-interlacing with zeroes of a nonzero solution of
φ(y)− (τφi(a))(y) = 0. Concretely,

b1 = (1, 0, . . . , 0, a(0), 0, . . . , 0, a(m)a(0), 0, . . .)
b2 = (0, 1, . . . , 0, 0, a(1), . . . , 0, 0, a(m+ 1)a(1), . . .)

...
...

...
bm = (0, 0, . . . , 1, 0, 0, . . . , a(m− 1), 0, 0, . . . , a(2m− 1)a(m− 1), . . .).

Since L is equivalent to φm − a there exist c0, . . . , cm−1 ∈ k such that zi = c0bi +
c1φ(bi) + · · · + cm−1φ

m−1(bi), i = 1, . . . ,m is a basis for the solution space of L. One
easily sees that each zi is the interlacing of hypergeometric sequences.

Conversely, assume that L has a nonzero solution y that is the interlacing of sequences
defined by the equations φ(y) − aiy = 0, i = 1, . . . ,m. Then y is the sum of sequences
zi where for each i, zi satisfies the equation φmzi − (φ−iτ−1)(ai)zi = 0. Let L̃ be the
least common left multiple of the φm − φ−iτ−1(ai) and let R ⊂ S be the corresponding
Picard–Vessiot extension. Note that y is in the solution space of L̃. Corollary 4.2.2 implies
that the Galois group G of R is a finite cyclic extension of a torus. Since the vector space
of solutions of L in R is nontrivial and L is irreducible, Corollary A.7 implies that R
contains a full set of solutions of L. This furthermore implies that the Picard–Vessiot
extension of L in S is contained in R. Therefore the Galois group of L is a quotient of
G and so its identity component is a torus. Therefore the Galois group of L is a finite
cyclic extension of a torus and another application of Corollary 4.2.2 yields the desired
conclusion. 2

As a final application of these ideas, we prove the following corollary although it is not
used in the remainder of the paper.

Corollary 4.4. If L = φn − a, a ∈ k, then all irreducible factors of L have orders
dividing n. Furthermore, L is reducible iff for some m 6= n dividing n there exists and
an ā ∈ k such that a = āφm(ā) · · ·φn−m(ā) in which case L has an irreducible factor of
the form φm − ā.

Proof. If AL is the companion matrix of L, then (AL)n is a diagonal matrix. There-
fore the Galois group G of L is a subgroup of a Z/nZ-extension of the diagonal group
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Dn ⊂ GLn(C). If DG = G ∩ Dn, then one sees that [G : DG] = t divides n. Let V be
the solution space of L(y) = 0. Corollary A.7 implies that G-irreducible subspaces of V
correspond to irreducible factors of L. Let W ⊂ V be a G-irreducible subspace of V and
let g ∈ G be an element whose image in G/DG generates this latter group. As above
one can show that W has a basis of the form v, gv, . . . , gm−1v where each giv lies in a
weightspace of DG. Let Ψ : G → GLm(C) be the representation obtained by restricting
the elements of G to W . Using the above basis for W , we see that Ψ(DG) lies in the
diagonal subgroup Dm of GLm(C) and [Ψ(G) : Ψ(G) ∩Dm] = m. Since [Ψ(G) : Ψ(DG)]
divides n and [Ψ(G) : Ψ(DG)] = [Ψ(G) : Ψ(G)∩Dm][Ψ(G)∩Dm : Ψ(DG)] we have that
m divides n. This proves the first claim of the Corollary.

To prove the second claim, we use the following calculations of Petkovsek (1992). Let
L1 =

∑m
i=0 aiφ

i, am = 1 be a monic irreducible factor of L = φn − a. From the above,
we know that m|n. We have that φnL1 =

∑m
i=0 φ

n(ai)φn+i. Since φn ≡ a (mod L)
(where f ≡ g (mod L) means that L divides f − g on the right) we have that φnL1 ≡∑m
i=0 φ

n(ai)φi(a)φi(mod L). Since L1 divides L on the right, we have that L1 divides∑m
i=0 φ

n(ai)φi(a)φi on the right. Since these two operators have the same order, we can
conclude that

ai = φn(ai)
φi(a)
φm(a)

.

When i = 0, this equation yields the following difference equation for a

φm(a) =
φn(a0)
a0

a.

