
An Algorithm to Compute

Liouvillian Solutions of Prime Order

Linear Difference-Differential Equations

Ruyong Feng 1

Key Lab of Mathematics-Mechanization, Chinese Academy of Sciences,
No.55 Zhongguancun East Road,

Beijing 100190, China,

Michael F. Singer 2

North Carolina State University, Department of Mathematics, Box 8205, Raleigh, North Carolina
27695-8205, USA,

Min Wu 3

Shanghai Key Lab of Trustworthy Computing, East China Normal University,
Shanghai 200062, China

Abstract

A normal form is given for integrable linear difference-differential equations {σ(Y ) = AY, δ(Y ) =
BY }, which is irreducible over C(x, t) and solvable in terms of liouvillian solutions. We refine
this normal form and devise an algorithm to compute all liouvillian solutions of such kind of
systems of prime order.

Key words: linear difference-differential equations, normal form, algorithm, liouvillian
solutions.

1 Email:ryfeng@amss.ac.cn. The author is partially supported by NKBRPC 2004CB318000 and
NSFC10671200. The work was done during a stay of the first author at Department of Mathematics,

North Carolina State University (NCSU) and partially supported by National Science Foundation Grant
No. CCF-0634123. The hospitality at NCSU is gratefully acknowledged.
2 Email:singer@math.ncsu.edu. This material is based upon work supported by the National Science

Foundation under Grant No. CCF-0634123.
3 Email:mwu@sei.ecnu.edu.cn. The author is supported by the National Natural Science Foundation of

China under Grants 10671200, 9071801 and 10801052.

Preprint submitted to Elsevier 4 September 2009



1. Introduction

Algorithms computing liouvillian solutions of linear differential equations or difference
equations have been well developed in (Kovacic (1986); Singer (1981); Petkovšek (1992);
Petkovšek & Salvy (1993); van Hoeij et al. (1999); Hendriks & Singer (1999); van Hoeij
(1999); Labahn & Li (2004)). For a linear differential equation

L(y) = y(n) + an−1y
(n−1) + · · ·+ a0y = 0

over C(x), the differential Galois theory allows us to conclude that if L(y) = 0 has a

liouvillian solution then it has a solution of the form e
∫

f where f is algebraic over
C(x) (see Singer (1981)). Although one can not deduce the similar conclusion from the
difference Galois group, one can show that a linear difference equation will have a solution
that is the interlacing of hypergeometric sequences if it has a solution in the ring of
liouvillian sequences (see Hendriks & Singer (1999); Bomboy (2002); Khmelnov (2008);
Cha & van Hoeij (2009); Abramov et al (2009)). Therefore, computing hyperexponential
solutions (or hypergeometric sequences) is the basic step of the algorithm for finding
liouvillian solutions (or liouvillian sequences) (see Section 3 for further references).

In our previous paper Feng et al (2009), we prove that if a linear difference-differential
system {σ(Y ) = AY, δ(Y ) = BY } is irreducible over C(x, t) and solvable in terms of liou-
villian sequences, then there is some positive integer ` such that {σ`(Y ) = A`Y, δ(Y ) =
BY } is equivalent over a suitable algebraic extension of C(x, t) to a system of diagonal
form (see Theorem 1 and Proposition 2 below). In other words, the solution space of the
system {σ`(Y ) = A`Y, δ(Y ) = BY } has a basis consisting of the interlacing of hyper-
geometric sequences (in the difference-differential sense). In this paper, we will devote
ourselves to devising an algorithm to compute the above diagonal form in the case that
the system is of prime order. Our algorithm will rely on the above known algorithms and
the algorithms on computing rational solutions of linear difference equations.

The paper is organized as follows. In Section 2, based on some results in Feng et
al (2009) (see Theorem 1 and Proposition 2 below) and integrability conditions, we
give a normal form for a linear difference-differential system of arbitrary order which is
irreducible over C(x, t) and solvable in terms of liouvillian sequences. We then further
refine this normal form for systems of prime order. In Section 3, we give algorithms to
compute all liouvillian sequence solutions of systems which are irreducible over C(x, t)
and of prime order. Two examples are given to illustrate our algorithms.

Throughout this paper, we will use the same notations as in Feng et al (2009). We use
k0 to denote the difference-differential field C(x, t) with an automorphism σ : x 7→ x + 1
and a derivation δ = d

dt , and let k denote its extension field C(t)(x). We use (·)T to
denote the transpose of a vector or matrix and det(·) to denote the determinant of
a square matrix. The symbols Z≥0 and Z>0 represent the set of nonnegative integers
and the set of positive integers, respectively. For a field k, denote by gln(k) the set
of n× n matrices over k and by GLn(k) the set of n× n invertible matrices over k. All
difference-differential systems of the form {σ(Y ) = AY, δ(Y ) = BY } with A ∈ GLn(k)
and B ∈ gln(k) that are in discussion in the paper are assumed to be integrable, which
means that σ(B)A = δ(A) + AB. For any positive integer `, the symbol A` denotes
σ`−1(A)σ`−2(A) · · ·σ(A)A.

We would like to thank Reinhart Shaefke for supplying a simple proof of Lemma 20.
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2. Normal Forms for the System

Assume that a system {σ(Y ) = AY, δ(Y ) = BY } where A ∈ GLn(k0) and B ∈
gln(k0) is irreducible over k0 and that its Galois group over k0 has solvable identity
component. Let R and R0 be the σδ-Picard-Vessiot extension of the system over k and
k0 respectively, and Gal(R/k) and Gal(R0/k0) be the Galois group of the system over k
and k0, respectively. Let F0 and F be the total ring of fractions of R0 and R respectively.
First we restate two results in (Feng et al (2009)) here.

Theorem 1. (Feng et al, 2009, Theorem 23) If a system {σ(Y ) = AY, δ(Y ) = BY }
of order n is irreducible over k0, then there exists a positive integer d such that the system
is equivalent over k̂0 := F0 ∩ k to the system

σ(Y ) = diag(A1, A2, · · · , Ad)Y, δ(Y ) = diag(B1, B2, · · · , Bd)Y

where Ai ∈ GL`(k̂0), Bi ∈ gl`(k̂0) and ` = n
d and the system {σ(Y ) = AiY, δ(Y ) = BiY }

is irreducible over k for i = 1, . . . , d. Moreover, there exists gi ∈ Gal(R0/k0) such that
gi(A1) = Ai and gi(B1) = Bi.

Proposition 2. (Feng et al, 2009, Proposition 37) If {σ(Y ) = AY, δ(Y ) = BY } is
an irreducible system of order ` over k and its Galois group over k has solvable identity
component, then {σ`(Y ) = A`Y, δ(Y ) = BY } is equivalent over k to

σ`(Y ) = DY, δ(Y ) = diag(b1, · · · , b`)Y

where D = diag(a, σ(a), · · · , σ`−1(a)) for some a ∈ k \ {0} and bi ∈ k for i = 1, . . . , `.

