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Abstract. The kernel method is an essential tool for the study of generating series of
walks in the quarter plane. This method involves equating to zero a certain polynomial
- the kernel polynomial - and using properties of the curve - the kernel curve - this
defines. In the present paper, we investigate the basic properties of the kernel curve
(irreducibility, singularties, genus, parametrization, etc).
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Introduction

We consider a weighted walk in the quarter plane Z2
≥0 satisfying the following prop-

erties:

• it starts at (0, 0);
• it takes steps in a certain subset of the set of cardinal directions.

The weights of such a walk are certain elements di,j of Q ∩ [0, 1] indexed by
(i, j) ∈ {0,±1}2 such that

∑
(i,j)∈{0,±1}2 di,j = 1. For (i, j) ∈ {0,±1}2\{(0, 0)} (resp.

(0, 0)), di,j is a weight on the step (i, j) which can be viewed as the probability for the
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walk to go in the direction (i, j) (resp. to stay at the same position)∗. The step set or
the model of the walk is the set of directions with nonzero weights, that is

{(i, j) ∈ {0,±1}2\{(0, 0)} | di,j 6= 0}.
If d0,0 = 0 and if the nonzero di,j all have the same value, we say that the model is
unweighted.

The weight of a given walk is defined to be the product of the weights of its component
steps. For any (i, j) ∈ Z2

≥0 and any k ∈ Z≥0, we let qi,j,k be the sum of the weights

of all walks reaching the position (i, j) from the initial position (0, 0) after k steps. We
introduce the corresponding trivariate generating series†

Q(x, y, t) :=
∑

i,j,k≥0

qi,j,kx
iyjtk.

The study of the nature of this generating series has attracted the attention of many
authors, see for instance [BvHK10, BRS14, BBMR15, BBMR17, BMM10, DHRS18,
DHRS20, DR19, DH19, KR12, Mis09, MR09, MM14, Ras12]. The typical questions
are: is Q(x, y, t) rational, algebraic, holonomic, etc? The starting point of most of these
works is the following functional equation (see for instance [DHRS20, Lemma 1.1], and
[BMM10] for the unweighted case)

K(x, y, t)Q(x, y, t) = xy +K(x, 0, t)Q(x, 0, t) +K(0, y, t)Q(0, y, t) + td−1,−1Q(0, 0, t)

where
K(x, y, t) = xy(1− tS(x, y))

with
S(x, y) =

∑

(i,j)∈{0,±1}2
di,jx

iyj .

The polynomial K(x, y, t) is called the kernel polynomial and is the main character of
the kernel method.

Roughly speaking, the first step of the kernel method consists in “eliminating” the
left hand side of the above functional equation by restricting our attention to the (x, y)
such that K(x, y, t) = 0. The set Et made of the (x, y) such that K(x, y, t) = 0 is called
the kernel curve:

Et = {(x, y) ∈ C× C | K(x, y, t) = 0}.
Thus, for (x, y) ∈ Et, one has

(1) 0 = xy +K(x, 0, t)Q(x, 0, t) +K(0, y, t)Q(0, y, t) + td−1,−1Q(0, 0, t),

provided that the various series can be evaluated at the given points.
The second step of the kernel method is to exploit certain involutive birational trans-

formations ι1, ι2 of the kernel curve Et of the form

ι1(x, y) = (x, y′) and ι2(x, y) = (x′, y)

in order to deduce from the latter equation some functional equations for Q(x, 0, t) and
Q(0, y, t). Hence ι1 and ι2 switch the roots of the degree two polynomials y 7→ K(x, y, t)

∗The eight cardinal directions will be identified with the elements of {0,±1}2 \ {(0, 0)}.
†In several papers it is not assumed that

∑
i,j di,j = 1. But after a rescaling of the t variable, we may

always reduce to the case
∑

i,j di,j = 1.
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and x 7→ K(x, y, t) respectively. Concretely, the birational transformations ι1, ι2 are
induced by restriction to the curve of the involutive birational transformations i1, i2 of
C2 given by

i1(x, y) =

(
x,
A−1(x)

A1(x)y

)
and i2(x, y) =

(
B−1(y)

B1(y)x
, y

)

where the Ai(x) ∈ x−1Q[x] and the Bi(y) ∈ y−1Q[y] are defined by

S(x, y) = A−1(x)
1

y
+A0(x) +A1(x)y = B−1(y)

1

x
+B0(y) +B1(y)x

(see [BMM10, Section 3], [KY15, Section 3] or [FIM17]). These i1 and i2 are the gener-
ators of the group of the walk; see [BMM10] for details.

The third step of the kernel method is to use the above mentioned functional equations
of Q(x, 0, t) and Q(0, y, t) to continue these series as multivalued meromorphic functions
on the kernel curve. To perform this step, we need an explicit parametrization of the
kernel curve.

The aim of the present paper is to study the kernel curve Et and the birational
transformations ι1, ι2. Note that a similar study has been done in the case t = 1 in
[FIM17] and in the unweighted case in [KR12]. The goal of the present paper is to
extend these works to the weighted case.

The paper is organized as follows. In Section 1, we describe the nondegenerate models
of walks. In Section 2, we determine the singularities and the genus of the kernel curve.
In Section 3, we establish the basic properties of ι1 and ι2. Finally, in Section 4, we give
an explicit parametrization of the kernel curve.

1. Nondegenerate walks

From now on, we let t be a transcendental number in ]0, 1[. We start by recalling the
notion of degenerate walks introduced in [FIM17].

Definition 1.1. A model of walk is called degenerate if one of the following holds:

• K(x, y, t) is reducible as an element of the polynomial ring C[x, y],
• K(x, y, t) has x-degree less than or equal to 1,
• K(x, y, t) has y-degree less than or equal to 1.

The following result is the analog of [FIM17, Lemma 2.3.2], that focuses on the case
t = 1.

Proposition 1.2. A model of walk is degenerate if and only if at least one of the fol-
lowing holds:

(1) There exists i ∈ {−1, 1} such that di,−1 = di,0 = di,1 = 0. This corresponds to
models of walks with steps supported in one of the following configurations
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(2) There exists j ∈ {−1, 1} such that d−1,j = d0,j = d1,j = 0. This corresponds to
models of walks with steps supported in one of the following configurations

(3) All the weights are 0 except maybe {d1,1, d0,0, d−1,−1} or {d−1,1, d0,0, d1,−1}. This
corresponds to models of walks with steps supported in one of the following con-
figurations

Proof. This proof is organized as follows. We begin by showing that (1) (resp. (2))
corresponds to K(x, y, t) having x-degree ≤ 1 or x-valuation ≥ 1 (resp. y-degree ≤ 1 or
y-valuation ≥ 1). In these cases, the model of the walk is clearly degenerate. Assuming
(1) and (2) do not hold, we then show that (3) holds if and only if K(x, y, t) is reducible.

Cases (1) and (2). It is clear that K(x, y, t) has x-degree ≤ 1 if and only if

d1,−1 = d1,0 = d1,1 = 0. Similarly, K(x, y, t) has y-degree ≤ 1 if and only if we have
d−1,1 = d0,1 = d1,1 = 0. Furthermore, d−1,−1 = d−1,0 = d−1,1 = 0 if and only if K(x, y, t)
has x-valuation ≥ 1. Similarly, d−1,−1 = d0,−1 = d1,−1 = 0 if and only if K(x, y, t) has
y-valuation ≥ 1. In these cases, the model of the walk is clearly degenerate.

Case (3). We now assume that cases (1) and (2) do not hold.

If the model of the walk has steps supported in
{

,
}

(note that this implies that

d1,1 6= 0), then the kernel

K(x, y, t) = −d−1,−1t+ xy − d0,0txy − d1,1tx
2y2 ∈ C[xy]

is a degree two polynomial in xy. Thus it may be factorized in the following form
K(x, y, t) = −d1,1t(xy − α)(xy − β) for some α, β ∈ C. If the model of the walk has

steps supported in
{

,
}

, then

K(x, y, t) = −d−1,1ty
2 + xy − d0,0txy − d1,−1tx

2.

In this situation, K(x, y, t)y−2 ∈ C[x/y] may be factorized in the ring C[x/y], proving
that K(x, y, t) may be factorized in C[x, y] as well.

