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We give a survey of some methods for finding formal solutions of differen- 
t im equations. These include methods for finding power series solutions, 
elementary and liouvillian solutions, first integrals, Lie theoretic methods,  
transform methods,  asymptotic methods. A brief discussion of difference 
equations is also included. 

In this paper, I shall discuss the problem of finding formal expressions that  rep- 
resent solutions of differential equations. By using the te rm "formal", I wish to 
emphasize the fact  tha t  most of the time I will not be concerned with questions 
of where  power series converge or in what domains the expressions represent func- 
tions. I shall talk about power series solutions, solutions that  can be expressed 
in terms of special functions such as exponentials, logarithms, or error functions, 
solutions given implicitly in terms of elementary first integrals and Lie theoretic 
techniques. I shall briefly mention transform methods, asymptotic expar~sions 
and devote a final section to a short discussion of formal solutions of difference 
equations. 

There  are many open problems in these areas and I have included my favorite 
ones. I hope they will stimulate further work. 

I would like to thank Bob Caviness, Leonard Lipshitz, Marvin Tretkoff, and  the 
referees for helpful comments on an earlier version of this paper. 

I. P o w e r  Series  So lut ions  of Differential  E q u a t i o n s  

My aim here is to contrast  what is known about linear differential equations 
with what is known about non-linear differential equations. Good general ref- 
erences for information about linear differential equations are Poole (1960) and 
Schlesinger (1895). Consider the linear differential equation 

z(y) = an_l(x)y/n-1) + . . .  + a0(x)Y = 0 
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where the ai(x) E C((x)), the field of formal Lanrent series wi th  finite principal 
parts. The  point x = 0 is called an ordinary point of L(y) if 0 is not  a pole of 
any of the at(z). When this is the case L(y) = 0 will have n linearly independent  
solutions yl = Eaijx.J, 0 < i < n - 1, in C[[x]], the ring of formal power series 
(furthermore, each of these solutions will converge in some neighborhood of 0, if 
the ai(x) converge in this neighborhood).  Such a fundamenta l  set of solutions can 
be found by setting aij = 0 for 0 < i, j < n - 1, j # i, and a i i =  1, and  using the 
differential equation to find alj, j >_ n, by recursion. If some at(z) has a pole at 
0, we say 0 is a singular point of L(y). We say the 0 is a regular singular point  if 
in any open angular sector a at 0 all solutions y of L(y) = 0, analytic in f/, satisfy 
lira zNy = 0 for some N > 0. Fuchs showed tha t  this is equivalent to saying that  
z"~0 
the order of the pole of each at(x) at 0 is < n - i. If we let g = x --d - dx, we may write 

for some bi(x) E C((x)). In these terms, 0 is a regular point  if and only if 0 is not 
a pole of any of the bi(x). Let bi(x) = Ebijx j and 

b )k n - 1  P()O = )~" + ~-l,o + . . .  + bo,o. 

P(A) is called the indicial polynomial  of L(y) at 0. If 0 is a regular singular point 
of L(y), then there exist n linearly independent  solutions of L(y) = 0 of the form 

Yl = x)"(CPlo 4- ~11 logx 4 - . . .  4- ~pi~;(log x) s') 

with qoij E C((z))  and %i a root of P(,X) = 0 of multiplicity sl ( e o d d i n g t o n  & 
Levinson (1955), Ch. 4). Once the Ai are determined,  the  r can be found us- 
ing a recursive procedure,  due to Frobenius, similar to the ordinary point  case. 
This method  has been implemented by several people (e.g. Lafferty (1977), Dav- 
enport: (1988), Della Dora (19Sla), (19Slb), Watanabe  (1970), Tournier  (1987)). 
When  0 is not a regular singular point~ we say tha t  0 is an irregqlar singular point. 
In this case, there exists n linearly independent  solutions of the  form 

Yi : eQi(x)x"Yi((~O "~ ~P~I logx + . . .  + 9~i~,(log x) a') (1) 

where Qi(x) is a polynomial  in a-1/q  ;, qi a positive integer, 7i E C, si a positive 
integer, and ~ij E C[[xa/q~]l. Schlesinger (1987) (Vol. I, Sec. 110) describes a 
method  for finding qi and Qi and a more mode rn  algori thm based on Newton 
polygon calculations is given in Della Dora (1981c) (see also Levelt (1975)). Once 
qi and Qi are found, one makes a change of variable y = eQ~(~)z and proceeds 
as in the regular singular point case. An implementa t ion,  in the  DESIR system, 
is described in Della Dora (1981c) and Tournier  (1987). One can make  similar 
definitions with respect to any point x = a or even the point  of infinity (this latter 
case reduces to the  point t = 0 after we make a change of coordinates t = -} and 



Formal Solutions of Differential Equations 61 

_.ddt = - t  2 ~ .  All the above algorithms force one to work with algebraic numbers, 
even if the original equation has coefficients that are polynomials with rational 
coefficients. A method that minimizes the amount of factorizations needed to do 
these calculations is presented in (Della Dora et al., (1985). 

We now consider a system of linear differentiM equations 

y ,  _ A ( x ) y  (2) 
xq 

where A(x)  e Mn(C[[x]]), the ring of n x n matrices with entries in C[[x]], and 
q is a non-negative integer. If q = 0, we say that 0 is an ordinary point and if 
q :> 1, we say that 0 is a singular point. The definitions (in terms of the growth 
of solutions near 0) of regular and irregular singular point carry over to this case, 
but there is no analogue of the criteria of Fuchs to distinguish between these two. 
To do so, we can proceed in several ways. One way (the cyclic vector method) is 
to convert the system (2) to a single nth order equation and then use Fuchs' crite- 
ria (Adjamagbo (1988), Bertrand (1985), I(atz (1986), Malgrange (1974), (1981), 
Ramis (i978), (1984)). A second method is due to Moser (1960). This method 
considers transforms Y ~ B Y  with/3 E Mn(C(x)) and their effect on (2). One 
gets an equation of a similar form with a possibly different value of q. One tries 
to find a matrix B so that the resulting q is minimal. When this happens, it is 
known that q = 1 if and only if 0 is a regular singular point. Both methods are 
discussed, with implementations in mind, in Hillali (1982), (1983), (1986), (1987a), 
(19875), (1987c), Hillali & Wazner (1983), (1986a), (19865). Other criteria and 
methods for determining if a singular point is regular are discussed in Gerard and 
Levelt (1973) (c.f. in particular Theorem 4.5). These papers also discuss how one 
can use either method to calculate other invariants of (2) (e.g. Malgrange index, 
Katz invariants). 

The formal solutions given by (1) do not necessarily involve convergent series. 
It is known that if the ai(x) are analytic in a neighborhood of the origin, then 
in any sufficiently small sector at the origin, there are analytic solutions having 
(1) as asymptotic expansions. Questions regarding calculating these solutions are 
addressed in Loday-mehaud (1988), Ramis (1978), (i984), (i985a), (19855), and 
Ramis & Thomas (1981). 

Before leaving linear differential equations, it should be noted that some work 
has been done to implement methods of expressing solutions of linear differential 
equations in terms of series involving Chebyshev polynomials Geddes (1977) or 
other special functions Cabay & Labahn (1989) and Chaffy (1986). 

We now turn to nonlinear differential equations. Although some work regarding 
algorithms for finding series solutions of nonlinear differential equations has been 
done in the past (e.g. Fitch, Norman ~ Moore (1981), (1986) and Geddes (1981)) 
the first generM algorithm was presented in Denef & Lipshitz (1984). They show 
that given a set S of ordinary polynomial differential equations in yl, . .  �9 , ym with 
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coefficients in Q[x] and initial conditions, one can decide if S has a solution in 
K[[xl] satisfying these initial conditions, where K = C, R, or Qv' Their basic idea 
in this is to  show how one can find an integer N such that the system S is solvable 
if and  only if S has  a solution rood x N. This lat ter  condition reduces to checking 
the  solvability of a system of linear equations. Although their algori thm is very 
explicit, it does not  seen to be efficient. 

Deciding if a sys tem of ordinary polynomial differential equations has a power 
series solution is a delicate question. In Denef & Lipshitz (1984), it is also shown 
tha t  there  is no algori thm to decide if such a system has a convergent solution or if 
such a system has  a non-zero solution. The si tuation for part ial  differential equa- 
tions is worse. Denef  and Lipshitz show that there is no algori thm to decide if a 
l inear par t ia l  differential equation with coefficients in Q [ z l , . . .  , zg] has a solution 
in C[[a : l , . . .  ,xg]]. Furthermore,  there are systems of partial differential equa- 
tions having infinitely many power series solutions, none of which are computable 
(i.e., the sequence of coefficients cannot be generated by a Turing machine). 

