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Abstract The kernel method is an essential tool for the study of generating series of
walks in the quarter plane. Thismethod involves equating to zero a certain polynomial
- the kernel polynomial - and using properties of the curve - the kernel curve - this
defines. In the present paper, we investigate the basic properties of the kernel curve
(irreducibility, singularities, genus, uniformization, etc.).
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1 Introduction

Consider a walk with small steps in the positive quadrant Z2≥0 = {0, 1, 2, . . .}2 start-
ing from P0 := (0, 0), that is a succession of points

P0, P1, . . . , Pk,

where each Pn lies in the quarter plane, where the moves (or steps) Pn+1 − Pn belong
to {0,±1}2, and the probability to move in the direction Pn+1 − Pn = (i, j) may be
interpreted as some weight-parameter di, j ∈ [0, 1], with ∑

(i, j)∈{0,±1}2 di, j = 1. The
step set or the model of the walk is the set of directions with nonzero weights, that
is

S = {(i, j) ∈ {0,±1}2 | di, j �= 0}.

The following picture is an example of such path:

S =

{ }

Such objects are very natural both in combinatorics and probability theory: they are
interesting for themselves and also because they are strongly related to other discrete
structures, see [BMM10, DW15] and references therein.

If d0,0 = 0 and if the nonzero di, j all have the same value, we say that the model
is unweighted.

The weight of a given walk is defined to be the product of the weights of its
component steps. For any (i, j) ∈ Z

2≥0 and any k ∈ Z≥0, we let qi, j,k be the sum of
the weights of all walks reaching the position (i, j) from the initial position (0, 0)
after k steps. We introduce the corresponding trivariate generating series1

Q(x, y, t) :=
∑

i, j,k≥0

qi, j,k x
i y j t k .

The study of the nature of this generating series has attracted the attention of
many authors, see for instance [BvHK10, BRS14, BBMR15, BBMR17, BMM10,
DHRS18, DHRS20, DR19, DH19, KR12, Mis09, MR09, MM14, Ras12]. The typ-
ical questions are: is Q(x, y, t) rational, algebraic, holonomic, etc.? The starting

1 In several papers it is not assumed that
∑

i, j di, j = 1. But after a rescaling of the t variable, we
may always reduce to the case

∑
i, j di, j = 1.
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point of most of these works is the following functional equation, see for instance
[DHRS20, Lemma 1.1], and [BMM10] for the unweighted case

K (x, y, t)Q(x, y, t) = xy + K (x, 0, t)Q(x, 0, t) + K (0, y, t)Q(0, y, t) + td−1,−1Q(0, 0, t)

where
K (x, y, t) = xy(1 − t S(x, y))

with
S(x, y) =

∑

(i, j)∈{0,±1}2
di, j x

i y j .

The polynomial K (x, y, t) is called the kernel polynomial and is the main character
of the kernel method.

Roughly speaking, the first step of the kernel method consists in “eliminating” the
left hand side of the above functional equation by restricting our attention to the (x, y)
such that K (x, y, t) = 0. The set Et made of the (x, y) such that K (x, y, t) = 0 is
called the kernel curve:

Et = {(x, y) ∈ C × C | K (x, y, t) = 0}.

Thus, for (x, y) ∈ Et , one has

0 = xy + K (x, 0, t)Q(x, 0, t) + K (0, y, t)Q(0, y, t) + td−1,−1Q(0, 0, t), (1)

provided that the various series can be evaluated at the given points.
The second step of the kernel method is to exploit certain involutive birational

transformations ι1, ι2 (they are called ζ, η in [FIM17]) of the kernel curve Et of the
form

ι1(x, y) = (x, y′) and ι2(x, y) = (x ′, y)

in order to deduce from (1) some functional equations for Q(x, 0, t) and Q(0, y, t).
Hence ι1 and ι2 switch the roots of the degree two polynomials y �→ K (x, y, t)
and x �→ K (x, y, t) respectively. Concretely, the birational transformations ι1, ι2
are induced by restriction to the curve of the involutive birational transformations
i1, i2 of C2 given by

i1(x, y) =
(

x,
A−1(x)

A1(x)y

)

and i2(x, y) =
(
B−1(y)

B1(y)x
, y

)

where the Ai (x) ∈ x−1
Q[x] and the Bi (y) ∈ y−1

Q[y] are defined by

S(x, y) = A−1(x)
1

y
+ A0(x) + A1(x)y = B−1(y)

1

x
+ B0(y) + B1(y)x,



64 T. Dreyfus et al.

see [BMM10, Section3], [KY15, Section3] or [FIM17]. These i1 and i2 are the
generators of the group of the walk; see [BMM10] for details. Note that although i1
and i2 do not depend on t , the group generated by the induced involutions ι1 and ι2
may depend on t , since the order of ι2 ◦ ι1 may depend upon t , see Remark 5.13.

The third step of the kernel method is to use the above mentioned functional
equations of Q(x, 0, t) and Q(0, y, t) to continue these series as multivalued mero-
morphic functions. To perform this step, we need an explicit uniformization of the
kernel curve.

The aim of the present paper is to study the kernel curve Et and the birational
transformations ι1, ι2. Note that a similar study has been done in the case t = 1 in
[FIM17] and in the unweighted case in [KR12]. The goal of the present paper is
to extend these works to the weighted case when t ∈]0, 1[ is transcendental over
Q(di, j ). Although many results are similar to [FIM17], the proofs are different. The
assumptions we make on t are crucial in many parts of the proof and it is not clear
how the proofs of [FIM17] exactly pass to this context.

We could expect to have classification of the geometric properties of Et involving
configurations of weights independent of t . This paper has been followed by [DR19]
where the case for general t ∈]0, 1[ has been considered. The proofs of the latter
paper use continuity arguments with respect the parameter t that permit to deduce
many results for algebraic values of t . Such reasoning needs to be very cautious, and
it is not trivial to deduce the results for general t ∈]0, 1[ from the t = 1 case. We
will mention explicitly every time if the results are correct for arbitrary values of
t ∈]0, 1[.

The paper is organized as follows. In Sect. 2, we describe the nondegenerate
models of walks. In Sect. 3, we determine the singularities and the genus of the
kernel curve. In Sect. 4, we establish the basic properties of ι1 and ι2. Finally, in
Sect. 5, we give an explicit uniformization of the kernel curve.

2 Nondegenerate Walks

From now on, we fix t ∈]0, 1[, that is transcendental over the field Q(di, j ). We start
by recalling the notion of degenerate walks introduced in [FIM17].

Definition 2.1 A model of walk is called degenerate if one of the following holds:

• K (x, y, t) is reducible as an element of the polynomial ring C[x, y],
• K (x, y, t) has x-degree less than or equal to 1,
• K (x, y, t) has y-degree less than or equal to 1.



On the Kernel Curves Associated with Walks in the Quarter Plane 65

In what follows we will sometimes represent a model of walks with arrows. We
will also use dashed arrows for a family of models. For instance, the family of models
represented by

or
{

, , ,

}
,

correspond to models with d1,1, d1,−1, d0,1 �= 0, d1,0 = d0,−1 = d−1,1 = d−1,0 = 0,
andwhere nothing is assumedond−1,−1 andd0,0. In the following results, the behavior
of the kernel curve never depends on d0,0. This is the reasonwhy, to reduce the amount
of notations, we have decided to not associate an arrow to d0,0. The following result
is the analog of [FIM17, Lemma 2.3.2], that focuses on the case t = 1. Our proof
differs from the proof of [FIM17, Lemma 2.3.2], which only considered factorization
over R[x, y], while in this paper, we need to prove the absence of factorization over
C[x, y].
Proposition 2.2 A model of walk is degenerate if and only if at least one of the
following holds:

(1) There exists i ∈ {−1, 1} such that di,−1 = di,0 = di,1 = 0. This corresponds to
the following families of models of walks

,

(2) There exists j ∈ {−1, 1} such that d−1, j = d0, j = d1, j = 0. This corresponds to
the following families of models of walks

,

(3) All the weights are 0 except maybe {d1,1, d0,0, d−1,−1} or {d−1,1, d0,0, d1,−1}. This
corresponds to the following families of models of walks

{
,

}
,

{
,

}

Proof This proof is organized as follows. We begin by showing that (1) (resp. (2))
corresponds to K (x, y, t) having x-degree ≤ 1 or x-valuation ≥ 1 (resp. y-degree
≤ 1 or y-valuation ≥ 1). In these cases, the model of the walk is clearly degenerate.
Assuming (1) and (2) do not hold, we then show that (3) holds if and only if K (x, y, t)
is reducible.
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Cases (1) and (2). It is clear that K (x, y, t) has x-degree ≤ 1 if and only if
d1,−1 = d1,0 = d1,1 = 0. Similarly, K (x, y, t) has y-degree ≤ 1 if and only if we
have d−1,1 = d0,1 = d1,1 = 0. Furthermore, d−1,−1 = d−1,0 = d−1,1 = 0 if and only
if K (x, y, t) has x-valuation ≥ 1. Similarly, d−1,−1 = d0,−1 = d1,−1 = 0 if and only
if K (x, y, t) has y-valuation ≥ 1. In these cases, the model of the walk is clearly
degenerate.