Conversely, let us assume that the model of the walk is degenerate. Recall that we
have assumed that cases (1) and (2) do not hold, so K(x, y, t) has x- and y-degree two,
x- and y-valuation 0, and is reducible. We have to prove that the model of the walk has

steps supported by
{

,
}

or
{

,
}

. Let us write a factorization

K(x, y, t) = −f1(x, y)f2(x, y),

with f1(x, y), f2(x, y) ∈ C[x, y] not constant.
We claim that both f1(x, y) and f2(x, y) have bidegree (1, 1). Suppose to the con-

trary that f1(x, y) or f2(x, y) does not have bidegree (1, 1). Since K is of bidegree
at most (2, 2) then at least one of the fi’s has degree 0 in x or y. Up to inter-
change of x and y and f1 and f2, we may assume that f1(x, y) has y-degree 0 and
we denote it by f1(x). Since K(x, y, t) = −f1(x)f2(x, y), we find in particular that
f1(x) is a common factor of the nonzero polynomials d−1,−1t+ d0,−1tx+ d1,−1tx

2 and
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d−1,0t+ (d0,0t− 1)x+ d1,0tx
2 (these polynomials are nonzero because we are not in

Cases (1) and (2) of Proposition 1.2). Since t is transcendental and the di,j are al-
gebraic, we find that the roots of d−1,−1t+ d0,−1tx+ d1,−1tx

2 = 0 are algebraic, while
the roots of d−1,0t+ (d0,0t− 1)x+ d1,0tx

2 = 0 are transcendental. Therefore, they are
polynomials with no common roots, and must be relatively prime, showing that f1(x)
has degree 0, i.e. f1(x) ∈ C. This contradicts f1(x, y) not constant and shows the claim.

We claim that f1(x, y) and f2(x, y) are irreducible in the ring C[x, y]. If not, then

we find f1(x, y) = (ax− b)(cy − d) for some a, b, c, d ∈ C. Since f1(x, y) has bidegree
(1, 1), we have ac 6= 0. We then have that

0 = K(b/a, y, t) =
b

a
y − t(Ã−1(

b

a
) + Ã0(

b

a
)y + Ã1(

b

a
)y2)

where Ãi = xAi ∈ Q[x]. Equating the y2-terms we find that Ã1( ba) = 0 so b
a ∈ Q (note

that Ã1(x) is nonzero because K(x, y, t) has bidegree (2, 2)). Equating the y-terms, we

obtain that b
a − tÃ0( ba) = 0. Using t 6∈ Q‡ and b

a ∈ Q we deduce b
a = 0. Therefore

b = 0. This contradicts the fact that K has x-valuation 0. A similar argument shows
that f2(x, y) is irreducible.

Let f i(x, y) denote the polynomial whose coefficients are the complex conju-
gates of those of fi(x, y). Unique factorization of polynomials implies that since
−K(x, y, t) = f1(x, y)f2(x, y) = f1(x, y)f2(x, y), there exists λ ∈ C∗ such that

• either f1(x, y) = λf2(x, y) and f2(x, y) = λ−1f1(x, y);
• or f1(x, y) = λf1(x, y) and f2(x, y) = λ−1f2(x, y).

In the former case, we have f1(x, y) = λ f2(x, y) = λλ−1f1(x, y) and so λλ−1 = 1.

This implies that λ is real and replacing f1(x, y) by |λ|−1/2f1(x, y) and f2(x, y) by

|λ|1/2f2(x, y), we can assume that either f1(x, y) = f2(x, y) and f2(x, y) = f1(x, y)
or f1(x, y) = −f2(x, y) and f2(x, y) = −f1(x, y).

A similar computation in the latter case shows that |λ| = 1. Letting µ be a square
root of λ we have µ−1 = µ so λ = µ/µ. Replacing f1(x, y) by µf1(x, y) and f2(x, y) by
µf2(x, y), we can assume that f1(x, y) = f1(x, y) and f2(x, y) = f2(x, y).

To summarize, we have two possibilities:

• there exists ε ∈ {±1} such that f1(x, y) = εf2(x, y), or
• f1(x, y) = f1(x, y) ∈ R[x, y] and f2(x, y) = f2(x, y) ∈ R[x, y].

For i = 1, 2, let us write

fi(x, y) = (αi,4x+ αi,3)y + (αi,2x+ αi,1),

‡We have denoted by Q the field of algebraic numbers.
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with αi,j ∈ C. Equating the terms in xiyj with −1 ≤ i, j ≤ 1, in f1(x, y)f2(x, y) =
−K(x, y, t), we find (recall that di,j ∈ [0, 1], t ∈]0, 1[)

term coefficient in f1(x, y)f2(x, y) coefficient in −K(x, y, t)
1 α1,1α2,1 d−1,−1t ≥ 0
x α1,2α2,1 + α1,1α2,2 d0,−1t ≥ 0
x2 α1,2α2,2 d1,−1t ≥ 0
y α1,3α2,1 + α1,1α2,3 d−1,0t ≥ 0
xy α1,4α2,1 + α1,3α2,2 + α1,2α2,3 + α1,1α2,4 d0,0t− 1 < 0
x2y α1,4α2,2 + α1,2α2,4 d1,0t ≥ 0
y2 α1,3α2,3 d−1,1t ≥ 0
xy2 α1,4α2,3 + α1,3α2,4 d0,1t ≥ 0
x2y2 α1,4α2,4 d1,1t ≥ 0

Let us treat separately two cases.

Case 1: f1(x, y), f2(x, y) /∈ R[x, y]. So, in this case we have either f1(x, y) = f2(x, y) or
f1(x, y) = −f2(x, y) .

Let us first assume that f1(x, y) = f2(x, y). Then, evaluating the equal-
ity K(x, y, t) = −f1(x, y)f2(x, y) at x = y = 1, we get the following equality
K(1, 1, t) = −f1(1, 1)f2(1, 1) = −|f1(1, 1)|2. But this is impossible because the left-hand
term K(1, 1, t) = 1 − t

∑
i,j∈{−1,0,1}2 di,j = 1 − t is > 0 whereas the right-hand term

−|f1(1, 1)|2 is ≤ 0.
Let us now assume that f1(x, y) = −f2(x, y). Equating the constant terms

in the equality f1(x, y)f2(x, y) = −K(x, y, t), we get −|α1,1|2 = d−1,−1t, so
α1,1 = α2,1 = d−1,−1 = 0. Equating the coefficients of x2 in the equality
f1(x, y)f2(x, y) = −K(x, y, t), we get −|α1,2|2 = d1,−1t, so α1,2 = α2,2 = d1,−1 = 0. It fol-
lows that the y-valuation of f1(x, y)f2(x, y) = −K(x, y, t) is ≥ 2, whence a contradiction.

Case 2: f1(x, y), f2(x, y) ∈ R[x, y]. We first claim that, after possibly replacing f1(x, y)
by −f1(x, y) and f2(x, y) by −f2(x, y), we may assume that α1,4, α2,4, α1,3, α2,3 ≥ 0.

Let us first assume that α1,4α2,4 6= 0. Since α1,4α2,4 = d1,1t ≥ 0, we find that α1,4, α2,4

belong simultaneously to R>0 or R<0. After possibly replacing f1(x, y) by −f1(x, y) and
f2(x, y) by −f2(x, y), we may assume that α1,4, α2,4 > 0. Since α1,3α2,3 = d−1,1t ≥ 0, we
have that α1,3, α2,3 belong simultaneously to R≥0 or R≤0. Then, the equality α1,4α2,3 +
α1,3α2,4 = d0,1t ≥ 0 implies that α1,3, α2,3 ≥ 0.

We can argue similarly in the case α1,3α2,3 6= 0.
It remains to consider the case α1,4α2,4 = α1,3α2,3 = 0. After possibly replacing

f1(x, y) by −f1(x, y) and f2(x, y) by −f2(x, y), we may assume that α1,4, α2,4 ≥ 0. The
case α1,4 = α1,3 = 0 is impossible because, otherwise, we would have d1,1 = d−1,1 =
d0,1 = 0, which is excluded. Similarly, the case α2,4 = α2,3 = 0 is impossible. So, we
are left with the cases α1,4 = α2,3 = 0 or α2,4 = α1,3 = 0. In both cases, the equality
α1,4α2,3 + α1,3α2,4 = d0,1t ≥ 0 implies that α1,4, α2,4, α1,3, α2,3 ≥ 0.