In Grigor 'ev g~ Singer (1988), the authors consider a Newton polygon method to 
O o  

find solutions of differential equations of the form y = ~ aiz  ~ where the ai 6 C 
i=0 

and the  fli are real wi th  fl0 > fll > . . . .  They  show that  if such an expression 
satisfies a polynomial  differential equation p(x, y, y ' , . . .  ) = 0, then limfll = -oo .  
Fur thermore ,  given arly such y and p(x, y, y ' , . . .  ), there exists an N such that  for 
any z = ETix 8~ satisfying p(x, z, z ' , . . .  ) = 0 wi th  ai = 7i and fli = 6i for all i with 
fli > N,  then  o~i = 7i and fll = 6i for all i ( that  is, each y is finitely determined).  
The  au thors  give a method  for enumerat ing solutions of this form of a differential 
equat ion and  show that  it is an undecidable problem to determine if a system of 
polynomial  differential equations has a solution of this form. 

We have not yet  ment ioned power series solutions of MgebrMc equations. Algo- 
r i thms for finding the Puiseux expansions (power series in rational powers of x) 
of algebraic functions are well known Knuth (1981), Ch. 4.7. The  fastest to date 
is due  to the  Chudnovskys (i985). They have shown how algorithms for finding 
power series solutions of linear differential equations can be used to find Puiseux 
expansions of algebraic functions. The key observation is that  if y satisfies an 
irreducible equation f ( z , y )  = 0 of degree n over C(x),  then  [ C ( x , y ) :  C(x)] = n 
and y' = - f ~ / f v  E C(x ,y ) ,  so C ( x , y )  is closed under  the derivation '. This im- 
plies tha t  y , y ' , . . .  ,y(") must be linearly dependent over C(z) ,  so y satisfies n th  
order  linear differential equation over this field. This equation can be calculated 
f rom ] ( z ,  y)  and then  using an efficient version of the Frobenius algorithm one can 
calculate the  Puiseux expansion of y. They  are able to show that  one can compute 
the  first N terms of this expansion in O(dN) operations and O(dN) space, where 
d is the  to ta l  degree of f ( x , y ) .  

Other  papers concerning power series solutions of differential equations are Bo- 
gen (1977), Fa teman (1977), Lamnabhi-Lagarrigue & Lamnabhi  (1982), (1983), 
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Norman (1975), and Stoutemyer (1977). 

I I .  C losed  F o r m  So lu t ions  

We are concerned here with expressing the solutions of differential equations in 
terms of some given class os functions (e.g., exponentials, integrals and algebraic 
functions). We begin by considering the simplest differential equation 

y ' = a  

and ask when a solution (i.e., y -- f a)  can be expressed in terms of elementary 
functions, that  is, in terms of sin, cos, exp, log, azctan, etc.; the functions of 
e lementary  calculus. For example, y' -- (2x)exp(x 2) has an  elementary solution 
y --- exp(x 2) but  y' = exp(z 2) does not (although this is not  obvious). We wish 
to give the informal notion of expressible in elementary terms some mathemat ica l  
rigor. This is done using the notion of a differential field. A field F is said to be 
a differential field with derivation I if , : F --+ F satisfies (a q- b)' --- a I -F b t and 
(ab)' = a'b + ab' for all a, b e F. The constants of F are {c I c e F and c' -- 0} and 
are denoted by C(F). For example, C(x) with the derivation d/dx in a differential 
field as is the field of meromorphic functions on a connected open set in C with the  
usual  derivation. To formalize the  notion of elementary function, first notice tha t  
if one thinks in terms of functions of a complex variable, then sin, cos, tan, arctan,  
etc. can all be expressed in terms of exp and log. This motivates the following 
definition. Let F C E be differential fields. We say E is an elementary extension 
of F if there is a tower of fields F -- E0 C . . .  C E ,  = E where Ei = E i_ l ( t / )  
and either (i) t/ is algebraic over Ei-1,  or (ii) t~/ti -- u~ for some u/ E El-1  
(i.e., ti = exp(u/)), o r  (i/i) t~ = u}/ui f o r  s o m e  us e Ei-1 (i.e., tl = log(u/)).  
We say that  y is elementary over F if y belongs to an elementary extension of 
F .  For example, y = exp(x log(x + V/z))is elementary over C(x), since y belongs 
to the  last member  of the tower C(z) C C(z, v"~) C C(x, v/~,log(x + v/~)) C 
C(x,  v~ ,  log(x + x/~), exp(x log(z + v/~)). 

Our  naive question "When can we express a solution of y' = a in terms of 
e lementary  functions?" can now be formalized as "Given ~ differential field F and 
an element c~ of F,  when does y' = a have a solution in an elementary extension 
of F?"  The answer is given by Liouville's Theorem: Let F be a differential field of 
characteristic zero and c~ E F.  If yl = ~ has a solution in an elementary extension 
K of F,  with C(F) = C(K),  then 

m U~ ' 
V I O~ ----- + > .  Ci 

i=1 ~ti 

where  v and the us are in F and ci are constants of F. In other words, if c~ 
has an elementary ant/derivative, then f = ,  + Eci log(us), where v and the 
ui only involve those functions that  already appear in c~. The condition on the  



64 M.F .  Singer 

constants  is technical  but  necessary (if we work over the complex numbers,  there 
is no problem; see Pdsch (1969) and Davenport,  Siret &: Tournier (1988) for a 
fur ther  discussion of this issue). Special cases of the above theorem were originally 
proved by  Liouville (1833), (1835). Ostrowski gave a proof of this theorem in 
the context  of differential fields in Ostrowski (1946). The  work of Liouville and 
Ostrowski is discussed in Rift (1948), along with additional work of Mordukhai- 
Boltovski and Rift.  A completely algebraic proof was first given by Rosenlicht in 
Rosenlicht (1968) (see also Rosealicht (1976)). The best place to read a proof of 
this theorem is Rosenlicht (1972). 

To get a feeling for why Liouville's Theorem is true, one should consider the 
following pieces of evidence. First, the theorem is true when a is in C(x).  In this 
case we may  expand a in partial  fractions a = p ( x )  + ~ ~ .  a i j ( x  - bi) - m i  . When 

i 3 
we integrate  ~, each term contributes something in C(x), except if n i j  = 1, in 
which case we get log(x - bi), which appears linearly. Secondly, we can look at the 
general case and ask: If we need a new algebraic, log or exponential  to integrate an 
expression, how can this new function appear in the antiderivative. For example, if 
f a is an algebrMc function of a,  then  we can sum the conjugates of f a and divide 
by their  number  and get a new antiderivative of a that  is a rational function of a.  
Since the  antiderivative is unique up to additive constant, the original algebraic 
funct ion must be a rational function of a (i.e. no non-rational algebraic functions 
are needed).  Now assume that  we needed a new logarithm or an exponential to 
express our  antiderivative. For example, assume that  f a = (exp(u))n + . . . .  When  
we differentiate bo th  sides of this equation, we get a = n u ' ( e x p ( u ) )  n + . . . .  Since 
we are assuming tha t  exp(u) does not already occur in a ,  we must  have n = 0. 
If f a = ( l o g ( u ) ) n . . .  , then a = n ( u ' / u ) ( i o g ( u ) )  '~-1 + . . . .  Since we assume tha t  
log(u) does not appear  in a,  we must have n = 1, i.e. the new log appears linearly. 
This heuristic a rgument  can be formalized and is the basis of the argument in 
Rosenlicht (1972). 

Liouville's Theo rem gives a criterion for a function to have an elementary 
antiderivative and  in l~osenlicht (1972) this is used to show tha t  f exp(x 2) is 
not  elementary.  A general algorithm to decide if a function, elementary over 
C(x)  has an e lementary  antiderivative was given by Risch in a series of paper  
(Risch (1968), (1969), (1970)). The  algorithm takes as input an elementary tower 
K ( x )  c E1 = K(x, l)c . . .  c E , ,  = K ( X , t l , . . .  , t , , )  (where is a f initely gen- 
erated  field of characterist ic zero) and an element ~ in Em and decides if it is of 
the  form prescribed by  Liouville's Theorem. If it is, the algori thm produces such 
an expression, lZisch (1969) t rea ted  the case of a purely transcendental  integrand. 
Improvements  of this algorithm were made by many  people (Bronstein (1988), 
Davenpor t ,  Siret & Tournier (1988), Davenport  (1983) (this has a large and use- 
ful bibl iography),  Davenport  (1986), Epstein (1975), Geddes ~ Stefanus (1989), 
Horowitz (1969), (1971), Kaltofen (1984), Norman (1983), Norman & Daven- 
por t  (1979), Norman  & Moore (1977), Rothstein (1976), (1977), Trager (1976), 
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(1984), Yun (1977)). In Risch (1968) and tLisch (1970), Risch outlined an algo- 
rithm for the mixed case; the case where algebraics are also allowed in the defining 
tower of ce. This algorithm is much more complex than the previous one. When 
c~ is algebraic over C(x), new ideas and improvements were given by Trager and 
Davenport (Trager (1979), (1984), Davenport (1981)). Bronstein has generalized 
and applied these ideas to the general case in Bronstein (1990). The Risch al- 
gorithm for purely transcendental elementary functions has been implemented in 
most computer algebra systems. Bronstein's algorithm is being implemented at 
present in the SCRATCHPAD system. 