Case (3). We now assume that cases (1) and (2) do not hold. This implies that the

model belongs to the family of models

{
,

}
if and only if it belongs to the

family of models

{
,

}
. The same holds for the anti-diagonal configuration.

If the model belongs to the family of models

{
,

}
, then the kernel

K (x, y, t) = −d−1,−1t + xy − d0,0t xy − d1,1t x
2y2 ∈ C[xy]

is a degree two polynomial in xy. Thus it may be factorized in the following form
K (x, y, t) = −d1,1t (xy − α)(xy − β) for some α, β ∈ C. If the model belongs to

the family of models

{
,

}
, then

K (x, y, t) = −d−1,1t y
2 + xy − d0,0t xy − d1,−1t x

2.

In this situation, K (x, y, t)y−2 ∈ C[x/y] may be factorized in the ring C[x/y],
proving that K (x, y, t) may be factorized in C[x, y] as well.

Conversely, let us assume that the model of the walk is degenerate. Recall that
we have assumed that cases (1) and (2) do not hold, so K (x, y, t) has x- and y-
degree two, x- and y-valuation 0, and is reducible. We have to prove that the model

belongs to one of the family of models

{
,

}
or

{
,

}
. Let us write

a factorization
K (x, y, t) = − f1(x, y) f2(x, y),

with f1(x, y), f2(x, y) ∈ C[x, y] not constant. Let us now prove several lemmas on
the polynomials f1(x, y), f2(x, y) ∈ C[x, y].
Lemma 2.3 Both f1(x, y) and f2(x, y) have bidegree (1, 1).



On the Kernel Curves Associated with Walks in the Quarter Plane 67

Proof of Lemma 2.3 Suppose to the contrary that f1(x, y) or f2(x, y) does not
have bidegree (1, 1). Since K is of bidegree at most (2, 2) then at least one of the
fi ’s has degree 0 in x or y. Up to interchange of x and y and f1 and f2, we may
assume that f1(x, y) has y-degree 0 and we denote it by f1(x). Since we are not in
Cases (1) and (2) of Proposition 2.2, the polynomials d−1,−1t + d0,−1t x + d1,−1t x2

and d−1,0t + (d0,0t − 1)x + d1,0t x2 are nonzero. By K (x, y, t) = − f1(x) f2(x, y),
we find in particular that f1(x) is a common factor of the nonzero polynomi-
als d−1,−1t + d0,−1t x + d1,−1t x2 and d−1,0t + (d0,0t − 1)x + d1,0t x2. Since t is
nonzero, we find that the roots of d−1,−1t + d0,−1t x + d1,−1t x2 = 0 are algebraic
over Q(di, j ). On the other hand, since t is transcendental over Q(di, j ), if x is a root
of d−1,0t + (d0,0t − 1)x + d1,0t x2 = 0 that is algebraic over Q(di, j ), then the con-
stant term in t has to be zero, proving that x = 0. Therefore, they are polynomials
with only zero as a potential common roots. So the only potential root of f1(x) is
zero. This means that either f1(x) has degree 0, i.e. f1(x) ∈ C, or x divides f1(x).
In the latter case, x divides K (x, y, t), and we are in Case 1. In both cases, this is a
contradiction and proves the lemma.

Lemma 2.4 The polynomials f1(x, y) and f2(x, y) are irreducible in the ring
C[x, y].
Proof of Lemma 2.4 To the contrary, suppose that we can find a factorization
f1(x, y) = (ax − b)(cy − d) for some a, b, c, d ∈ C. Since f1(x, y) has bidegree
(1, 1), we have ac �= 0. We then have that

0 = K (b/a, y, t) = b

a
y − t ( Ã−1(

b

a
) + Ã0(

b

a
)y + Ã1(

b

a
)y2)

where Ãi = x Ai ∈ Q[x]. Note that Ã1(x) is nonzero because K (x, y, t) has bidegree
(2, 2). Equating the y2-terms we find that Ã1(

b
a ) = 0 so b

a is algebraic over Q(di, j ).

Equating the y-terms, we obtain that b
a − t Ã0(

b
a ) = 0. Using the fact that t is tran-

scendental overQ(di, j ) and b
a is algebraic overQ(di, j ), we deduce b

a = 0. Therefore
b = 0. This contradicts the fact that K has x-valuation 0. A similar argument shows
that f2(x, y) is irreducible.

Lemma 2.5 Let f i (x, y) denote the polynomial whose coefficients are the complex
conjugates of those of fi (x, y). We may reduce to the case where one of the following
cases hold:

• there exists ε ∈ {±1} such that f1(x, y) = ε f2(x, y),
• f1(x, y) = f1(x, y) ∈ R[x, y] and f2(x, y) = f2(x, y) ∈ R[x, y].
Proof of Lemma 2.5 Unique factorization of polynomials implies that since
−K (x, y, t) = f1(x, y) f2(x, y) = f1(x, y) f2(x, y), there exists λ ∈ C

∗ such that

• either f1(x, y) = λ f2(x, y) and f2(x, y) = λ−1 f1(x, y);
• or f1(x, y) = λ f1(x, y) and f 2(x, y) = λ−1 f2(x, y).



68 T. Dreyfus et al.

In the former case, we have f1(x, y) = λ f2(x, y) = λλ−1 f1(x, y) and so
λλ−1 = 1. This implies that λ is real and replacing f1(x, y) by |λ|−1/2 f1(x, y)
and f2(x, y) by |λ|1/2 f2(x, y), we can assume that either f1(x, y) = f2(x, y) and
f2(x, y) = f1(x, y) or f1(x, y) = − f2(x, y) and f2(x, y) = − f1(x, y).
A similar computation in the latter case shows that |λ| = 1. Letting μ be a

square root of λ we have μ−1 = μ so λ = μ/μ. Replacing f1(x, y) by μ f1(x, y)
and f2(x, y) by μ f2(x, y), we can assume that f1(x, y) = f1(x, y) and f2(x, y) =
f2(x, y).
Let us continue the proof of Proposition 2.2. For i = 1, 2, let us write

fi (x, y) = (αi,4x + αi,3)y + (αi,2x + αi,1),

with αi, j ∈ C. Equating the terms in xi y j with−1 ≤ i, j ≤ 1, in f1(x, y) f2(x, y) =
−K (x, y, t), we find (recall that di, j ∈ [0, 1], t ∈]0, 1[)

term coefficient in f1(x, y) f2(x, y) coefficient in − K (x, y, t)
1 α1,1α2,1 d−1,−1t ≥ 0
x α1,2α2,1 + α1,1α2,2 d0,−1t ≥ 0
x2 α1,2α2,2 d1,−1t ≥ 0
y α1,3α2,1 + α1,1α2,3 d−1,0t ≥ 0
xy α1,4α2,1 + α1,3α2,2 + α1,2α2,3 + α1,1α2,4 d0,0t − 1 < 0
x2y α1,4α2,2 + α1,2α2,4 d1,0t ≥ 0
y2 α1,3α2,3 d−1,1t ≥ 0
xy2 α1,4α2,3 + α1,3α2,4 d0,1t ≥ 0
x2y2 α1,4α2,4 d1,1t ≥ 0

Let us treat separately two cases.

