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LIOUVILLIAN SOLUTIONS OF n-th ORDER HOMOGENEOUS
LINEAR DIFFERENTIAL EQUATIONS

By MicHAEL F. SINGER

1. Introduction. Let

= Bt o) (1)
dx" Pn—1\X dxn—l Polx .

L

be a linear differential operator with coefficients in F, a finite algebraic
extension of Q(x). We shall show that one can find, in a finite number of
steps, a basis for the vector space of liouvillian solutions of L(Y) = 0 (i.e.,
those solutions which can be built up from the rational functions by alge-
braic operations, taking exponentials and by integration; see Section 2 for
a precise definition). In particular, we show how to decide if all solution of
L(Y) = 0 are liouvillian or if there are any solutions which are liouvillian.
Our algorithm in conjunction with the algorithm in [8], also allows one to
determine the algebraic relationships among the liouvillian solutions of
L(Y) = 0, and, in particular, determine if all solutions are algebraic
(c.f. [11]).

For second order linear homogeneous equations over Q(x), the prob-
lem of determining if all solutions are algebraic functions was considered
by Fuchs, Klein and Schwarz, but none of these mathematicians seems to
have presented a complete decision procedure. Building on the work of
Klein, Baldassarri and Dwork [2] have given such a procedure. Baldas-
sarri [1] has extended this to consider linear homogeneous equations
whose coefficients are algebraic functions. For third order equations,
Painlevé and Boulanger gave a procedure which, in effect, reduced the
problem of finding algebraic solutions of L(Y) = 0 to the problem of ef-
fectively bounding the torsion of the jacobian variety of a given curve. A
complete procedure for deciding if all solutions of an n-th order homo-
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geneous linear differential equation are algebraic, is presented in [13],
where additional references can also be found.

An algorithm for finding all liouvillian solutions of a second order
linear homogeneous equation over C(x), was presented by J. Kovacic [7].
Although the algorithm we present here for equations of arbitrary order is
not nearly as efficient as Kovacic’s for second order equations, we hope
the ideas presented here will lay the groundwork for practical algorithms
for solving differential equations of higher order.

. Our algorithm relies on the following fact (Proposition 2.2): There is
a computable integer valued function I(n) such that if G is a subgroup of
GL(n, C) and H is a subgroup of G of finite index which leaves a one
dimensional subspace of C" invariant, then there exists a subgroup H' of
G of index at most I(n) which leaves a one dimensional subspace of C” in-
variant. The galois theory of linear differential equations then allows us to
conclude that if L(Y) = 0 has a liouvillian solution, then L(Y) = 0 has a
solution # such that »'/u is algebraic over F of degree at most I(n). Let-
ting u be such a solution and P(u) be the minimal polynomial of u over
C(x), we then show in Sections 3 and 4, how to get a priori bounds, in
terms of L, for the degrees of the numerators and the denominators of the
coefficients of P. This allows us to reduce the question of the existence of a
liouvillian solution of L(Y) = 0 to a question in elimination theory. We
then show how to inductively find a basis for the space of liouvillian solu-
tions of L(Y) = 0.

Q will denote the rational numbers and C will denote the complex
numbers. All fields mentioned in this paper will be assumed to be of char-
acteristic zero.

2. Liouvillian Solutions of Linear Differential Equations. In this
section we shall give a precise definition of a liouvillian function and
develop the group theory which, when combined with the galois theory of
differential equations, gives us one of the basic facts (Theorem 2.4) on
which our decision procedure is based.

The group theory we need is based on the following theorem of Jordan:

THEOREM 2.1. Let C be an algebraically closed field of character-
istic zero. There exists an integer-valued function J (n), depending only on
n, such that every finite subgroup of GL(n, C) contains an abelian normal
subgroup of index at most J(n).

Various authors have given bounds for J(n). For example, Schur
showed ([3], p. 258) that we can take J(n) < (v 8n + 1) — (\/ 8n —



LIOUVILLIAN SOLUTIONS 663

1)2n*, For small values of n, this can be greatly improved, for example,
J(2) = 12, J(3) = 120.
Our main group theoretic tool is the following:

PROPOSITION 2.2. There exists an integer-valued function 1(n), de-
pending on n, such that: if G is a subgroup of GL(n, C) and H is a sub-
group of G of finite index which leaves a one dimensional subspace of C"
invariant, then there exists a subgroup H' of G of index < I(n) which
leaves a one dimensional subspace of C" invariant.

In order to prove this proposition, we will need a technical lemma.
Let § be a subset of GL(n, C). A subspace V C C” is called a maximal
eigenspace for § if, for each o € S there is a ¢, € C such that ov = ¢, v for
all v in V and V is maximal with respect to this property.

LEmMmMma 2.3. Let S C GL(n, C). There exists at most n maximal
eigenspaces for S.