Theorem 1 and Proposition 2 imply that, for an irreducible system {σ(Y ) = AY, δ(Y ) =
BY } of order n over k0, there exists ` ∈ Z>0 with `|n such that {σ`(Y ) = A`Y, δ(Y ) =
BY } is equivalent over k to a system of diagonal form. In this section, we will show
further that the original system is equivalent over k to a more special form when its
order n is prime.

2.1. Normal Forms for General System

Let us first review some notions and properties concerning rational solutions of differ-
ence equations.

Definition 3. (Hardouin & Singer, 2008, Definition 6.1) Let f = P
Q with P, Q ∈ C(t)[x]

and gcd(P, Q) = 1.
(1) The dispersion of Q, denoted by disp(Q) is

max{j ∈ Z>0|Q(α) = Q(α + j) = 0 for some α ∈ C(t)}.
(2) The polar dispersion of f is the dispersion of Q and denoted pdisp(f).
(3) f is said to be standard with respect to σm, with m ∈ Z>0, if disp(P ·Q) < m.

As in Hardouin & Singer (2008), we have the following

Lemma 4. Assume that f ∈ k \ {0}, a ∈ C(t) \ {0} and m ∈ Z>0.
(1) There exist f̃ , g̃ ∈ k \ {0} such that f = σm(g̃)

g̃ f̃ where f̃ is standard with respect
to σm.
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(2) If f has a pole, then pdisp(σm(f)− af) ≥ m.

Proof. The proof is similar to that of Lemma 6.2 in Hardouin & Singer (2008). 2

Proposition 5. Let 0 6= a, b ∈ k satisfy σm(b)− b = δ(a)
a where m ∈ Z>0. Then

a =
σm(f)

f
α(x)β(t) and b =

δ(f)
f

+
δ(β(t))
mβ(t)

x + c

where f ∈ k, c, β(t) ∈ C(t), and α(x) ∈ C(x) is standard with respect to σm.

Proof. Let a = σm(f)
f â with â standard with respect to σm and b̂ = b − δ(f)

f . Then

σm(b̂) − b̂ = δ(â)
â . View â and b̂ as rational functions in x. Then pdisp( δ(â)

â ) < m. If
δ(â)

â /∈ C(t), then δ(â)
â has a pole and so does b̂. By Lemma 4, pdisp(σm(b̂) − b̂) ≥ m,

a contradiction. Hence δ(â)
â = w(t) ∈ C(t), which means that â = α(x)e

∫
w(t)dt. Since

â ∈ k, â is of the form α(x)β(t) where α(x) ∈ C(x) and β(t) ∈ C(t). Then b̂ ∈ C(t)[x].
Suppose that b̂ = cnxn + cn−1x

n−1 + · · ·+ c0 where ci ∈ C(t) and cn 6= 0. Then

σm(b̂)− b̂ = nmcnxn−1 + · · · = δ(â)
â

=
δ(β(t))
β(t)

.

So n = 1 and b̂ = δ(β(t))
mβ(t) x + c0. 2

Now we proceed to give the normal form.

Theorem 6. If {σ(Y ) = AY, δ(Y ) = BY } with A ∈ GLn(k0) and B ∈ gln(k0) is
irreducible over k0 and its Galois group over k0 has solvable identity component, then
there exists ` ∈ Z>0 with `|n such that the system

σ`(Y ) = A`Y, δ(Y ) = BY

is equivalent over k to




σ`(Y ) = diag(Λ(x)β1(t),Λ(x)β2(t), · · · ,Λ(x)βm(t))Y,

δ(Y ) = diag
(

δ(β1(t))
`β1(t)

xI` + C1, · · · , δ(βm(t))
`βm(t) xI` + Cm

)
Y

(1)

where Λ(x) = diag(α(x), · · · , α(x + ` − 1)), C1 = diag(c1, · · · , c`) and m`=n. Moreover,
α(x) ∈ C(x) is standard with respect to σ`, βi(t), ci ∈ C(t), and there exists gi in the
Galois group of the original system over k0 such that βi(t) = gi(β1(t)) and Ci = gi(C1).

Proof. By Theorem 1, it suffices to prove the theorem for a factor over k of the given
system. Let {σ(Y ) = AY, δ(Y ) = BY } be such a factor with A ∈ GL`(k) and B ∈ gl`(k).
By Proposition 2, {σ`(Y ) = A`Y, δ(Y ) = BY } is equivalent over k to

σ`(Y ) = DY, δ(Y ) = diag(b1, · · · , b`)Y

where D is as in Proposition 2 and bi ∈ k for i = 1, . . . , `. Since σ` and δ commute, we
have σ`(b1)− b1 = δ(a)

a . By Proposition 5, we have

a =
σ`(f)

f
α(x)β1(t) and b1 =

δ(f)
f

+
δ(β1(t))
`β1(t)

x + c1
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where α(x) ∈ C(x) is standard with respect to σ`, c1, β1(t) ∈ C(t) and f ∈ k. Then for
i = 1, · · · , `,

σi−1(a) =
σ(σi−1(f))

σi−1(f)
α(x + i− 1)β1(t) and bi =

δ(σi−1(f))
σi−1(f)

+
δ(β1(t))
`β1(t)

x + ci.

Let F = diag(f, σ(f), · · · , σ`−1(f)). Then the system

σ`(Y ) = DY, δ(Y ) = diag(b1, · · · , b`)Y

is equivalent over k to

σ`(Y ) = Λ(x)β1(t)Y, δ(Y ) =
(

δ(β1(t))
`β1(t)

xI` + C1

)
Y

under the transformation Y → FY where Λ(x) = diag(α(x), · · · , α(x + ` − 1)) and
C1 = diag(c1, · · · , c`). 2

2.2. Normal Forms for Systems of Prime Order

If a difference-differential system is of prime order n, then the integer ` in Theorem 6
equals either 1 or n. For the case where the system is reducible over k, we can refine
Theorem 6 further in the following

Proposition 7. Assume that n is a prime number. Suppose that the system {σ(Y ) =
AY, δ(Y ) = BY } with A ∈ GLn(k0) and B ∈ gln(k0) is irreducible over k0 and reducible
over k and that its Galois group has solvable identity component. Then the system is
equivalent over k to





σ(Y ) = α(x)diag(β1(t), β2(t), · · · , βn(t))Y,

δ(Y ) = diag
(

δ(β1(t))
β1(t)

x + c1, · · · , δ(βn(t))
βn(t) x + cn

)
Y

(2)

where α(x) ∈ C(x) is standard with respect to σ, βi(t) = gi(β1(t)) ∈ C(t) and ci =
gi(c1) ∈ C(t) for some gi in the Galois group of the original system over k0.

Before discussing the other case where a difference-differential system is irreducible
over k, let us look at the following

Lemma 8. Assume that σ(Y ) = AY with A ∈ GLn(k0) is equivalent over k to σ(Y ) =
ĀY where

Ā =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

β(t)α(x) 0 0 · · · 0




,

with α(x) ∈ C(x) and β(t) ∈ C(t). Then β(t) ∈ C(t).
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Proof. There exists G ∈ GLn(k) such that σ(G)ĀG−1 = A. Then

det(σ(G)) det(Ā) det(G−1) = det(A).