Case 1: f1(x, y), f2(x, y) /∈ R[x, y]. So, in this case we have either f1(x, y) =
f2(x, y) or f1(x, y) = − f2(x, y) .
Let us first assume that f1(x, y) = f2(x, y). Then, evaluating the equality

K (x, y, t) = − f1(x, y) f2(x, y) at x = y = 1, we get the following equality
K (1, 1, t) = − f1(1, 1) f2(1, 1) = −| f1(1, 1)|2. But this is impossible because the
left-hand term K (1, 1, t) = 1 − t

∑
i, j∈{−1,0,1}2 di, j = 1 − t is> 0whereas the right-

hand term −| f1(1, 1)|2 is ≤ 0.
Let us now assume that f1(x, y) = − f2(x, y). Equating the constant terms in

the equality f1(x, y) f2(x, y) = −K (x, y, t), we get −|α1,1|2 = d−1,−1t , so α1,1 =
α2,1 = d−1,−1 = 0. Equating the coefficients of x2 in the equality f1(x, y) f2(x, y) =
−K (x, y, t), we get −|α1,2|2 = d1,−1t , so α1,2 = α2,2 = d1,−1 = 0. It follows that
the y-valuation of f1(x, y) f2(x, y) = −K (x, y, t) is ≥ 2, whence a contradiction.

Case 2: f1(x, y), f2(x, y) ∈ R[x, y]. We first claim that, after possibly replacing
f1(x, y) by − f1(x, y) and f2(x, y) by − f2(x, y), we may assume that α1,4, α2,4,

α1,3, α2,3 ≥ 0.
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Let us first assume that α1,4α2,4 �= 0. Since α1,4α2,4 = d1,1t ≥ 0, we find that
α1,4, α2,4 belong simultaneously to R>0 or R<0. After possibly replacing f1(x, y)
by − f1(x, y) and f2(x, y) by − f2(x, y), we may assume that α1,4, α2,4 > 0. Since
α1,3α2,3 = d−1,1t ≥ 0, we have that α1,3, α2,3 belong simultaneously to R≥0 or R≤0.
Then, the equality α1,4α2,3 + α1,3α2,4 = d0,1t ≥ 0 implies that α1,3, α2,3 ≥ 0.

We can argue similarly in the case α1,3α2,3 �= 0.
It remains to consider the case α1,4α2,4 = α1,3α2,3 = 0. After possibly replacing

f1(x, y) by− f1(x, y) and f2(x, y) by− f2(x, y), wemay assume thatα1,4, α2,4 ≥ 0.
The case α1,4 = α1,3 = 0 is impossible because, otherwise, we would have d1,1 =
d−1,1 = d0,1 = 0, which is excluded. Similarly, the case α2,4 = α2,3 = 0 is impos-
sible. So, we are left with the cases α1,4 = α2,3 = 0 or α2,4 = α1,3 = 0. In both
cases, the equality α1,4α2,3 + α1,3α2,4 = d0,1t ≥ 0 with α1,4, α2,4 ≥ 0, implies that
α1,4, α2,4, α1,3, α2,3 ≥ 0.

Arguing as above, we see that α1,2, α2,2, α1,1, α2,1 all belong to R≥0 or all belong
to R≤0. Using the equation of the xy-coefficients, we find that α1,2, α2,2, α1,1, α2,1

are all in R≤0.
Now, equating the coefficients of x2y in the equality f1(x, y) f2(x, y) = −K (x, y, t)
we get α1,4α2,2 + α1,2α2,4 = d1,0t . Using the fact that α1,4α2,2, α1,2α2,4 ≤ 0 and that
d1,0t ≥ 0, we get α1,4α2,2 = α1,2α2,4 = d1,0 = 0. Similarly, using the coefficients of
y, we get α1,3α2,1 = α1,1α2,3 = d−1,0 = 0.
So, we have

α1,4α2,2 = α1,2α2,4 = α1,3α2,1 = α1,1α2,3 = 0.

The fact that K (x, y, t) has x- and y-degree 2 and x- and y-valuation 0 implies
that, for any i ∈ {1, 2}, none of the vectors (αi,4, αi,3), (αi,2, αi,1), (αi,4, αi,2) and
(αi,3, αi,1) is (0, 0). Since α1,4α2,2 = 0, we have α1,4 = 0 or α2,2 = 0. If α1,4 = 0,
from what precedes, we find

α1,4 = α2,4 = α2,1 = α1,1 = 0.

If α2,2 = 0 we obtain
α2,2 = α1,2 = α1,3 = α2,3 = 0.

In the first case, the model belongs to the family of models

{
,

}
. In the

second case, we find that the model belongs to the family of models

{
,

}
.

This completes the proof.

Remark 2.6 The fact di, j ∈ [0, 1] are probabilities is crucial in the proof of Propo-
sition 2.2. We do not expect this result to be correct for general di, j ∈ C.
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Remark 2.7 The “degenerate models of walks” are called “singular” by certain
authors, e.g., in [FIM99, FIM17]. Note also that, in [KR12], “singular walks” has
a different meaning and refers to models of walks such that the associated kernel
defines a genus zero curve.

Remark 2.8 In [DR19, Proposition 3], the authors show that Proposition 2.2 extends
mutatis mutandis to the case when t ∈]0, 1[ is algebraic over Q(di, j ). Their proof
relies on Proposition 2.2 and uses a continuity argument of the parameter t to deduce
that Proposition 2.2 stays correct for general values of t ∈]0, 1[.

From now on, we will only consider nondegenerate models of walks. In terms of
models of walks, this only discards one dimensional problems and models of walks
in the half-plane restricted to the quarter plane that are easier to study, as explained
in [BMM10, Section2.1].

3 Singularities and Genus of the Kernel Curve

The kernel curve Et is the complex affine algebraic curve defined by

Et = {(x, y) ∈ C × C | K (x, y, t) = 0}.

We shall now consider a compactification of this curve. We let P1(C) be the complex
projective line, which is the quotient of (C × C) \ {(0, 0)} by the equivalence relation
∼ defined by

(x0, x1) ∼ (x ′
0, x

′
1) ⇔ ∃λ ∈ C

∗, (x ′
0, x

′
1) = λ(x0, x1).

The equivalence class of (x0, x1) ∈ (C × C) \ {(0, 0)} is denoted by [x0 : x1] ∈
P
1(C). The map x �→ [x : 1] embeds C inside P

1(C). The latter map is not sur-
jective: its image is P1(C) \ {[1 : 0]}; the missing point [1 : 0] is usually denoted by
∞. Now, we embed Et inside P

1(C) × P
1(C) via (x, y) �→ ([x : 1], [y : 1]). The

kernel curve Et is the closure of this embedding of Et . In other words, the kernel
curve Et is the algebraic curve defined by

Et = {([x0 : x1], [y0 : y1]) ∈ P
1(C) × P

1(C) | K (x0, x1, y0, y1, t) = 0}

where K (x0, x1, y0, y1, t) is the following bihomogeneous polynomial

K (x0, x1, y0, y1, t) = x21 y
2
1K (

x0
x1

,
y0
y1

, t) = x0x1y0y1 − t
2∑

i, j=0

di−1, j−1x
i
0x

2−i
1 y j

0 y
2− j
1 . (3.1)
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Although it may seem more natural to take the closure of Et in P2(C), the above
definition allows us to extend the involutions of Et of Sect. 4 in a natural way as well
as allowing us to avoid unnecessary singularities.

We shall now study the singularities and compute the genus of Et . Recall that since
the model of walk under consideration is nondegenerate, the polynomial K (x, y, t)
is irreducible. We recall that by definition P = ([a : b], [c : d]) ∈ Et is called a
singularity of the irreducible kernel Et if

∂K (a, b, c, d, t)

∂x0
= ∂K (a, b, c, d, t)

∂x1
= ∂K (a, b, c, d, t)

∂y0
= ∂K (a, b, c, d, t)

∂y1
= 0.

Note that one can check this condition in any affine neighborhood of a point. For
example, if b, d �= 0, the bihomogeneity of K implies

0 = 2K (a/b, 1, c/d, 1, t) = a

b

∂K (a/b, 1, c, /d, 1, t)

∂x0
+ ∂K (a/b, 1, c, /d, 1, t)

∂x1

= c

d

∂K (a/b, 1, c, /d, 1, t)

∂y0
+ ∂K (a/b, 1, c, /d, 1, t)

∂y1
.

Therefore the point P = ([a : b], [c : d]) ∈ Et is a singular point if and only if

∂K (a/b, 1, c/d, 1, t)

∂x0
= ∂K (a/b, 1, c/d, 1, t)

∂y0
= 0.

If P = ([a : b], [c : d]) ∈ Et is not a singularity of Et , then it is called a smooth
point of Et .