All algorithms proceed by induction on the length of the defining elementary 
tower for a (the method of Norman & Moore (1977) does not, but it is known 
not to be an algorithm, see Norman & Davenport (1977) and Davenport (1986)). 
A particular a can belong to several different elementary towers. For example 
VUexp(x) belongs to both C(x, v/~, exp(z)) and C(x, log(x), exp(x § log(x)). 
The first of these fields is built up using algebraic elements, while the second is 
purely transcendental. The efficiency of the algorithms depends heavily on the 
particular choice of defining tower. Some work has been done with regards to 
selecting a good defining tower (Davenport (1986) and Bronstein (1988)) but 
much more can be done. This motivates the following problem: 

Problem 1. What is the "best" field of definition for an elementary function? 
Can one decide if a given elementary function belongs to a purely transcendental 
elementary extension of C(x)? 

Several generMizations of the Liouville Theorem have been made. Risch (1976) 
gives a Liouville type theorem for integration in terms of real elementary func- 
tions and Bronstein gives an algorithm in Bronstein (1989). In Singer, Saunders 
& Caviness (1985), a Liouville type theorem is presented, Mong with algorithmic 
considerations, that deals with integration in terms of a class of functions that 
includes the elementary functions as well as the error function and the logarithmic 
integral. This work has been generalized by Cherry (Cherry (1985), (1986)) and 
Knowles (1986). In these papers the structure of the defining tower plays a crucial 
role in the algorithmic results and these algorithms only treat certain classes of 
functions (in particular, they do not handle functions that are built up using al- 
gebraic functions). Using ideas developed in algebraic/(-theory, Baddoura (1989) 
gives a Liouville type theorem and algorithm for integration in terms of elemen- 
tary functions and dilogarithms. Baddoura's work also only deals with a restricted 
class of functions. There are still many open problems concerning generalizations 
of Liouville's Theorem and the interested reader is referred to the above papers. 
Some heuristics are also given in Picquette (1989). 

So far we have only considered indefinite integrals. Heuristic techniques for eval- 
uating definite integrals are discussed in Geddes &: Scott (1989), Kolbig (1985) and 
Wang (1971). Recently, Almkvist ~ Zeilberger (1989) have proposed a method for 
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evaluat ing expressions of the form f ( x )  = f :  F(x ,  y)dy, for example 

+oo 

They consider functions F(x ,  y) that  satisfy a pair of linear partial differential 
equations of the  form 

.0"F 
P(x ,  v, a / 0 . ) F  = p . ( . ,  ~)~-;~. + . . .  + p0( . ,  ~ )F  = 0, and 

. 0mF  
Q(x, v, O/Ov)F = qm(z, v ) ~  + . . .  + q0(z, v)F = 0, 

with coefficients that  are polynomials in x and y (these functions are called D- 
finite (Lipshitz (1988)). In this case it is known that  f ( x )  will satisfy an ordinary 
linear differential equation 

, , dNf  
c(x, a/dx)f = a N ~ ) ~  + . . .  + do(X)/= 0 

(see Lipshitz (1988)). L can be found using an elimination algorithm. One then 
solves L(~, d/d~)f = 0 in terms of some class of functions (if this is possible, see 
below) and  compares initial conditions to get a closed form expression for f(x) .  

We now turn to the problem of solving more complicated differential equations 
in closed form. We start by considering linear differential equations 

L ( y )  - -  y(n)  + a n _ l y ( n - a )  _{_ . . .  + a o y  = O. 

When the  ai axe constants, we teach our undergraduates how to express all solu- 
tions as sums of products  of polynomials and exponentials. An implementation of 
an algori thm to do this is described in Tournier (1979). When the ai are ratio- 
nal functions, some heuristics and special cases are discussed in Malta (1982) and 
Schmidt  (1979) and implementations of variation of parameters and the method 
of undetermined coefficients are discussed in Schmjdt (1976) and Rand (1984). 

We now turn to some general algorithms. Assume that  the ai E k(x), where k 
is some finitely generated extension of Q. The question of when L(y) = 0 has only 
solutions that  are algebraic over k(x) was originally treated by F. Klein in 1877 
when n = 2. Klein showed that  if L(y) = 0 has only algebraic solutions then there 
is a change of variables x = ~p(t) such that the  new equation is of a very special 
form, tha t  is it appears in a list of all linear differential equations with three singu- 
lar points  and only algebraic solutions discovered by H. A. Schwarz around 1870 
(see Gray (1986) for a discussion of the work of Klein, Schwarz and their contem- 
poraries). A modern discussion of Schwarz's list and related material appears in 
Matsuda  (1985). Klein's method  was made effective by Baldassaxri and Dwork in 
Baldassaanri & Dwork (1979) and Baldassarri (1980). For n > 2, P. Painlev$ and 
his s tudent  A. Boulanger gave a decision procedure in 1898 (a similar procedure 
was rediscovered by the present author in 1979, see Singer (1980)). 

The  next  natural  class of functions are the liouvillian functions. These are 
the  functions tha t  can be built up from k(x) using integration, exponentiation, 
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algebraic functions and composition (a formal definition is given below). These 
functions are named after J. Liouville, who was the first to give necessary and 
sufficient conditions for a second order homogeneous linear differential equation 
to have a solution of this form, Liouville (1839), (1841) and Ritt (1948). When  
n = 2, Kovacic (1986) gave an algorithm to decide if all solutions of L(y) = 0 can 
be expressed in terms of liouvillian functions and showed how to exhibit a basis 
when this is the case. Kovacic's algorithm is very explicit and parts of it have 
been implemented in MACSYMA (Saunders (1981)) and MAPLE (Char (1986)) 
(see also Smith (1984)). Improvements to this algorithm have been given in Duval 
& Loday-Richaud (1989). For n >_ 2, an algorithm is presented in Singer (1981) 
to decide if L(y) = 0 has a non-zero liouvillian solution and, if so, shows how 
to construct a vector space basis for the space of all such solutions (some of the 
ideas already occur in Marotte (1898), but I was not aware of this at the t ime 
Singer (1981) was written). A natural generalization of this is to find an effective 
procedure to produce for a given linear differential equation L(y), with coefficients 
in a liouvillian extension of Q(x), a basis for the liouvillian solutions of L(y) = O. I 
have recently shown (Singer (1988c)) that  one can do this if the linear differential 
equation has coefficients in a purely transcendental liouvillian extension of C(z) 
or in an elementary extension of C(x). The algorithm presented there is extremely 
inefficient and can use improvement and generalization to handle the complete 
liouvillian case. 

Problem 2. Find an efficient algorithm to decide if an n th  order linear differen- 
tial equation with rational function (or liouvillian) coefficients has a liouvillian 
solution. 

Some progress has been made on this problem. A problem that comes up  in 
Singer (1981) is the problem of factoring linear differential equations. Schwarz dis- 
cusses an algorithm (with implementation) for this in Schwarz (1989) and Grigor'ev 
discusses another algorithm and gives complexity bounds in Grigor'ev (1988). In 
Singer (1981), group theoretical methods were used to obtain certain bounds (see 
below) and Ulmer (1989) shows how stronger techniques from group theory yield 
bet ter  bounds. 

Other work on deciding if linear differential equations have liouvillian solutions 
appears in Watanabe (1981), where techniques are developed to transform a given 
linear equation to a hypergeometric equation and Watanabe (1984), where change 
of variable techniques are discussed that will take a linear differential equation 
with coefficients in a liouvillian extension of C(x) to one with coefficients in C(x). 

