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Let L(y) = b be a linear differential equation with coefficients in a differential field K. We 
discuss the problem of deciding if such an equation has a non-zero solution in K and give a 
decision procedure in case K is an elementary extension of the field of rational functions or 
is an algebraic extension of a transcendental liouvillian extension of the field of rational 
functions. We show how one can use this result to give a procedure to find a basis for the 
space of solutions, liouvillian over K, of L(y)=0 where K is such a field and L(y) has 
coefficients in K. 

1. Introduction 

In this  p a p e r  the  fo l lowing  two  ques t ions  will be  considered.  Let K be  a d i f ferent ia l  f ie ld  
and  let  a , _ ~ , . . . ,  a0, b E K. Let  L(y)  = yC,)+ a,_~yC,-~)+... + aoy. 

QUESTION 1. W h e n  does  L(y)  = b have non-zero  solut ions  in K and  h o w  can one  f ind  
all such so lu t ions?  

QUESTION 2. When  does  L(y)= 0 have a non-zero  so lu t ion  y such  tha t  y' /y ~ K a n d  
how does  one  find al l  such so lu t ions?  

A n  a lgor i thm is p r e sen t ed  to  answer  these  quest ions when K is an  e lementary  e x t e n s i o n  
of  C(x) or  K is an a lgeb ra i c  extens ion o f  a pure ly  t r anscenden ta l  l iouvi l l ian  e x t e n s i o n  
o f  C(x),  where  C is a c o m p u t a b l e  a lgebra ica l ly  c losed  field o f  character is t ic  zero.  W e  
will  d iscuss  why these are i m p o r t a n t  ques t ions  and h o w  they are  re la ted  to  each  o ther .  
Before  s tar t ing,  let  us  recal l  some  definit ions.  A field K is said to be  a differentialfield 
with de r iva t ion  D : K ~ K  if D satisfies D ( a + b ) = D ( a ) + D ( b )  and D(ab)= 
(Da)b+a(Db) for  a l l  a, b~K.  The  set C(K)={c lDc=O } is a subfield cal led thefieM 
of constants of  K. We will  usua l ly  deno te  the de r iva t ion  by  ', i.e. a' = Da. A good  e x a m p l e  
to keep  in  m i n d  is the  field o f  ra t iona l  func t ions  C(x )  with de r iva t ion  d/dx (C d e n o t e s  
the c o m p l e x  numbers ) .  All  fields in this pape r ,  wi thout  fur ther  men t ion ,  are  o f  charac te r i s -  
t ic  zero. We say  K is a liouvillian extension of  k i f  there  is a tower  of  f ields /c = 
K0 c K~ c �9 �9 �9 c K ,  = K such that  for each i =  1 , . . . ,  n, K~ = Kf-L(tt) where  e i t h e r  (a)  

f X 2 x ~ . 

t~ E K ; - I  or  (b) t~/tl c Ki-1 or  (c) ti is a lgebra ic  over Kg- i .  Fo r  e xa mp le  C(x ,  e , e ~" ) is 
a l iouv i l l i an  ex tens ion  of  C(x) .  W e  say K is an elementary extension of  k if t he re  is  a 
t o w e r  o f  fields k = K o =  K1 c �9 �9 ~ K,  = K such that  for  each i = 1 , . . . ,  n, Kj = Ki-i(ti) 
where  e i ther  (a) for some  u ; # 0  in  Ki_~, t~=u~/u~ or  (b) for  s o m e  us in K H ,  t~/ti=u~ 
or (e) tt is a lgebra ic  ove r  Ki_~. For  example ,  C(x,  log x, e ~t~ is an  e lementa ry  e x t e n s i o n  
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of  C(x) .  The example following the definition of liouvillian extension is not an elementary 
extension o f  C(x) since ~ e :  lies in no elementary extension of C(x) (Rosenlicht, 1972). 
We say that w is liouvillian (elementary) over k if w belongs to a liouvillian (elementary) 
extension o f  k. 