Proof. It is enough to show that if Vi, ..., V} are distinct maximal
eigenspaces for § then the sum V; + ... + V; is direct. We do this by in-
duction on k. First notice that if V and W are maximal eigenspaces then
either VN W = {0} or V = W. Therefore our assertion is true for k =
Now assume k£ > 2and V, + -+ + V, =V, ® --- @ V. We wish to
showViNV,® --- @V, = {0}.Ifnot, lety # 0beinV, NV, @ --- @
Vi. Thenv = v, + -+ + v, with v; € V;. We can assume v, # 0. Since
V, and V, are maximal eigenspaces for § and V|, # V, we can find a
o € S such that ov = ¢v, ov, = dv, and ¢ # d. On the other hand, ov =
c(vp + ++-) =dvy + ---. Since V, ® --- @ V, is a direct sum, we
must have ¢ = d, a contradiction. Therefore, V; + --- + V, =
Vi - ®V,. O

Proof of Proposition 2.2. We first show that we can assume that H
is normal in G. Let G act, by left multiplication, on the set of left cosets of
H. This gives a homomorphism of G into some finite symmetric group.
The kernel H of this homomorphlsm is a subgroup of H, normal in G and
of finite index in G. Since H C H, H leaves a one dimensional subspace of
C" invariant. Therefore we can replace H by H, if necessary, and assume
H is normal in G.

Let {Vy, ..., Vi } be the maximal eigenspaces of H. By hypothesis,
this set is not empty and by Lemma 2.3, this set contains at most »
elements. Let m = max; {dim V;}.
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Case 1. m = n. Inthiscasek =1, V, =C",andHisa subgroup
C,, the group of scalar matrices. Let PGL(r — 1, C) = GL(n, c)c,.
Note PGL(n — 1, C) = SL(n, C)/(C, N SL(n, C)). Let ®:GL(n, C) —
PGL(n — 1, C) and ¥:SL(n, C) — PGL(r — 1, C) be the canonical
homomorphisms. If we restrict ® to G, its kernel contains H. Therefore,
®(G) is finite. Furthermore, ¥ —1(®(G)) will be a finite subgroup of
SL(n, C). Theorem 2.3 implies that there exists an abelian subgroup of H
of ¥ ~1(®(G)) of index =< J(n). Since C, is the center of GL(n, C), H' =
®~!(¥(H)) will be an abelian subgroup of G of index < J(n). Since H' is
abelian, we can simultaneously put the elements of H' in Jordan normal
form. H' therefore leaves a one dimensional subspace of C” invariant.

Case 2. m < n. Since H is normal in G, G permutes the elements
{Vi, ..., Vi} and we get a homomorphism of G into the symmetric group
on k elements. Let K be the kernel of this homomorphism. K leaves V in-
variant and contains H. Since dim V; < n, induction on n allows us to
assume K contains a subgroup H' of index at most I(n — 1) in X, such
that H' leaves a one dimensional subspace of C” invariant. Since the index
of K in G is at most k! < n!, we have that the index of H' in G is at most
n!l(n —1). O

Remark. By examining the proof of Proposition 2.2, we can give an
inductive bound on I(n):

I(n) = max{J(n), n!I(n — 1)}.

It would be of some interest to get a better estimate on I(n). Towards
this aim, we note that we do not need to use the full strength of Jordan’s
theorem in our proof. It would suffice to know that a finite subgroup of
GL(n, C) contains a subgroup H' of bounded index J'(n) such that H'
leaves a one dimensional subspace of C” invariant. A good estimate for
J'(n) would yield a good estimate for I(n).

Let F be a differential field, that is a-field together with an operation

:F — F(called a derivation) satisfying (a + b)' = a’' + b’ and (ab)' =
(a)b + a(b’) for all a, b in F. For example we can take F = C(x) with
derivation d/dx or take F be a field of functions, meromorphic in some
domain in C, such that F is closed under the operation of taking deriva-
tives. The set {c|c € Fand ¢’ = 0} forms of subfield of F called the field
of constants of F and is denoted Cr. Let E be a differential extension of F,
that is, £ is a field extension of F and the derivation of E extends the
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derivation of F. We say E is a liouvillian extension of F if there exist in-
termediate fields

F=FOCF1C"'CF,,=E

such that F; = F;_{(n;), i = 1, ..., n where either:

1. 7, is algebraic over F;_;; or

2. n;" is in F;_; (in which case »; is said to be an integral of an ele-
ment in F;_;); or

3. n; # 0 and 5;'/»; is in F;_; (in which case 7; is said to be an expo-
nential of an integral of an element in F;_).

An element of a liouvillian extension of F is said to be liouvillian over
F. The elements of liouvillian extensions of C(x) are called louvillian
functions.

Let L be a linear differential operator with coefficients in F. A dif-
ferential extension field £ or F is called a Picard- Vessiot extension of F for
L if:

1. E=F{uy,...,u,), whereuy, ..., u, are n solutions of L(Y) =
0, linearly independent over Cr (E = F {uy, ..., u, ) means that
E is the smallest differential field containing F and u, ..., u,).
2. E and F have the same field of constants.

When the field of constants of F is algebraically closed, then a Picard-
Vessiot extension exists for any linear differential operator defined over
F([6] p. 412). There is a well developed galois theory of Picard-Vessiot ex-
tensions, for which we refer the reader to [S] or [6].

We now combine Proposition 2.2 with the galois theory for differen-
tial equations to show:

THEOREM 2.4. Let F be a differential field with algebraically closed
field of constants, and let L be a linear differential operator with coeffi-
cient in F. If L(Y) = 0 has a solution liouvillian over F, then L(Y) = 0
has a solution z such that z'/z is algebraic over F of degree < I(n).