I will now give a sketch of some of the ideas involved in Kovacic (1986) and 
Singer (1981), and start by defining some notions from differential algebra (Ka- 
plansky (1957) and Kolchin (1973) are good references for this). Let  F be a 
differential field of characteristic 0. If L(y) = 0 is an nth  order linear differential 
equation with coefficients in F,  we can formally adjoin to F a set of n solu- 
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flions Y l , . . .  ,Y,~ of L(y) = O, linearly independent  over C, and their derivatives. 
W h e n  C is algebraically closed, we can choose Yl , . . .  , Y- so tha t  the field K = 

, o ( n - l )  ( n - l )  F ( y l , . . .  ,yn, y~ , . . .  , yn , . . .  ,ul , . . .  ,y  ) contains no new constants (note 
_ ( , n )  

that  this field is closed under  ' since Yl , m >_ n, can be  expressed in terms of 
lower order  derivatives of yi using L(yi) = 0). Such a K is unique up to a differen- 
tim F- i somorph l sm and is called the Picard-Vessiot extension of F cq~esponding 
to L(.V) -- 0. Let  O = {a [a  is an automorphism of K, a(u)'  = a(u') for all u E K 
and a(v) = v for all v E F}.  G is called the ~alois zroup of the equation L(y) = 0 
over F (or  of the  field K over F ) .  If y E K is any solution o f L ( y )  = 0 and 
~r E G, then  ~r(y) is also a solution of L(y) = 0. One can show that  this implies 
tha t  y = Yl, cjyj for some cj E C. Therefore, for each i, cr(yl) = ~cijyj for some 
clj E K.  In this way we may associate a matr ix  (c/j) with  every ~ E G. (cij) 
is invertible,  so this gives us an isomorphism of G into GL(n,  C), the group of 
invertible n x n matrices over C. Identifying G with its image, it can be  shown 
that  G = GL(n, C) n V,  where V C C n~ is the zero set of some collection of poly- 
nomials  (such a set is said to be closed in the Zariski topology).  There is a galois 
theory  t ha t  identifies differential subfields K1, F C K1 C K, with Zariski closed 
subgroups  of G (a closed subgroup corresponds to the field of elements left fixed by 
all i ts  members;  in paxficular F corresponds to G). We can formalize the notion of 
solvable in terms of liouvillian functions. K is said to be a liouvillian extension of k 
if there is a tower of fields k = K0 C . . .  C Kn = K such that  Ki = Ki-1 (ti), where 
ei ther t~ E Ki-1 or t~/ti E Ki-1 or ti is algebraic over Ki-1 ( the first two cases 
cor respond to ti being an integral or an exponential).  A fundamenta l  theorem 
states  tha t  L(y) = 0 is solvable in terms of liouvillian funct ions (i.e. its Picard- 
Vessiot extension lies in a liouvillian extension of F )  if and only if its galois group 
contains a solvable subgroup of finite index (Kaplansky (1957), Kolchin (1973), 
Singer (1988b)) .  

Let  us now consider the problem of finding liouvillian solutions of L(y) = O. For 
simplicity, let us just  t ry to decide if all solutions of L(y) = 0 are liouvillian. The 
galois theory  implies tha t  this is the  case if and only if the galois group of L(y) has a 
solvable subgroup of finite index. An effective version of the Lie-Kolchin Theorem 
asserts tha t  in this case G will have a subgroup H such that  the elements of H 
can s imultaneously be  put  in upper triangular form and such that  the index of H 
is b o u n d e d  by I (n ) ,  a computable  function of n. If y is a common eigenvector of 
H ,  then  cr(y'/y) = cy' /cy = y ' /y  so y ' /y  is left fixed by H .  This implies that  y ' /y  
is algebraic over F of degree bounded by  I(n).  Therefore if L(y) = 0 is solvable 
in te rms  of liouvillian functions, L(y) = 0 will have a solution y such that  y ' /y  is 
algebraic over F of degree bounded by I(n). We now must decide if L(y) = 0 has 
such a solution. The idea is to look for candidates for the minimal polynomial of 
u = y ' /y .  If p(u)  = u N + bN_l(x)u N-1 + . . .  + bo(z) (N  < I(n))  is the minimal 
polynomial  of such a u, then one can show tha t  there exist solutions z l , . . .  , ZN 
of L(y)  -- 0 such that  each b~ will be the ith symmetric  funct ion of the z} /z j .  By 
s tudying the  poles of the coefficients of L(y) = 0, we can bound  the number  mad 
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order of the poles and zeroes of the hi. This allows us to bound the degrees of the 
numerators  and denominators of the bi. Therefore if L ( y )  = 0 has only liouvillia~n 
solutions, it will have a solution y such that  u = y ' / y  satisfies a polynomial over 
k(x) of degree < I ( n )  whose coefficients have numerators and denominators os 
effectively bounded degrees. Elimination theory then allows us to decide is such a 

solution exists and produces u. We then use the change 'of variables y - z e f  u to 
get a new equation L * ( z )  = 0 of lower order and proceed via induction. Actually, 
to make the induction work we prove a stronger result: given a linear differentied 
equation with coefficients in an algebraic extension of Q(x), one can find in a finite 
number of steps a basis for the space of liouvillian solutions of L ( y )  -- 0. This is 
done in Singer (1981). 

So far, we have only been considering homogeneous linear differential equations, 
but one can ask the same questions about non-homogeneous linear differential 
equations L ( y )  = b. Such questions are considered in Davenport (1984), (1985), 
Davenport  & Singer (1985), (1986), where in addition some open problems are 
mentioned. 

We now turn to the general problem of solving a homogeneous linear differential 
equation L ( y )  = 0 of order n in terms of algebraic combinations and superpo- 
sitions of solutions of linear differential equations of lower order (not necessarily 
homogeneous). In this context, asking for l]ouvillian solutions of a linear differ- 
ential equation is the  same as asking: When can it be solved in terms of first 
order linear equations (all solutions of first order linear equations are liouvillian 
and liouvillian functions are built up using algebraic combinations of solutions of 
y' = a a n d  y' - ay = 0)? 

One can next ask: When can the solutions of a homogeneous linear differentia] 
equation be expressed in terms of solutions of linear differential equations of or- 
der at most two. Special cases of this question have been considered by Clausen, 
Goursat, Bailey, Ramanujan  and others (Erdelyi et al. (1953)), who tried to un- 
derstand when the product  of two generalized hypergeometric functions is again a 
generalized hypergeometric function. They discovered beautiful formulas, such as 

1Fl(a ,  p; z ) l F l ( a , p ; - z )  = 2F3(~,p - a;p,  (1/2)p, (1/2)(p + 1); z2/4) 

I formalized the notion of solvability in terms of second order linear differential 
equations in Singer (1985). Briefly, a homogeneous linear differential equation is 
said to be solvable in terms of second order linear differential equations if the 
associated Picard-Vessiot extension lies in a tower of fields, each generated over 
the previous one by either an algebraic element or a solution of second order  lin- 
ear differential equation (we consider first order linear differential equations to be 
degenerate second order equations and allow them as well). In Singer (1985), I 
gave a criterion in terms of the galois group, for a homogeneous linear differential 
equation L(y) = 0, with coefficients in an arbitrary differential field k of charac- 
teristic 0, to be solvable in terms of second order linear differential equations. For 
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example, if L(y) has order 3, then it is solvable in terms of second order linear 
differential equations if a~d only if one of the following holds: (i) L(y) = L1 (L2(y)) 
or L(y)  = L2(LI(y)),  where LI(y)  and L2(y) are linear homogeneous differential 
polynomials  of orders 1 and 2 respectively, with coefficients algebraic over k, or 
(ii) L(y) = 0 has a basis of its solution space of the form 

Yl = bo u2 -[- bl(u2) # q- b2(u2)" 

y2 -- bouv + bl(uv)' + b2(uv)" 

y3 = b o .  2 + bl(v ) ' + '' 

where the bl are algebraic over k and {u, v} is a basis of the solution space of a 
second order homogeneous linear differential equation of order 2 with coefficients in 
k (for example, t he  solution space of y"' - 4xy' - 6y = 0 is spanned by (u2) ', (uv)',  
and (v2) ', where {u, v} is a basis for the solutions of y " - z y  = 0). In Singer (1985), 
I show how this can be used to give a decision procedure to determine if an 
arbitraxy third order homogeneous linear differential with coefficients in Q(x) can 
be solved in terms of second order linear differential equations. 

The  general problem of solving homogeneous linear differential equations in 
terms of lower order linear differential equations is considered in Singer (1988a) 
(see Singer ~ Tretkoff (1985) for a discussion of a related problem). Again this 
notion can be formalized in terms of towers of fields. Necessary and sufficient 
conditions can be given in terms of the Lie algebra of the galois group. One result 
is tha t  a homogeneous linear differential equation cannot be solved in terms of 
lower order linear differential equations if and only if the Lie algebra of its galois 
group is simple and has no non-zero representations of smaller degree. I do not 
know of any general algorithms, and pose 

Problem 3. Give an effective procedure to decide if a homogeneous linear dif- 
ferential equation can be solved in terms of linear differential equations of lower 
order. (One can show that  a solution of Problem 6 below would yield a solution 
of this.) 

When  we consider the question of solving a third order homogeneous linear 
differential equation in terms of second order linear equations, the algorithm given 
in Singer (1985) does not allow us to restrict in advance the kind of second order 
equations we can use. This suggests 

Problem 4. Give a procedure to decide if a homogeneous linear differential equa- 
t ion can be solved in terms of solutions of a restricted class of linear differential 
equations (e.g., Bessel functions). 

Recall t ha t  a power series F(x,  y) in two variables is D-finite if f satisfies a 
system of non-zero differential equations of the form P(x, y ,O/Ox)F = 0 and 
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Q(a, y, O/Oy)F = O. For example, algebraic functions of two variables are D- 
finite. As mentioned above if F is such a function then f (x)  --" f~ F(x,y)dy will 
sat is4ya linear differential equation over C (x). The sohtions of the hyp ergeometric 
equation can be expressed in this form 

fo 1 f(a, b, c; x) = r(b)r(c - ~) tb-'(1 - ( 1  - xt)-~dt 

Poole (1960). This leads to the following question. 