Arguing as above, we see that α1,2, α2,2, α1,1, α2,1 all belong to R≥0 or R≤0. Using the
equation of the xy-coefficients, we find that α1,2, α2,2, α1,1, α2,1 are all in R≤0.
Now, equating the coefficients of x2y in the equality f1(x, y)f2(x, y) = −K(x, y, t) we get
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α1,4α2,2 + α1,2α2,4 = d1,0t. Using the fact that α1,4α2,2, α1,2α2,4 ≤ 0 and that d1,0t ≥ 0,
we get α1,4α2,2 = α1,2α2,4 = d1,0 = 0. Similarly, using the coefficients of y, we get
α1,3α2,1 = α1,1α2,3 = d−1,0 = 0.
So, we have

α1,4α2,2 = α1,2α2,4 = α1,3α2,1 = α1,1α2,3 = 0.

The fact that K(x, y, t) has x- and y-degree two and x- and y-valuation 0 implies that,
for any i ∈ {1, 2}, none of the vectors (αi,4, αi,3), (αi,2, αi,1), (αi,4, αi,2) and (αi,3, αi,1) is
(0, 0). Since α1,4α2,2 = 0, we have α1,4 = 0 or α2,2 = 0. If α1,4 = 0, from what precedes,
we find

α1,4 = α2,4 = α2,1 = α1,1 = 0.

If α2,2 = 0 we obtain
α2,2 = α1,2 = α1,3 = α2,3 = 0.

In the first case, the model of the walk has steps supported by
{

,
}

. In the second

case, we find that the model of the walk has steps supported by
{

,
}

. This completes

the proof. �
Remark 1.3. The “degenerate models of walks” are called “singular” by certain authors,
e.g., in [FIM99, FIM17]. Note also that, in [KR12], “singular walks” has a different
meaning and refers to models of walks such that the associated Kernel defines a genus
zero curve.

Remark 1.4. In [DR19, Proposition 3], the authors show that Proposition 1.2 extends
mutatis mutandis to the case when t ∈]0, 1[ is algebraic. Their proof relies on Proposi-
tion 1.2 and its proof.

From now on, we will only consider nondegenerate models of walks. In terms of
models of walks, this only discards one dimensional problems and models of walks in
the half-plane restricted to the quarter plane that are easier to study, as explained in
[BMM10, Section 2.1].

2. Singularities and genus of the kernel curve

The Kernel curve Et is the complex affine algebraic curve defined by

Et = {(x, y) ∈ C× C | K(x, y, t) = 0}.
We shall now consider a compactification of this curve. We let P1(C) be the complex
projective line, which is the quotient of C × C \ {(0, 0)} by the equivalence relation ∼
defined by

(x0, x1) ∼ (x′0, x
′
1)⇔ ∃λ ∈ C∗, (x′0, x′1) = λ(x0, x1).

The equivalence class of (x0, x1) ∈ C× C \ {(0, 0)} is denoted by [x0 : x1] ∈ P1(C). The
map x 7→ [x : 1] embeds C inside P1(C). The latter map is not surjective: its image is
P1(C) \ {[1 : 0]}; the missing point [1 : 0] is usually denoted by ∞. Now, we embed Et
inside P1(C) × P1(C) via (x, y) 7→ ([x : 1], [y : 1]). The kernel curve Et is the closure of
this embedding of Et. In other words, the kernel curve Et is the algebraic curve defined
by

Et = {([x0 : x1], [y0 : y1]) ∈ P1(C)× P1(C) | K(x0, x1, y0, y1, t) = 0}
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where K(x0, x1, y0, y1, t) is the following bihomogeneous polynomial

(2.1) K(x0, x1, y0, y1, t) = x2
1y

2
1K(

x0

x1
,
y0

y1
, t) = x0x1y0y1 − t

2∑

i,j=0

di−1,j−1x
i
0x

2−i
1 yj0y

2−j
1 .

We shall now study the singularities and compute the genus of Et. We recall that
P = ([a : b], [c : d]) ∈ Et is called a singularity of Et if

∂K(a, b, c, d, t)

∂x0
=
∂K(a, b, c, d, t)

∂x1
=
∂K(a, b, c, d, t)

∂y0
=
∂K(a, b, c, d, t)

∂y1
= 0

Here, we have used the fact that K(x, y, t) is irreducible in C[x, y], the model of walk
under consideration being nondegenerate by hypothesis. Actually, two amongst the
above equalities are automatically satisfied, depending on the affine chart containing P .
For instance, if b, d 6= 0, then P is a singularity of Et if and only if

∂K(a, b, c, d, t)

∂x0
=
∂K(a, b, c, d, t)

∂y0
= 0.

If P = ([a : b], [c : d]) ∈ Et is not a singularity of Et, then it is called a smooth point of
Et.

We also recall that Et is called singular if it has at least one singular point. Otherwise,
we say that Et is nonsingular or smooth.

Proposition 2.1 bellow shows that the smothness of Et is intimately related to the value
of the genus of Et. We will freely use the fact that the genus g(C) of any irreducible
curve C ⊂ P1(C)× P1(C) of bidegree (d1, d2) is given by

(2.2) g(C) = 1 + d1d2 − d1 − d2 −
∑

P∈Sing

∑

i

mi(P )(mi(P )− 1)

2
,

where mi(P ) is a positive integer standing for the multiplicity of a point P §. This follows
for instance from [Har77, Exercise 5.6, Page 231-232 and Example 3.9.2, Page 393]. We
define the genus of the weighted model of walk, as the genus of its kernel curve Et.

For any [x0 : x1] and [y0 : y1] in P1(C), we denote by ∆x
[x0:x1] and ∆y

[y0:y1] the dis-

criminants of the degree two homogeneous polynomials given by y 7→ K(x0, x1, y, t) and
x 7→ K(x, y0, y1, t) respectively, i.e.

∆x
[x0:x1] = t2

(
(d−1,0x

2
1 −

1

t
x0x1 + d0,0x0x1 + d1,0x

2
0)2

− 4(d−1,1x
2
1 + d0,1x0x1 + d1,1x

2
0)(d−1,−1x

2
1 + d0,−1x0x1 + d1,−1x

2
0)
)

and

∆y
[y0:y1] = t2

(
(d0,−1y

2
1 −

1

t
y0y1 + d0,0y0y1 + d0,1y

2
0)2

− 4(d1,−1y
2
1 + d1,0y0y1 + d1,1y

2
0)(d−1,−1y

2
1 + d−1,0y0y1 + d−1,1y

2
0)
)
.

§ that is, some partial derivative of order mi(P ) does not vanish while for every ` < mi(P ), the partial
derivatives of order ` vanish at P .
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Proposition 2.1. The following facts are equivalent:

(1) the curve Et is a genus zero curve;
(2) the curve Et is singular;
(3) the curve Et has exactly one singularity Ω ∈ Et;
(4) there exists ([a : b], [c : d]) ∈ Et such that the discriminants ∆x

[x0:x1] and ∆y
[y0:y1]

have a root [a : b] ∈ P1(C) and [c : d] ∈ P1(C) respectively;
(5) there exists ([a : b], [c : d]) ∈ Et such that the discriminants ∆x

[x0:x1] and ∆y
[y0:y1]

have a double root [a : b] ∈ P1(C) and [c : d] ∈ P1(C) respectively.

If these properties are satisfied, then the singular point is Ω = ([a : b], [c : d]) where
[a : b] ∈ P1(C) is a double root of ∆x

[x0:x1] and [c : d] ∈ P1(C) is a double root of ∆y
[y0:y1].

If the previous properties are not satisfied, then Et is a smooth curve of genus one.

Proof. Since the curve Et is of bidegree (2, 2) in P1(C)×P1(C), the formula (2.2) ensures
that

(2.3) g(Et) = 1−
∑

P∈Sing

∑

i

mi(P )(mi(P )− 1)

2
,

and, hence, Et is smooth if and only if g(Et) = 1. Moreover (2.3) shows that if Et is
singular, then there is exactly one singular point that is a double point, and the curve has
genus zero. This proves the equivalence between (1), (2) and (3), and the last statement
of the Proposition.