Since m|n, a solution of this equation is b = a0φ
m(a0) · · ·φn−m(a0). A calculation shows

that φm(ab ) = a
b . Since constants are the only rational function satisfying φm(f) = f we

have that a = cb for some c ∈ C. Letting ā = cm/na0 we have a = āφ(ā) · · ·φn−m(ā).
Therefore

φn − a = φn − āφm(ā) · · ·φn−m(ā)

=

(
φn−m +

n/m−1∑
i=1

(
i∏

j=1

φn−jm(ā)

)
φn−(i+1)m)

)
(φm − ā).2

5. Difference Equations with Liouvillian Solutions

The following characterizes linear difference equations having Liouvillian solutions. Let
k be a field as in Section 3. We will further assume that C is a field in which the field
operations can be effectively performed.

Theorem 5.1. Let L be a difference operator of order n with coefficients in k. Then
L(y) = 0 has a nonzero Liouvillian solution iff L(y) = 0 has a nonzero solution that is
the interlacing of m hypergeometric sequences where 1 ≤ m ≤ n.

Proof. If L(y) = 0 has a nonzero solution that is the interlacing of hypergeometric
sequences then it clearly has a Liouvillian solution.

Now assume that L(y) = 0 has a nonzero Liouvillian solution. Let V be the solution
space of L(y) = 0 and let W ⊂ V be the nonzero space of Liouvillian solutions of
L(y) = 0. Theorem 3.4 implies that W lies in the solution space of an operator L̃ whose
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Galois group is solvable (and so all solutions of L̃ are Liouvillian). Let LW be the greatest
common right divisor of L and LW . The solution space of LW is W . Since LW divides
L̃ on the right, its Galois group is solvable. Replacing L by LW , we may assume that
the Galois group of L is solvable. Since any factor of L also has solvable Galois group we
may further assume that L is an irreducible operator with solvable Galois group.

The Lie–Kolchin theorem implies that the identity component G0 of G has a nontrivial
weightspace in V . Let V0 be the sum of the weight spaces of G0 in V . Since G permutes
the weightspaces of G0 and V is irreducible, we have that V0 = V . In particular G0

is diagonalizable and so is a torus. Therefore Corollary 4.2 implies that L is equivalent
to an equation of the form φm − a. Corollary 4.3 implies that L(y) = 0 has a nonzero
solution that is the interlacing of m ≤ n hypergeometric sequences. 2

The algorithm to decide if a linear operator L of order n with coefficients in C(z) has
Liouvillian solutions and finding a basis for the set of such solutions depends on several
subprocedures which we now state.

Lemma 5.2. Let L be a linear difference operator with coefficients in k. One can decide
if L(y) = 0 has hypergeometric solutions and, if so, find a set H = {h1, . . . , ht} ⊂ C(x)
such that any hypergeometric solution of L(y) = 0 is a solution of L1(y) = 0 where

L1 = LCLM{φ− h}h∈H.

Proof. An algorithm for this was presented in Petkovsek (1992) (see also Petkovsek
et al. (1996)). Recent improvements (and other references) are contained in Abramov
and Barkatou (1998) and van Hoeij (1998a,b). Note that these algorithms either produce
(or can be modified to produce) an operator L1 as above that divides L and a basis for
the solution space of L1. 2

Lemma 5.3. Let L be a linear difference operator of order n with coefficients in k. For
each m = 1, . . . , n one can find a set Hm = {h1, . . . , htm} ⊂ C(x) such that any solution
of L(y) = 0 that is an interlacing of m hypergeometric series is a solution of Lm(y) = 0
where

Lm = LCLM{φm − h}h∈Hm .

Proof. When m = 1 this is just the procedure of Lemma 5.2. We shall show how
to reduce the general case of Lemma 5.3 to the procedure of Lemma 5.2. Fix some
m, 1 ≤ m ≤ n. Let P ∈ k[Z] be a polynomial of smallest degree such that P (φm)(y) = 0
for all solutions of L(y) = 0. One can find such a polynomial by writing each of
y, φm(y), φ2m(y), . . . , φnm(y) as k-linear combinations of y, φ(y), . . . , φn−1(y) (using L(y)
= 0) and finding a k-linear dependence among these n + 1 expressions in the n quan-
tities y, φ(y), . . . , φn−1(y). Note that not only does every solution a of L(y) = 0 sat-
isfy P (φm)(y) = 0 but every ith m-section of a also satisfies P (φm)(y) = 0. There-
fore, if L(y) = 0 has a nonzero solution u that is the interlacing of m sequences
u0, . . . ,um−1 then each ui satisfies Pi(φ)(ui) = 0 where Pi = τφiP . Now use the
procedure of Lemma 5.2 to find, for each i, 0 ≤ i ≤ m − 1 a set Gi ⊂ k∗ such
that v is a hypergeometric solution of Pi(φ)(y) = 0 iff v satisfies Li(y) = 0 where
Li = LCLM{φm − h}h∈Gi . One then sees that the conclusion of the lemma is satisfied
for H = ∪0≤i≤m−1{φ−iτ−1(h) | h ∈ Gi}. 2