Problem 5. Find a procedure to decide if a linear differential equation has a 
nonzero solution of the form fb f (a ,  y)dy, where f is an algebraic function of two 
variables, and produce one if it does. 

Related to the problem os solving linear differential equations in finite terms is 
the problem of deciding if two linear differential equations are equivalent under 
a change of coordinates (Berkovich, Gerdt, Kostova~Nechaevsky (1989), Kararan 
& Olver (1986), Neuman (1984), (1985)) and finding linear differential operators 
that  commute with a given linear differential operator (which then can be used to 
find solutions of the original operator, see Gerdt & Kostov (1989)). 

In most of the above considerations, the galois group os a homogeneous linear 
differential equation plays a crucial role. Yet unlike the situation with algebraic 
equations, there is no known algorithm to calculate the gMois group of a homoge- 
neous linear differential equation (i.e. produce a set of polynomials defining this 
group in GL(n, C) C C ~2 ) or even its dimension as an algebraic variety (for n = 2 
or 3 this can be done as a consequence of the  algorithms described above, but for 
n > 3, nothing is known). This suggests 

Problem 6. Give an algorithm that will find the galois group of any homoge- 
neous linear differential equation with coefficients in Q(x), or at least calculate its 
dimension. 

There has been some recent activity concerning calculation of the differential ga- 
lois groups of certain classes of linear differential equations. In Beukers, Bronawell 
8z Heckman (1988), Beukers & Heckman (1987) and Katz (1987), the authors are 
able to extract representation theoretic information about the galois groups from 
information at the singular points of the differential equation and combining this 
with information about root systems of simple Lie groups, can give usable suffi- 
cient conditions for an nth  order linear differential equation to have a "large" galois 
group (i.e. the galois group contains SL(n, C) or SP(n, C)). Katz is able to refine 
these techniques in Katz (1989) to calculate the Lie algebra of the gaiois groups 
of many differential equations. In Dural & Mitschi (1988) and Mitschi (1989a), 
(1989b), the authors use the theory of the "savage ~rl" (see below) developed by 
Ramis (1985a), (1985b), (1988) and Martinet & Ramis (1988) to explicitly calcu- 
late the galois groups of generalized confluent hypergeometric equations. 
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Rela ted  to the galois group is the notion of the monodromy group. Given 
a homogeneous linear differential equation L(y)  with coe fc i en t s  in C(x),  let 
{ a l , . . . ,  am} be the  singular points (possibly including co) and let y l , . . .  , y ,  be 
a fundamen ta l  set of solutions at a regular point a0. Given any pa th  "r in the Rie- 
m a n n  sphere S 2 - {an , . . .  , am}, we can analytically continue Ya,.-.  , Y- around "r 
and get a new fundamenta l  set of solutions. This new set is a linear combination of 
the old set, so we can associate to -), an invertible matr ix A. r. A 7 depends only on 
the  homotopy  class of 7 and we get a homomorpkism from 7r1(S 2 - { a l , . . . ,  am}) 
to G L(n ,  C) called the monodromy representat ion of the  differential equation. The 
image of this homomorphism is called the monodromy group (see Poole (1960) and 
Katz  (1976)).  In general, it is very difficult to compute  this group. Problem 6 can 
therefore be  res ta ted for monodromy groups. 

W h e n  all the singular points of L(y)  are regular singular points, we know, 
(e.g., Tretkoff  & Tretkoff (1979)) that  the Zariski closure of the monodromy group 
is the  galois group. This is not  the case when we have irregular singular points 
(e.g. the  monodromy  group of yt _ y = 0 is trivial but  the galois group is C*). 
Recall tha t  at a singular point (for simplicity, we assume this to be 0), there are 
n l inearly independent  solutions of the form 

Yl = eQ'(Z)xT' (~i0 + ~it log x + . . .  + ~i~, (log z) ~') 

where Qi(x)  is a polynomial  in x -1/q~ , ql a positive integer, 7i E C, si a positive 
integer, and ~oij �9 C[[xl/q']]. Let v = L C M { q i }  and t = x 1/~. Let K = C{t)[t-1],  
the ring of meromorphic  functions in t and/~" = C[[t]][t -a] = C((t)) .  In this situa- 
tion, Ramis  defines a group to replace the classical monodromy group. This group 
is genera ted  by three subsets: the exponential torus, the formal monodromy and 
the Stokes matrices.  Let E be the Picard-Vessiot extension of C{x}[x -a] gener- 
ated by the  yi. The  exponential toms  is defined as follows: K(eQ*(~), . . .  , eQ-(*)) 
is a Picard-VessJot extension of K whose galois group over K is (C*) r for some 
r. Ramis  calls this group the exponential torus T and shows that  it is a sub- 
group of the  galois group of E over C{x}[x-1]. One can also form the extension 
F = f ( ( l o g t , { t T ' } ,  {eQ'}) of K.  Note that  E is a subfield of this extension. The 
map t --. t. exp(2wi /v)  induces an automorphism of F,  which in tu rn  induces an au- 
tomorph i sm of E.  In this way we can consider Z / v Z  a subgroup of the gMois group 
of E over C{x}[x-~];  this is called the formal monodromy. Al though the ~p~j above 
are formal  series, it is known that  in sufficiently small angular sectors, they are 
the asympto t ic  expansions of analytic functions. Ramis shows tha t  by demanding 
a special k ind of asymptot ic  expansion (this is the notion of k-summability) then 
one can canonically select the sectors and canonically select the analytic functions 
represent ing these formal solutions (strictly speaking this s ta tement  is only true 
under  an addit ional  assumption on the Newton polygon of the linear differential 
equat ion dual  to the  one under consideration. The technically correct s ta tement  
can be found  in the  above references, but the above s tatement  gives the flavor of 
the result) .  These sectors overlap and on the overlap the respective solutions are 
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related to each other by a matrix change of basis. The matrices gotten in this way 
are called the Stokes matrices and Ramis shows that they are also in the galois 
group of E over C{x}[x-1]. Ramis is finally able to show that  the Zariski closure 
of the  group generated by the exponential torus, the formal monodromy and the 
Stokes matrices is the local galois group, i.e. the galois group of E over C{x}[x-1]. 
Ramis also shows that one can formally construct a group l-I, the "savage lh:' such 
that  any group generated by the exponential torus, formal monodromy and Stokes 
matrices of a singular point is a representation of 1-I. This gives a generalization 
of the  classical monodromy representation at a point. 

The  exponential torus and the formal monodromy can be calculated from the 
formal expressions (above) for the solutions Yi. When one has integral representa- 
tions of the solutions yl (for example as G-functions) then one can also calculate 
the Stokes matrices. Furthermore, if the differential equation has only two sin- 
gular points, one regular and one irregular, then the local galois group a~ the 
irregular singular point is the same as the global galois group (i.e. the galois group 
over C(x)). This is the ideal used in Duwl (1989), Dural 8z Mitschi (1988) and 
Mitschi (1989a), (1989b). 

We now turn to non-linear differential equations. A liouville type theorem de- 
scribing the form of elementary solutions of such equations was given by Mordukhai- 
Boltovski (see Rift (1948)) for first order non-linear differential equations with 
coefficients in C(x), and generalized to higher order equations in Singer (1975), 
Risch (1979) and Rosenlicht (1977). Mordukhai-Boltovski's theorem states that  if 
f ( x ,  y, y~) = 0 is a polynomial first order differential equation with coefficients in 
C tha t  has an elementary solution, then the equation has a solution of the form 

y = G(x,~o + al log~01 + . . .  + at log~r) 

o r  

y = G(x, exp(~0 + al log901 + . . .  + ar log~r))  

where the ai are in C, G is an Mgebraic function of two variables and the ~i axe 
algebraic functions of one variable. Except in special cases, I do not know how to 
make this result effective. 

Problem 7. Give a procedure to decide if a polynomial first order differential 
equat ion f ( x ,  y, y~) = 0 has an elementary solution and to find one if it does. 

The  final issue I wish to bring up in this section is the general question of decid- 
ing if a set of polynomial differential equations {p~ = 0} in Yl, . . .  ,Y~ (say with 
coefficients in Q) is consistent, that  is, if the equations have any solutions at M1. 
Closely related to this problem is the problem of determining if every solut:ion of 
a set of differential equations {pa = 0} is also a solution of another differential 
equat ion q = 0. Rift gave an effective procedure for this (Ritt  (1966)) and in the 
process initiated the study of differential ideals and differential algebra in general. 
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Note that  when we say solution, we mean an analytic solution (Rubel (1983) dis- 
cusses the failure of differential algebra to deal with non-analytic solutions). This 
procedure was generalized by Seidenberg (1956) and Grigor'ev (1989). Recently 
Wu has implemented parts of Ritt 's procedure (Wu (19873), (1987b), (1989)) 
(see also Wang (1987)). In particular, he can show that  Newton's laws can be 
mechaaaically derived from Kepler's laws. Besides considering the efficiency of 
Pdtt's algorithms, there are still problems in effective differential ideal theory that 
axe open and deserve more attention. We mention one and refer the reader to 
m t t  (1966) and Kolchin (1973) for relevant definitions 

Problem 8. Give an algorithm that  finds the minimal prime components of a 
radical differential ideal. 