Since det(σ(G)) = σ(det(G)) and det(G−1) = 1
det(G) , we have

(−1)n−1β(t)α(x)
σ(det(G))

det(G)
= det(A).

Expand the rational functions in x in the above equation as series at x = ∞. Since
σ(det(G))

det(G) = 1 + 1
xQ where Q ∈ C(t)[[ 1

x ]], one sees that β(t) ∈ C(t). 2

Proposition 9. Let A, Ā ∈ GLn(k0). If σ(Y ) = AY and σ(Y ) = ĀY are equivalent over
k then they are equivalent over k0.

Proof. Suppose that there exists G ∈ GLn(k) such that σ(G)A = ĀG. Then there exists
γ(t) ∈ C(t) such that G ∈ GLn(k0(γ(t))). Let m = [k0(γ(t)) : k0]. Since 1, γ(t), · · · , γ(t)m−1

is a basis of k0(γ(t)) over k0, we can write

G = G0 + G1γ(t) + · · ·+ Gm−1γ(t)m−1

where Gi ∈ gln(k0). From σ(G)A = ĀG, it follows that σ(Gi)A = ĀGi for i =
0, · · · ,m − 1. Let λ be a parameter satisfying σ(λ) = λ and let H(λ) =

∑m−1
i=0 λiGi.

Therefore, σ(H(λ))A = ĀH(λ). Since det(G) = det(H(γ(t))) 6= 0, det(H(λ)) is a nonzero
polynomial with coefficients in k0. Hence there exists c ∈ C(t) such that det(H(c)) 6= 0.
So σ(H(c))A = ĀH(c) and H(c) ∈ GLn(k0). 2

We now turn to the case where a difference-differential system over k0 is irreducible
over k.

Proposition 10. Suppose that {σ(Y ) = AY, δ(Y ) = BY } with A ∈ GLn(k0) and B ∈
gln(k0) is irreducible over k and that its Galois group over k0 has solvable identity com-
ponent. Then the system is equivalent over k0 to

σ(Y ) = ĀY, δ(Y ) = B̄Y

where B̄ ∈ gln(k0) and

Ā =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

β(t)α(x) 0 0 · · · 0




∈ GLn(k0)

with α(x) ∈ C(x) standard with respect to σn and β(t) ∈ C(t). Moreover, α(x+1)
α(x) 6= σn(b)

b

for any b ∈ C(x).

Proof. By Proposition 32 in Feng et al (2009), the given system is equivalent over k to
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the system {σ(Y ) = ĀY, δ(Y ) = B̄Y } where B̄ ∈ gln(k) and

Ā =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

a 0 0 · · · 0




∈ GLn(k).

Since σ and δ commute, we have σ(B̄)Ā = δ(Ā) + ĀB̄. Let B̄ = (b̄ij)n×n where b̄i,j ∈ k.
Then

σ(b̄nn)− b̄11 =
δ(a)
a

, b̄nn = σ(b̄n−1,n−1), · · · , b̄22 = σ(b̄11).

Hence σn(b̄11) − b̄11 = δ(a)
a . By Proposition 5, we have a = σn(f)

f α(x)β(t) with f ∈ k,

α(x) ∈ C(x) standard with respect to σn and β(t) ∈ C(t). Then {σ(Y ) = ĀY, δ(Y ) =
B̄Y } is equivalent over k to {σ(Y ) = ĀY, δ(Y ) = B̄Y } under the transformation Y →
diag(f, σ(f), · · · , σn−1(f))Y, where B̄ ∈ gln(k0) and

Ā =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

β(t)α(x) 0 0 · · · 0




with α(x) ∈ C(x) and β(t) ∈ C(t). By Lemma 8 and Proposition 9, the original system is
equivalent over k0 to {σ(Y ) = ĀY, δ(Y ) = B̄Y } with β(t) ∈ C(t). Assume that α(x+1)

α(x) =
σn(b)

b for some b ∈ C(x) and let u = σn−1(b) · · ·σ(b)b. We have α(x+1)
α(x) = u(x+1)

u(x) thus
α(x) = cu(x) for some constant c with respect to σ. Therefore c ∈ C since α(x) and u(x)
are both in C(x). Let P ∈ GLn(C(t)) be such that

P−1




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

cβ(t) 0 0 · · · 0




P = diag(β̃1(t), β̃2(t), · · · , β̃n(t))

where the β̃i(t)’s are the roots of Y n − cβ(t). Let

F = diag(1, b, σ(b)b, · · · , σn−2(b) · · ·σ(b)b)P

and B̃ = F−1B̄F − F−1δ(F ). Then {σ(Y ) = ĀY, δ(Y ) = B̄Y } is equivalent over k to

σ(Y ) = b · diag(β̃1(t), β̃2(t), · · · , β̃n(t))Y, δ(Y ) = B̃Y
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under the transformation Y → FY. Assume B̃ = (b̃ij)n×n. Since σ and δ commute,

σ(b̃ij)− β̃i(t)
β̃j(t)

b̃ij = 0,

for all i, j with 1 ≤ i 6= j ≤ n. Hence b̃ij = 0 if i 6= j. In other word, B̃ is of diagonal
form. This contradicts to the irreducibility over k of the original system. 2

Lemma 11. Let a ∈ k0 \ {0}, n be a positive integer and m > 0 be the least integer
such that σm(a)

a = σn(b)
b for some b ∈ k0. Then m|n.

Proof. Suppose that σm(a)
a = σn(b)

b with b ∈ k0. Then for each ` > 0,

σ`m(a)
a

=
σn(c`)

c`
with c` ∈ k0.

Let n = `1m + `2 where 0 ≤ `2 ≤ m− 1. Then

σ`2(a)
a

=
σ`1m+`2(a)

a

σ`2(a)
σ`1m+`2(a)

=
σn(a)

a

c

σn(c)

for some c ∈ k0. Hence `2 = 0 and so m|n. 2

Proposition 12. Assume that n is a prime number, the system

σ(Y ) = AY, δ(Y ) = BY

with A ∈ GLn(k0) and B ∈ gln(k0) is irreducible over k and its Galois group over k0 has
solvable identity component. Then {σn(Y ) = AnY, δ(Y ) = BY } is equivalent over k0 to





σn(Y ) = β(t)diag(α(x), · · · , α(x + n− 1))Y

δ(Y ) =
(

δ(β(t))
nβ(t) xIn + diag(b̂1, · · · , b̂n)

)
Y

where α(x) and β(t) are as in Proposition 10 and b̂i ∈ C(t) for i = 1, . . . , n.

Proof. By Proposition 10, {σn(Y ) = AnY, δ(Y ) = BY } is equivalent over k0 to the
system

σn(Y ) = β(t) · diag(α(x), · · · , α(x + n− 1))Y, δ(Y ) = B̄Y

with α(x) and β(t) as in Proposition 10 and B̄ ∈ gln(k0). Let B̄=(b̄ij)n×n. From σnδ =
δσn, we have 




σn(b̄ii)− b̄ii = δ(β(t))
β(t) , i = 1, · · · , n,

σn(b̄ij)− α(x+i)
α(x+j) b̄ij = 0, 1 ≤ i 6= j ≤ n.