Let us prove (4) ⇒ (3). Assume that the discriminant ∆x
[x0:x1] (resp. ∆y

[y0:y1]) has a

root in [a : b] ∈ P1(C) (resp. [c : d] ∈ P1(C)). Let us write

K(x0, x1, y0, y1, t)
= e−1,1(dy0 − cy1)2 +e0,1(bx0 − ax1)(dy0 − cy1)2 +e1,1(bx0 − ax1)2(dy0 − cy1)2

+ e−1,0(dy0 − cy1) +e0,0(bx0 − ax1)(dy0 − cy1) +e1,0(bx0 − ax1)2(dy0 − cy1)
+ e−1,−1 +e0,−1(bx0 − ax1) +e1,−1(bx0 − ax1)2.

Since ([a : b], [c : d]) ∈ Et, we have by definition that K(a, b, c, d, t) = 0, i.e. e−1,−1 = 0.
Since ∆x

[x0:x1] has a root in [a : b] ∈ P1(C), K(a, b, y0, y1) has a double root at [c, d]

and so e−1,0 = 0. Similarly, the fact that ∆y
[y0:y1] has a root in [c : d] ∈ P1(C) implies

e0,−1 = 0. This shows that

∂K(a, b, c, d, t)

∂x0
=
∂K(a, b, c, d, t)

∂x1
=
∂K(a, b, c, d, t)

∂y0
=
∂K(a, b, c, d, t)

∂y1
= 0,

and, hence, ([a : b], [c : d]) is the singular point of Et.
Let us prove (3) ⇒ (5). If Ω = ([a : b], [c : d]) is the singular point of Et, then

e−1,0 = e0,−1 = 0, and the discriminants ∆x
[x0:x1] and ∆y

[y0:y1] have a double root in

[a : b] ∈ P1(C) and [c : d] ∈ P1(C) respectively.
The implication (5) ⇒ (4) is obvious. �

Our next aim is to describe the genus zero models of walks.
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Lemma 2.2. The discriminant ∆y
[y0:y1] has a double zero if and only if the step set of

the model of the walk is supported in one of the following configurations

Remark 2.3. See also [DR19, Proposition 9] for an extension of Lemma 2.2 to the case
when t ∈]0, 1[ is algebraic. Their proof relies on the results of the present section.

Remark 2.4. In the case t = 1, it is proved in [FIM17, Lemma 2.3.10] that, besides the
models listed in Lemma 2.2, any nondegenerate model such that the drift is zero, i.e.

(
∑

i idi,j ,
∑

j jdi,j) = (0, 0),

has a curve Et of genus 0.

Proof. The computations seem to be too complicated to be performed by hand, so
we used maple. Briefly, for a Kernel with indeterminates di,j , one calculates the
discriminant of the discriminant ∆y

[y0:y1]. This is a polynomial of degree 12 in t with

coefficients that are polynomials in the di,j . Since t is transcendental, the polynomial is
zero if and only if its t-coefficients are all zero. We set these polynomials equal to zero
and solve. This yields 8 solutions corresponding to the above configurations. Note that
we may also do this computation by decomposing the radical of an ideal into its prime
components.

We begin by calculating the Kernel of the model of the walk

>K := expand(x*y*(1-t*(sum(sum(d[i, j]*x^i*y^j, i = -1 .. 1), j = -1 .. 1))));

K :=

−x2y2td1,1−x2ytd1,0−xy2td0,1−x2td1,−1−xytd0,0−y2td−1,1−xtd0,−1−ytd−1,0− td−1,−1 +xy

The discriminant of the Kernel with respect to x is

>DX := expand(y[1]^4*subs(y = y[0]/y[1], discrim(K, x)));

DX := −4 y1
4t2d−1,−1d1,−1 − 4 y1

3t2y0d−1,−1d1,0 − 4 y1
2t2y0

2d−1,−1d1,1 − 4 y1
3t2y0d−1,0d1,−1 −

4 y1
2t2y0

2d−1,0d1,0 − 4 y1t
2y0

3d−1,0d1,1 − 4 y1
2t2y0

2d−1,1d1,−1 − 4 y1t
2y0

3d−1,1d1,0 −
4 t2y0

4d−1,1d1,1 + y1
4t2d0,−1

2 + 2 y1
3t2y0d0,−1d0,0 + 2 y1

2t2y0
2d0,−1d0,1 + y1

2t2y0
2d0,0

2 +

2 y1t
2y0

3d0,0d0,1 + t2y0
4d0,1

2 − 2 y1
3ty0d0,−1 − 2 y1

2ty0
2d0,0 − 2 y1ty0

3d0,1 + y1
2y0

2

We wish to determine when DX has a double root. We first assume that DX has a
double root at (a, b) and that b is not zero. We can then set y1 = 1 and y0 = y and
calculate the discriminant of DX (we suppress the output)

>DD := discrim(subs(y[1] = 1, y[0] = y, DX), y);

>degree(DD, t);

12

Since t is transcendental over the di,j , DD is zero if and only if each of the coefficients
of powers of t to zero. We now set these equal to zero and solve for the di,j .
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>S := [solve({coeff(DD, t, 0) = 0, coeff(DD, t, 1) = 0, coeff(DD, t, 2) = 0,

coeff(DD, t, 4) = 0, coeff(DD, t, 5) = 0, coeff(DD, t, 6) = 0, coeff(DD, t, 7) = 0,

coeff(DD, t, 8) = 0, coeff(DD, t, 9) = 0, coeff(DD, t, 10) = 0, coeff(DD, t, 11) = 0,

coeff(DD, t, 12) = 0}, {d[-1, -1], d[-1, 0], d[-1, 1], d[0, -1], d[0, 0], d[0, 1],

d[1, -1], d[1, 0], d[1, 1]})];

>nops(S);

8

The last command indicates that there are 8 systems of equations for the di,j . We
now list each of these S[i].

>S[1];

{d−1,−1 = 0, d−1,0 = 0, d−1,1 = 0, d0,−1 = d0,−1, d0,0 = d0,0, d0,1 = d0,1, d1,−1 = d1,−1, d1,0 = d1,0, d1,1 = d1,1}

>S[2];

{d−1,−1 = 0, d−1,0 = 0, d−1,1 = d−1,1, d0,−1 = 0, d0,0 = d0,0, d0,1 = d0,1, d1,−1 = d1,−1, d1,0 = d1,0, d1,1 = d1,1}

>S[3];

{d−1,−1 = 0, d−1,0 = d−1,0, d−1,1 = d−1,1, d0,−1 = 0, d0,0 = d0,0, d0,1 = d0,1, d1,−1 = 0, d1,0 = d1,0, d1,1 = d1,1}

>S[4];

{d−1,−1 = d−1,−1, d−1,0 = 0, d−1,1 = 0, d0,−1 = d0,−1, d0,0 = d0,0, d0,1 = 0, d1,−1 = d1,−1, d1,0 = d1,0, d1,1 = d1,1}

>S[5];

{d−1,−1 = d−1,−1, d−1,0 = d−1,0, d−1,1 = 0, d0,−1 = d0,−1, d0,0 = d0,0, d0,1 = 0, d1,−1 = d1,−1, d1,0 = d1,0, d1,1 = 0}

>S[6];

{d−1,−1 = d−1,−1, d−1,0 = d−1,0, d−1,1 = d−1,1, d0,−1 = 0, d0,0 = d0,0, d0,1 = d0,1, d1,−1 = 0, d1,0 = 0, d1,1 = d1,1}

>S[7];

{d−1,−1 = d−1,−1, d−1,0 = d−1,0, d−1,1 = d−1,1, d0,−1 = d0,−1, d0,0 = d0,0, d0,1 = d0,1, d1,−1 = 0, d1,0 = 0, d1,1 = 0}

>S[8];

{d−1,−1 = d−1,−1, d−1,0 = d−1,0, d−1,1 = d−1,1, d0,−1 = d0,−1, d0,0 = d0,0, d0,1 = 0, d1,−1 = d1,−1, d1,0 = 0, d1,1 = 0}

This yields the eight step sets listed in Lemma 2.2.