Proof. Let E be the Picard-Vessiot extension of F associated with L.
One can show [6], p. 408, 412) that if L(Y) = 0 has a solution liouvillian
over F, then L(Y) = 0 has a solution y in E such that y is also liouvillian
over F.

Let us first assume that all solutions in £ of L(Y) = 0 are liouvillian
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over F. In this case, Theorem S.12 of ([S], p. 39) implies that the galois
group G has a solvable connected component H of the identity. The Lie-
Kolchin Theorem ([S], p. 38 and [6], p. 367) says that H is conjugate to a
group of upper triangular matrices and, in particular, H leaves a one
dimensional space invariant. Since H is of finite index in G([S], p. 28),
Proposition 2.2 allows us to conclude that there exists a subgroup H' of in-
dex < I(r) in G which also leaves a one dimensional subspace invariant.
We can further assume that H' is closed. Let z be an element of £ which is
an eigenvector of H'. In this case, 0(z'/z) = z'/z for all o in H'. There-
fore z'/z lies in the fixed field Ey. of H'. Since [Ey.:F] = |G:H'| <
I(n), ([S], p. 18-19), we see that the degree of z'/z over F is at most I(n).

If it is not the case that all solutions of L(Y) = 0 are liouvillian over
F, we proceed as follows. The set of solutions of L(Y) = 0 in £ which are
liouvillian over F forms a vector space V. Let u, ..., u; be a basis for this
vector space. For ¢ in G and v in V, ov is again in V. Form

Wr(Y, ug, ..., ug)
Wr(uy, ..., ug)

L(Y)=

where Wr is the usual wronskian determinant. We wish to show that the
coefficients of L, are in F. Let o be an element of G and L,° be the oper-
ator obtained by applying o to the coefficients of L.

Lo(Y) = Wr(Y, ouy, ..., 0u;)  (deto) Wr(Y, uy, ..., u;)
1 - Wr(ouy, ..., oug) (det o) Wr(uy, ..., uy)
:Ll

Therefore the coefficients of L, are fixed by all elements of G and so lie in
F. L, has only liouvillian solutions, so the preceding discussion applies to
L, and guarantees the existence of a solution u of L;(Y) = 0 such that
u'/u is algebraic over F of degree at most I(k) < I(n). Since u is also a
solution of L(Y) = 0, we are done. O

Remarks.  Proposition 2.2 has the following corollary:

CoROLLARY 2.5. There exists an integer valued function I(n),
depending only on n, such that if H C G are subgroups of GL(n, C) with
H triangulizable and of finite index in G, then there exists a subgroup H
of G such that H is triangulizable and of index < I(n) in G.
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Proposition 2.2 and Corollary 2.5 are also immediate consequences of
Theorem 3.6 ([15], p. 45) and Corollary 10.11 ([15], p. 142), although the
bound on I(n) achieved by applying these latter results in not as good as
our bound. It appears to have already been known that techniques similar
to ours will also yield our results ([1S], p. 142, Exercise 10.2) although no
explicit bound using these techniques is mentioned.

Corollary 2.5 and techniques from ([S], p. 39) can be combined to
yield the following result:

COROLLARY 2.6. Let E be a Picard-Vessiot extension of F (a dif-
ferential field with algebraically closed field of constants) corresponding
to a linear operator of order n. Suppose that the galois group of E over F
has a solvable component of the identity. Then there exist intermediate
fields

F=E0CE1 C - CE,,=E

such that E is algebraic over Eq = F of degree < I(n) and E;; = E;(n;)
fori =1, ..., n — 1, where either m;' € E;or n;'/n; € E;.

3. Ancillary Decision Procedures. a. The field of constants in an
algebraic extension of Q(x). In the proof of Proposition 3.6 we will need to
effectively present the field of constants Cr of an algebraic extension F of
Q(x). To do this, we will need some facts about rational solutions of linear
differential equations. The following is a generalization of a result of
Risch [9] and the proof is a modification of his proof.

Lemma 3.1. Let q(x), qo(x), ..., q,(x) be in Q(x). One can
decide in a finite number of steps if

dary

xll

L(Y)=q,x) + o+ go(x)Y =g(x) 3.1)

has a solution in Q(x) and if so, find a basis for the space of all such
solutions.

Proof. Lety € Q(x) be a solution of L(Y) = g(x). If p(x) is a
monic irreducible factor of the dgnominator of y, then p(x) must divide
the denominator of some g; or g. We wish to bound the power to which p
appears in the denominator of y, that is, if

A

= — 4+ ...
y pe
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is the p-adic expansion of y, we wish to bound «. Let the p-adic expan-
sions of the ¢; and g begin with:

B:
=4 ... i=0,...,n
9i = phi
_C
9=t

Substituting into (3.1), we get

(—D'afa+1) - (a+n—1)AB,(p")""!
pcx+n+ﬁ,,

. (=) 'a(@a+ 1) --- (e +n— 2)AB,_(p')" 2

+ - pa+n—]+ﬁ,,—| (32)
AB, _C
++'+W_E+

Note that p ¥ AB,_;(p")»~t¢+D,

We now compare the highest powers of p~1. If y = « + i + @, for
some i, we get a bound on « in terms of the (8; and . Therefore we can
assume that « + 7 + 3, > yfori = 0, ..., n. We now collect the terms
on the left hand side of (3.2) involving the highest power, say m, of p ~!.
Let {iy, ..., i} € {0, ..., n} be the set of numbers such that o« + i +
Bi; = m, that is, those i such that i + 8; = max{j + B;/0 < j < n}.
Comparing coefficients of p ~™, we must have