We also recall that Et is called singular if it has at least one singular point.
Otherwise, we say that Et is nonsingular or smooth.

The genus of an algebraic curve is a classical notion in algebraic geometry. It is a
nonnegative integer that we may attach to a curve, see [Ful84, Section8.3] for a defi-
nition. The study of the genus of Et has been considered in [FIM17]. Proposition 3.1
below shows that the smoothness of Et is intimately related to the value of the genus
of Et . We define the genus of the weighted model of walk, as the genus of its kernel
curve Et .

Recall the following notations from the introduction:

K (x, y, t) = xy − t x A−1(x) − t x A0(x)y − t x A1(x)y2,
= xy − t yB−1(y) − t yB0(y)x − t yB1(y)x2,

where x Ai (x) ∈ Q[x] and yBi (y) ∈ Q[y]. Then we may write

K (x0, x1, y0, y1, t) = C1(x0, x1, t)y21 + B1(x0, x1, t)y0y1 + A1(x0, x1, t)y20
= C2(y0, y1, t)x21 + B2(y0, y1, t)x0x1 + A2(y0, y1, t)x20 .
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For any [x0 : x1] and [y0 : y1] in P
1(C), we denote by 
1([x0 : x1]) and 
2([y0 :

y1]) the discriminants of the degree two homogeneous polynomials given by y �→
K (x0, x1, y, t) and x �→ K (x, y0, y1, t) respectively, i.e.


1([x0 : x1]) = B1(x0, x1, t)
2 − 4A1(x0, x1, t)C1(x0, x1, t)

= (x0x1 − t2
(
(d−1,0x

2
1 − 1

t
x0x1 + d0,0x0x1 + d1,0x

2
0 )

2

−4(d−1,1x
2
1 + d0,1x0x1 + d1,1x

2
0 )(d−1,−1x

2
1 + d0,−1x0x1 + d1,−1x

2
0 )

)

and


2([y0 : y1]) = B2(y0, y1, t)
2 − 4A2(y0, y1, t)C2(y0, y1, t)

= t2
(
(d0,−1y

2
1 − 1

t
y0y1 + d0,0y0y1 + d0,1y

2
0 )

2

−4(d1,−1y
2
1 + d1,0y0y1 + d1,1y

2
0 )(d−1,−1y

2
1 + d−1,0y0y1 + d−1,1y

2
0 )

)
.

As we will see in the sequel, see Remark 3.3, 
1([x0 : x1]) has a double root if
and only if 
2([y0 : y1]) has a double root.
Proposition 3.1 For nondegenerate models, the following facts are equivalent:

(1) the curve Et is a genus zero curve;
(2) the curve Et is singular;
(3) the curve Et has exactly one singularity � ∈ Et ;
(4) there exists ([a : b], [c : d]) ∈ Et such that the discriminants 
1([x0 : x1]) and


2([y0 : y1]) have a root [a : b] ∈ P
1(C) and [c : d] ∈ P

1(C) respectively;
(5) there exists ([a : b], [c : d]) ∈ Et such that the discriminants 
1([x0 : x1]) and


2([y0 : y1]) have a double root [a : b] ∈ P
1(C) and [c : d] ∈ P

1(C) respec-
tively.

If these properties are satisfied, then the singular point is� = ([a : b], [c : d])where
[a : b] ∈ P

1(C) is a double root of
1([x0 : x1]) and [c : d] ∈ P
1(C) is a double root

of
2([y0 : y1]). If the previous properties are not satisfied, then Et is a smooth curve
of genus one.

Proof By [Dui10, Section3.3.1], the following formula gives the genus of Et ,

g(Et ) = 1 −
∑

P∈Sing

m(P)(m(P) − 1)

2
, (3.2)

where m(P) is a positive integer standing for the multiplicity of a point P , that is,
some partial derivative of orderm(P) does not vanish while for every � < m(P), the
partial derivatives of order � vanish at P . Since the genus is a nonnegative integer,
the above formula shows that g(Et) is equal to 0 or 1. This formula shows more
precisely that Et is smooth if and only if g(Et) = 1. Moreover (3.2) shows that if
Et is singular, then there is exactly one singular point that is a double point, and the
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curve has genus zero. This proves the equivalence between (1), (2) and (3), and the
last statement of the proposition.

Let us prove (4)⇒ (3). Assume that the discriminant
1([x0 : x1]) (resp.
2([y0 :
y1])) has a root in [a : b] ∈ P

1(C) (resp. [c : d] ∈ P
1(C)). Let us write

K (x0, x1, y0, y1, t)
= e−1,1(dy0 − cy1)

2 +e0,1(bx0 − ax1)(dy0 − cy1)
2 +e1,1(bx0 − ax1)

2(dy0 − cy1)
2

+ e−1,0(dy0 − cy1) +e0,0(bx0 − ax1)(dy0 − cy1) +e1,0(bx0 − ax1)
2(dy0 − cy1)

+ e−1,−1 +e0,−1(bx0 − ax1) +e1,−1(bx0 − ax1)
2.

Since ([a : b], [c : d]) ∈ Et , we have by definition that K (a, b, c, d, t) = 0, i.e.
e−1,−1 = 0. Since 
1([x0 : x1]) has a root in [a : b] ∈ P

1(C), K (a, b, y0, y1) has
a double root at [c, d] and so e−1,0 = 0. Similarly, the fact that 
2([y0 : y1]) has a
root in [c : d] ∈ P

1(C) implies e0,−1 = 0. This shows that

∂K (a, b, c, d, t)

∂x0
= ∂K (a, b, c, d, t)

∂x1
= ∂K (a, b, c, d, t)

∂y0
= ∂K (a, b, c, d, t)

∂y1
= 0,

and, hence, ([a : b], [c : d]) is the singular point of Et .
Let us prove (3) ⇒ (5). If � = ([a : b], [c : d]) is the singular point of Et , then

e−1,−1 = e−1,0 = e0,−1 = 0, and the discriminants 
1([x0 : x1]) and 
2([y0 : y1])
have a double root in [a : b] ∈ P

1(C) and [c : d] ∈ P
1(C) respectively.

The implication (5) ⇒ (4) is obvious.

Our next aim is to describe the genus zero models of walks.

Lemma 3.2 The discriminant 
2([y0 : y1]) has a double zero if and only if the
model of the walk is included in a closed half plane whose boundary passes through
(0, 0). In other word, this correspond to models of the walks that belong to one of
the following eight families

Remark 3.3 As the statement of Lemma 3.2 is symmetric with respect to x and y
we deduce that the same holds for 
1([x0 : x1]). We then deduce that 
1([x0 : x1])
has a double root if and only if 
2([y0 : y1]) has a double root.
Remark 3.4 In the case t = 1, it is proved in [FIM17, Lemma 2.3.10] that, besides
the models listed in Lemma 3.2, any nondegeneratemodel such that the drift is zero,
i.e.

(
∑

i idi, j ,
∑

j jdi, j ) = (0, 0),

has a curve Et of genus 0.
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Proof The computations seem to be too complicated to be performed by hand, so we
usedmaple.2 We are going to prove the result with two strategies. This first one is to
write the discriminant of the discriminant 
2([y0 : y1]) and study when the latter is
0. The second strategy consists in decomposing the radical of an ideal into its prime
components.
Let us first consider the situationwhere the double root is at (a, b)where b is not zero.
Let us set y1 = 1 and y0 = y to obtain the specialization
2([y : 1]) of
2([y0 : y1]).

The following Maple code calculates the discriminant of the discriminant, its
degree and order of vanishing in t , and then sets the coefficients of powers of t equal
to zero. Solving these equations yields the 8 solutions S[i], i = 1, …,8 corresponding
to the 8 step sets listed in Lemma 3.2.

> K := expand(x*y*(1-t*(add(add(d[i, j]*xˆi*yˆj, i = -1 .. 1), j = -1 .. 1)))):
> DX := discrim(K, x):
> DD := discrim(discrim(K,x),y);
> ldegree(DD,t); degree(DD,t);

4

12

> S := solve({seq(coeff(DD,t,i),i=4..12)},[seq(seq(d[i,j],i=-1..1),j=-1..1)]);

> nops(S);

8

> S[1];S[2];S[3];S[4];S[5];S[6];S[7];S[8];

An alternate approach is to use the PolynomialIdeals package

> with(PolynomialIdeals):

and consider the prime decomposition of the radical of the ideal

> J := <seq(coeff(DD,t,i), i=4..12)>:

> PrimeDecomposition(J);

< d−1,−1, d−1,0, d−1,1 >, < d−1,−1, d−1,0, d0,−1 >, < d−1,−1, d0,−1, d1,−1 >,

< d−1,0, d−1,1, d0,1 >, < d−1,1, d0,1, d1,1 >, < d0,−1, d1,−1, d1,0 >,

< d0,1, d1,0, d1,1 >, < d1,−1, d1,0, d1,1 >.