Hence b̄ii = δ(β(t))
nβ(t) x + b̂i with b̂i ∈ C(t). Note that n is prime and α(x+1)

α(x) 6=σn(b)
b for any

b ∈ C(x). Then by Lemma 11, α(x+i)
α(x) 6= σn(b)

b for any 1 ≤ i ≤ n− 1 and b ∈ C(x). Hence
b̄ij = 0 for i 6= j. This concludes the proposition.2

3. A Decision Procedure for Systems of Prime Order

Consider a system {σ(Y ) = AY, δ(Y ) = BY } of order n over k0. Assume that the
order n is prime, the system is irreducible over k0 and its Galois group has solvable

8



identity component (or, equivalently, the system has liouvillian solutions). By Proposi-
tions 7 and 12, either the original system has hypergeometric solutions over k or the
system {σn(Y ) = AnY, δ(Y ) = BY } has solutions which are the interlacing of hyper-
geometric solutions over k0. In this section, we will give a decision procedure to find
solutions of systems of both forms when the order n is prime. Our procedure relies on
the following three facts in the ordinary cases:
(A1) we can compute all rational solutions in kn of an ordinary difference equation σ(Y ) =

AY where A ∈ GLn(k); (Abramov & Barkatou (1998); Abramov (1995, 1989);
van Hoeij (1998));

(A2) we can compute all hypergeometric solutions over C(x) of an ordinary difference
equation σ(Y ) = ÂY where Â ∈ GLn(C(x)) (Hendriks & Singer (1999); Labahn &
Li (2004), Wu (2005), Li et al (2006), Petkovšek (1992), Petkovšek & Salvy (1993),
van Hoeij (1999), Bomboy (2002));

(A3) we can compute all hyperexponential solutions over C(t) of an ordinary differential
equation δ(Y ) = B̂Y where B̂ ∈ GLn(C(t)) (Kovacic (1986); Labahn & Li (2004),
Wu (2005), Li et al (2006); Singer (1981); van Hoeij et al. (1999)).

In the following subsections, we will reduce the problem of finding solutions of {σ(Y ) =
AY, δ(Y ) = BY } or of {σn(Y ) = AnY, δ(Y ) = BY } to that in the ordinary cases as
indicated above. We have two case distinctions according to the reducibility of {σ(Y ) =
AY, δ(Y ) = BY } over k.

3.1. The Decision Procedure for the Reducible Case

Assume that {σ(Y ) = AY, δ(Y ) = BY } is reducible over k. Proposition 7 implies that
this system has hypergeometric solutions of the form Wihi for i = 1, . . . , n, where Wi ∈ kn

and hi satisfies

σ(hi) = α(x)βi(t)hi and δ(hi) =
(

δ(βi(t))
βi(t)

x + ci

)
hi

with α(x) ∈ C(x) standard with respect to σ, βi(t) = gi(β1(t)) ∈ C(t) and ci = gi(c1) ∈
C(t) for some gi in the Galois group of the original system over k0. Substituting each
Wih into the original system, we get

σ(Wi) =
A

α(x)βi(t)
Wi and δ(Wi) =

(
B − δ(βi(t))

βi(t)
x− ci

)
Wi. (3)

So, to compute hypergeometric solutions of {σ(Y ) = AY, δ(Y ) = BY } it suffices to
find α(x), βi(t), ci and Wi satisfying (3).

Remark 13. The equalities (3) still hold when replacing α(x) by σ(g)α(x)
g and Wi by

Wi

g for g ∈ C(x). So in the sequel, we will compute a suitable σ(g)α(x)
g instead of α(x).

Computing α(x): By Proposition 7, there exists G ∈ GLn(k) such that

σ(det(G))
det(G)

α(x)n
n∏

i=1

βi(t) = det(A).

9



Without loss of generality, we assume that the numerator and denominator of α(x) are
monic. Expanding the functions in the above equality as series at x = ∞, one can
compute

∏n
i=1 βi(t) from the series expansion of det(A) at x = ∞. Let ã = det(A)∏n

i=1
βi(t)

.

Rewrite ã = σ(b)
b ā where b, ā ∈ k0 and ā is standard with respect to σ. Then

ā =
σ(g)

g
α(x)n for some g ∈ k0. (4)

From Proposition 7, α(x) is standard with respect to σ and so is α(x)n. Proposition 15

below shows that σ(g)
g ∈ C(x) and thus ā ∈ C(x). Moreover, ā has the form

(
σ(ḡ)

ḡ α(x)
)n

for some ḡ ∈ C(x). To prove Proposition 15, let us introduce a notation used in (van der
Put & Singer, 1997, Section 2.1).

Definition 14. A divisor D on P1(C(t)) is defined to be a finite formal expression∑
np[p] with p ∈ P1(C(t)) and np ∈ Z. The support of a divisor D, denoted supp(D), is

the finite set of all p with np 6= 0. Let p ∈ supp(D). The Z-orbit E of p in supp(D) is
defined to be

E(p, supp(D)) = {p + i|i ∈ Z and p + i ∈ supp(D)}.
As usual, the divisor div(f) of a rational function f ∈ k \ {0} is given by div(f) =∑
ordp(f)[p], where ordp(f) denotes the order of f at the point p. It is clear that

div(fg) = div(f) + div(g). Moreover, if p is in supp(div(f)) but not in supp(div(fg)),
then p ∈ supp(div(f)) ∩ supp(div(g)). By Definition 14, if f ∈ k \ {0} is standard with
respect to σ, then E(p, supp(div(f))) = {p} for each p ∈ supp(div(f)).

Proposition 15. Assume that f, g ∈ k \ {0} and f is standard with respect to σ. If
σ(g)g−1f is standard with respect to σ, then

σ(g)
g

=
∏

i

(x + ki − ci)mi

(x− ci)mi

with ki ∈ Z, mi ∈ Z>0, ci ∈ C(t) and disp(
∏

i(x − ci)) = 0. Moreover, for each i,
either ordci

(f) = mi or ordci−ki
(f) = −mi.

Proof. Let H = σ(g)g−1f , S1 = supp(div(f)), S2=supp(div(σ(g)g−1)) and S3 =
supp(div(H)). By Lemma 2.1 in van der Put & Singer (1997),

∑

q∈E(p,S2)

ordq

(
σ(g)

g

)
= 0 for each p ∈ S2.

Then |E(p, S2)| ≥ 2 for each p ∈ supp(S2). Since H and f are standard,

|E(p, S2) ∩ S3| ≤ 1 and |E(p, S2) ∩ S1| ≤ 1

thus |E(p, S2) ∩ (S1 ∪ S3)| ≤ 2. From S2 ⊆ S1 ∪ S3, we have |E(p, S2)| ≤ 2. Hence for
each p ∈ S2,

|E(p, S2)| = 2, |E(p, S2) ∩ S1| = 1 and |E(p, S2) ∩ S3| = 1.