Solving Difference Equations in Finite Terms 251

Remarks. The solution space of Lm has a basis consisting of ith m-interlacings. Not all
sums of these will appear as solutions of L(y) = 0. The proof of Lemma 5.3 shows that
any solution of L(y) = 0 that is an interlacing of m hypergeometric sequences u1, . . . ,um
where each ui satisfies Li(y) = 0, Li as above. This observation can be used to improve
the efficiency of the algorithm of Theorem 5.5. Nonetheless, we will use Lemma 5.3 as
stated to simplify the presentation.

Lemma 5.4. Let L,L1, L2 be operators with coefficients in k of orders n, r and s and
let L = L1L2.

(1) If y1, . . . ,yn is a basis of the solution space of L then one can effectively find
constants {cij} such that {zi =

∑
1≤j≤n cijyj} is a basis of the solution space of L2.

(2) If b1, . . . ,br and c1, . . . , cs are bases for the solution space of L1 and L2 respec-
tively, then one can express a basis for the solution space of L in terms of these
using field operations, φ and indefinite summation.

Proof. (1) Let c1, . . . , cn indeterminates and let z =
∑

1≤i≤n ciyi. We wish to determine
conditions on the ci such that w = L2(z) = 0. Let N be an integer larger than the poles
of the coefficients of L,L1 and L2. The conditions w(N) = 0, . . . ,w(N + r) = 0 give a
system of linear equations S in the ci. Since L1(w) = 0 and L1 has order r, z is a solution
of L2(z) = 0 iff the ci satisfy S. Therefore a basis for the solution space of S yields a
basis for the solution space of L2.

(2) This is done using the difference version of variation of parameters. We wish to find
d1, . . . ,ds that are linearly independent over C such that L2(di) = bi for i = 1, . . . s and
such that each di is expressed in terms of b1, . . . ,br, c1, . . . , cs using field operations, φ
and indefinite summation. One then has that {d1, . . . ,ds, c1, . . . , cr} is a basis for the
solution space of L. It will be convenient to do this in terms of matrix equations.

Letting A be the companion matrix of L2 and C be the matrix (φi(cj))
0≤i≤s−1
1≤j≤s , we have

that φ(C) = AC. Let B be the s×s matrix (bij) where bij = 0 if 1 ≤ i ≤ s−1 and bsj =
bj . One sees that solving the equations L2(di) = bi is equivalent to solving the system

φ(Y ) = AY +B. (5.1)

If U is an s× s matrix of indeterminates, then Y = CU is a solution of equation (5.1) iff
U satisfies φ(U)−U = (φ(C))−1B. This latter equation is clearly solvable in the desired
terms. 2

The following theorem contains the algorithm to find all Liouvillian solutions of a linear
difference equation.

Theorem 5.5. Let L be an operator with coefficients in k. One can find operators
H1, . . . , Ht, R with coefficients in k such that

(1) L = RHt · . . . ·H1;
(2) the solution space of each Hi is spanned by interlacings of hypergeometric sequences;
(3) any Liouvillian solution of L(y) = 0 is a solution of Ht · . . . ·H1(y) = 0.

Furthermore, one can find a basis of the solution space of each Hi consisting of interlac-
ings of hypergeometric sequences and find a basis of the space of Liouvillian solutions of
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L expressed in terms of these interlacings of hypergeometric series using field operations,
φ, and indefinite summation.

Proof. Let L have order n. For each integer m with 1 ≤ m ≤ n, successively test to see
if GCRD(Lm, L) is nontrivial where Lm is as defined in Lemma 5.3. If all of these are
trivial then Lemma 5.3 and Theorem 5.1 imply that L(y) = 0 has no nonzero Liouvil-
lian solutions. Otherwise, let m be the smallest integer such that H1 = GCRD(Lm, L)
is nontrivial. One can easily find a basis for the solution space of Lm consisting of in-
terlacings of hypergeometric sequences and so, using Lemma 5.4.1, find such a basis
for H1. Let L = L̃H1. Proceeding by induction on the order of the operator, we can
write L̃ = RHt · . . . ·H2 with the Hi satisfying the conclusion of the theorem. Applying
Lemma 5.4 to bases of the solution spaces of Ht · . . . ·H2 and H1, yields a basis for the
solution space of L of the prescribed form. 2

Remarks. (1) The algorithm by Hendriks (1998) allows one to determine the Galois
group of a second-order operator and therefore to determine if L(y) = 0 has Liouvillian
solutions. The algorithm will furthermore determine a basis for the space of Liouvillian
solutions if any exist.