Algorithms to answer questions 1 and 2 would be useful in solving two other problems. 
First o f  all, an  answer to question 1 would have a bearing on the Risch Algorithm. In a 
series o f  papers  (Risch, 1968; 1969; 1970), Risch gave a procedure to answer the following 
question: Given o~ in an elementary extension K of C(x) (C a finitely generated extension 
o f  the ra t ional  numbers Q and C(K) = C), decide if ~ a lies in an elementary extension 
o f  K. Liouville 's  Theorem (Rosenlicht, 1972) states that if a has an anti-derivative in an 
e lementary extension of K, then a = v'o + ~ c~( v~/ vi) where Vo ~ K, vl . . . . .  v, ~ CK and 
c; e C, where (~ is the algebraic closure of  C. Risch's algorithm gives a procedure to 
decide if such elements exist. As a corollary of  Liouville's Theorem, one can show that 
i f  c~ is o f  the form f e g with f and g in K, then a has an elementary anti-derivative if 
and only  if y '+g'y  = f  has a solution y in K (i.e. i f  and only if there is a y in K such 
that  (y egy = f  e~). In  general, Risch's Algorithm forces one to deal, again and again, 
with this same question: given f and g in an elementary extension K of  C(x), decide if 
y '+g 'y  = f  has a solution in K. When K is a purely transcendental extension of  C(x), 
one m a y  write K = E(t)  with t '~ E or t ' / t~  E and t transcendental over E. Letting 

"' au(t ) 
Y-- L, E - - + h ( t )  

,=l j~1 (p,( t)) j 

be the part ial  fraction decomposit ion of  y, one can plug this expression into y '+g'y  =f. 
Equat ing powers and using the uniqueness of  partial fraction decompositions, one can 
find a finite number  o f  candidates for the p~s and bound the degree of h. This allows one 
to  find all possible solutions y. (In fact there are now improvements on this idea. Rothstein 
(1976) showed  how one can use "Hermite Reduct ion" to postpone,  as much as possible, 
the need to factor polynomials.)  When K is not a purely transcendental extension of 
C(x),  but  involves algebraics in the tower, things are more complicated. In the purely 
t ranscendental  case, partial  fractions gives us a global normal form that captures all the 
necessary local information (e.g. the factors of the denominators and the powers to which 
they appear) .  When algebraics occur, one does not have this normal form. 
I f  K = E ( t , y )  with y algebraic of  degree n over E(t), one may write y =  
b0+ bl y + ' ' "  + b,-1 y ' - I  with the b~ E E( t ) .  To find the b~, one is forced to work with 
puiseux expansions (a local normal form) at each place of  the function field E(t, y). 
Although Risch showed that this approach does yield an algorithm, it is much more 
complex than the purely transcendental case (Bronstein (1990) has made significant 
improvements  in the Risch algorithm and can avoid puiseux expansions in many situations, 
but  he is still forced to consider them in certain cases). One would like to reduce the 
quest ion of  deciding i f y '+g ' y  = f h a s  a solution in E(t, y) to a similar question in E(t), 
where one  could  apply partial fraction techniques and a suitable induction hypothesis. 
In section 3, we shall see that we can reduce the problem of  solving such an equation 
in an algebraic extension of a field to solving linear differential equations (more than 
one  and possibly of order  greater than one) in that field. We are then forced to answer 
quest ion 1 for that field. 