From |E(p, S2)| = 2 and |E(p, S2) ∩ S3| = 1, either

ordp(σ(g)g−1) = −ordp(f) or ordp+j0(σ(g)g−1) = −ordp+j0(f)
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with p + j0 ∈ E(p, S2). The proposition holds. 2

Let g be as in (4). Since α(x) ∈ C(x), g can be chosen in C(x) according to Proposi-
tion 15. Then ā ∈ C(x). Moreover,

σ(g)
g

=
∏

i

(x + ki − ci)mi

(x− ci)mi

where mi has the form m̄in for some m̄i ∈ Z>0 since mi is either ordci
(α(x)n) or

−ordci−ki
(α(x)n). Let ḡ =

∏
i

∏ki−1
j=0 (x + j − ci)m̄i . Then

(
σ(ḡ)

ḡ

)n

=
σ(g)

g
and ā =

(
σ(ḡ)

ḡ
α(x)

)n

.

Note that the numerator and the denominator of α(x) are monic, so we can compute
σ(ḡ)

ḡ α(x) from ā.

Example 16. Consider the integrable system

σ(Y ) = AY, δ(Y ) = BY

where

A =



− t(x2+1)(t2+1−x)

t2−x−1 − x2+1
t2−x−1

(x2+1)(t4+t2−x2−x)
t2−x−1

t(x2+1)(t2−x)
t2−x−1


 ,

B =



−−2xt3−t4−t2+t5+3t3+2t+x2t+t2x+x

(t2−x)(t2+1) − t2

(t2−x)(t2+1)

−t2x2+t6+2t4+t2−x2+2t2x+x
(t2−x)(t2+1)

−x2t−t2x−x+t5+2t3−xt+t4+t2

(t2−x)(t2+1)


 .

We have

det(A) = − (x2 + 1)2(t4 − t2x + t2 − x)
t2 − x− 1

= −(t2 + 1)x4 + (t2 + 1)x3 + · · · .

Thus β1(t)β2(t) = −(t2 + 1). Let ã = −det(A)
t2+1 and write

ã =
t2 − x

t2 − (x + 1)
(x2 + 1)2.

Then α(x) = x2 + 1.

Computing βi(t): We first prove the following

Lemma 17. Either β1(t) = · · · = βn(t) ∈ C(t) or β1(t), · · · , βn(t) are the conjugate
roots of an irreducible polynomial of degree n with coefficients in C(t).

Proof. Let R0 be a σδ-PV extension of k0 for {σ(Y ) = AY, δ(Y )=BY } and P =∏n
i=1(X − βi(t)). From the proof of Theorem 1, one sees that Gal(R0/k0) permutes the

βi(t). Furthermore, the orbits of the βi(t) under this group action all have the same

11



size. Therefore, P is a polynomial with coefficients in C(t). Since n is prime, either P
is irreducible or all the factors of P in C(t)[X] are of degree one. This concludes the
lemma. 2

The following two notions can be found in Barkatou & Chen (2001); Barkatou (1991).

Definition 18. Let H = (hij)n×n ∈ GLn(k0). The order of H at ∞ is defined as

ord∞(H) = min{ord∞(hij)}
where ord∞(hij) is the order of hij at ∞.

We rewrite H into the form

H =
(

1
x

)ord∞(H) (
H0 + H1

1
x

+ · · ·
)

where Hi ∈ gln(C(t)) and H0 6= 0.

Definition 19. The rational number

m(H) =

{
−ord∞(H) + rank(H0)

n ord∞(H) ≤ 0,

0 ord∞(H) > 0

is called the first Moser order of H. And

µ(H) = min{m(σ(G)HG−1)|G ∈ GLn(k)}
is called the Moser invariant of H. A matrix H is said to be irreducible if m(H) = µ(H),
otherwise it is said to be reducible.

Given H ∈ GLn(k0), one can use the algorithm in Barkatou & Chen (2001); Barkatou
(1991) to compute G ∈ GLn(k0) such that H̃ := σ(G)HG−1 is irreducible. So we can
assume that A

α(x) is irreducible where A and α(x) are as in (3). Under this assumption,
we will show that

A

α(x)
= Ã0 + Ã1

1
x

+ · · ·

with Ãi ∈ gln(C(t)) for each i and that all the βi(t)’s are eigenvalues of Ã0. The follow-
ing lemma can be deduced from the results in Barkatou (1991). We will present a self
contained proof due to Reinhart Shaefke.

Lemma 20. Let G ∈ GLn(k) and assume that ord∞(σ(G−1)G) = 0. Then all the
eigenvalues of σ(G−1)G|x=∞ are 1.

Proof. Let H = σ(G−1)G. Then H = H0 + H1
1
x + · · · with Hi ∈ gln(C(t)) and

H0 6= 0. We now show that H0 − In is nilpotent. For a positive integer m, consider a
map Lm : gln(k) → gln(k) given by U 7→ σ(U)−σm(H)U for any U ∈ gln(k). Set Pm =
Lm ◦ Lm−1 ◦ · · · ◦ L0(In) where ◦ denotes the composition of maps. Then Pm|x=∞ =
(In−H0)m+1. On the other hand, Lm(σm(G−1)V ) = σm+1(G−1)∆(V ) where ∆ = σ−1
is a difference operator and V ∈ gln(k). Hence Pm = σm+1(G−1)∆m+1(G). Note that
when m increases, ord∞(∆m+1(G)) increases but ord∞(σm+1(G−1)) is invariant. Then
for a sufficiently large m, Pm|x=∞ = 0. This concludes the lemma. 2
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Now we can prove the following

Proposition 21. ord∞
(

A
α(x)

)
= 0 and β1(t), . . . , βn(t) are eigenvalues of A

α(x) |x=∞.

Proof. By Proposition 7, there exists G ∈ GLn(k) such that

σ(G)
A

α(x)
G−1 = diag(β1(t), · · · , βn(t)).

This implies that ord∞
(
det

(
A

α(x)

))
= 0 and m

(
A

α(x)

)
= µ

(
A

α(x)

)
≤ 1. By the property

of orders,

ord∞

(
A

α(x)

)
≤ 1

n
ord∞

(
det

(
A

α(x)

))
= 0.

Since m
(

A
α(x)

)
≤ 1, ord∞

(
A

α(x)

)
= 0 by the definition of the first Moser orders. There-

fore,
A

α(x)
= Ã0 + Ã1

1
x

+ . . .

where Ãi ∈ gln(C(t)) and Ã0 6= 0. From (3), σ(Y ) = A
α(x)βi(t)

Y has a rational solution
Wi in kn. Suppose that

Wi =
(

1
x

)ord∞(Wi) (
Wi0 +

1
x

Wi1 + · · ·
)

where Wij ∈ C(t)
n

and Wi0 6= 0. Then Wi0 = Ã0
βi(t)

Wi0. Since Wi0 6= 0, det
(
In − Ã0

βi(t)

)
=0.