(2) In practice, one is given a linear operator L with coefficients in C0(x) where C0 is a
finitely generated extension of Q. To find a basis for the space of Liouvillian solutions of
L(y) = 0, one may need elements of an algebraic extension of C0. For example, if P is an
irreducible polynomial over Q of degree n and {α1, . . . , αn} are its roots in C, then the
sequences a1, . . . ,an form a basis of the solutions space of P (φ) where e ach ai satisfies
φ(y) = αiy. It would be useful to know, a priori the smallest extension C1 of C0 such that
if L(y) = 0 has a nonzero solution that is the interlacing of hypergeometric sequences
then it has a nonzero solution that is an interlacing of hypergeometric sequences defined
over C1(x).

(3) One can apply Theorem 5.1 to systems φ(Y ) = AY by finding an equivalent linear
operator (see Section 5). A direct proof avoiding cyclic vectors is not difficult once one
has a version of Lemma 5.4 applicable to systems. Progress in this direction has been
made in Abramov and Barkatou (1998) and van Hoeij (1998b).
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Appendix A. Linear Dependence and Casoratians

One of the key technical tools in the Picard–Vessiot theory of linear differential equa-
tions is the fact that elements in a differential field are linearly dependent over constants
iff their Wronskian is zero. In the theory of linear difference equations one works with
rings that have zero divisors and the corresponding fact using the Casoratian is no longer
true in general . In this section we show how to get around this problem.

Let R be a difference ring with automorphism φ. If y1, . . . , yn ∈ R, we define the
Casoratian matrix C(y1, . . . , yn) to be (φi(yj)

j=1,...,n
i=0,...,n−1 and the Casoratian determinant,

Cas(y1, . . . , yn) to be det(C(y1, . . . , yn)) (cf. Cohn (1965)).

Example A.1. Let S be the difference ring of equivalence classes of sequences. Let
a = (ai), where ai = 1 if 4|i and 0 otherwise and let b = (bi) where bi = 1 if 4|i − 2
and 0 otherwise. We then have C(a, b) = 0 but a and b are not linearly dependent over
constants.

Lemma A.2. Let (R,φ) be a simple difference ring and let y1, . . . , yt ∈ R. The following
are equivalent:

(1) y1, . . . , yt are linearly dependent over constants and
(2) the vectors Yj = (φi(yj))−∞<i<∞, j = 1, . . . , t are linearly dependent over R.

Proof. Assertion (2) follows easily from assertion (1).
Now assume that there exist ri ∈ R, not all zero, such that

∑
riYi = 0. Among all such

relations, select one with minimal support S = {i1, . . . , is} (i.e. ri 6= 0 implies i ∈ S).
Without loss of generality, we may assume that 1 ∈ S. Let

I =
{
r1 ∈ R | ∃r2, . . . , rt ∈ R,

∑
riYi = 0 and the support of the ri ⊂ S

}
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One sees that I is a nonzero difference ideal so 1 ∈ I. Therefore, there exist r1 =
1, r2, . . . , rt ∈ R such that support{r1, . . . , rt} ⊂ S and

φi(y1) +
t∑

j=2

rjφ
i(yj) = 0 ∀i.

Applying φ and subtracting, we have
t∑

j=2

(rj − φ(rj))φi(yj) = 0 ∀i.

Using the minimality of the support, we have that rj = φ(rj). 2

Lemma A.3. Let (R,φ) be a difference ring and let L(y) =
∑m
i=n aiφ

i(y) with ai ∈ R.
Assume that an and am are invertible in R and that there exist y1, . . . , yt ∈ R such that
L(yi) = 0 for i = 1, . . . , t. Let ri, . . . , rt ∈ R satisfy

∑t
i=1 riφ

j(yi) = 0 for j = n, . . . ,m.
Then

∑t
i=1 riφ

j(yi) = 0 for −∞ < j <∞.

Proof. For any j > m, there exist ai,j ∈ R such that φj(yl) =
∑m−1
i=n ai,jφ

i(yl) for
l = 1, . . . , t. Therefore

∑
l rlφ

i(yl) =
∑
i ai,j

∑
l rlφ

j(yl) = 0. A similar statement is true
for j < n. 2

We shall need some simple facts from linear algebra over a commutative ring with unit.
If R is such a ring and A is an n× n matrix over R then one can define the determinant
det(A) in the usual way. One has that det(A) = det(At). Furthermore, if R is a field (or
even an integral domain) then det(A) = 0 iff the columns of A are linearly dependent
over R. We shall need the following fact

Lemma A.4. Let R = R1 ⊕ · · · ⊕Rm where each Ri is an integral domain and let A be
an n× n matrix with entries in R. The following are equivalent.