An alternate approach is to use the PolynomialIdeals package

>with(PolynomialIdeals):

and consider the prime decomposition of the radical of the ideal

>J := <(coeff(DD, t, 4), coeff(DD, t, 5), coeff(DD, t, 6), coeff(DD, t, 7),

coeff(DD, t, 8), coeff(DD, t, 9), coeff(DD,t,10),coeff(DD,t,11),coeff(DD,t,12)>:

> PrimeDecomposition(J);
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< d−1,−1, d−1,0, d−1,1 >, < d−1,−1, d−1,0], d0,−1 >, < d−1,−1, d0,−1, d1,−1] >, <
d−1,0, d−1,1, d0,1) >,

< d−1,1, d0,1, d1,1 >, < d0,−1, d1,−1, d1,0 >, < d0,1, d1,0, d1,1 >, < d1,−1, d1,0, d1,1 >

The PrimeDecomposition command lists a set of prime ideals whose intersection is the radical
of the original ideal. In particular, these ideals have the property that any zero of the original
ideal is a zero of one of the listed ideals and vice versa (see [CLO97, Chapter 4, Section 6]). As
seen, this yields the same result as the solve command.

In the above calculation we assumed that DX has a double root at [1, b] where b is not zero.
We now consider the case where b is zero and so DX has a double root at [1, 0]. We will show
that this case leads to models of walks already mentioned above

>DDX := subs(y[1] = y, y[0] = 1, DX):

If y = 0 is a double root then the coefficient of 1 and y must be zero

>coeff(DDX, y, 0); coeff(DDX, y, 1)

−4 t2d−1,1d1,1 + t2d0,1
2

−4 t2d−1,0d1,1 − 4 t2d−1,1d1,0 + 2 t2d0,0d0,1 − 2 td0,1

Taking into account that t is transcendental and the di,j are algebraic, we are led to three cases

[d0,1 = 0, d−1,1 = 0, d−1,0 = 0]
[d0,1 = 0, d−1,1 = 0, d1,1 = 0]
[d0,1 = 0, d1,1 = 0, d1,0 = 0]

The first of these corresponds to S[4], the second to S[5], and the third to S[8]. �

Remark 2.5. The proof of Proposition 1.2 proceeds by a direct “hand calculation” while
the proof of Lemma 2.2 follows from a simple maple calculation. It would be interesting
to have a simple maple based proof of Proposition 1.2 and a hand calculation proof of
Lemma 2.2.

Corollary 2.6. The following holds:

(1) The nondegenerate genus zero models of walks are the nondegenerate models
whose step set is included in an half space. More precisely, they are the models
whose step set belongs to one of the following configurations

(G0)
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(2) The nondegenerate genus one models of walks are the models whose step set is
not included in any half space. More precisely, they are the models whose the
step set belongs to one of the following configurations

(G1)

Proof. This is a direct consequence of Proposition 1.2, Proposition 2.1, and Lemma 2.2.
�

Our next aim is to give an expression for the roots of the discriminants ∆x
[x0:x1] and

∆y
[y0:y1] and for the singular point Ω of Et in the genus zero case. Let us write

∆x
[x0:x1] =

4∑

i=0

αi(t)x
i
0x

4−i
1 , and ∆y

[y0:y1] =

4∑

i=0

βi(t)y
i
0y

4−i
1 ,

where

α0(t) = d2
−1,0 − 4d−1,1d−1,−1

α1(t) = 2d0,0 − 2t− 4d−1,1d0,−1 − 4d0,1d−1,−1

α2(t) = d2
0,0 − 2td0,0 + t2 + 2d−1,0d1,0 − 4d−1,1d1,−1 − 4d0,1d0,−1 − 4d1,1d−1,−1

α3(t) = −2td1,0 + 2d0,0d1,0 − 4d1,1d0,−1 − 4d0,1d1,−1

α4(t) = d2
1,0 − 4d1,1d1,−1

β0(t) = d2
0,−1 − 4d1,−1d−1,−1

β1(t) = 2d0,0 − 2t− 4d1,−1d−1,0 − 4d1,0d−1,−1

β2(t) = d2
0,0 − 2td0,0 + t2 + 2d0,−1d0,1 − 4d1,−1d−1,1 − 4d1,0d−1,0 − 4d1,1d−1,−1

β3(t) = −2td0,1 + 2d0,0d0,1 − 4d1,1d−1,0 − 4d1,0d−1,1

β4(t) = d2
0,1 − 4d1,1d−1,1.

Note that ∆x
[x0:x1] (resp. ∆y

[y0:y1]) is of degree 4 and so has four roots a1, a2, a3, a4 (resp.

b1, b2, b3, b4) in P1(C) (taking into consideration multiplicities). Proposition 2.1 ensures
that the discriminant ∆x

[x0:x1] (resp. ∆y
[y0:y1]) has a double root; up to renumbering, we

can assume that a1 = a2 (resp. b1 = b2).

Lemma 2.7. Assume that the model of the walk has steps supported in one of the
following configurations (the first line of (G0))
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Then, the singular point of Et is Ω = ([0 : 1], [0 : 1]), that is, a1 = a2 = [0 : 1] (resp.
b1 = b2 = [0 : 1]) is a double root of ∆x

[x0:x1] (resp. ∆y
[y0:y1]). The other roots are distinct

and are given by

a3 a4

α4(t) 6= 0
[
−α3(t)−

√
α3(t)2 − 4α2(t)α4(t) : 2α4(t)

] [
−α3(t) +

√
α3(t)2 − 4α2(t)α4(t) : 2α4(t)

]

α4(t) = 0 [1 : 0] [−α2(t) : α3(t)]

b3 b4

β4(t) 6= 0
[
−β3(t)−

√
β3(t)2 − 4β2(t)β4(t) : 2β4(t)

] [
−β3(t) +

√
β3(t)2 − 4β2(t)β4(t) : 2β4(t)

]

β4(t) = 0 [1 : 0] [−β2(t) : β3(t)]

Remark 2.8. We can extend Lemma 2.7 to the other configurations in (G0) by using the
following remarks:

(1) Replacing ([x0 : x1], [y0 : y1]) by ([x0 : x1], [y1 : y0]), which corresponds to the
variable change (x, y) 7→ (x, y−1), amounts to consider a weighted model of walk
with weights d′i,j := di,−j . This can be used to extend Lemma 2.7 to the second

line of (G0); for instance, the singular point of Et is Ω = ([0 : 1], [1 : 0]) in that
case.

(2) Replacing ([x0 : x1], [y0 : y1]) by ([x1 : x0], [y1 : y0]) amounts to consider a
weighted model of walk with weights d′i,j := d−i,−j . This can be used to extend

Lemma 2.7 to the third line of (G0); for instance, the singular point of Et is
Ω = ([1 : 0], [1 : 0]) in that case.

(3) Replacing ([x0 : x1], [y0 : y1]) by ([x1 : x0], [y0 : y1]) amounts to consider a
weighted model of walk with weights d′i,j := d−i,j . This can be used to extend

Lemma 2.7 to the fourth line of (G0); for instance, the singular point of Et is
Ω = ([1 : 0], [0 : 1]) in that case.

Remark 2.9. Note that if we consider the x3, x4 (resp. y3, y4) defined in [FIM17, Chap-
ter 6], we have the equality of sets {a3, a4} = {x3, x4} and {b3, b4} = {y3, y4}, but do
not have necessarily ai = xi, bj = yj , with 3 ≤ i, j ≤ 4.

Proof of Lemma 2.7. We shall prove the lemma for ∆y
[y0:y1], the proof for ∆x

[x0:x1] being

similar. By assumption, d−1,−1 = d−1,0 = d0,−1 = 0. Then, α0(t) = α1(t) = 0.
Therefore, the discriminant ∆y

[y0:y1] has a double root at [0 : 1] and we can write

∆y
[y:1] = β4(t)y4 + β3(t)y3 + β2(t)y2.