Hence all the βi(t) are the eigenvalues of Ã0. If the βi(t) are the conjugate roots of some
irreducible polynomial with degree n, then they are clearly eigenvalues of Ã0. Thus
by Lemma 17 we only need to consider the case β1(t) = · · · = βn(t) ∈ C(x). In this
case, A

α(x) = β1(t)σ(G−1)G. Since ord∞
(

A
α(x)

)
= 0, we have ord∞(σ(G−1)G) = 0. By

Lemma 20, all the eigenvalues of σ(G−1)G|x=∞ equal 1. Hence all the eigenvalues of Ã0

equal β1(t). 2

Example 22. (Continued) Let Ā = A
x2+1 . From the process in Barkatou (1991), we

can find an irreducible matrix of the form

Ã =



− (x+1)t(t2+1−x)

(t2−x−1)x − x+1
t2−x−1

t4+t2−x2−x
(t2−x−1)x

t(t2−x)
t2−x−1




which is equivalent to Ā. Write Ã = Ã0 + Ã1
1
x + · · · where

Ã0 =


−t 1

1 t


 and Ã1 =


 t t2

t2 −t


 .

The eigenvalues of Ã0 are ±√t2 + 1. So β1(t)=
√

t2 + 1 and β2(t)=−√t2 + 1.

Computing ci and Wi: Let Λ(t) = diag(β1(t), . . . , βn(t)). From (A1) we can find a
matrix G ∈ GLn(k) such that σ(G)α(x)Λ(t) = AG. Let B̄ = G−1BG−G−1δ(G). Then
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B̄ ∈ gln(k), and the system {σ(Y )=AY, δ(Y )=BY } is equivalent over k to

σ(Y ) = α(x)Λ(t)Y, δ(Y ) = B̄Y. (5)

Note that G may not be the required transformation matrix in Proposition 7, so B̄ may
not be of diagonal form. Since σδ = δσ, the same argument as in the proof of Proposition
10 implies the following conclusions:

(i) If βi(t) 6= βj(t) for all i, j with 1 ≤ i 6= j ≤ n, then

B̄ = diag
(

δ(β1(t))
β1(t)

x + c1, · · · ,
δ(βn(t))
βn(t)

x + cn

)

with ci ∈ C(t);
(ii) If β1(t) = · · · = βn(t) ∈ C(t), then by Proposition 9, G can be chosen in GLn(k0).

Thus

B̄ = B̂ +
δ(β1(t))
β1(t)

xIn

with B̂ ∈ gln(C(t)).
In the case (i), the ci’s are obtained from B̄ directly and the Wi’s are just the columns
of G. For the case (ii), since (5) is equivalent over k to (2), there exists Ĝ ∈ GLn(k) such
that {

σ(Ĝ) = Ĝ,

δ(Ĝ) + Ĝ
(

δ(β1(t))
β1(t)

xIn + diag(c1, · · · , cn)
)

=
(
B̂ + δ(β1(t))

β1(t)
xIn

)
Ĝ.

Hence Ĝ ∈ GLn(C(t)), and δ(Y ) = B̂Y is equivalent over C(t) to

δ(Y ) = diag(c1, · · · , cn)Y.

Then the ci’s are obtained by solving the system δ(Y ) = B̂Y by (A3) and the Wi are
the columns of GĜ.

Example 23. (Continued) Let Λ(t) = diag(
√

t2 + 1,−√t2 + 1). From (A1), we can
obtain G ∈ GL2(k) such that σ(G)(x2 + 1)Λ(t) = AG where

G =




t−√t2+1
2(t2−x)

t+
√

t2+1
2(t2−x)

−x+t
√

t2+1
2(t2−x) −x+t

√
t2+1

2(t2−x)


 .

Then

B̄ = G−1BG−G−1δ(G)

=




xt
t2+1 +

√
t2 + 1 + 1 0

0 xt
t2+1 −

√
t2 + 1 + 1


 .

Hence c1 =
√

t2 + 1 + 1, c2 = −√t2 + 1 + 1 and Wi is the i-th column of G for i = 1, 2.
Furthermore, a basis of the solution space is

h(
√

t2 + 1)xet+
∫ √

t2+1dt




t−√t2+1
2(t2−x)

t
√

t2+1−x
2(t2−x)


 , h(−√t2 + 1)xet−

∫ √
t2+1dt




t+
√

t2+1
2(t2−x)

x+t
√

t2+1
2(x−t2)




where h satisfies that σ(h) = (x2 + 1)h and δ(h) = 0.

14



3.2. The Decision Procedure for the Irreducible Case

Assume that {σ(Y ) = AY, δ(Y ) = BY } with A ∈ GLn(k0) and B ∈ gln(k0) is an
irreducible system over k and its Galois group over k0 has solvable identity component. By
Proposition 12, the system {σn(Y ) = AnY, δ(Y ) = BY } has solutions of the form Wihi

for i = 1, · · · , n, where Wi ∈ kn
0 and hi satisfies

σn(hi) = α(x + i− 1)β(t)hi, δ(hi) =
(

δ(β(t))
nβ(t)

x + b̂i

)
hi

with α(x), β(t) and b̂i as in Proposition 12. Substituting Y = Wihi into {σn(Y ) =
AnY, δ(Y ) = BY }, we have

σn(Wi) =
An

β(t)α(x + i− 1)
Wi and δ(Wi) =

(
B − δ(β(t))

nβ(t)
x− b̂i

)
Wi. (6)

To compute Wihi, it suffices to compute α(x), β(t),Wi and b̂i which satisfy (6). Without
loss of generality, we assume that the numerator and denominator of α(x) are monic. By
Proposition 10, there exists G ∈ GLn(k0) such that

σ(det(G))
det(G)

(−1)n−1α(x)β(t) = det(A).

Expanding det(A) as a series in 1
x , we get that (−1)n−1β(t) is the leading coefficient of

the series. Hence we can obtain β(t) from det(A). In this case, we can not find α(x) by
the method used in Section 3.1. However we can reduce this problem to working with
difference equations over C(x). By Proposition 12, there exists G ∈ GLn(k0) (the same
as that in Proposition 10) such that

σn(G) · diag(α(x), · · · , α(x + n− 1)) =
An

β(t)
G.

Assume that t = p is not a pole of the entries of An

β(t) and such that det
(

An

β(t) |t=p

)
6= 0.

Let An

β(t) = Ā0 + (t − p)Ā1 + · · · where Āi ∈ gln(C(x)). We will show that α(x) can be
found by examining the hypergeometric solutions of σn(Y ) = Ā0Y . This will follow from
the next proposition.

Proposition 24. Some factor of σn(Y ) = Ā0Y is equivalent over C(x) to some factor
of σn(Y ) = diag(α(x), α(x + 1), · · · , α(x + n− 1))Y.