There are well known algorithms that find the prime components of a radical 
ideal of (nondifferential) polynomials, but this problem is open in the differential 
case. 

Related to the ideal theory of differential equations is the question of finding 
Groebner basis for systems of linear partial differential equations (Galligo (1985) 
and Chen (1989), Kandri-Rody & Weispfenning (1990)), the general problem of 
simplifying systems of differential equations (Wolf (19853), (1985b)), and the prob- 
lem of generating all integrability conditions for systems of partial  differential equa- 
tions (Schwarz (1984)). In Galligo (1985), the author also mentions other problems 
concerning D-modules, that is modules over the ring C[xl, �9 . .  , x n ,  O / O x l , . . .  , O/Ox~ 
These modules have been useful in studying properties of solutions of systems of 
linear differential equations. 

III. First Integrals 

In elementary courses in differential equations, I discuss the  predator-prey equa- 
tions 

= ax  - b z y  

~/ = - c y  + d x y  

and show that the function 

F ( x , y )  = d x  + by - c l o g x -  a logy 

is constant on solution curves ( x ( t ) ,  y ( t ) ) .  By studying the critical points of F ( x ,  y)  

one can then show that all solution curves are closed, that  is, all solutions are 
periodic. A non-constant function that is constant on solution curves is called 
a first integral. In Singer (1977) and Prelle K: Singer (1983), we showed that if 
differential equations have elementary first integrals, they must be of a very speeiM 
form. For example, if 

= Q(x, v) (3) 
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where P and Q axe polynomials with complex coefficients, has an elementary first 
integral, it has one of the form 

F(x ,y )  = vo(z,y) + Ecilog(vi(x,y)) 

where the ci are constants and the vl are algebraic functions of two variables. 
Furthermore, we showed in Prelle & Singer (1983), that if (3) has an elementary 
integral then there exists an R with R '~ E C(x, y) for some nonzero integer n, such 
that d(RQ dx - .RP dy) = 0 (i.e. 0(~yQ) + ~ = 0). Such an R is called an 
iptegrating factor and once one is determined, we show in Prelle ~ Singer (1983) 
how to determine if (3) has an elementary first integral. Let R be an integrating 
factor and write R n = I-[ f/~; where fl are irreducible polynomials and nl are 
nonzero integers. One can show (Prelle ~ Singer (1983)) that since R is an 
integrating factor of (3) we must have fi[ Dfi where D = P ~  + QT~0~. Conversely, 
Darboux showed that if one could find all irreducible f such that  f [Df,  then 
one could decide if there is an integrating factor (see Ince (1944), p. 31). We 
also know, (:louunolou (1979), p. 109 and Singer (1988)) that  for each system (3) 
there is an integer N such that  if f is irreducible and f [ D f ,  then the degree of 
f is less than N ,  but we do not know any effective procedure for determining 
N. N does not depend only on the degrees of P and Q in (3) but also on the 
coefficients as the  following example shows. Let P = (n + 1)~ and Q - ny, then 
D = (n + 1)x o + ny-~-ffy. One checks that f = x n - yn+l satisfies f = n(n + 1)Dr. 
The problem of finding integrating factors and elementary first integrals reduces 
to 

Problem 9. Given D = p O  + Q ~ ,  with P,Q e C[x,y], effectively bound the 

degrees of all f in C[x, y] that  are irreducible and satisfy f I Dr. 

Both Poincar~ (1934) and Painlev@ (1972) worked on this problem and gave 
partiM results. A modern account of related work appears in Jouanolou (1979). 

Even without solving Problem 9, one can use the algorithm outlined in Prelle 
Singer (1983) by arbitrarily assigning a bound to the degree of the f ' s  such that  
f [Df.  The drawback is that the algorithm will sometimes not find a first integral 
when one exists. This approach has been implemented in Shtokhamer, Glinos 
Caviness (1986) with surprising success. 

Prelle ~: Singer (1983) also contains results that imply that  if an nth order 
differential equation f ( x , y ,  y t , . . .  ,y(~)) = 0 has an elementary first integral, it 
must be of a very special form. These other results have not been made effective. 
Risch (1976) contains related results. 

Singer (1988) contains the foundations of a theory of liouvillian first integrals, 
that is liouvillian functions of several variables that are constant on solution curves 
of differential equations. This paper also contains algorithmic considerations. For 
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exaraple, I show that  one can decide if (3) has a liouvillian first integral if one can 
decide the  following question: 

Problem 10. Given P, Q in C[x,y] and a, b in C(x,y),  decide if DU + aU = b 
has a solution a in C(x, y), where D = P(O/Ox) + Q(O/ay) ,  and if so find such a 
solution. 

Except in special cases I am unable to give such a procedure, nor am I able to 
reduce this question to the previous question. 

There axe several other approaches to finding first integrals. The approach using 
Lie methods  is described below. Schwarz (1985) and Wolf (1987n), (19875) de- 
scribe methods  that  search for polynomial first integrals of an a priori bounded de- 
gree. In Goldmun (1987~), (19875) and Sit (1989), the authors describe a method 
to find polynomial  first integrals (or more generally, first integrals that  are sums 
of monomials  with real or complex exponents) with an a priori bounded number 
of terms. 

IV.  Lie M e t h o d s  

Both the  problem of finding closed form solutions of differential equations and 
the problem of finding integrating factors can be attacked using Lie group methods. 
The  basic idea is to find a group of symmetries of the differential equations and 
then  use this group to reduce the order or the number  of variables appearing in the 
equation. I will exhibit this idea by discussing Lie's discovery that  the knowledge 
of a one-parameter  group of symmetries of an ordinary differential equation of 
order n allows us to reduce the problem of solving this equation to that  of solving 
a new differential equation of order n - I and integrating. In the case of a first 
order equation, I will also discuss how the knowledge of a one-parameter group of 
symmetr ies  allows one to construct an integrating factor. I will be closely follow- 
ing the expositions in Markus (1960), pp. 1-80 and 01ver (1979), (1986), ca .  2, 
a l though most of the results mentioned here can be found (in one form or another) 
in Lie's original works (for example, the comments following Example IV.5 appear 
as Satz 3 of Lie (1922). 

There seem to be no totally general methods for finding the symmetry group 
of a differential equation, but there are methods that  do handle large classes of 
equations. In Schwarz (1988), Schwarz gives an introduction to Lie methods and 
dlfferentiM equations with a special emphasis on the use of computer  algebra in 
comput ing  symmetries. Sample programs and many examples, including symme- 
tries of partial differentiM equations are also given there. Implementat ions are also 
discussed in Char (1980) and the works of Steinberg. Olver (1986), Schwarz (1988) 
and Steinberg (1983), (1985) are a good source of additional references. 

I s tart  with several key definitions. A local one-parameter group acting on R 2 
is an open set V, {0} • R 2 C V C R x R 2 and a C ~ map  r : V --+ R 2 such 
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that  (1) r (x, y)) = (x, y) for all (x, y) E R 2, and (2) r r (x, y))) = r + 
h,(x,y)) whenever g,h E R, (x,y) E ~2 and (h,(x,y)), (g,r and  (g + 
h, (x, y)) are in V (i.e., whenever (2) makes sense). If Y = R x R 2, we say r is 
global. We sometimes will write r y) for r (x, y)). 

EXAMPLE I V . l :  (Olver (1979), p. 204) Let V = {(t, (x, y)) I ty 7~ 1} and let 

r  (~, ~)) = 1 " tv '  L - - t y  

Note that  this cannot  be extended to a global group acting on R 2. 

An infinitesimal one-parameter  group is a system of differential equations d~ - s  

I(X, y), ~ = g(x ,y)  (or, more geometrically, the vector fietd f (x ,  y ) ~ + g ( x ,  y ) ~ ) .  
Given a local one paramete r  group qh(t, (x, y)) = (F(t, (x, y)), G(t, (x, y))), we can 

define an infinitesimal one parameter  group by -~t = ~(F(t '(x 'Y))t=o'  -~t = 

~ ( G ( t ,  (x, y)) ~=0" Conversely, given an infinitesimal one-parameter  group,  if 

x( t , (x0,y0)) ,  y(t,(xo,yo))are the solutions corresponding to x(0) = x0 and  
y(0) = Y0, then  r = (x(t,(xo,yo)),y(t,(xo, yo))) defines a local one- 
parameter  group acting on N 2. This allows us to move back and for th between 
these two notions. 