Since t is transcendental and the di,j are in Q, we see that the coefficient of y2 is nonzero.
Therefore [0 : 1] is precisely a double root of ∆y

[y0:y1]. To see that b3 and b4 are distinct, we

calculate the discriminant of ∆y
[y:1]/y

2, which is almost the same as the one we considered
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in the proof of Lemma 2.2. This is a polynomial of degree four in t with the following
coefficients:

term coefficient

t4 −16(4d−1,1d1,−1d1,1 − d1,−1d
2
1,0 − d2

0,0d1,1 + d0,0d0,1d1,0 − d2
0,1d1,−1)d−1,1

t3 −16(2d0,0d1,1 − d0,1d1,0)d−1,1

t2 16d−1,1d1,1

t 0

1 0

If ∆y
[y0:y1] has a double root different to [0 : 1], all the above coefficients must be zero.

From the coefficient of t2 (recalling that d−1,1d1,−1 6= 0), we must have d1,1 = 0. From
the coefficient of t3, we have that d0,1 = 0 or d1,0 = 0. From the coefficient of t4, we get in
both cases d0,1 = d1,0 = 0. This implies that the model of the walk would be degenerate,
a contradiction. The formulas for b3 and b4 follow from the quadratic formula. �

3. Involutive automorphisms of the kernel curve

Following [BMM10, Section 3], [KY15, Section 3] or [FIM17], we consider the involu-
tive rational functions¶

i1, i2 : C2 99K C2

given by

i1(x, y) =

(
x,
A−1(x)

A1(x)y

)
and i2(x, y) =

(
B−1(y)

B1(y)x
, y

)
.

Note that i1, i2 are “only” rational functions in the sense that they are a priori not
defined when the denominators vanish. The rational functions i1, i2 induce involutive
rational functions

ι1, ι2 : Et 99K Et
given by

ι1([x0 : x1], [y0 : y1]) =

(
[x0 : x1],

[
A−1(x0x1 )

A1(x0x1 )y0y1
: 1

])
,

and ι2([x0 : x1], [y0 : y1]) =

([
B−1(y0y1 )

B1(y0y1 )x0x1
: 1

]
, [y0 : y1]

)
.

Again, these functions are a priori not defined where the denominators vanish. However,
the following result shows that, actually, this is only an “apparent problem”: ι1 and ι2
can be extended into morphisms of Et. We recall that a rational map f : Et 99K Et is
a morphism if it is regular at any P ∈ Et, i.e. if f can be represented in suitable affine
charts containing P and f(P ) by a rational function with nonvanishing denominator at
P .

Proposition 3.1. The rational maps ι1, ι2 : Et 99K Et can be extended into involutive
automorphisms of Et.

¶In what follows, we use the classical dashed arrow notion to denote rational maps; a priori, such
functions may not be defined everywhere.
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•

P ι2(P )

ι1(P ) σ(P )

σ−1(P )
Et

Figure 1. The maps ι1, ι2 restricted to the kernel curve Et

Since K(x0, x1, y0, y1, t) is quadratic in each of the variables, the curve Et is naturally endowed
with two involutions ι1, ι2, namely the vertical and horizontal switches of Et defined, for any
P = (x, y) ∈ Et, by

{P, ι1(P )} = Et ∩ ({x} × P1(C)) and {P, ι2(P )} = Et ∩ (P1(C)× {y})
(see Figure 1). Let us also define

σ := ι2 ◦ ι1.
Remark 1.2. There are several choices for the compactification of Et. For instance, we could
have compactified the curve Et in the complex projective plane P2(C) instead of P1(C) × P1(C)
but, in this case, the compactification is not defined by a biquadratic polynomial so that the
construction of the above-mentioned involutions in that situation is not so natural.

Assumption 1.3. From now on, we consider a weighted model arising from (S) and we fix a
transcendental real number 0 < t < 1.§

Proposition 1.4. The curve Et is an irreducible genus zero curve.

Proof. This is the analog of [FIM17, Lemmas 2.3.2, 2.3.10], where the case t = 1 is considered. �

1.3. Parametrization of Et. Since Et has genus zero, there is a rational parameterization of
Et, see [Ful89, Page 198, Ex.1], i.e., there exists a birational map

φ : P1(C) → Et
s 7→ (x(s), y(s)).

Proposition 1.5 below gives such an explicit parametrization, which induces a bijection between
P1(C) \ φ−1(Ω) and Et \ {Ω}, where Ω = ([0 : 1], [0 : 1]) ∈ Et. It is the analogue of [FIM17,
Section 6.4.3], where the case t = 1 is considered. The proof is similar for t transcendental and
the details are left to the reader.

We first introduce some notations. For any [x0 : x1] and [y0 : y1] in P1(C), we denote by
∆x

[x0:x1] and ∆y
[y0:y1] the discriminants of the degree two homogeneous polynomials given by

y 7→ K(x0, x1, y, t) and x 7→ K(x, y0, y1, t) respectively. We have

∆x
[x0:x1] = t2

(
(−1

t
x0x1 + d0,0x0x1 + d1,0x

2
0)2 − 4d1,−1x

2
0(d−1,1x

2
1 + d0,1x0x1 + d1,1x

2
0)
)

§In this paper, we have assumed that the di,j belong to Q, but everything stays true if we assume that di,j
are positive real numbers and that t is transcendental over the field Q(di,j).

Figure 1. The maps ι1, ι2 restricted to the kernel curve Et

Proof. We have to prove that ι1, ι2 : Et 99K Et can be extended into endomorphisms of
Et. According to Proposition 2.1, if the curve Et has genus one, then it is smooth and
the result follows from [Har77, Proposition 6.8, p. 43].

It remains to study the case when Et has genus zero. In that case, Proposition 2.1
ensures that Et has a unique singularity Ω. It follows from [Har77, Proposition 6.8,
p. 43] that ι1 and ι2 can be uniquely extended into morphisms Et \ {Ω} → Et still
denoted by ι1 and ι2. It remains to study ι1 and ι2 at Ω. Let us first assume that
the walk under consideration belongs to the first line of (G0). Lemma 2.7 ensures that
Ω = ([0 : 1], [0 : 1]). For ([x : 1], [y : 1]) ∈ Et, the equation K(x, y, t) = 0 ensures that

(3.1)
A−1(x)

A1(x)y
=

1

tA1(x)
− A0(x)

A1(x)
− y =

x

tÃ1(x)
− Ã0(x)

Ã1(x)
− y

where Ã0(x) = xA0(x) = d−1,0 + d0,0x + d1,0x
2 and Ã1(x) = xA1(x) = d−1,1 + d0,1x +

d1,1x
2. Since d−1,1 6= 0, Ã1(x) does not vanish at x = 0. So, (3.1) shows that ι1 is

regular at Ω and that ι1(Ω) = Ω. The argument for ι2 is similar.
The other cases listed in (G0) can be treated similarly using Remark 2.8. �

We also consider the automorphism of Et defined by

σ = ι2 ◦ ι1.
It is easily seen that ι1 and ι2 are the vertical and horizontal switches of Et (see Figure 1),
i.e., for any P = (x, y) ∈ Et, we have

{P, ι1(P )} = Et ∩ ({x} × P1(C)) and {P, ι2(P )} = Et ∩ (P1(C)× {y}).
We now give a couple of lemmas for later use.

Lemma 3.2. A point P = ([x0 : x1], [y0 : y1]) ∈ Et is fixed by ι1 (resp. ι2) if and only
if ∆x

[x0:x1] = 0 (resp. ∆y
[y0:y1] = 0).

Proof. Assume that P is fixed by ι1. Then, the polynomial [y0 : y1] 7→ K(x0, x1, y0, y1, t)
has a double root, meaning that the discriminant is zero. This is exactly ∆x

[x0:x1] = 0.

Conversely, ∆x
[x0:x1] = 0 implies that [y0 : y1] 7→ K(x0, x1, y0, y1, t) has a double root and

therefore P is fixed by ι1. The proof for ι2 is similar. �
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Lemma 3.3. Let P ∈ Et. The following statements are equivalent:

(1) P is fixed by ι1 and ι2;
(2) P is a singular point of Et;
(3) P is fixed by σ = ι2 ◦ ι1.