(—Dita(a + 1) -+ (@ + iy — DAB; (p)r=1 + -+
+ (—ika(a + 1) -+ (a + i, — 1)AB; (p")Yc' = 0 mod(p)

and in particular

(Dol +1) -+ (a + iy — 1')B,~|(1)')"'_l + ...
+ (—Dka(a + 1) -+« (o + i} — 1)B,~k(p')""_1 = 0 mod(p) 3.3)

The residue of the left-hand side of (3.3) mod p gives us a polynomial in x
with coefficients involving «. Since these coefficients must vanish, we have
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that o must be the root of some explicitly constructible polynomials. We
can therefore give an a priori bound on the size of .
We therefore know that if y € Q(x) is a solution of L(Y) = 0, then

R(x)
x)=——F—"""= (3.4
y plul oo prl’lr
where each p; is a monic irreducible divisor of a denominator of some g, or
g and each «; can be determined. We now wish to bound the degree of
R (x). Substituting (3.4) in L(Y) = 0 and clearing denominators, we can
find polynomials Q,, (x), ..., Qy(x), Q(x) such that

Q,(x)RW(x)+ -+ + Qu(x)R(x) = Q(x) (3.5)

Let R(x) = ax™ + lower terms, Q,(x) = b;x™ + lower degree terms and
Q(x) = cx! + lower degree terms. Equating coefficients as before will
give us a bound on m. If we then write R(x) = a,,x” + --- + a, and
substitute into (3.5), we will get a system of linear equations which deter-
mines the a;. Let (a;,, ..., a;9) i = 1, ..., k be a basis for the set of
solutions of this latter collection of linear equations. Let P;(x) =
A;pX™ + -+ + a;p and

P;(x)

X)) = ————
y plal -..p’_ar

fori=1, ..., k.

We then have that y,, ..., y, is a basis for the space of solutions in Q(x)

of L(Y)=0. O
Let Q(x)[d/dx] be the ring of linear operators in d/dx, with coeffi-

cients in Q(x). We then have:

ProposiTION 3.2. Let A be an n X n matrix with entries in
Q(x)[d/dx] and B on n X 1 matrix with entries in Q(x). One can effec-
tively decide if there exist (y,, ...,y,) in (Q(x))" such that

yll

and, if so, find a basis for the set of such solutions.
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Proof. It is known that the ring Q(x)[d/dx] has both a right and
left division algorithm ([8], p. 31). Using this, one can row and column
reduce the matrix A ([8], p. 39), that is, one can find invertible matrices U
and V with entries in Q(x)[d/dx] such that UAV = D, D a diagonal
matrix. Y = (yy, ..., y,)7 is a solution of AY = B if and only if W =
V~1Y is a solution of DW = UB. Therefore finding a basis for the solu-
tions of AY = B is equivalent to finding a basis for the solutions of DW =
UB. Since D is diagonal, we can apply Lemma 3.1. O

. ProposiTiON 3.3. Let F = Q(x, a) be an algebraic extension of
Q(x). Given the minimum polynomial of a, one can effectively find a 3
such that Cr = Q(f).

Proof. Cris a vector space over Q. We will first show how to find a
Q basis of C. Letting [F:Q(x)] = m, we shall find a basis for the set of
(Cm—1s +--» €g) € (Q(x))™ such that (c,,—ja™ ! + .-+ + ¢5)' = 0.
Carrying out this differentiation, we get

0 = (c,,,_loz’"_l + e + C())'
=cpa"t+ oo+ + ((m— Ve 2+ -+ e’
3.6)
Given the minimum polynomial ¢ of o over Q(x), one can effectively find
a polynomial p € Q(x)[y] such that '’ = p(«). Substituting in (3.6) and

using g (o) = 0 to replace of, i = m, with polynomials of degree < m in
a, we get: '

0=1(c a1+ --- + ¢p)

= (clm—l + Lm—-l (cm‘l’ HERR} CO))am‘l + -
+ (COI + LO(cm—l' ey Co))
where L,,_,, ..., L, are linear (algebraic) polynomials with coefficients in

Q(x). Therefore, there exists an m X m matrix A with coefficients in
Q(x)[d/dx] and an m X 1 matrix B, with coefficients in Q(x), such that
(cp—yam~ 1+ --. 4+ ¢p) = 0if and only if

Cm—1

Al : | =B 3.7)
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Using Proposition 3.2, we can find a basis {(c; ,,—;, .., ¢;0)} %, for the
space of solutions of (3.7). Letting u; = ¢; ,, ;o™ ! + ... + ¢; o, then
Cr = Q(uy, ..., ur). Each u; is algebraic over Q. To see this let y/ +
bi—1y~' + .- + by be the minimum polynomial of some u; over
Q(x). Since

0: (u,-’+ bl_lll,‘l_l + cee + b())'
=b'ul~" + -+ + by’

wehaveb',_ ;= --- =by =0orb;€ Qfori =0, ...,/ — 1. Therefore,
the primitive element theorem lets us find a 8 such that G = Q (B). O

b. Solutions of . linear differential equations whose logarithmic
derivatives are rational functions. In this section we will discuss the prob-
lem of deciding if a linear differential operator, with coefficients in a finite
algebraic extension of Q(x), has a solution y such that y'/y € C(x). In
what follows, we shall take K to be a finite algebraic extension of Q.