(1) Det(A) = 0.
(2) For each i = 1, . . . ,m, there exists a nonzero vi ∈ Rni such that Avi = 0.
(3) For each i = 1, . . . ,m, there exists a nonzero vi ∈ Rni such that vtiA = 0.

Proof. Let 1 = e1 + · · · + em where e2
i = ei ∈ Ri. We then have det(A) = 0 iff

det(eiA) = 0 for all i. Since each Ri is an integral domain, we have that det(A) = 0
iff there exists a nonzero vi ∈ Rni such that Avi = 0 for all i. This shows that (1) is
equivalent to (2) Since det(A) = det(At), a similar argument replacing A with At shows
that (1) is equivalent to (3). 2

Lemma A.5. Let R be a Picard–Vessiot extension of a difference field k of characteristic
zero with algebraically closed field of constants C. Let L(y) =

∑m
i=n aiφ

i(y) with ai ∈
k, anam 6= 0 and let V be the solution space of L(y) = 0 in R. Then dimC V ≤ m− n.

Proof. Corollary 1.16 of van der Put and Singer (1997) states that R may be writ-
ten as R = Re1 ⊕ · · · ⊕ Rel where each e2

i = ei, e1 + · · · + en = 1 and each Rei
is an integral domain. Let v = (an, . . . , am)T . Note that for each i, vei is nonzero.
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Let y1, . . . , yt ∈ V, t = m − n + 1. We may apply Lemma A.4 to the matrix M =
(φi(yj)

j=1,...,t
i=n,...,m) and conclude that there exist r1, . . . , rt ∈ R, not all zero, such that

M(r1, . . . , rt)T = 0. Therefore
∑t
j=1 rjφ

i(yj) = 0 for i = n, . . . ,m. Lemma A.3 implies
that

∑t
j=1 rjφ

i(yj) = 0 for −∞ < i < ∞. Lemma A.2 implies that the yi are linearly
dependent over C. 2

Lemma A.6. Let k be as above and let R be a Picard–Vessiot extension of k. Let G be
the Galois group of R and let V be an n-dimensional G-invariant C-space. Then V is the
solution space of a linear difference equation of order n with coefficients in k.

Proof. Let y1, . . . , yt be a C-basis of V and let C = C(y1, . . . , yt) be the Casoratian
matrix. One sees that for each σ ∈ G there exists a matrix Aσ ∈ GLt(C) such that
σ(C) = CAσ.

We now claim that Cas(y1, . . . , yt) = det(C) 6= 0. Assume that this is not the case.
Lemma A.4 implies that there exist r1, . . . , rt ∈ R, not all zero such that (r2, . . . , rt)C =
0. Among all such, select one with the smallest support S and assume r1 6= 0. Let
I = {r ∈ R|∃ r2, . . . , rt such that (r, r2, . . . , rt)C = 0 and support (r1, . . . , rt) ⊂ S}. I is
a nonzero G-invariant ideal of R, so 1 ∈ I by Corollary 1.15 of van der Put and Singer
(1997). Using the minimality of the support, we see that each rj is G-invariant and so lies
in k. Therefore there exist r2, . . . , rt ∈ k such that yi + r2φ(yi) + · · · , rtφt−1(yi) = 0 for
each i. This means that the t independent elements y1, . . . , yt satisfy a linear difference
equation over k of order at most t−1 contradicting Lemma A.5. This contradiction shows
that Cas(y1, . . . , yt) 6= 0.

We now claim that Cas(y1, . . . , yt) is invertible in R. Since

σ(Cas(y1, . . . , yt)) = det(Aσ) Cas(y1, . . . , yt),

we have that Cas(y1, . . . , yt) generates a G-invariant ideal. Therefore 1 ∈ (Cas(y1,
. . . , yt)).

One now readily sees that L(y) = Cas(Y, y1, . . . , yt)/Cas(y1, . . . , yt) has coefficients in
k and solution space equal to V . 2

Corollary A.7. Let k be as above and let L be a difference operator with coefficients in
k. There is a bijective correspondence between the G-invariant subspaces of the solution
space of L and the monic right factors of L.