Proof. Let P = ([a : b], [c : d]) ∈ Et. From Proposition 2.1, we have that P is a singular
point if and only if ∆x

[x0:x1] and ∆y
[y0:y1] vanish at [a : b] and [c : d] respectively. We

conclude with Lemma 3.2, that (1) is equivalent to (2).
Clearly, (1) implies (3). It remains to prove that (3) implies (1). Assume that

P = (a1, b1) is fixed by σ. Since ι1(P ) = (a1, b
′
1) and ι2(ι1(P )) = (a′1, b

′
1), it is clear

that σ(P ) = P implies successively ι1(P ) = P and ι2(P ) = P . �

4. Parameterization of the kernel curve

We still consider a weighted model of nondegenerate walk. The aim of this section
is to give an explicit parametrization of Et. Thanks to Proposition 2.1, the latter may
have genus zero or one. Let us start with the genus zero case.

4.1. Genus zero case. Let us consider a nondegenerate weighted model of walks of
genus zero. Thank to Corollary 2.6 combined with Remark 2.8, it suffices to consider
the situation where the model of walks arises from the following set of steps

Genus zero curves may be parameterized with maps φ : P1(C)→ Et which are bijective
outside a finite set. The aim of this subsection, achieved with Proposition 4.6, is to find
such a parametrization explicitly. Although we could have just written down the formula
for this parametrization and verified its properties, we have preferred to explain how the
formula arises. This requires a preliminary study of σ, ι1 and ι2 (and, more precisely, of
the automorphism of P1(C) obtained by pulling back these maps by φ), which is done
with a series of lemmas preceding Proposition 4.6.

According to Lemma 2.7, Et has a unique singular point Ω = (a1, b1) = ([0 : 1], [0 : 1]).
Moreover ∆x

[x0:x1] has degree four with a double root at a1 = [0 : 1] and the remaining

two roots a3, a4 are distinct. We let S3 = (a3, ∗) and S4 = (a4, ∗) be the points of Et with
first coordinates a3 and a4 respectively. Similarly, ∆y

[y0:y1] has degree four with a double

root at b1 = [0 : 1] and the remaining two roots b3, b4 are distinct. We let S′3 = (∗, b3)
and S′4 = (∗, b4) be the points of Et with second coordinates b3 and b4 respectively.

Since Et has genus zero, there is a rational parameterization of Et [Ful89, Page 198,
Ex.1], i.e. there exists a birational map

φ = (x, y) : P1(C) 99K Et.
This φ is actually a surjective morphism of curves (as is any nonconstant rational map

from P1 to a projective curve, see [Ful89, Corollary 1, Page 160]). More precisely, since
Ω is the unique singular point of Et, φ induces a bijection between P1(C) \ φ−1(Ω) and
Et \ {Ω}. The maps x, y : P1(C)→ P1(C) are surjective morphisms of curves as well.

We let s3, s4 ∈ P1(C) (resp. s′3, s
′
4 ∈ P1(C)) be such that S3 = φ(s3) and S4 = φ(s4)

(resp. S′3 = φ(s′3) and S′4 = φ(s′4)).
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We will need the cardinality of x−1(P ) (resp. y−1(P )) for P ∈ P1(C). This quantity
might depend on P but it is a general fact about morphisms of curves that the cardinality
of x−1(P ) (resp. y−1(P )) is constant for P outside a finite subset of P1(C). This common
value is called the degree of x (resp. y).

Lemma 4.1. The morphisms x, y : P1(C)→ P1(C) have degree two.

Proof. This is a consequence of the fact that Et is a biquadratic curve. Indeed, let us
consider V = P1(C) \ {a1}. Note that the preimage by φ of any element of Et of the
form (a, ∗) with a ∈ V has one element (simply because φ induces a bijection between
P1(C) \ φ−1(Ω) and Et \ {Ω}). Let U be the set of a ∈ P1(C) such that the intersection
of {a} × P1(C) with Et has exactly two elements. This is also the set of a ∈ P1(C) such
that ∆x

a 6= 0 and, hence, U = P1(C) \ S for some finite set S. Then, for any a ∈ U ∩ V ,
x−1(a) has exactly two elements (indeed, we have x−1(a) = φ−1(({a} × P1(C)) ∩ Et),
moreover the fact that a belongs to U ensures that ({a}×P1(C))∩Et has two elements
and the fact that a belongs to V ensures that φ−1(({a}×P1(C))∩Et) has two elements
as well). So, x has degree two. The argument for y is similar. �

We will now follow the ideas contained in [FIM17] to produce an explicit “automorphic
parameterization” of Et.

The involutive automorphisms ι1, ι2 of Et induce involutive automorphisms ι̃1, ι̃2 of
P1(C) via φ. Similarly, σ induces an automorphism σ̃ of P1(C). In other words, we have
the commutative diagrams

Et
ιk // Et

P1(C)

φ

OO

ι̃k

// P1(C)

φ

OO and Et
σ // Et

P1(C)

φ

OO

σ̃
// P1(C)

φ

OO

Note that since φ induces a bijection between P1(C) \ φ−1(Ω) and Et \ {Ω}, the group
generated by ι1 and ι2 is isomorphic to the group generated by ι̃1 and ι̃2. Thus we
recover the same group as in [BMM10] for instance. We summarize some remarks in the
following lemmas.

Lemma 4.2. We have x = x ◦ ι̃1 and y = y ◦ ι̃2.

Proof. We obtain x = x ◦ ι̃1 by equating the first coordinates in the equality φ ◦ ι̃1 =
ι1 ◦φ = (x, ∗) and we obtain y = y◦ ι̃2 by equating the second coordinates in the equality
φ ◦ ι̃2 = ι2 ◦ φ = (∗, y). �

Lemma 4.3. Let P = φ(s) ∈ Et and let k ∈ {1, 2}. We have:

• if ι̃k(s) = s, then ιk(P ) = P ;
• if P 6= Ω and ιk(P ) = P , then ι̃k(s) = s.

Proof. We have ιk(P ) = ιk(φ(s)) = φ(ι̃k(s)). The first assertion is now clear, and the
second one follows from the fact that φ is injective on Et \ φ−1(Ω). �
Lemma 4.4. The premimage of Ω by φ has two elements: φ−1(Ω) = {s1, s2} with
s1 6= s2.
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0 ∞

1

−1

λ

−λ

Ω

(a3, ∗)

(a4, ∗)

(∗, b3)

(∗, b4)

φ : P1(C) −→ Et

Figure 2. The uniformization map

Proof. We know that x, y : P1(C) → P1(C) have degree two, so φ−1(Ω) has one or two
elements. Suppose to the contrary that φ−1(Ω) = {s1} has 1 element. Since φ(ι̃1(s1)) =
ι1(φ(s1)) = ι1(Ω) = Ω, we have ι̃1(s1) = s1. Moreover, since S3, S4 6= Ω are fixed by ι1,
Lemma 4.3 ensures that s3 and s4 are fixed by ι̃1. Therefore, ι̃1 is an automorphism of
P1(C), i.e. an homography, with at least three fixed points, so ι̃1 is the identity. This is
a contradiction. �

Lemma 4.5. The map ι̃1 (resp. ι̃2) has exactly two fixed points, namely s3 and s4 (resp.
s′3 and s′4), and interchanges s1 and s2. The map σ̃ has exactly two distinct fixed points,
s1 and s2.

Proof. Let s ∈ P1(C) be a fixed point of ι̃1. Lemma 4.3 ensures that φ(s) is fixed by ι1.
So, φ(s) = Ω, S3 or S4. If φ(s) 6= Ω, then s = s3 or s4 (recall that φ induces a bijection
between P1(C) \ φ−1(Ω) and Et \ {Ω}) and s3 and s4 are indeed fixed by ι̃1. Moreover,
we have φ(s) = Ω if and only if s = s1 or s2 and the equality ι1(φ(s)) = φ(ι̃1(s)) shows
that ι̃1 induces a permutation of φ−1(Ω) = {s1, s2}. If s1 and s2 were fixed by ι̃1, then
ι̃1 would be an automorphism of P1(C), i.e. an homography, with at least four fixed
points (s1, s2, s3, s4) and, hence, would be the identity. This is a contradiction. So, ι̃1
interchanges s1 and s2.

The proof for ι̃2 is similar.
As any homography which is not the identity, σ̃ has at most two fixed points in P1(C).