EXAMPLE IV.2:  In Example  IV. l ,  the infinitesimal one-parameter group is 

0 20 

If x : / o  + g ~  is an infinitesimal o~e-para~oter group, we say that (x0, y0) 
is a critical point  if f(x0,Y0) = g(z0, Y0) = 0. If (z0,Y0) is not a critical point ,  
it is called a regular point  and one can show (Markus (1960), p. 14) that  there 
is a change of coordinates u(x,y),v(x,y) near (xo,Yo) such that  in these new 
coordinates X = o .  

Given a local one-parameter  group qh, and a differential equation F (x ,  y, yl) = 0, 
we say tha t  Ct. is a symmet ry  group of F(x, ~t, u') = 0 if the following holds: if 1' is 
the graph of a solution y(x) of F(x,y,y') = 0 through (x0,y0) then, if t is close to 
0, there is an open neighborhood Ut of (x0, Y0) such that  r 71U:) is the g raph  of 
a solution of f ( x ,  y, y') = 0 through r Y0) (i.e. r takes solutions to  solutions). 
Luckily, one never needs to verify this condition directly. If X = f o  + g0-~ is 
the infinitesimal one-parameter  group associated with Ct, one can show tha t  r is 
a symmet ry  group of F(x ,  y, y') ~- 0 if and only if X I ( F ( x ,  y, y')) = 0 whenever  
F(x, Y,V') = 0 where 

0 0(o  (0,) )0 
x I = I N + g N +  N + N N N (v')~ Oy' 
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Here we are  thinking of x, y, and y' as three independent  variables. (To unders tand 
wha t  is happening  geometrically, it is convenient to think in terms of manifolds. 
A local one  pa ramete r  group acting on R 2 is a local action of the  Lie group (R, +)  
on R 2. One  can define the local action et of  R on any manifold. As with one- 
pa rame te r  groups, such an action corresponds to a vector field X on the manifold. 
The  act ion et induces an action of R on the 1st je t  space of the manifold and 
X1 is the  corresponding vector f idd  on this je t  space. F(z ,y ,y ' )  = 0 defines a 
submanifo ld  of the  j e t  space and the condition that  the action of R leave this 
invariant is precisely that  X~(F(x, y,y')) = 0. For details and generalizations of 
this approach, see Olver (1986).) 

EXAMPLE IV.3: (Olver (1986), p. 136) Let et  be  the one-parameter  group defined 
by e t (x ,  y)  = (etx, ety). The associated infinitesimal one-parameter  group is X = 
X O - -  O ~-~-,-y~-~. Consider a differential equation y' = F (~)  = 0, that  is, a homogeneous 

equat ion.  One easily checks that  X = X~ and X1 ( y ' -  F(s  ) = O. One can 
also see directly that  solutions of a homogeneous equat ion are mapped  to other 
solutions under the groups of dilations. 

We  have already mentioned that  at a regular point (x0,Y0), one can choose 
coordinates  u(x, y),v(x,y) so that  Z = ~ .  In this coordinate system we also 
have Xl  = ~'~. Assume that  yl _= F ( z , y )  is a differential equat ion such that 
X I ( y ' - F ( x ,  y)) = 0 when y ' - F ( x ,  y) = 0. If we write the differential equation in 
the new coordinates, say $ = a(u,v) ,  then the condition Xl ( $  - a (= ,  v)) = 0 
when dv G(u, v) implies tha t  a-~G(u v) = 0. Therefore, G(u,v) H(u) is 
independent  of v and v = f H du + c. Rewriting this in terms of the original 
eoorchnates gives us a solution of the  differential equation. 

EXAMPLE IV.4:  This is a continuation of the previous example. If we let u = it 

and v logx ,  then  X = x~-~, + V ~  becomes X = 0 = ~--~,. Assuming that  y = y(x) 
and v = v(u) ,  we have that 

dy 1 + u-~V 4 
dx dv 

so the  equat ion ~ F (~)  becomes a. 1 = ~-~ = T~-:'-ff-~" This has a solution v = 

f d= F-T~y-~_, + c. 

For example,  if 

dx z2 = _ _ -  + z 

then F ( u )  = u 2 + 2u. In the coordinates u = ~, v = logx,  we have 

dv 1 
du u2 + u 

The solution is ~ = - l o g  (1 + ~) + c, so U ~ Z : ~  
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This idea can be generalized to higher order equations. Let F(x,  y , . . .  , y(n)) = 0 
be  an n th  order differential equation. The definition of a one-pararneter group 
being a symmetry group of F ( x , y , . . .  ,y(n)) = 0 is the same as before. This  
again can be s tated in terms of the associated infinitesimal one-parameter group 
f o +  o ~d g~-~ : et is a local one-parameter symmetry  group of F(x,  y , . . .  , y('O) = 0 
if and only if 

" OF 
x F= f a--+ =o ,,,he,, F(x,y, . y("))=O, cgz ~ j=O 

where go = g 

0 1+J-1 Ogk-1 (k+l)_ (Of Of ,'~ 
and gj = ~ E ~ ' g  K-~x + "-~Y Y ) Y(j) 

k=O 

When this happens, one chooses local coordinates u(x, y), v(x, y) such that X = Ov 

and  writes the equation in the new coordinates as G(u, v , . . . ,  v (n)) = 0 (where 
v r a, 0a = O, so the equation really = ~-~). The condition .XnG = 0 becomes ~ -  
is G(u, v l , . . .  ,v  (n)) = O. Letting w = v t, we see that  finding a solution of 
G(u,  w , . . .  ,w (n-l))  = O, integrating w = f v du and rewriting in the old coor- 
dinate  system, solves the original equation. Therefore, the existence of a one- 
pa ramete r  group of symmetries of the equation allows us to reduce the order of 
the  equation. 

EXAMPLE IV.5: (Olver (1986), p. 142) Consider the equation y" + p(x)y '  + 
q(x)y  = O. The group et(x,  y) = (x, ety) is a one-parameter group of symmetries  
of this equation. The associated one-parameter infinitesimal group is X ---- y~-~. 

If we let u = x and v = logy,  then X = ~-~. Since y = e v, yl = vre,  and  
y"  = (v" + (v')2)e ~, the equation becomes v" + (v') 2 +pv'  + q = 0. Letting w = v' 
we get the usual Riccati equation w ~ + w 2 + pw + q = 0. Solving this and let t ing 

y = e ~ = e f  ~ solves the original equation. 

I now mention a result related to Section III. Consider a di~erential equa- 
t ion Y' = Q(*'~)P(x,y) which we write as Q(x,y)d~ - P ( x , y ) d y  = 0. One can show 

(Olver (1986), p. 139 or Markus (1960), p. 18) that  if this differential equat ion  
has a local one parameter  symmetry group with ~ssociated infinitesimal group 

y)s  + then 

1 
.R(x, y) -- f ( x , y ) Q ( x , y )  - g (x , y )P(x ,  y) 

is an  integrating factor, that  is d(RQ dx - R P  dy) = O. 

EXAMPLE IV.6: Consider again a homogeneous equation y~ = F (~)  bu~ write 
8 O this as F (~) d x - d y  = 0. Since the group associated with x ~ 7 + y  ~ is a symmet ry  

group  of this equation, R =  ( z F  (~) - y ) - I  is an integrating factor. 
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This result is the basis of many heuristics (Char (1980)). The main problem 
with applying the above ideas is that it is difficult, in genera/, to find an infinites- 
imal one-parameter group satisfying the appropriate conditions and once such a 
group is found, finding the change of coordinates to make X = o .  This problem 
is discussed in Olver (1979), (1986) and Char (1980), (1981). One can also find 
non-trivial applications in these references as well as the works of Miller, Schwaxz 
and Steinberg listed in the references. Other works of interests are Belinfante 

Kolman (1979), Beyer (1979), Bluman ~ Cole (1974), Campbell (1966), Co- 
hen (1911), Fushchich & Kornya/a (1989), Kersten (1986), Ovsiannikov (1982), 
Reiman (1981), Roseman & Schwarzmeier (1979), and Winternitz (1983). 

I close this section by mentioning the equivalence problem and the method of 
Cartan. The equivalence problem is the problem of determining when two systems 
of ordinary or partial differential equations can be mapped to each other by an 
appropriate change of coordinates and the method of Caxtan is a method to solve 
this problem. This method was turned into an algorithm by Gardner and applied 
to a diverse collection of problems (Gardner (1983), (1989), Kaxnran (1988)). 
Caxtan's equivalence method has been used to determine possible symmetry groups 
of differential equations in Hsu 8z Kamran (1988) and Kamran ~ Olver (1988). 

V. T r a n s f o r m  M e t h o d s  

The basic idea behind transform methods is to transform a differential equation 
into an algebrMc equation, solve the algebraic equation and then transform back 
(occasionally, one just transforms the original equation into a simpler differential 
equation and then tries to solve the simpler equation). An elementary example is 
the effect of the Laplace Transform on linear differential equations with constant 
coefficients. The Laplace Transform of a function f ,  defined on [0, co), is L(f)  = 

n 

F(z) = f~o e_=tf(t)dt" Using the fact that L ( f  (~)) = z n L ( ] ) -  ~, zn-kf(k-1)(O),  
kml 

one can easily transform any system of linear differentia/equations with constant 
coefficients into a system of linear (algebraic) equations with polynomial coeffi- 
cients. One solves this and inverts the transform to get solutions of the origi- 
nal equations. This has been implemented in MACSYMA, see Avgoustis (1977), 
Claxkson (1989) and Rand (1984). More general transform techniques axe dis- 
cussed in Glinos ~ Saunders (1984), where implementations of techniques from 
the operational calculus axe discussed. 