The following lemma states one of the fundamental facts from the
theory of normal solutions of linear differential equations (see ([3], p. 424
and [11] V.I, Section 94-95, VII.1, Section 177) for a proof).

LEmMA 3.4. Let

dny dn—l
= e +Pn—1(x)F+ o+ polx)

L

be a linear differential operator with coefficients in K(x). There exist
finite sets §1 C C and S, C C|x], which depend on L and can be effec-
tively determined, such that: if L(Y) = 0 has a solution of the form

y = AxPeP® @ (x)
where p, A € C, P(x) € C[x] and ®(x) is of the form

¢(X)=CO+CIX_] +c2x_2+ ...,C,'EC,C()#O,

then p € S;and P(x) € S,.

ProposITION 3.5. Let L be as in Lemma 3.4. One can decide in a
finite number of steps if L(Y) = 0 has a solution z with z'/z € C(x) and if
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so0, find such a solution. In particular, one can effectively find integers M
and N, depending on L, such that if L(z) = 0 and z'/z € C(x) then

1. the degrees of the numerator and denominator of z'/z are
bounded by M,

2. the residue of z'/z at any point has absolute value < N.

Proof. Let z be a solution of L(Y) = 0 and assume z'/z = R(x) €
C(x). Let a be a pole of R(x). If a is a regular point of L, then R(x) can
have at most a pole of order 1 at a with residue a positive integer. There-
fore we can write

Cs+1.1 Cs+2.1
R(x)= + - -
() =px) (x = ag41) (x — a542)
+ + cm'] S ".I ci,j
TN x—a,) =15 (x—a)
where a;, ..., a, are the finite singular points of L. We shall show how to

determine the Cijsn,nj, m and the coefficients and degree of p (x) up to
some finite set of possibilities.
Let a; be a finite singular point of L. Expanding z(x) at a; we have

€i2 €3
x—a; 2(x— a;)?

z(x) = (x — a;)' exp <—

ci.nj

g — (nj — 1)(x — a‘,-)"'_'> cI’_,’(Z)

where j(z) is analytic at a; and <I>{,~(0) # 0. Via the transformation ¢ =
1/(x — aj) and Lemma 3.4, we can determine n; and ¢y, ..., Cjn; up toa
finite set of possibilities.

If we consider z(x) at infinity, we get

z(x) = xPexp < Sp(x)> ¢ (x)

where & is analytic at infinity, ® (o) # Oand p = ¢y, + --- +
¢y + -+ + ¢, Using Lemma 3.4, we can determine the degree and
coefficients of p(x) up to a finite set of possibilities. Since the set {c,j,

.., €51} is determined up to a finite set of possibilities, we can bound the
Cs+1.1s - - -» Cpy,1 and in particular bound m.
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We therefore know that if z'/z € C(x), then

= (X - as+l)cS+l'l e (X - am)cm" exP<§S(X)>

=q(x) equ S(x)>

where S(x) is a rational function determined up to a finite set of possi-
bilities and g (x) is a polynomial whose degree can be effectively bounded.
Fix §(x) and make the substitution

Y=v exp<jS(x)>

in L(Y) = 0. Dividing by exp(SS (x)) gives us a linear differential equa-
tion L(V) = 0. If we substitute V = g(x), where g is a polynomial with
undetermined coefficients, we get a set of linear equations in these coeffi-
cients. If these can be solved, then z = g(x) exp(|S(x)) is a solution of
L(Y) = 0 whose logarithmic derivative is a rational function. If these
equations cannot be solved, for all of the finite set of possible S(x), then
L(Y) = 0 has no solution whose logarithmic derivative is a rational
function. o

Before proceeding to Proposition 3.6, we need some facts about Ric-
cati equations. Let L(Y) = 0 be an n'" order homogeneous linear dif-
ferential equation. Let U be a new variable and set Y' = UY. If we dif-
ferentiate this relation we get:

Y'=UY +U'Y=U’Y+U'Y
Y” =3U0U'Y + U%Y + U"Y

Y = etc.

Substituting these expressions in L(Y) = 0 and dividing by Y, we get a
nonlinear differential equation, R(U) = 0, of order n — 1, called the Ric-
cati equation associated with L. Forn = 2, if L(Y) = Y" + pY' + qY,
then R(U) = U’ + pU + U? + q. Notice that the coefficients of L always
appear linearly in R. R(U) has the property: y is a nonzero solution of
L(Y) = 0if and only if u = y'/y is a solution of R(U) = 0.