The PrimeDecomposition command lists a set of prime ideals whose intersection
is the radical of the original ideal. In particular, these ideals have the property that
any zero of the original ideal is a zero of one of the listed ideals and vice versa, see
[CLO97, Chapter 4, Sect. 6]. These again correspond to the eight step sets listed in

2 The maple worksheet is available at https://singer.math.ncsu.edu/ms_papers.html.

https://singer.math.ncsu.edu/ms_papers.html
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Lemma 3.2.

We now consider the case where the double root is at (a, b) where b = 0, that
is, at (1, 0). We will show that this case leads to models of walks already mentioned
above.

> DDX := expand(zˆ4*subs(y = 1/z, DX)):

If z = 0 is a double root then the coefficient of 1 and z must be zero

> coeff(DDX, z, 0); coeff(DDX, z, 1);

−4 t2d−1,1d1,1 + t2d0,12

−4 t2d−1,0d1,1 − 4 t2d−1,1d1,0 + 2 t2d0,0d0,1 − 2 td0,1

Taking into account that t is transcendental overQ(di, j ), we are led to three cases,
corresponding to three of the step sets in Lemma 3.2.

[d0,1 = 0, d−1,1 = 0, d−1,0 = 0]
[d0,1 = 0, d−1,1 = 0, d1,1 = 0]
[d0,1 = 0, d1,1 = 0, d1,0 = 0]

Remark 3.5 The proof of Proposition 2.2 proceeds by a direct “hand calculation”
while the proof of Lemma 3.2 follows from a simple maple calculation. It would
be interesting to have a simple maple based proof of Proposition 2.2 and a hand
calculation proof of Lemma 3.2.

Corollary 3.6 The following holds:

(1) The nondegenerate genus zero models of walks are the nondegenerate models
whose step set is included in an half space whose boundary passes through
(0, 0). More precisely, they are nondegenerate models belonging to one of the
following families

(G0)

(2) The nondegenerate genus one models of walks are the models whose step set is
not included in any half space whose boundary passes through (0, 0).
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Remark 3.7 See also [DR19, Proposition 9] for an extension of Corollary 3.6 to the
case when t ∈]0, 1[ is algebraic over Q(di, j ). Their proof relies on the results of the
present section and uses a continuity argument with respect to the parameter t to
deduce that Corollary 3.6 stays correct for general values of t ∈]0, 1[.
Proof We use Proposition 3.1. We have to determine when there exists ([a : b],
[c : d]) ∈ Et such that the discriminants 
1([x0 : x1]) and 
2([y0 : y1]) have a dou-
ble root [a : b] ∈ P

1(C) and [c : d] ∈ P
1(C). Lemma 3.2 provides such configura-

tions. By Proposition 2.2, the configurations number 1, 3, 5, 7 are dismissed since
they led to singular walks. Then, if we are considering nondegenerate genus zero
models of walks, we are in the four families of models considered in (G0). Further-
more, if the step set is not included in any half space whose boundary passes through
(0, 0), the configurations of Proposition 2.2 and Lemma 3.2 are excluded and by
Proposition 3.1, we are in the genus 1 situation.
Conversely, it remains to prove that if the models of walks are in the four families
of models considered in (G0), the kernel has genus 0. Thanks to Proposition 3.1 it
suffices to prove that the discriminants have a common zero in that case. This is the
goal of the following Lemma 3.8 and Remark 3.9.

Let us write


1([x0 : x1]) =
4∑

i=0

αi (t)x
i
0x

4−i
1 , and 
2([y0 : y1]) =

4∑

i=0

βi (t)y
i
0y

4−i
1 .

where

α0(t) = t2d2−1,0 − 4t2d−1,1d−1,−1

α1(t) = 2t2d−1,0d0,0 − 2td−1,0 − 4t2d−1,1d0,−1 − 4t2d0,1d−1,−1
α2(t) = t2d20,0 − 2td0,0 + 1 + 2t2d−1,0d1,0 − 4t2d−1,1d1,−1 − 4t2d0,1d0,−1 − 4t2d1,1d−1,−1

α3(t) = −2td1,0 + 2t2d0,0d1,0 − 4t2d1,1d0,−1 − 4t2d0,1d1,−1
α4(t) = t2d21,0 − 4t2d1,1d1,−1

β0(t) = t2d20,−1 − 4t2d1,−1d−1,−1

β1(t) = 2t2d0,−1d0,0 − 2td0,−1 − 4t2d1,−1d−1,0 − 4t2d1,0d−1,−1
β2(t) = t2d20,0 − 2td0,0 + 1 + 2t2d0,−1d0,1 − 4t2d1,−1d−1,1 − 4t2d1,0d−1,0 − 4t2d1,1d−1,−1

β3(t) = −2td0,1 + 2t2d0,0d0,1 − 4t2d1,1d−1,0 − 4t2d1,0d−1,1
β4(t) = t2d20,1 − 4t2d1,1d−1,1.

Note that 
1([x0 : x1]) (resp. 
2([y0 : y1])) is of degree 4 and so has four roots
counted with multiplicities a1, a2, a3, a4 (resp. b1, b2, b3, b4) in P

1(C). If the dis-
criminant 
1([x0 : x1]) (resp. 
2([y0 : y1])) has a double root; up to renumbering,
we can assume that a1 = a2 (resp. b1 = b2).

Lemma 3.8 Assume that the model of the walk is nondegenerate and belongs to the
first family of (G0)
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Then, the walk has genus zero and the singular point of Et is � = ([0 : 1], [0 : 1]),
that is, a1 = a2 = [0 : 1] (resp. b1 = b2 = [0 : 1]) is a double root of 
1([x0 : x1])
(resp. 
2([y0 : y1])). The other roots are distinct from one another and from the
double root and are given by

a1 = a2 b1 = b2

[0 : 1] [0 : 1]

a3 a4

α4(t) �= 0
[
−α3(t) −

√
α3(t)2 − 4α2(t)α4(t) : 2α4(t)

] [
−α3(t) +

√
α3(t)2 − 4α2(t)α4(t) : 2α4(t)

]

α4(t) = 0 [1 : 0] [−α2(t) : α3(t)]

b3 b4

β4(t) �= 0
[
−β3(t) −

√
β3(t)2 − 4β2(t)β4(t) : 2β4(t)

] [
−β3(t) +

√
β3(t)2 − 4β2(t)β4(t) : 2β4(t)

]

β4(t) = 0 [1 : 0] [−β2(t) : β3(t)]

Remark 3.9 We can extend Lemma 3.8 to the other configurations in (G0) by using
the following remarks:

(1) Replacing ([x0 : x1], [y0 : y1]) by ([x0 : x1], [y1 : y0]), which corresponds to the
variable change (x, y) �→ (x, y−1), amounts to consider a weighted model of
walk with weights d ′

i, j := di,− j . This can be used to extend Lemma 3.8 to the

second configuration of (G0); for instance, the singular point of Et is � = ([0 :
1], [1 : 0]) in that case.

(2) Replacing ([x0 : x1], [y0 : y1]) by ([x1 : x0], [y1 : y0]) amounts to consider a
weighted model of walk with weights d ′

i, j := d−i,− j . This can be used to extend
Lemma 3.8 to the third configuration of (G0); for instance, the singular point of
Et is � = ([1 : 0], [1 : 0]) in that case.

(3) Replacing ([x0 : x1], [y0 : y1]) by ([x1 : x0], [y0 : y1]) amounts to consider a
weighted model of walk with weights d ′

i, j := d−i, j . This can be used to extend
Lemma 3.8 to the fourth configuration of (G0); for instance, the singular point
of Et is � = ([1 : 0], [0 : 1]) in that case.

Remark 3.10 Note that if we consider the x3, x4 (resp. y3, y4) defined in [FIM17,
Chapter 6], we have the equality of sets {a3, a4} = {x3, x4} and {b3, b4} = {y3, y4},
but do not have necessarily ai = xi , b j = y j , with 3 ≤ i, j ≤ 4.