VI .  Asymptotics 

A problem here is to find algorithms that will generate formulas such as 

Z ~ dt x + x _ ~  I)!(io; ( ( l_~gXx)  logt - logx (logx) ~ + . . . + ( n -  x)" + o  ),; 
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or other expressions that describe the growth behavior of solutions of linear dif- 
ferential equations. There have been various at tempts to give algebraic substance 
to asymptotic expansions and estimates, that  is, make a calculus of asymptotic 
expressions. Early work includes the considerations of du Bois-Reymond (see the 
bibliography in Hardy (1910), (1912)). Recently, this area has been given a firm 
algebraic footing in the works of Boshernitzan, Rosenlicht aaad van den Dries (see 
the references). I hope that some of their work can be made effective. Along these 
lines I propose the following problems 

Problem 11. Find an algorithm that solves the following: Given a real elementary 

function f ,  find a real elementary function F such that f :  f ,,~ F (i.e. lira - ~  = 
~ - " + O Q  

1) if such an F exists. 

Some work on this problem appears in Bourbaki (1961) and Rosenlicht (1980), 
and a solution of this would be a first step towards algorittm]ically generating 
expressions like (4). For an overview of the many pitfalls associated with a t tempts  
to make a calcuhs of these generalized asymptotic expansions, as well as other 
useful information on asymptotics, see Olver (1974), especially Ch. 1, Sec. 10 and 
Olver (1980), especially See. 3. 

Let P and Q be polynomials in y with coefficients that are real liouvilliaa func- 
tions. All solutions of 

y,= P(Y) 
Q(y) 

that are differentiable in a neighborhood of +c~ are ultimately monotonic (Rosen- 
licht (1983a)). When P and Q have coefficients in R[x], Hardy showed that  any 
such solution y satisfies either y ,~ axbep 0:) or y ~ axb(log x) 1/c where b is a real 
number, p(x) a polynomial and c an integer (Hardy (1910), Bellman (1969)). 

Problem 12. Find an analogue of Hardy's result in the general case of P and Q 
having real liouvillian functions as coefficients. 

Formal methods involving asymptotics have been very useful in perturbat ion 
theory. Here we are given a differential equation that depends on a parameter e and 
we wish to find series in e that represent quantities associated with this equation 
(e.g. solutions, limit cycles, Poincar4 maps). This usually is done by substituting 
the power series in e into an equation, equating powers of e, deriving new equations 
for the coefficients and solving these new equations. Computer algebra systems 
such as MACSYMA have been successfully used in this problem. There is an 
enormous literature on this subject and the reader is referred to Rand (1984) and 
Rand & Armbruster (1987) for details and a large bibliography. 
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VII. Difference Equations 

The  general problem here is: Consider the questions raised in I -VI  above in the 
context of difference equations. Aside from heuristics (Cohen L: Kateoff (1977), 
Hayden ~ Lamagna  (1986), Ivie (1977) and Moenck (1977)), there are a few recent 
algorithmic results. In 1977, Gosper (Gosper (1977), (1978)) gave an algorithm 

n 

which gives a closed form expression for S(n) = E y(x)  when S ( n ) / S ( n  - 1) is 
X-R-1 

a rational function.  This algorithm has been successfully used to generate and 
generalize some very interesting formulas. Problems of this kind can be given 
a formal sett ing using difference fields. A difference field is a field F with an 
au tomorphism a (Cohn (1966)). If F = C(x) the automorphism one usually has 
in m i n d  is a ( f ( x ) )  = f ( x  'b 1). We can define the usual difference operator by 
A f  -- a ( f )  - f .  The problem of finding a closed form expression for S(n) = 

f ( x ) ,  then becomes: Given a difference field F and f E F ,  compute, if it 
x = l  
exists, an element g in a suitable extension of F such that  Ag _,. f .  Kerr has 
investigated this problem in Karr (1981), (1985). He rigorously defines what is 
meant  by "summat ion  in finite terms" in terms of towers of difference fields. These 
towers axe called 1-I ~ fields and are the analogue of elementary extensions in the 
theory of integration in finite terms. Karr shows how to solve an arbitrary first 
order linear difference equation in a given l-I ~ field and how to make a judicious 
choice of such an extension. He also gives a liouville type theorem for summation 
in finite terms. An exposition of some aspects of Gosper's and Karr's work can be 
roland in Lafon (1982). 

Problem 13. Generalize Karr's work to n th  order linear difference equations. 

Recently, Zeilberger (Zeilberger (1989)) uses a setting similar to that  in his work 
n 

on integrals to give an algorithm for evaluating sums of the form a(n) = ~ F(n ,  k) 
k = l  

where F ( n  + 1, k ) / F ( n , k )  and F ( n , k  + 1 ) / F ( n , k )  are rational functions of n and 
k. 

Della Dora, Tournier and Wazner have considered the problem of finding power 

series solutions of linear difference equations L(y) = ~ ai6iy = 0,  where a~ E C(x) 
i = l  

and 6( f ( x ) )  = f ( x  - 1). In Della Dora & Tournier (1984) they look for solutions 

) of the form y(x) = #~ aj(x) ,+j  , where (x)~ = 1-'(x + 1)/1-'(x - A + 1). They 
.= 

pursue the me thod  of Boole, a method  similar to the Probenius method  for solving 
linear differential equations. This method only works under certain regularity 
condit ion imposed on the eoefficients of L(y). In Della Dora &Wazne r  (1985), 
they pursue a Newton polygon method  that  handles a more general case. In 
Barkatou (1989), Barkatou considers systems of linear difference equations and 
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gives an algorithm (along the lines of Moser's algorithm for differential equations) 
to reduce such a system and decide if it has a regular singularity. 

Another approach to difference equations is discussed in Della Dora 8z Tournier (1986) 
and Tournier (1987) based on ideas of Pincherle and recent improvements of 
J. P. Ramis and A. Dural. The idea is to use the transform P[qo] = f7 t -* - lq~  
where 7 is a suitably chosen path,  to transform the difference equation into a linear 
differential equation, use the techniques developed to understand the solu~ions of 
this new differential equation, and then transform back. The original motivation 
for Della Dora et al's interest in difference equations was to understand the growth 
properties of the coei~cients appearing in the formal expansions of solutions of a 
linear differential equation at irregular points. These coefficients satisfy difference 
equations. The Pincherle-Ramis method converts this problem back to a more 
tractible problem again involving linear differential equations, gives a remarkable 
and very pretty circle of ideas. 

In Maeda (1987), Maeda discusses Lie method for difference equations. 

F ina l  C o m m e n t s  

In the previous sections, I have mentioned how techniques for finding formal 
solutions have been implemented in computer algebra systems. Besides solving 
differential equations, computer algebra can be used to generate differential equa- 
tions and manipulate differential equations (of course, generating, manipulat ing 
and solving are not mutually exclusive). In Wang (1986) and Tan (1989), the 
authors describe the symbolic software FINGER that automatically generates 
the element equations for the finite element method (see also l~oache ~z Stein- 
berg (1985), (1988)). Another example of using symbol manipulation packages to 
generate equations is in Hirschberg ~ Schramm (1989), where the authors describe 
a package that generates the equations of motion of certain robot systems given 
the masses, moments  of inertia, position of mass centers and connection joint 
locations. A good example of using a computer algebra systems to manipulate  
differential equations can be found in Davenport, Siret & Tournier (1988), p. 29~ 
where the authors show how to use IVIACSYMA to obtain successive derivatives 
of y with respect to x, starting from g(x, y) = 0. They get expressions containing 
partial derivatives of g and are then able to specialize this to a particular g. Other 
examples can be found in Rand (1984) and Rand ~ Armbruster (1987). Another  
example of manipulation is given in Grossman & Larson (1989), where the authors 
give an efficient algorithm for evaluating higher order differential operators (such 

~ a  j o as Ea E2 E1 - Ea E1 E~ - E2 E1 E3 + E1 E2 E3, where Ei = i ~ ) .  

All the problems discussed here have their roots in the 19th century and many 
of them have effective solutions that were outlined at that  time. With  the rise of 
symbolic computation systems, these solutions take on a new relevance. I have 
included the following textbooks and guides to the old literature in the references: 
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Bieberbach (19a5), Gray (1986), Hilb (1915a), (1915b), Hille (1976), Ince (1944), 
Kamke (1971), Poole (1960), Schlesinger (1895), (1909), Vessiot (1910), Zwill- 
inger (1989). 
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