Proof. We claim that the bijection is given by associating a monic factor to its solution
space. Let L have order n and let V be the solution space of L(y) = 0. Let L1 be a right
factor of L of order m and write L = L2L1. The operator L1 maps V into the solution
space of L2. Lemma A.5 implies that the kernel of L1 has dimension at most m and the
image has dimension at most n−m. Since these dimensions must sum to n, we have that
the kernel of L1 has dimension m and so is the full solution space of L1. Clearly this
space is invariant under the action of G. Now let W be a G-invariant subspace of V of
dimension m. Lemma A.6 implies that W is the solution space of a monic operator LW .
We may write L = QLW +R where Q and R are operators with the order of R at most
m− 1. The operator R annihilates W and so Lemma A.5 implies that it must be zero. 2
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The following lemma completes the proof of Theorem 3.4.

Lemma A.8. Let k be a difference field with algebraically closed constants C. Let R be
a Picard–Vessiot ring with Galois group G. If a, b ∈ R satisfy linear difference equations
over k then so do a−b and ab. Furthermore, these linear difference equations have Galois
groups that are quotients of G.

Proof. Let a satisfy La(y) = 0 and b satisfy Lb(y) = 0 where La and Lb have orders n
and m respectively.
a − b: The ring k[φ] of difference operators (where φ ◦ u = φ(u)φ for u ∈ k) is a

left and right Euclidean domain. We can therefore form the least common left multiple
LCLM(La, Lb) of La and Lb. The space V = {u + v | La(u) = 0, Lb(v) = 0} is a G-
invariant C-vector space of finite dimension, say t. Clearly, V contains a − b and is a
subspace of the solution space W of LCLM(La, Lb). Lemma A.6 implies that V is the
solution space of a linear operator LV of order t. Since La and Lb divide LV on the right
we have that LCLM(La, Lb) divides LV on the right. Furthermore, since V is a subspace
of W , LV divides LCLM(La, Lb) on the right, so we have that V is the solution space of
LCLM(La, Lb). Let φ(Y ) = CY be the system associated to LCLM(La, Lb). This system
has a fundamental matrix Z = (zij) with entries in R. Let S = k[zij , 1/det(Z)] ⊂ R.
Corollary 1.24 of van der Put and Singer (1997) implies that S is the Picard–Vessiot ring
associated to the operator LCLM(La, Lb). Furthermore, Corollary 1.30 of van der Put
and Singer (1997) implies that the Galois group is a quotient of G.
ab: Let U and V be difference indeterminates. Formally calculate UV, φ(UV ), . . .,

φN (UV ) where N = n · m. Each time φj(U), j ≥ n (resp., φj(V ), j ≥ m) occurs use
the relation La(U) = 0 (resp., Lb(V ) = 0) and replace this with a k-linear combination
of the U, φ(U), . . . , φn−1(U) (resp., V, φ(V ), . . . , φm−1(V )). One then has N + 1 linear
forms in the N expressions φi(U)φj(V ), 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1. One must there-
fore have a k-linear relation among these and therefore among the φi(UV ), i = 0, . . . , N .
Among all such relations, select one where the highest power of φ appearing is minimal.
We claim that this will yield a difference equation L(y) = 0 whose solution space is
W = span{uv | La(u) = 0, Lb(v) = 0}.

Let L̃ be a nonzero operator of order smaller than the order of L. In L̃(y) = 0 replace
y by UV and then replace each φj(U), j ≥ n (resp., φj(V ), j ≥ m) with a k-linear com-
bination of the U, φ(U), . . . , φn−1(U) (resp., V, φ(V ), . . . , φm−1(V )) as above. The above
construction insures that the resulting polynomial P (U, V ) ∈ k[φi(U), φj(V )]j=0,...,m−1

i=0,...,n−1

is nonzero. Let R be as in the hypotheses. In particular R contains full sets of solutions
{u1, . . . , un} and {v1, . . . , vm} of La(y) = 0 and Lb(y) = 0 respectively such that the
matrices U = (φi(uj))

j=1,...,n
i=0,...,n−1,V = (φi(vj))

j=1,...,m
i=0,...,m−1 are invertible in R. In the ring

R[φi(U), φj(V )]j=0,...,m−1
i=0,...,n−1 , we consider the substitutions

U
φ(U)

...
φn−1(U)

 7→ U

c1
c2
...
cn

 ,


V

φ(V )
...