Proof of Lemma 3.8 We shall prove the lemma for 
2([y0 : y1]), the proof for

1([x0 : x1]) being similar. By assumption, d−1,−1 = d−1,0 = d0,−1 = 0.
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Then, α0(t) = α1(t) = 0. Therefore, the discriminant 
2([y0 : y1]) has a double
root at [0 : 1] and we can write


2([y : 1]) = β2(t)y2 + β3(t)y3 + β4(t)y4.

Since t is transcendental over Q(di, j ), we see that the coefficient of y2 is nonzero.
Therefore [0 : 1] is precisely a double root of 
2([y0 : y1]). To see that b3 and b4 are
distinct, we calculate the discriminant of 
2([y : 1])/y2, which is almost the same
as the one we considered in the proof of Lemma 3.2. This is a polynomial of degree
four in t with the following coefficients:

term coefficient
t4 −16(4d−1,1d1,−1d1,1 − d1,−1d2

1,0 − d2
0,0d1,1 + d0,0d0,1d1,0 − d2

0,1d1,−1)d−1,1

t3 −16(2d0,0d1,1 − d0,1d1,0)d−1,1

t2 16d−1,1d1,1
t 0
1 0

Let us prove that if
2([y0 : y1]) has a double root different from [0 : 1], all the above
coefficients must be zero. Recalling that d−1,1d1,−1 �= 0, from the coefficient of t2,
we must have d1,1 = 0. From the coefficient of t3, we have that d0,1 = 0 or d1,0 = 0.
From the coefficient of t4, we get in both cases d0,1 = d1,0 = 0. This implies that the
model of the walk would be degenerate, a contradiction. The formulas for b3 and b4
follow from the quadratic formula.

4 Involutive Automorphisms of the Kernel Curve

Following [BMM10, Section3], [KY15, Section3] or [FIM17], we consider the
involutive rational functions

i1, i2 : C2 ��� C
2

given by

i1(x, y) =
(

x,
A−1(x)

A1(x)y

)

and i2(x, y) =
(
B−1(y)

B1(y)x
, y

)

.

Note that i1, i2 are “only” rational functions in the sense that they are a priori not
defined when the denominators vanish. The dashed arrow notation used above and
in the rest of the paper is a classical notation for rational functions.

The rational functions i1, i2 induce involutive rational functions

ι1, ι2 : Et ��� Et
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given by

ι1([x0 : x1], [y0 : y1]) =
(

[x0 : x1],
[

A−1(
x0
x1

)

A1(
x0
x1

)
y0
y1

: 1
])

,

and ι2([x0 : x1], [y0 : y1]) =
([

B−1(
y0
y1

)

B1(
y0
y1

) x0x1

: 1
]

, [y0 : y1]
)

.

Again, these functions are a priori not defined where the denominators vanish. How-
ever, the following result shows that, actually, this is only an “apparent problem”:
ι1 and ι2 can be extended into endomorphisms of Et . We recall that a rational map
f : Et ��� Et is an endomorphism if it is regular at any P ∈ Et , i.e. if f can be rep-
resented in suitable affine charts containing P and f (P) by a rational function with
nonvanishing denominator at P . More generally, given X and Y algebraic varieties,
we say that f : X ��� Y is a morphism if f can be represented by two suitable affine
charts containing P and f (P) respectively, by a rational function with nonvanishing
denominator at P .

Proposition 4.1 The rationalmaps ι1, ι2 : Et ��� Et can be extended into involutive
automorphisms of Et .

Proof Note that ι1(x, y) is well-defined if the xi and the y j are nonzero and if
A1(

x0
x1

)
y0
y1

is nonzero. This excludes at most finitely many (x, y) ∈ Et and, hence,

there exists a finite set S0 ⊂ Et such that ι1 is well defined on Et \ S0. The map ι1
induces a bijection from Et \ S0 to Et \ S1, where S1 is a finite set. The same holds
for ι2. We have to prove that ι1, ι2 : Et ��� Et can be extended into endomorphisms
of Et . According to Proposition 3.1, if the curve Et has genus one, then it is smooth
and the result follows from [Har77, Proposition 6.8, p. 43].

It remains to study the case when Et has genus zero. In that case, Proposition
3.1 ensures that Et has a unique singularity �. It follows from [Har77, Proposition
6.8, p. 43] that ι1 and ι2 can be uniquely extended into morphisms Et \ {�} → Et

still denoted by ι1 and ι2. It remains to study ι1 and ι2 at �. Let us first assume
that the walk under consideration belongs to the family of the first configuration of
(G0). Lemma 3.8 ensures that � = ([0 : 1], [0 : 1]). For ([x : 1], [y : 1]) ∈ Et , the
equation K (x, y, t) = 0 implies that

A−1(x)

A1(x)y
= 1

t A1(x)
− A0(x)

A1(x)
− y = x

t Ã1(x)
− Ã0(x)

Ã1(x)
− y (4.1)

where Ã0(x) = x A0(x) = d−1,0 + d0,0x + d1,0x2 and Ã1(x) = x A1(x) = d−1,1 +
d0,1x + d1,1x2. Since d−1,1 �= 0, Ã1(x) does not vanish at x = 0. Since d−1,0 = 0,
Ã0(x) vanishes at x = 0. So, (4.1) shows that ι1 is regular at � and that ι1(�) = �.
The argument for ι2 is similar.
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Fig. 1 The maps ι1, ι2
restricted to the kernel curve
Et

•

•

•

•

•

P ι2(P )

ι1(P ) σ(P )

σ−1(P )
Et

The other cases listed in (G0) can be treated similarly using a reduction argument
as in Remark 3.9.

We also consider the automorphism of Et defined by

σ = ι2 ◦ ι1.

It is easily seen that ι1 and ι2 are the vertical and horizontal switches of Et (see
Fig. 1), i.e. for any P = (x, y) ∈ Et , we have

{P, ι1(P)} = Et ∩ ({x} × P
1(C)) and {P, ι2(P)} = Et ∩ (P1(C) × {y}).

We now give a couple of lemmas for later use.

Lemma 4.2 A point P = ([x0 : x1], [y0 : y1]) ∈ Et is fixed by ι1 if and only if

1([x0 : x1]) = 0. A point P = ([x0 : x1], [y0 : y1]) ∈ Et is fixed by ι2 if and only if

2([x0 : x1]) = 0.

Proof Assume that P is fixed by ι1. Then, the polynomial [y0 : y1] �→ K (x0, x1, y0,
y1, t) has a double root, meaning that the discriminant is zero. This is exactly

1([x0 : x1]) = 0. Conversely,
1([x0 : x1]) = 0 implies that [y0 : y1] �→ K (x0, x1,
y0, y1, t) has a double root and therefore P is fixed by ι1. The proof for ι2 is similar.

The fixed points of ι1 have y-coordinates that are the double roots of y �→
K (x0, x1, y, t), i.e. they are the roots of the discriminant. By Lemma 3.8 and Remark
3.9, there are 3 points of Et that are fixed by ι1. A similar statement holds for ι2. As
is shown in the following lemma, one of them plays a particular role.

Lemma 4.3 Let P ∈ Et . The following statements are equivalent:

(1) P is fixed by ι1 and ι2;
(2) P is a singular point of Et ;
(3) P is fixed by σ = ι2 ◦ ι1.

Proof Let P = ([a : b], [c : d]) ∈ Et . From Proposition 3.1, we have that P is a
singular point if and only if 
1([x0 : x1]) and 
2([y0 : y1]) vanish at [a : b] and
[c : d] respectively. We conclude with Lemma 4.2, that (1) is equivalent to (3).
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Clearly, (1) implies (3). It remains to prove that (3) implies (1). Assume that
P = (a1, b1) is fixed by σ . After writing ι1(P) = (a1, b′

1) and ι2(ι1(P)) = (a′
1, b

′
1),

it is clear that σ(P) = P implies successively ι1(P) = P and ι2(P) = P .

5 Uniformization of the Kernel Curve

We still consider a weighted model of nondegenerate walk. The aim of this section
is to give an explicit uniformization of Et . Thanks to Proposition 3.1, the latter may
have genus zero or one. Although there are algorithms to compute such uniformiza-
tions, see for instance [vH97, SWPD08], our presentation of explicit uniformizations
allows us to understand in detail the pull-backs of σ , ι1 and ι2 and therefore their
effect on the generating series of the models of walks. Let us start with the genus
zero case.