ProPOSITION 3.6. Let F be a finite algebraic extension of Q(x) and
L a linear differential operator with coefficients in F. One can decide in a
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finite number of steps if L(Y') = 0 has a solution z with z'/z € C(x) and if
so find such a solution. In particular, one can effectively find integers M
and N, depending on L, such that if Lz = 0 and z'/z € C(x), then:

1. The degrees of the numerator and denominator of z'/z are
bounded by M.

2. The residue of z'/z at any point has absolute value < N.

Proof. We can assume F is a normal extension of Q(x) and let F(C)
be the composition of F and C. Let ¢ be in the galois group G of F(C) over
C(x) and L° be the operator obtained by applying o to the coefficients of
L. Let

TrL = X L°.
0€G

Tr L has coefficients in C(x). We claim that if Ly = 0 and y'/y € C(x),
then (Tr L)(y) = 0. To see this let R(U) = 0 be the Riccati equation
associated with L. If o € G, let R be the differential polynomial obtained
by applying o to the coefficients of R. If we let

TrR= Y R¢
0€G

then Tr R = 0 is the Riccati equation associated with Tr L. If y is a solu-
tion of Ly = 0 such that y'/y € C(x) and ¢ € G, then

= o(R(y'/y)) = R°(y'/y)

Therefore (Tr R)(y'/y) = 0 soy is a solution of (Tr L)(y) = 0.

Since Tr L has coefficients in Cg(x) and C is a finite algebraic
extension of Q, we can apply Proposition 3.5 to Tr L to get our decision
procedure. Furthermore Tr L can be effectively calculated since it is easy
to see that Tr L is just the operator whose coefficients are the traces (in F
with respect to Cg(x)) of the coefficients of L. Proposition 3.3 allows us to
calculate C and thus calculate this trace. O

c. Auuxiliary differential operators. In the decision procedure pre-
sented in Section 4, we will need the following proposition.

ProrositioN 3.7. Let L be a linear differential operator and P(Y,
..., Yy) a differential polynomial, both L and P having coefficients in
some algebraic extension of Q(x). One can effectively bound the degrees
of the numerator and denominator and the absolute values of the residues
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of rational functions T(x) € C(x) for which there exist solutions y,, ...,
v of L(Y) = Osuch that P(y,, ...,yi) # 0and (P(yy, ...,y:))'/P(y;,
cen Y = T(x).

To prove this proposition, we will first show how to produce a dif-
ferential operator Lp such that Lp(P(yy, ..., y;)) = 0 for all solutions y,
..., yr of L(Y) = 0. Proposition 3.6 then allows us to get the necessary
bounds. The following lemma and propositions carry out this plan. They
are similar to the results contained in Section 2C of [13], but are easier to
prove since we are not concerned with Fuchsian considerations, as we were
in that paper.

A differential field is said to be constructible if we can effectively per-
form the field operations and differentiation that is, if the field operations
and differentiation are recursive functions. If F is a finite algebraic exten-
sion of Q(x), then F is a constructible differential field.

LemMA 3.8. Let F be a constructible differential field and let L, and
L, be linear differential operators with coefficients in F. One can effec-
tively construct linear differential operators L3, L4 and Lg with coefficients
in F such that:

a. The solution space of L3(Y) = 0 contains {yy, |y, is a solution
of L (Y) = 0 and y, is a solution of L,(Y) = 0},

b. The solution space of L4(Y) = 0 contains {y, + y, |y, is a solu-
tion of L,(Y) = 0 and y, is a solution of L,(Y) = 0}.

¢. The solution space of Ls(Y) = 0 contains {y'/y is a solution of
L(Y)=0}.

Proof. a. Let L, be of order n; and L, be of order n,. Let U and V
be new indeterminants. If we formally differentiate UV nn, times we get
a system of n,n, + 1 equations:

uv=Uuv

vy =uvu'v+uv 3.8)
J=0 Jj

nypny nlnz
wv)mn) = Y | UW ynin2—j)

Whenever UY, i = n,, occurs, we use the relation L;(U) = 0 (and its
derivatives) to replace U®) with an expression only involving terms U')
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with i < n,. We similarly use L, (V) = 0 to replace the terms V), i > n,,
with expressions only involving V), i < n,. In this way, the right-hand
side of (3.8) gives us n;n, + 1 linear forms in the terms UYY V), 0 < j <
n;, 0 = j < n,, with coefficients in F. These forms must therefore be
linearly dependent over F. Let k be the smallest natural number such that
the first k of these forms are linearly dependent over K (x). We can then
find a;_,(x), ..., ap(x) in F such that

(UV)(k_l) + ak_z(X)(UV)(k_z) + .-+ ao(x)UV =0

We have therefore found a linear operator L3 such that L;(y,y,) = 0 for
all solutions y; of L;(Y) = 0 and y, of L,(Y) = 0.

b. L4 is formed by differentiating U + V n; + n, times and pro-
ceeding as above.

c. To construct Ls, assume L, is of the form

dnt d" 11—1
dxm +a"| l(x) I~ 1

Ll + +a0(x).