The second place these questions arise is in the general problem of finding liouvillian 
solutions of  linear differential equations with liouvillian coefficients. In Singer (1981) it 
was shown that  given a homogeneous  linear differential equation L (y )  = 0 with coefficients 
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in F, a finite algebraic extension of  Q(x),  one can find in a finite number  o f  steps, a basis 
for the vector space o f  liouvillian solutions of  L(y )  = 0. I would  like to extend this result  
to find, given a h o m o g e n e o u s  l inear differential equation with coefficients in a l iouvil l ian 
extension K of  r a basis for the liouvillian solutions of  L ( y )  ~ O. One can show tha t  
to solve this problem, it is sufficient to find one non-zero  liouvillian solution. An induct ive  
p rocedure  would  then allow one to find all such solutions (see Lemma 2.5(iii) below).  
To see how problem 2 fits into this, I will outline the p rocedure  to decide if  a given 
L ( y )  = 0 with coefficients in K has a non-zero liouvillian solution.  It  is known (Singer,  
1981) that  if L ( y ) =  0 has a non-zero  liouvillian solution, then there is a solut ion y such  
that u = y ' / y  is algebraic over K o f  degree bounded  by an integer N that  depends  on ly  
on the order  o f  L(y) .  Fur thermore  there are effective estimates f o r / ~  Therefore,  for  some  
m -< N, u satisfies an irreducible equat ion of  the form f ( u )  = u m + a,~_ l u m -1 + . . .  + ao--- 0 
with the a~ E K. We must  now find the possible ai ~ K and test to see if, for  such a choice  
of  az, e I~' satisfies L ( y ) = 0 .  For example,  let us try to determine the possible am-1. I f  
u = ul . . . . .  um are the roots o f f ( u )  = 0 and y~ = e I ut satisfies L ( y )  = 0, then for  i = 2 , . . . ,  m, 
Yl = e I "  also satisfies L ( y ) =  0. We have 

arrl_l ~.~.--(Ul-~...-~-Um)~.--(Y~ll--[-,, .-[.Ytm I =__((Y]*" "Ym)r 
\Yl Ym/ \ Ya Ym / 

One can show that the produc t  y = y ~ . .  �9 y,, satisfies a homogeneous  l inear differential 
equat ion Lm(y) = 0 a nd  that y ' / y  ~ K. Finding all such solutions is just problem 2 above.  
Theorem 4.2 below states that  for certain liouvillian extensions K, we can fill in the details 
o f  the above a rgument  and give a procedure  to find a basis for  the vector space o f  all 
solutions o f  L ( y ) =  0 that  are liouvillian over K. 

Finally,  we note  tha t  it appears  that to answer one o f  these two questions we need  to 
be able to answer the other. The rest o f  the paper  is o rgan ized  as follows. Section 2 is 
devoted to showing h o w  one can algorithmically reduce question 2 to question 1. Sect ion 
3 contains  procedures  to answer quest ion I in certain cases. Sect ion 4 contains some final 
comments  and open problems.  The results of  this paper  were announced  in Singer (1989). 

2. Reducing Question 2 to Question 1 

In  this section we shall consider  fields of  the form E( t ) ,  where either t ' eE ,  t ' / t  ~ E 
or t is algebraic over E and where E satisfies certain hypotheses.  We shall show that fo r  
these fields, if  we can answer  question 1 algorithmically then we can answer ques t ion 2 
algorithmically.  This is made  precise in Proposi t ion 2.1, but first we need some definitions. 
We call a differential field K a computable differentialfieid if the field operat ions and the  
derivat ion are recursive functions and if we can effectively fac tor  polynomials  over K. 
We say that  we can effectively solve homogeneous linear differential equations over K if  
for any homogeneous  l inear differential equat ion L(y )  = 0 with coefficients in K, we can  
effectively find a basis for the vector  space of  all y e K such that  L ( y ) =  0. We say tha t  
we can effectively find all exponential solutions o f  homogeneous linear differential equations 
over K if  for any homogeneous  linear differential equation L ( y )  = 0 with coefficients in 
K, we can effectively find u ~ , . . . ,  u,, in K such that if  L(e s") = 0 for some u e K, t hen  
e l " / e  h', ~ K for  some i. 

The  main  result o f  this section is: 

PROPosrrIoN 2.1. Let E ~ E(  t) be computable differential fields with C ( E )  = C ( E (  t)), an 
algebraically closed field, and assume that either t' ~ E, t'/ t ~ E, or t is algebraic over E. 
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A s s u m e  that we can effectively solve homogeneous linear differential equations over E ( t )  
and  that  we can effectively f ind  all exponential solutions o f  homogeneous linear differential 
equations over E. Then we can effectively f ind all exponential solutions o f  homogeneous 
linear differential equations over E (  t). 