Proof. Let G be as above and let Ψ(x) = diag(α(x), · · · , α(x + n − 1)). We may
multiply G by a power of t− p and assume that G = Ḡ0 + (t− p)Ḡ1 + · · · where Ḡ0 6= 0
and Ḡi ∈ gln(C(x)). Then

σn(Ḡ0 + (t− p)Ḡ1 + · · · )Ψ(x) = (Ā0 + · · · )(Ḡ0 + (t− p)Ḡ1 + · · · ).
Therefore σn(Ḡ0)Ψ(x) = Ā0Ḡ0. Let r = rank(Ḡ0). Then r > 0 because Ḡ0 6=0. There
exist P ∈ GLn(C(x)) and Q which is a product of some permutation matrices such that

G̃ = PḠ0Q =


 0 0

G̃21 G̃22



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where G̃22 ∈ GLr(C(x)). Then

σn(G̃)diag(α(x + k1), · · · , α(x + kn)) = σn(P )Ā0P
−1G̃ (7)

where k1, · · · , kn are a permutation of {0, 1, · · · , n− 1}. Now let

Ã = σn(P )Ā0P
−1 =


Ã11 Ã12

Ã21 Ã22


 where Ã22 ∈ glr(C(x)),

and D2 = diag(α(x + kn−r+1), · · · , α(x + kn)). From (7), we have σn(G̃22)D2 = Ã22G̃22

and Ã12G̃22=0. Since G̃22 ∈ GLr(C(x)), we have Ã12 = 0. Therefore σn(Z) = Ã22Z is a
factor of σn(Y ) = Ā0Y , which is equivalent over C(x) to σn(Z) = D2Z. 2

Remark 25. For almost all of p ∈ C, σn(Y ) = An

β(t) |t=pY is equivalent over C(x) to

σn(Y ) = diag(α(x), α(x + 1), · · · , α(x + n− 1))Y.

since G|t=p is invertible.

The same argument as in Remark 13 implies that it suffices to compute σn(g)α(x)
g for

some suitable g ∈ C(x) instead of α(x). We can use Proposition 24 to find σn(g)α(x+k)
g

with k ∈ Z and g ∈ C(x) as follows. From Theorem 3 in Bronstein et al (2005), if
(z1, · · · , zr)T is a solution of σn(Z) = Ã22Z, then (0, · · · , 0, z1, · · · , zr)T is a solution of
σn(Y ) = ÃY . So σn(Y ) = Ā0Y has at least r solutions W 1h̄1, . . . ,W rh̄r, where W i ∈
C(x)n and h̄i satisfies σn(h̄i) = α(x+kn−r+i)h̄i. By (A2), we can find all hypergeometric
solutions of σ(Z) = Ā0(nx)Z where Ā0(nx) means replacing x by nx in Ā0. Then by
interlacing, we can find all solutions of σn(Y ) = Ā0Y of the form W̃j h̃j where W̃j ∈ C(x)n

and h̃j satisfies σn(h̃j) = ãj h̃j for some ãj ∈ C(x). Then there exists h̃j0 such that
h̃j0 = gh̄1 for some g ∈ C(x) and

α̂(x + kn−r+1) =
σn(h̃j0)

h̃j0

=
σn(g)

g
α(x + kn−r+1).

After finding α̂(x + kn−r+1), we can compute a matrix Ĝ ∈ GLn(k0) in a finite number
of steps by (A1), such that

σn(Ĝ−1)AnĜ = β(t)diag(α̂(x), · · · , α̂(x + n− 1)).

Let B̄ = Ĝ−1BĜ− Ĝ−1δ(Ĝ). Then we get a new system

σn(Y ) = β(t)diag(α̂(x), · · · , α̂(x + n− 1))Y, δ(Y ) = B̄Y

which is equivalent to the original one under the transformation Y → Ĝ−1Y. Since σn

and δ commute and α(x+1)
α(x) 6= σn(b)

b for any b ∈ C(x), the same argument as in the proof
of Proposition 12 implies that B̄ is of diagonal form, that is

B̄ = diag
(

δ(β(t))
nβ(t)

x + b̂1, · · · ,
δ(β(t))
nβ(t)

x + b̂n

)
.

We then get the b̂i, and the Wi are just the i-th columns of Ĝ.
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Example 26. Consider an integrable system:

σ(Y ) = AY, δ(Y ) = BY

where

A =




x3t4+2x2t4+xt4−x−1
t2+x+1

t2(tx4+2tx3+tx2+1)
t2+x+1

t(t−x−1)
t2+x+1

− t(x2t4+xt4−1)
t2+x+1 − t(t3x3+t3x2−1)

t2+x+1
t(1+t)

t2+x+1

t6x2+t6x+x+1
t(t2+x+1)

t(t3x3+t3x2−1)
t2+x+1 − t−x−1

t2+x+1




,

B =




t4+t2x+x2+t4x−t2

t(t2+x) −x(−t2+t3−1)
t2+x

xt3(−1+t)
t2+x

−−t2+t4+1
t2+x

2t2x+x2+t5−t2

t(t2+x) − t4(−1+t)
t2+x

−t2+t4+1
t2+x

x(−t2+t3−1)
t(t2+x)

x2+xt3+t2x+t6−x−t2

t(t2+x)




.

We have

det(A) =
xt3(t2x + t2 + x2 + x)

x + 1 + t2
=

(x + 1)(t2 + x)
x(t2 + x + 1)

x2t3.

By (4), if the Galois group over k0 of the given system has solvable identity component,
then this system have no hypergeometric solutions over k. Therefore we consider the
system

σ3(Y ) = A3Y, δ(Y ) = BY

where

A3 =




t3(t2x2+t2x+21x+x3+8x2+18)
t2+x+3 − t4(x+1)(5x+6)

t2+x+3
2t4(x+2)(x+3)

t2+x+3

− 2t4(2x+3)
t2+x+3

(x+1)t3(x2+t2x+2t2)
t2+x+3 − 2t5(x+2)

t2+x+3

2t4(2x+3)
t2+x+3

(x+1)t3(5x+6)
t2+x+3

(x+2)(x+3)t3(x+1+t2)
t2+x+3




.

We can compute β(t) = t3 from det(A). Let Ã = A3
t3 . Then

Ã|t=0 =




(x + 2)(x + 3) 0 0

0 (x+1)x2

x+3 0

0 (x+1)(5x+6)
x+3 (x + 1)(x + 2)


 .

By (A2), all hypergeometric solutions of σ3(Y ) = Ã|t=0Y are

9
x
3 Γ

(
x+2
3

)
Γ

(
x+3
3

)



1

0

0


 , 9

x
3 Γ

(
x+1
3

)
Γ

(
x+2
3

)



0

0

1


 , 9

x
3 Γ

(
x
3

)
Γ

(
x+1
3

)



0

− 3
x

3
x


 ,

where Γ(x) satisfies Γ(x + 1) = xΓ(x). By (A1), we can compute a rational solution of
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σ3(Y ) = A3
x(x+1)t3 Y . Moreover, we can compute a matrix G ∈ GL3(C(x, t)) such that

σ3(G)diag(x(x + 1)t3, (x + 1)(x + 2)t3, (x + 2)(x + 3)t3) = A3G

where

G =




t
t2+x − x

t2+x
x

t2+x

1
t2+x

t
t2+x − t

t2+x

− 1
t2+x

x
t(t2+x)

t
t2+x


 .

Let B̄ = G−1BG−G−1δ(G). Then B̄ = diag
(

x
t + t, x

t + t2, x
t + t3

)
. Hence a basis of the

solution space of {σ3(Y ) = A3Y, δ(Y ) = BY } is

V1(x) := 9
x
3 Γ

(
x
3

)
Γ

(
x+1
3

)
txe

t2
2




t
t2+x

1
t2+x

− 1
t2+x


 ,

V2(x) := 9
x
3 Γ

(
x+1
3

)
Γ

(
x+2
3

)
txe

t3
3




− x
t2+x

t
t2+x

x
t(t2+x)


 ,

V3(x) := 9
x
3 Γ

(
x+2
3

)
Γ

(
x+3
3

)
txe

t4
4




x
t2+x

− t
t2+x

t
t2+x


 .