If ag(x) = 0, let

dn]—l dr
+a,,|_,(x) =2 + -0 +a;(x).

dxn]—l

L5:

In this case, Ls(y) = L, (S ydx) which is zero iff y is the derivative of a
solution of L;(Y) = 0. If ap(x) # 0. Let

dm dn—1 danl—l(x)
’ L5: dxnt +an|—1(x) dx"'_' < dx
dm—2 da,(x)
+a,,l_2(x)> =2 + - +< ('1 +a0(x)>
dao(x) ni—1 ni—2

d d
(ag(x))~! [ T rta, - 1(x) T =t +a1(x)}

If y is any solution of L, (Y) = 0, then Ls(y") = (L,(y))' = 0. O

ProrositiON 3.9. Let P(Y,, ..., Y;) be a differential polynomial
and L a linear differential operator, both L and P having coefficients in F,
a constructible differential field. We can effectively construct a nonzero
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linear differential operator Lp such that if y,, ..., y, are any solutions of
L(Y) = 0, then Lp(P(yy, -..,yx)) = 0.

Proof. The proof proceeds by induction on the complexity of P. If
PeK(x),P#0,letLp=(d/dx) — (P'/P).lfP =P, + P,orP =P, P,
or P = P,’, then apply the induction hypothesis and Lemma 3.8. O

Proposition 3.7 now follows from Proposition 3.6 and 3.9.

d. Elimination theory. Our algorithm reduces the main problem to
questions in elimination theory. We will then apply the general facts
stated below. One way of improving the efficiency of our algorithm would
be to replace the appeal to generalities by elimination techniques designed
to handle the special systems we encounter. If Y;, ..., Y, are indeter-
minants, we denote by Q{Y), ..., Y, } the ring of differential polyno-
mials with coefficients in Q. The following result is due to Seidenberg [12].

ProposiTION 3.10. Consider a system
Fi=0,...,F,=0, G#0 S)

where F; and G are elements of Q{c,, ..., c,,; Vi, ..., V, }. There exist
a finite number of systems

fjl = O, .o .,fjs,, = O, g, # 0 (S,)

where f;;, g are in Q{cy, ..., ¢, } having the following property: for any
differential field K and any values ¢; in K of the c;, the system (S) ob-
tained from (§') by replacing the c; by ¢; has a solution in some differential
extension L of K if and only if for at least one j, the ¢; form a solution of
S j). Moreover, the (S_,~) can be computed in a finite number of steps
depending only on the F; and G.

We shall use the proposition in conjunction with the following result
of classical elimination theory (see [14]).

ProrposiTiON 3.11. Let -
f1=0,...,f,=0, g#0 (8)

be a system of equations with the f; and g in Qlcy, ..., c,]. One can
decide in a finite number of steps if (8) has a solution in C. If (8) has a
solution in C, it will have a solution in Q, the algebraic closure of Q, and
one can find such a solution in a finite number of steps.
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Note that Proposition 3.11 can also be deduced from Proposition 3.10.

4. The Decision Procedure.

THEOREM 4.1. Let L be a linear differential operator with coeffi-
cients in F, a finite algebraic extension of Q(x). One can decide in a finite
number of steps if L(Y) = 0 has a solution liouvillian over F. If it does, one
can find u, algebraic over F, such thaty = exp(Su) satisfies L(Y) = 0.

Proof. If L(Y) = 0 has a solution liouvillian over F, then Theorem
2.4 implies that L(Y) = 0 has a solution z such that z'/z is algebraic over
F(C) of degree < I(n). Note that u = z'/z is a solution of R (U) = 0, the
Riccati equation associated with L. Therefore it is enough to decide if
R(U) = 0 has a solution algebraic over F(C) of degree < I(n). If u is a
solution of R(U) = 0 of degree < I(n) over F(C), then [C(x, u):C(x)] =
N =< I(n)-m where m = [F:Q(x)]. Let

PWU)=UN+ay_;(x)UN 1+ ... 4+ a4(x)

be the minimum polynomial of u over C(x). We shall show that:

Given L, one can effectively bound the degrees of the
numerators and denominators of the a;(x). 4.1)

Let us assume that we have shown this and let M, be such a bound. Let
F = Q(x, «) and let T(V, x) be the irreducible polynomial of « over
Q(x). Let R(U, «, x) = 0 be the Riccati equation associated with L;
where the coefficients are explicitly written as polynomials in o with coeffi-
cients in Q(x). If we clear denominators of T and R, we get new poly-
nomials T(V, x) € Q[V, x] and R(U, «, x) € Q[x, a] {U}. Finally let
M = max{My|1 < N < I(n)-m}. Consider the system of differential
polynomials:

T(V,x)=0
c;'=0
¢, =0
c’,,;ZO ()
x’V=1
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P(U,Cl, .o .,c,,N,x) = bN(Co, ey C”I)UN + bN_](C"l+], ooy C”Z)UN_I
+ - +b0(an EaTRE N)_O

This is a system of differential equaﬁons in the variables (cy, ..., cnys U,

V, x). Proposition 3.10 allows us to find systems (S;) of differential

equalities and inequalities in the variables (¢, ..., c,,N) such that for

some choice of c; for the ¢;, S has a solution if and only if (¢y, ..., ¢, N)

satisfy some S;. Since the c; must be constants, we can replace all occur-
rences of ¢;(¥), k > 0, in the S; by 0. In this way we get a collection {fj} of
systems of algebraic equations in the c;. Proposition 3.11 allows us to de-
cide if some S has a solution in C. If no S has a solution in C, L(Y) = 0
has no houvtlllan solutions. If some S has a solution, we can find ¢y, ...,

,,N in Q such that P(U, ¢y, ..., c,,N, x) = 0 will have a solution u# such
that R(u, «) = 0. Let F be the splitting field of P(u, ¢y, ..., c,, x) =0
over F(cy, ..., ¢,). In F we can now find a » such that R(u, a) = 0. For

this u, y = exp(|u) satisfies L(Y) = 0.