5.1 Genus Zero Case

Let us consider a nondegenerate weighted model of walks of genus zero. Thank to
Corollary 3.6 combined with Remark 3.9, it suffices to consider the situation where
the nondegenerate model of walk arises from the following family

Genus zero curves may be parametrized with maps φ : P1(C) → Et which are
bijective outside a finite set. The aim of this subsection, achieved with Proposi-
tion 5.7, is to find such a parametrization explicitly. Although we could have just
written down the formula for this parametrization and verified its properties, we have
preferred to explain how the formula arises. This requires a preliminary study of the
automorphisms of P1(C) obtained by pulling back the maps σ , ι1 and ι2 by φ, which
is done with a series of lemmas preceding Proposition 5.7.

According to Lemma 3.8, Et has a unique singular point � = (a1, b1) =
([0 : 1], [0 : 1]). Moreover 
1([x0 : x1]) has degree four with a double root at
a1 = [0 : 1] and the remaining two roots a3, a4 are distinct. We let S3 and S4 be
the points of Et with first coordinate a3 and a4 respectively. Similarly, 
2([y0 : y1])
has degree four with a double root at b1 = [0 : 1] and the remaining two roots b3, b4
are distinct. We let S′

3 and S′
4 be the points of Et with second coordinates b3 and b4

respectively.
Since Et has genus zero, there is a rational parametrization of Et [Ful89, Page

198, Ex.1], i.e. there exists a birational map
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φ = (x̌, y̌) : P1(C) ��� Et

s �→ (x̌(s), y̌(s)).

To simplify the notation, we will abusively denote (x̌, y̌) by (x, y). We will now
follow the ideas contained in [FIM17] to produce an explicit uniformization of
Et in Proposition 5.7. If we set t = 1, we recover the uniformization of [FIM17,
Section6.4.3]. However, it is not clear if their proof can be simply modified to hold
in our context, so we preferred to give proofs here with a slightly different strategy.

Lemma 5.1 Themapφ is surjective and induces abijectionbetweenP1(C) \ φ−1(�)

and Et \ {�}.
Proof Asanynonconstant rationalmap fromP

1(C) to a projective curve,φ is actually
a surjective morphism of curves, see [Ful89, Corollary 1, Page 160]. Since � is the
unique singular point of Et , the result follows.

The maps x, y : P1(C) → P
1(C) are surjective morphisms of curves as well.

We let s3, s4 ∈ P
1(C) (resp. s ′

3, s
′
4 ∈ P

1(C)) be such that S3 = φ(s3) and S4 =
φ(s4) (resp. S′

3 = φ(s ′
3) and S′

4 = φ(s ′
4)).

We will need to know the cardinality of x−1(P) (resp. y−1(P)) for P ∈ P
1(C).

This quantity might depend on P but it is a general fact about morphisms of curves
that the cardinality of x−1(P) (resp. y−1(P)) is constant for P outside a finite subset
of P1(C). This common value is called the degree of x (resp. y). Inside this finite
set, the cardinality can only fall, so is less than the degree.

Lemma 5.2 The morphisms x, y : P1(C) → P
1(C) have degree two.

Proof We will see that this is a consequence of the fact that Et is a biquadratic
curve. Observe that by Lemma 5.1, φ induces a bijection between P

1(C) \ φ−1(�)

and Et \ {�}. Any (a, b) ∈ Et with a �= a1 cannot be � and therefore has a unique
preimage by φ. Additionally, let Z be the finite set of zeros of the discriminant 
1.
Then, for any a /∈ Z , the cardinality ({a} × P

1(C)) ∩ Et is two. Since x−1(a) =
φ−1(({a} × P

1(C)) ∩ Et ) and a1 ∈ Z , it follows that if a /∈ Z , the cardinality of
x−1(a) is two. So, x has degree two. The argument for y is similar.

Since φ is a birational map, the involutive automorphisms ι1, ι2 of Et induce invo-
lutive automorphisms ι̃1, ι̃2 of P1(C) via φ. Similarly, σ induces an automorphism
σ̃ of P1(C). In other words, we have the commutative diagrams

Note that since by Lemma 5.1 φ induces a bijection between P
1(C) \ φ−1(�) and

Et \ {�} and � is fixed by ι1, ι2, see Lemma 4.3, the group generated by ι1 and ι2 is
isomorphic to the group generated by ι̃1 and ι̃2. Thus we recover the same group as
in [BMM10] for instance. Note that although the cardinal of the group may depends
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upon t , see Remark 5.13, since the maps ι1, ι2 are defined onQ(di, j )(t), two distinct
values of t transcendental over Q(di, j ) lead to isomorphic groups. We summarize
some remarks in the following lemmas.

Lemma 5.3 We have x = x ◦ ι̃1 and y = y ◦ ι̃2.

Proof We obtain x = x ◦ ι̃1 by equating the first coordinates in the equality φ ◦ ι̃1 =
ι1 ◦ φ and we obtain y = y ◦ ι̃2 by equating the second coordinates in the equality
φ ◦ ι̃2 = ι2 ◦ φ.

Lemma 5.4 Let P = φ(s) ∈ Et and let k ∈ {1, 2}. We have:
• if ι̃k(s) = s, then ιk(P) = P;
• if P �= � and ιk(P) = P, then ι̃k(s) = s.

Furthermore the map ι̃1 (resp. ι̃2) has exactly two fixed points, namely s3 and s4 (resp.
s ′
3 and s ′

4).

Proof Wehave ιk(P) = ιk(φ(s)) = φ(ι̃k(s)). The first assertion is now clear, and the
second one follows from the fact thatφ is injective on Et \ φ−1(�). Since S3, S4 �= �

are fixed by ι1, this shows that s3 and s4 are fixed by ι̃1. Similar proof holds for ι̃2.
It remains to prove that there are exactly two points fixed by ι̃k . To the contrary,

assume that there is a third point fixed by ι̃k . Since ι̃k is an automorphism of P1(C),
i.e. an homography, with three fixed points, it is the identity. This is a contradiction
and concludes the proof of the lemma.

Lemma 5.5 The preimage of � by φ has two elements.

Proof We know that x, y : P1(C) → P
1(C) have degree two, so φ−1(�) has one

or two elements. Suppose that φ−1(�) has exactly one element, say s1. In virtue of
φ(s3) = S3 and φ(s4) = S4, s1 is different to s3, s4. Since φ(ι̃1(s1)) = ι1(φ(s1)) =
ι1(�) = �, we have ι̃1(s1) = s1. This contradicts Lemma 5.4. Hence, φ−1(�) has
two elements.

From now on, we define s1 �= s2 the two preimages of � by φ, that is

{s1, s2} := φ−1(�).

Lemma 5.6 The map ι̃1 (resp. ι̃2) interchanges s1 and s2. The map σ̃ has exactly
two distinct fixed points: s1 and s2.

Proof We have φ(s) = � if and only if s = s1 or s2 and the equality ι1(φ(s)) =
φ(ι̃1(s)) shows that ι̃1 induces a permutation of φ−1(�) = {s1, s2}. By Lemma 5.4,
s1 is not fixedby ι̃1, showing that the permutation is not the identity, i.e. ι̃1 interchanges
s1 and s2.

The proof for ι̃2 is similar.
As any homography which is not the identity, σ̃ has at most two fixed points in

P
1(C). It only remains to prove that s1 and s2 are fixed by σ̃ , and this is indeed the

case because σ̃ = ι̃2 ◦ ι̃1 and ι̃1, ι̃2 interchange s1 and s2.
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0 ∞

1

−1

λ

−λ

Ω

S3

S4

S′
3

S′
4

φ : P1(C) −→ Et

Fig. 2 An idealized representation of the uniformization map used in Proposition 5.7. The left
hand side represents the complex Riemann sphere and the right hand side the curve Et , seen as an
abstract complex algebraic curve

We are now ready to give an explicit expression of φ. The coefficients αi , βi of
the discriminants in this situation are given by the formulas

α0(t) = α1(t) = 0
β0(t) = β1(t) = 0
α2(t) = β2(t) = 1 − 2td0,0 + t2d2

0,0 − 4t2d−1,1d1,−1

α3(t) = 2t2d1,0d0,0 − 2td1,0 − 4t2d0,1d1,−1

β3(t) = 2t2d0,1d0,0 − 2td0,1 − 4t2d1,0d−1,1

α4(t) = t2(d2
1,0 − 4d1,1d1,−1)

β4(t) = t2(d2
0,1 − 4d1,1d−1,1).