Clearly, Vi(1) 6= 0 for i = 1, 2, 3, A(j) and B(j) are well defined and det(A(j)) 6= 0 for
j ≥ 1. By the results in Section 2 of Feng et al (2009), we get a basis of the solution
space of the original system:

W1 = 9
1
3 Γ( 1

3 )Γ( 2
3 )te

t2
2




(0, t
t2+1 , 4t3

t2+2 ,− 6t3

t2+3 , · · · )

(0, 1
t2+1 ,− 2t4

t2+2 , 2t4

t2+3 , · · · )

(0,− 1
t2+1 , 2t4

t2+2 , 6t2

t2+3 , · · · )




,

W2 = 9
1
3 Γ( 2

3 )Γ(1)te
t3
3




(0,− 1
t2+1 , t

t2+2 , 18t3

t2+3 , · · · )

(0, t
t2+1 , 1

t2+2 ,− 6t4

t2+3 , · · · )

(0, 1
t(t2+1) ,− 1

t2+2 , 6t4

t2+3 , · · · )




and

W3 = 9
1
3 Γ(1)Γ( 4

3 )te
t4
4




(0, 1
t2+1 ,− 2

t2+2 , t
t2+3 , · · · )

(0,− t
t2+1 , t

t2+2 , 1
t2+3 , · · · )

(0, t
t2+1 , 2

t(t2+2) ,− 1
t2+3 , · · · )




.
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Note that all the Wi are liouvillian.

3.3. Summary

Consider two systems
σ(Y ) = AY, δ(Y ) = BY (8)

and
σn(Y ) = AnY, δ(Y ) = BY (9)

where A ∈ GLn(k0), B ∈ gln(k0) and n is a prime number. Assume that (8) is irreducible
over k0. From the results in Sections 3.1 and 3.2, if (8) has a liouvillian solution over k,
then either the solution space of (8) has a basis consisting of hypergeometric solutions
over k or the solution space of (9) has a basis each of whose members is the interlacing
of hypergeometric vectors over k0. Let us summarize the previous decision procedure as
follows.

Decision Procedure 1 Compute a fundamental matrix of (8) whose entries are hyper-
geometric over k if it exists.

(a) Write det(A) = σ(g)
g a where g, a ∈ k0 and a is standard with respect to σ. If

a 6= α(x)nβ(t) for any α(x) ∈ C(x) and β(t) ∈ C(t), then by the results in Section
6.1, exit [(8) has no required fundamental matrix].

(b) Assume that a = α(x)nβ(t) for some α(x) ∈ C(x) and β(t) ∈ C(t). By the al-
gorithms in Barkatou & Chen (2001); Barkatou (1991), compute an irreducible
matrix Ã such that Ã = σ(G̃) A

α(x) G̃
−1 for some G̃ ∈ GLn(k0). If ord∞(Ã) 6= 0,

then by Proposition 21, exit [(8) has no required fundamental matrix]. Otherwise,
let Ã0 = Ã|x=∞ and β1(t), · · · , βn(t) be the eigenvalues of Ã0.

(c) Goto Step (d1) if the βi(t) are conjugate and goto Step (d2) if β1(t) = · · · = βn(t) ∈
C(t). In other cases, by Lemma 17 and Proposition 21, exit [(8) has no required
fundamental matrix].

(d1) If (A1) yields no rational solutions, then exit [(8) has no required fundamental
matrix]. Otherwise, suppose that we find G ∈ GLn(k) such that

σ(G)α(x)diag(β1(t), · · · , βn(t)) = AG.

Then B̄ := G−1BG − G−1δ(G) is of diagonal form. Compute a fundamental ma-
trix H of

σ(Y ) = α(x)diag(β1(t), · · · , βn(t))Y, δ(Y ) = B̄Y.

Return [GH is a required fundamental matrix of (8)].
(d2) If we can compute a matrix G ∈ GLn(k0) such that σ(G)α(x)β1(t) = AG then let

B̂ = G−1BG−G−1δ(G)− δ(β1(t))
β1(t)

xIn ∈ gln(C(t)),

else exit [(8) has no required fundamental matrix]. If we can find a fundamental
matrix H of δ(Y ) = B̂Y whose entries are hyperexponential over C(t), then return
[GHhβ1(t)x is a required fundamental matrix of (8)] where h satisfies σ(h) = α(x)h
and δ(h) = 0. Otherwise, exit [(8) has no required fundamental matrix].

Decision Procedure 2 Compute a fundamental matrix of (9) whose entries are the
interlacing of hypergeometric vectors over k0 if it exists.
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(a) If det(A) 6= (−1)n−1 σ(g)
g α(x)β(t) holds for any g ∈ k, β(t) ∈ C(t) and α(x) ∈ C(x)

that is standard with respect to σn, then exit [(9) has no required fundamental
matrix].

(b) Expand det(A) as a series at x = ∞ :

det(A) = (−1)n−1β(t)xm + β1(t)xm−1 + · · ·
where β(t), βi(t) ∈ C(t) and m ∈ Z. Suppose that x = p is not a pole of the
entries of A

β(t) and that det(Ã0) 6= 0 where Ã0 = A
β(t) |x=p. Use (A2) to find all

hypergeometric solutions of σ(Z) = Ã0(nx)Z. By interlacing, we get all solutions
of σn(Y ) = Ã0Y of the form Wihi. Denote these solutions by W1h1, · · · ,Wdhd

where Wi ∈ C(x)n and hi satisfies σn(hi) = ãihi for some ãi ∈ C(x). If there
is i0 ∈ {1, . . . , d} such that σn(Y ) = hi0A

σn(hi0 )β(t)Y has a rational solution in kn
0 ,

then let λ(x) = σn(hi0 )

hi0
, else exit [(9) has no required fundamental matrix]. Let j0

be the least integer such that σn(Y ) = A
λ(x+j0)β(t)Y has a rational solution in kn

0 .
If we can compute G ∈ GLn(k0) such that

σ(Y )β(t)diag(λ(x + j0), · · · , λ(x + j0 + n− 1)) = AG,

then let B̄ = G−1BG−G−1δ(G). So B̄ is of diagonal form and by the same process
as in Step (d1) of Decision Procedure 1, we can compute a required fundamental
matrix of (9). Otherwise, by the results in Section 3.2, exit [(9) has no required
fundamental matrix].

We can decide whether (8) has liouvillian solutions or not as follows. If we can com-
pute hypergeometric solutions over k of (8) by Decision Procedure 1, then we are done.
Otherwise, consider the system (9). If we can compute liouvillian solutions over k0 of
(9) by Decision Procedure 2, then by the results in Section 2 of Feng et al (2009) we
can compute liouvillian solutions over k0 of (8) and we are done. Otherwise (8) has no
liouvillian solutions.
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