It only remains to prove that s1 and s2 are fixed by σ̃, and this is indeed the case because
σ̃ = ι̃2 ◦ ι̃1 and ι̃1, ι̃2 interchange s1 and s2. �
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We are now ready to give an explicit expression of φ. Let us recall that
α2(t), α3(t), α4(t), β2(t), β3(t), β4(t) are the coefficients of the discriminants given by

α2(t) = 1− 2td0,0 + t2d2
0,0 − 4t2d−1,1d1,−1

α3(t) = 2t2d1,0d0,0 − 2td1,0 − 4t2d0,1d1,−1

α4(t) = t2(d2
1,0 − 4d1,1d1,−1)

β2(t) = 1− 2td0,0 + t2d2
0,0 − 4t2d1,−1d−1,1

β3(t) = 2t2d0,1d0,0 − 2td0,1 − 4t2d1,0d−1,1

β4(t) = t2(d2
0,1 − 4d1,1d−1,1).

Proposition 4.6. An explicit parameterization φ : P1(C)→ Et such that

ι̃1(s) =
1

s
, ι̃2(s) =

λ2

s
=
q

s
and σ̃(s) = qs

for a certain λ ∈ C∗ is given by

φ(s) =

(
4α2(t)√

α3(t)2 − 4α2(t)α4(t)(s+ 1
s )− 2α3(t)

,
4β2(t)√

β3(t)2 − 4β2(t)β4(t)( sλ + λ
s )− 2β3(t)

)
.

Moreover, we have, see Figure 2

x(0) = x(∞) = a1, x(1) = a3, x(−1) = a4,
y(0) = y(∞) = b1, y(λ) = b3, y(−λ) = b4.

Remark 4.7. When t = 1, we recover the uniformization of [FIM17, Section 6.4.3].

Proof of Proposition 4.6. According to Lemma 4.5, ι̃1 is an involutive homography with
fixed points s3 and s4, so there exists an homography h such that h(s3) = 1, h(s4) = −1
and h ◦ ι̃1 ◦ h−1(s) = 1/s. Up to replacing φ by φ ◦ h, we can assume that s3 = 1,
s4 = −1 and ι̃1(s) = 1

s . Since s1 6= s2, we can assume up to renumbering that s1 6= ∞.

Moreover, up to replacing φ by φ◦k where k is the homography given by k(s) = s−s1
−s1s+1 ,

we can also assume that s1 = 0 and s2 =∞ (note that k commutes with ι̃1, so changing
φ by φ ◦ k does not affect ι̃1). Lemma 4.1 and Lemma 4.2 ensure that the morphism
x : P1(C) → P1(C) has degree two and satisfies x(s) = x(1/s) for all s ∈ P1(C). It
follows that

x(s) =
a(s+ 1/s) + b

c(s+ 1/s) + d

for some a, b, c, d ∈ C. We have x(s1) = x(0) = a1 = 0, x(s2) = x(∞) = a1 = 0,
x(s3) = x(1) = a3 and x(s4) = x(−1) = a4. The equality x(∞) = 0 implies a = 0. The
equalities x(1) = a3 and x(−1) = a4 imply

x(s) =
4a3a4

(a4 − a3)(s+ 1
s ) + 2(a3 + a4)

.

The known expressions for a3 and a4 given in Lemma 2.7 lead to the expected expression
for x(s).

According to Lemma 4.5, ι̃2 is an homography interchanging 0 and ∞, so ι̃2(s) = λ2

s
for some λ ∈ C∗. Up to renumbering, we have s′3 = λ and s′4 = −λ. Using the fact that
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the morphism y : P1(C) → P1(C) has degree two and is invariant by ι̃2, and arguing as
we did above for x, we see that there exist α, β, γ, η ∈ C such that

y(s) =
α( sλ + λ

s ) + β

γ( sλ + λ
s ) + η

.

The equality y(∞) = 0 implies α = 0. Using the equalities y(s′3) = y(λ) = b3 and
y(s′4) = y(−λ) = b4, and arguing as we did above for x, we obtain the expected expression
for y(s). �

Remark 4.8. (1) The uniformization is not unique. More precisely, the possible uni-
formizations are of the form φ ◦ h, where h is an homography. However, if one
requires that h fixes setwise 0,∞ then q is uniquely defined up to its inverse.

(2) The real q or q−1 specializes for t = 1 to the real ρ2 in [FIM17, Page 178].

The following proposition determines q up to its inverse.

Proposition 4.9 ([DHRS20], Proposition 1.7, Corollary 1.10). One of the two complex
numbers q or q−1 is equal to

−1 + d0,0t−
√

(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2
.

Furthermore, q ∈ R \ {±1}.
Remark 4.10. This implies that σ and σ̃ have infinite order (see also [BMM10, FR11]).
It follows that the group of the walk introduced in [BMM10], which is by definition the
group generated by i1 and i2, has infinite order (because σ is induced on Et by i1 ◦ i2, so
if σ has infinite order then i1 ◦ i2 has infinite order as well). Note that this was proved
in [BMM10] using a valuation argument.

4.2. Genus one case. In this section, we give an overview of [DR19]. Let us consider a
nondegenerate model of walk of genus one. This corresponds to one of the configurations
listed in (G1). By Proposition 2.1, Et is a smooth curve of genus one and, hence, it is
biholomorphic to C/(Zω1 +Zω2) for some lattice Zω1 +Zω2 of C via some (Zω1 +Zω2)-
periodic holomorphic map

(4.1)
Λ : C → Et

ω 7→ (q1(ω), q2(ω)),

where q1, q2 are rational functions of ℘ and its derivative d℘/dω, and ℘ is the Weierstrass
function associated with the lattice Zω1 + Zω2:
(4.2)

℘(ω) = ℘(ω;ω1, ω2) :=
1

ω2
+

∑

(`1,`2)∈Z2\{(0,0)}

(
1

(ω + `1ω1 + `2ω2)2
− 1

(`1ω1 + `2ω2)2

)
.

Then, the field of meromorphic functions on Et is isomorphic to the field of meromorphic
functions on C/(Zω1 + Zω2), which is itself isomorphic to the field of meromorphic
functions on C that are (ω1, ω2)-periodic. The latter field is equal to C(℘, ℘′) (see
[WW96]).
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The maps ι1, ι2 and σ may be lifted to the ω-plane C. We denote these lifts by ι̃1, ι̃2
and σ̃ respectively. So we have the commutative diagrams

Et
ιk // Et

C

Λ

OO

ι̃k

// C

Λ

OO Et
σ // Et

C

Λ

OO

σ̃
// C

Λ

OO

The following result has been proved in [FIM17, Section 3.3] when t = 1, in [Ras12] in
the unweighted case, and in [DR19, Proposition 18] in the weighted case, with general
0 < t < 1, not necessarily transcendental. In what follows, we set D(x) = ∆x

[x:1].

Let us introduce z = 2A(x)y + B(x), where A(x) = t(d−1,1 + d0,1x + d1,1x
2), and

B(x) = t(d−1,0 − 1
tx+ d0,0x+ d1,0x

2).

Proposition 4.11. An explicit uniformization Λ : C→ Et such that

ι̃1(ω) = −ω, ι̃2(ω) = −ω + ω3 and σ̃(ω) = ω + ω3,

for a certain ω3 ∈ C∗ is given by

Λ(ω) = (x(ω), y(ω))

where x(ω) and y(ω) are given by

x(ω) z(ω)

a4 6= [1:0]
[
a4 + D′(a4)

℘(ω)− 1
6
D′′(a4)

: 1
] [

D′(a4)℘′(ω)

2(℘(ω)− 1
6
D′′(a4))2

: 1
]

a4 = [1:0] [℘(ω)− α2/3 : α3] [−℘′(ω) : 2α3]

A suitable choice for the periods (ω1, ω2) is given by the elliptic integrals

(4.3) ω1 = i

∫ a4

a3

dx√
|D(x)|

∈ iR>0 and ω2 =

∫ a1

a4

dx√
D(x)

∈ R>0.

Note that, according to [DR19, Section 2],

ω3 =

∫ X±(b4)

a4

dx√
D(x)

∈]0, ω2[.

Remark 4.12. Contrary to the genus zero situation, the map σ may have finite order.
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