Note that for k = 3, 4, βk(t), may be obtained from αk(t) by interchanging d1,0 with
d0,1 and d1,−1 with d−1,1.

Proposition 5.7 An explicit parametrization φ : P1(C) → Et such that

ι̃1(s) = 1

s
, ι̃2(s) = λ2

s
= q

s
and σ̃ (s) = qs

for a certain λ ∈ C
∗ is given by

φ(s) =
(

4α2(t)√
α3(t)2 − 4α2(t)α4(t)(s + 1

s ) − 2α3(t)
,

4β2(t)√
β3(t)2 − 4β2(t)β4(t)(

s
λ + λ

s ) − 2β3(t)

)

.
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Moreover, we have, see Fig.2

x(0) = x(∞) = a1, x(1) = a3, x(−1) = a4,
y(0) = y(∞) = b1, y(λ) = b3, y(−λ) = b4.

Proof According to Lemma 5.6, ι̃1 is an involutive homography with fixed points
s3 and s4, so there exists an homography h such that h(s3) = 1, h(s4) = −1 and
h ◦ ι̃1 ◦ h−1(s) = 1/s. Up to replacing φ by φ ◦ h, we can assume that s3 = 1, s4 =
−1 and ι̃1(s) = 1

s . Since s1 �= s2, we can assume up to renumbering that s1 �= ∞.
Let us consider the homography k(s) = s−s1

−s1s+1 . Note that k commutes with s �→
1/s, so changing φ by φ ◦ k does not affect ι̃1, and we can also assume that s1 =
[0 : 1] and s2 = [1 : 0]. Lemma 5.2 and Lemma 5.3 ensure that the morphism x :
P
1(C) → P

1(C) has degree two and satisfies x(s) = x(1/s) for all s ∈ P
1(C). Since

the morphism x : P1(C) → P
1(C) has degree two, see Lemma 5.2, it follows that

x(s) = a(s + 1/s) + b

c(s + 1/s) + d

for some a, b, c, d ∈ C. We have x(s1) = x([0 : 1]) = a1 = 0, x(s2) = x([1 : 0]) =
a1 = 0, x(s3) = x([1 : 1]) = a3 and x(s4) = x([−1 : 1]) = a4. The equality x([1 :
0]) = 0 implies a = 0. The equalities x([1 : 1]) = a3 and x([−1 : 1]) = a4 imply

x(s) = 4a3a4
(a4 − a3)(s + 1

s ) + 2(a3 + a4)
.

The known expressions for a3 and a4 given in Lemma 3.8 lead to the expected
expression for x(s).

According to Lemma 5.6, ι̃2 is an homography interchanging [0 : 1] and [1 : 0],
so ι̃2(s) = λ2

s for some λ ∈ C
∗. Up to renumbering, we have s ′

3 = λ and s ′
4 = −λ.

Using the fact that the morphism y : P1(C) → P
1(C) has degree two and is invariant

by ι̃2, and arguing as we did above for x , we see that there exist α, β, γ, η ∈ C such
that

y(s) = α( s
λ

+ λ
s ) + β

γ ( s
λ

+ λ
s ) + η

.

The equality y([1 : 0]) = 0 implies α = 0. Using the equalities y(s ′
3) = y(λ) = b3

and y(s ′
4) = y(−λ) = b4, and arguing as we did above for x , we obtain the expected

expression for y(s).

Remark 5.8 (1) The uniformization is not unique. More precisely, the possible uni-
formizations are of the form φ ◦ h, where h is an homography. However, if one
requires that h fixes setwise {[0 : 1], [1 : 0]} then q is uniquely defined up to
inversion.

(2) The real q or q−1 specializes for t = 1 to the real ρ2 in [FIM17, Page 178].
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The following proposition determines q up to its inverse. We include this for
completeness.

Proposition 5.9 [DHRS20], Proposition 1.7, Corollary 1.10). One of the two com-
plex numbers q or q−1 is equal to

−1 + d0,0t − √
(1 − d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t + √
(1 − d0,0t)2 − 4d1,−1d−1,1t2

.

Furthermore, q ∈ R \ {±1}.
Remark 5.10 This implies that σ and σ̃ have infinite order (see also [BMM10,
FR11]). Because σ is induced on Et by i1 ◦ i2, we find that i1 ◦ i2 has infinite order
as well. It follows that the group of the walk introduced in [BMM10], which is by
definition the group generated by i1 and i2, has infinite order. Note that this was
proved in [BMM10] using a valuation argument.

Remark 5.11 We stress the fact that since φ(s), q and Et depend continuously on
t and the set of transcendental number over Q(di, j ) in ]0, 1[ is dense in ]0, 1[, we
deduce that Proposition 5.7 and Proposition 5.9 stay valid for every t ∈]0, 1[.

5.2 Genus One Case

In this section, we consider the uniformization problem in the genus one context.
This problem has been solved in [DR19]. We recall below the main result of [DR19],
for the sake of completeness. Let us consider a nondegenerate model of walk of genus
one. By Proposition 3.1, Et is a smooth curve of genus one and, by Corollary 3.6, this
corresponds to the situation where the step set is not included in any half plane whose
boundary passes through (0, 0). By [WW96, Chapter XX], it is biholomorphic to
C/(Zω1 + Zω2) for some lattice Zω1 + Zω2 of C via some (Zω1 + Zω2)-periodic
holomorphic map

� : C → Et

ω �→ (q1(ω), q2(ω)),
(5.1)

where q1, q2 are rational functions of ℘ and its derivative d℘/dω, and ℘ is the
Weierstrass function associated with the lattice Zω1 + Zω2:

℘(ω) = ℘(ω;ω1, ω2) := 1

ω2 +
∑

(�1,�2)∈Z2\{(0,0)}

(
1

(ω + �1ω1 + �2ω2)
2 − 1

(�1ω1 + �2ω2)
2

)

.

(5.2)
Then, the field of meromorphic functions on Et is isomorphic to the field of mero-
morphic functions on C/(Zω1 + Zω2), which is itself isomorphic to the field of
meromorphic functions on C that are (ω1, ω2)-periodic. The latter field is equal to
C(℘,℘ ′), see [WW96].
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The maps ι1, ι2 and σ may be lifted to the ω-plane C. We denote these lifts by ι̃1,
ι̃2 and σ̃ respectively. So we have the commutative diagrams

The following result has been proved

• in [FIM17, Section3.3] when t = 1,
• in [Ras12] in the unweighted case for general 0 < t < 1, not necessarily transcen-
dental over Q(di, j ),

• in [DR19, Proposition 18] in the weighted case, with general 0 < t < 1, not nec-
essarily transcendental over Q(di, j ).

In what follows, we set D(ω) = 
1([ω : 1]). Let us introduce z = 2A(x)y +
B(x),where A(x) = t (d−1,1 + d0,1x + d1,1x2), and B(x) = t (d−1,0 − 1

t x + d0,0x +
d1,0x2).

Proposition 5.12 An explicit uniformization � : C → Et such that

ι̃1(ω) = −ω, ι̃2(ω) = −ω + ω3 and σ̃ (ω) = ω + ω3,

for a certain ω3 ∈ C
∗ is given by

�(ω) = (x(ω), y(ω))

where x(ω) and y(ω) are given by

x(ω) z(ω)

a4 �= [1 :0]
[
a4 + D′(a4)

℘ (ω)− 1
6 D

′′(a4)
: 1

] [
D′(a4)℘ ′(ω)

2(℘ (ω)− 1
6 D

′′(a4))2
: 1

]

a4 = [1 :0] [
℘(ω) − α2/3 : α3

] [−℘ ′(ω) : 2α3
]

A suitable choice for the periods (ω1, ω2) is given by the elliptic integrals

ω1 = i
∫ a4

a3

dx√|D(x)| ∈ iR>0 and ω2 =
∫ a1

a4

dx√
D(x)

∈ R>0. (5.3)

Note that, according to [DR19, Section2],

ω3 =
∫ X±(b4)

a4

dx√
D(x)

∈]0, ω2[.
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Remark 5.13 Contrary to the genus zero situation, the map σ may have finite order.

Acknowledgment The authors want to warmly thank the referees for their detailed and helpful
comments.
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