φm−1(V )

 7→ V

d1

d2
...
dn

 ,

where the ci and di are indeterminates. These substitutions are invertible so the resulting
polynomial P̃ (ci, dj) ∈ R[ci, dj ] is again nonzero. Therefore we can find c̃i and d̃j ∈ C such
that P̃ (c̃i, d̃j) 6= 0. Therefore, for ũ =

∑
ciui and ṽ =

∑
divi, we have that L̃(ũṽ) 6= 0.
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Therefore W lies in the solution space of no operator of order smaller than the order of
L. Since W does lie in the solution space of L and is the solution space of some operator,
we must have that W is the solution space of L.

The Picard–Vessiot extension corresponding to L lies in R and, as before, we see that
the Galois group of L is a quotient of G. 2

Remarks. (1) The above lemma implies that any element of R satisfies a linear difference
equation over k. This follows by induction since the ring R is generated by solutions of
linear difference equations and w = 1/det(Y ) where Y is a fundamental matrix for a
system φ(Y ) = AY (note that w satisfies φ(w) = (1/detA)w).

(2) From the proof of the lemma one sees that if the field operations and φ are effective,
then one can effectively construct the equations for ab and a − b once one knows the
equations for a and b. Furthermore, if a and b satisfy difference equations of orders n and
m respectively, then ab and a − b satisfy difference equations of order at most nm and
n+m respectively.

Appendix B. Systems and Scalar Equations

Let k be a difference field of characteristic zero with automorphism φ and constants C.
In this section we shall show the equivalence between systems φ(Y ) = AY, A ∈ GLn(k)
and nth-order linear homogeneous difference equations L(y) = 0. As in the differential
case, this is done by proving a cyclic vector lemma for the appropriate modules.

Let Φ be an indeterminate. By a difference module M we mean a finite dimensional
k-vector space M that is also a left k[Φ,Φ−1]-module where Φ(am) = φ(a)Φ(m) and
Φ−1(am) = φ−1(a)Φ−1(m) for all a ∈ k, m ∈ M . We will show that, under suit-
able hypotheses, such a module contains a cyclic vector, that is, a vector v such that
{v, φ(v), . . . , φn−1(v)} is a k-basis for M for some n. To do this we use the following
lemma whose differential version appears in the unpublished notes of Kovacic (1996).
The proof given here of this lemma is identical, mutatis mutandis, to the one appearing
in that paper. The proof of the theorem is only slightly different from the corresponding
differential result appearing in that paper.

Lemma B.1.
Let F be a nonzero element of the ring of difference polynomials k{y1, . . . , yn}. Suppose

that ord(F ) = r − 1 and deg(F ) = s. If η1, . . . , ηr ∈ k are linearly independent over C,
then there exist integers 0 ≤ cij ≤ s, (1 ≤ i ≤ n, 1 ≤ j ≤ r), such that F (a1, . . . , an) 6= 0
where ai = ci1η1 + · · ·+ cirηr.

Proof. Let Cij , (1 ≤ i ≤ n, 1 ≤ j ≤ r) be indeterminates over k (in the ordinary, not
difference, sense). Since the φj−1(yi) are algebraically independent over k we may define
a (nondifference) homomorphism ψ : k[φj−1(yi)] −→ k[Cij ], (1 ≤ i ≤ n, 1 ≤ j ≤ r), by
the formula ψ(φj−1(yi)) =

∑r
t=1 Citφ

j−1ηt. Let G = ψ(F ).
Since the ηi are linearly independent over C, their Casoratian det(φj−1(ηi)) is not zero.

Therefore ψ is an isomorphism and deg(G) = s. We shall now use induction on nr to prove
the conclusion. If nr = 1, then G is an ordinary polynomial in one variable of degree s.
Since such a polynomial has at most s roots, there exists 0 ≤ c ≤ s such that G(s) 6= 0.

Now assume that nr > 1. Select a variable Cuv that appears in G, and think of G
as a polynomial in Cuv with coefficients that are polynomials in the other variables. By
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induction, there exist 0 ≤ cij ≤ s with (i, j) 6= (u, v), that do not annihilate the lead-
ing coefficient of G. Substituting these into G, we get a polynomial in one variable Cuv
and we can find a remaining cuv to make G(c) 6= 0. Let ai = ci1η1 + · · · + cirηr. Since
F (a1, . . . , an) = G(c) 6= 0 we have proven the lemma. 2

Recall that an element a of k is said to be periodic (of period m) if φm(a) = a for
some positive integer m. If a is periodic of period m, then the symmetric functions
of a, φ(a), . . . , φm−1(a) are left fixed by φ and so a is algebraic over the constants C.
Conversely, any element algebraic over C is periodic, so the periodic elements of k form
the algebraic closure of C in k. Note that if a is not periodic, then for any m the elements
1, a, . . . , am−1 are linearly independent over C.