We will therefore be done if we can verify (4.1). To do this, assume
that F is a normal extension of Q(x) and let G = {gy, ..., 0,,} be its
galois group. For o; € G, let L; be the operator obtained by applying o; to
the coefficients of L. Let L(Y) = 0 be the homogeneous linear differential
equation whose solution space is {y; + --- + y,,|L;(y;) = 0}. This can
be found using Lemma 3.8. Note that if « is a solution of P(U) = 0, then
y = exp(S u) is a solution of fy = 0. Therefore all solutions of P(U) = 0
are of the form u = y'/y where L(y) = 0. Let uy, ..., uy be the roots of
P(U) = 0 and let u; = y,;'/y; where L(y;) = 0. We see that

ay—1(x) = — (uy + -+ + uy)
- — <X.1_ + + -X_N_>
Y1 YN
N "I/ N
— = (f) ()
i=1 i=1
Let Py—i(Y;, ..., Yy) = Y, Y, The logarithmic derivative of
Py_i(yy, ..., yn) is a rational function, ay_;(x), so Proposition 3.7

allows us to bound the degree of the numerator and denominator of
an—1(x). Later we shall also need information about the absolute values
of the residues of ay_; (x).
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Now, considering ay—,(x), we have:

ay—,(x) = X uiuj

! !
YiYj
isi<jsN y,y,

N
= 20m = I i Ty v iy piy -y,

where this latter sum is taken over all permutations of (1, ..., N). Let
Py_»(Yy, ..., Yy) = LY, Y'Y, - Y, . Calculating, we find:
(Pv—2(y1s -+, YN /Py—y(y1, oo s yN) = a@'y—y/ay—; + an—; € C(x).

Proposition 3.7 allows us to describe the form of (Py_,(y,, ...,
yN))’/PN—Z(yl’ ey yN)' Writing

a'y—2/an— = (Py—y(y1, - s yN) ' /Py—2(y1, - ¥N) — an—y 4.3)

we see that the degrees of the numerator and denominator of ay_, are
bounded by the sum of the absolute values of the residues of the right-
hand side of (4.3). Proposition 3.7 allows us to calculate this number.
Continuing in this way we can bound the degrees of the numerators
and denominators of each of the a,(x). O

THEOREM 4.2. Let L be a linear differential operator with coeffi-
cients in F, a finite algebraic extension of C(x). One can find, in a finite
number of steps, a basis for the vector space of liouvillian solutions
of Ly = 0.

Proof. We proceed by induction on the order of L. If the order of L
is 1, then

with p € F. All solutions of L are constant multiples of exp(— \ p).
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Let L have order n. Use Theorem 4.1 to decide if L has a liouvillian
solution. If it does, find u, algebraic over F such thaty = exp(Su) satisfies
L(Y) = 0. Let E = F(u). In E, we can factor LasL = L,,_, o L,, where
L, = (d/dx) — u and L, _, is a linear operator with coefficients in E. Let
wi, ..., w; be a basis for the space of liouvillian solutions of L,,_(Y) = 0
(which we can find by induction). Let

y,-=exp(—§u)[5(w,~exp§u)] fori=1, ...,k
Yi+1 = exp(fu)

We claim that yy, ..., y;4, is a basis for V, the space of liouvillian solu-
tions of L(Y) = 0. To see thaty,, ..., y,+; are linearly independent over
C, letZ: ¢y, = 0,¢,€C. Applying L, to this equation, we get

k+1 k
Ll <i§] Ciyi> - i§1 C;iw; — 0.

Therefore ¢y = --- = ¢, = 0andsoc,4+; = 0. Tosee thaty,, ..., ysq;
span V, lety € V. L,y is a liouvillian solution of L,,_;(Y) = 0, so there
arecy, ..., ¢, in Csuch that L,(y) = X, ¢,w,. Solving this equation we
gety = 5., c;yx + cyp4, for some ¢ € C. Finally, one can check that
yieVfori=1, ...,k + 1. O

CoroOLLARY 4.3. Let L be a linear differential operator with coeffi-
cients in F, a finite algebraic extension of Q(x). One can decide if all solu-
tions of L(Y) = 0 are algebraic functions.

Proof. (c.f. [13]). Use Theorem 4.2 to find a basis for the space of
all liouvillian solutions of L(Y) = 0. Now use the algorithm developed by
Rothstein and Caviness ([10]) to decide if each of the elements of this basis
is algebraic over C(x). O

After this paper was submifted, we discovered that Proposition 2.4
and Corollary 2.7 follow immediately from results of Platonov and Malcev
(Corollary 10.11, p. 142 and Theorem 3.6 p. 45 in Infinite Linear Groups
by B. A. F. Wehrfritz, Ergebnisse der Mathematik und ihrer Grenz-
gebiete, Band 76, Springer-Verlag, New York, 1973).
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