Theorem B.2. Let k be a difference field of characteristic zero with constants C. Assume
that k contains an element that is not periodic. If M is a k[Φ,Φ−1]-module, then M
contains a cyclic vector.

If k = C(x), φ(x) = x + 1 and {e1, . . . , en} is a basis of M , then there exist integers
0 ≤ cij ≤ n, (1 ≤ i ≤ n, 1 ≤ j ≤ r), such that v =

∑n
i=1 aiei is a cyclic vector of M ,

where ai =
∑n
j=1 cijx

j−1.

Proof. Let e1, . . . , en be a basis of M and let Φ(ei) =
∑n
j=1 ajiej . With respect to this

basis we may identify M with kn and we then have for any u = (u1, . . . , un)T ∈ kn,

Φ

 u1
...
un

 = A

 φ(u1)
...

φ(un)

 ,

where A = (aji). Let y1, . . . , yn be indeterminates (in the difference sense) over k. Then
N = k < y1, . . . , yn > ⊗kM is a difference module over k < y1, . . . , yn > with basis
1⊗ e1, . . . , 1⊗ en. With respect to this basis let f = (y1, . . . , yn)T . We then have that

Φi(f) = φi−1(A) · · ·φ(A)A

 φi(y1)
...

φi(yn)

 . (B.2)

We shall show that f is a cyclic vector for N and that we can specialize the yi to get
a cyclic vector for M . Let B be the matrix whose ith column is the right-hand side of
equation (B.2). The determinant of B lies in the ring k[φi(yj)], (0 ≤ i ≤ n−1, 1 ≤ j ≤ n).
We shall show that det(B) 6= 0. To see this replace each n-tuple (φi−1(y1), . . . , φi−1(yn))T

with A−1φ(A−1) · · ·φi−1(A−1)(φi−1(y1), . . . , φi−1(yn))T in the polynomial det(B). The
resulting polynomial is det(φi−1(yj)). Since this polynomial is clearly nonzero, we must
have det(B) 6= 0. This implies that f,Φ(f), . . . ,Φn−1(f) are linearly independent over
k < y1, . . . , ym > and so f is a cyclic vector for N .

Let a ∈ k be an element that is not periodic. In particular, 1, a, . . . , an−1 are linearly
independent over C. The difference polynomial F = det(B) is of degree n and order n−1,
so Lemma B.1 implies that there exist integers 0 ≤ cij ≤ n, (1 ≤ i ≤ n, 1 ≤ j ≤ n), such
that F (a1, . . . , an) 6= 0 where ai = ci11 + · · ·+ cina

n−1. Therefore v = a1e1 + · · ·+ anen
is a cyclic vector for M . When k = C(x), we can let a = x and so conclude the final
statement of the theorem. 2
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We are now in a position to describe the equivalence between first-order systems
φ(Y ) = AY of difference equations and nth-order linear scalar difference equations
L(y) = φn(y) − an−1φ

n−1(y) − · · · − a0y = 0. Given such a scalar equation we have
already noted in Section 2 that one can form the system φ(Y ) = ALY where AL is the
companion matrix of L.

Conversely, let k be a difference field of characteristic zero containing an element that
is not periodic and let φ(Y ) = AY, A ∈ GLn(k). Let ko be the difference field whose
underlying field is k and whose automorphism is φ−1. Let M be the difference module
(ko)n over ko defined by

Φ


u1

u2

· · ·
un

 = A


φ−1(u1)
φ−1(u2)
· · ·

φ−1(un)

 .

Let e = {e1, . . . , em} be the usual basis of kn and let f = {v,Φ(v), . . . ,Φn−1(v)} where
v is a cyclic vector of M (over ko). Note that with respect to f , Φ has the matrix

B =


0 0 0 . . . a1

1 0 0 . . . a0

0 1 0 . . . a1
...

...
...

...
...

0 . . . 0 1 an−1


for some ai ∈ k. If w ∈ M , we shall let we (resp. wf ) be its vector of coordinates with
respect to e (resp. f). Let U be the change of basis matrix, i.e. wf = Uwe for all w ∈M .
We then have that B = φ−1(U)ATU−1 and so BT = φ(V )AV −1, where V = φ−1(UT )−1.
The matrix BT is the companion matrix of a scalar equation L(y) = 0. Furthermore, Y
is a solution of φ(Y ) = AY , iff Z = V Y is a solution of φ(Z) = BTZ. Therefore the
system φ(Y ) = AY is equivalent to the scalar equation whose companion matrix is BT .
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