We will deal  with each o f  the three cases for t separately in the following proposit ions 
and  lemmas .  We start  by defining and reviewing some facts about the Riccati equation. 
I f  u is a differential variable and y = e  ~", formal  differentiation yields yCO= 
Pi(u, u', . . . ,  u (i-1)) e J", where the Pi are polynomials  with integer coefficients satisfying 
Po = 1 a n d  P~ = P~-I + uP~_l. I f  L ( y )  = y("} + A , _ l y  ("-~) + . .  �9 + A oy  = 0 is a linear differen- 
tial equat ion,  then y = e  I" satisfies L ( y ) = 0  if and only if u satisfies R ( u ) =  
P , ( u , . . . ,  u ( " - l ) ) +  A,_~ Pn-~(u, �9 . . ,  u ( '-2)) +" �9 �9 + Ao = 0. This latter equation is called the 
Riccati  equation associated with L ( y ) =  0. We will need the following technical lemma. 

LEMMA 2.2. L e t  E ( t )  be a differential f ield with t transcendental over E and either t '~  E 
or t ' /  t E E. Let  p ( t) be an irreducible polynomial  in E [ t] where p ~ t i f  t ' /  t ~ E. 

(i) Le t  u ~ E ( t) h ave p-adic expansion o f  the form u = u~/p v + higher order terms, where 
y > O, u v # O, and  degt u~ < deg,p. I f y  > 1 then for  i >" 1, P~(u, . . . ,  u (~-1)) = v~v/p~+ higher 
order terms, where v~ r =-- (u~) i rood p. l f  y = 1 then for i >--- 1, Pi(u . . . . .  u (~-~)) = vi /p i + higher 

i ~ l  �9 t order terms where v i -  ]-Ij~o ( u l - J p  ) rood p. 
(ii) A s s u m e  that t ' e  E and that u e E ( t )  has (1 / t ) -ad ic  expansion o f  the form u = 

uz, tV+higher  powers o f  1/t ,  u r # O .  I f  y > 0  then the (1 / t ) -ad ic  expansion of  
P i (u  . . . . .  u (i-t/) = u~t ~ + higher powers o f  1/t.  I f  T = O, then the (1 / t ) -adic  expansion of  
Pi( u . . . .  , u (j-l)) = Pi( uo, . . . , u~ H ) )  + higher powers o f  1/t. 

(iii) A s s u m e  that t ' / t ~ E  and that u E E ( t ) .  I f  u has t-adic expansion o f  the form 
u = u v / t  y + higherpowers  o f t ,  y > O, u r ~ O, then P i ( u , . . . ,  u (~-~)) = u ~ / t i v +  higherpowers 
o f  t. I f  u has ( 1 / t ) . a d i c  expansion u = u y t r + h i g h e r  powers o f  1/ t ,  uv#O,  then 
P i ( u , . . . , u ( ~ - l ) ) = u ~ v t i ~ + h i g h e r  powers o f  1 / t  i f  y > O  and  P ( u , . . . , u ( t - 1 ) )  = 
y~(uo . . . .  , u(o~-~))+ higher powers o f  1/ t / f  y = O .  

PROOF. We proceed  in all cases by induction. 
(i): No te  tha t  for p as above,  p does not divide p ' .  First assume that y >  1. I f  i = 1, 

P~ = u, so v t v =  uy. I f  i > 0 ,  then 

_ { u~v,, + . .  ) 
-\p(~+~)~ �9 s i n c e ( i + l ) y > i y + l  

VCi+l)v + .  =pU+l)~ �9 �9 where V(i+l)), ~ (U~/) i+1 m o d p .  

N o w  assume tha t  y --- 1. I f  i = 1 then the result is obvious. For i > 0, 

)(~ P,.+, = P~ + uP, -= ~ - ' ~ F - + "  " " + + . . .  

V/(U 1 - i p ' )  

P 
_ V i +~  + ,  i 
--p~+~ '"  where v~+t~ ~ ( u t - j p ' )  modp .  

j=o  



Liouvillian Solutions of Differential Equations 255 

(ii) and (iii): The proofs  are similar to (i), proceeding by induct ion and compar ing  
leading terms. 

PROPOSITION 2.3. Let E ~ E ( t ) be computable differential fields with C ( E ) = C( E ( t ) ) and  
assume that either t' e E or t ' /  t e E and that t is transcendental over E. Furthermore, assume 
that we can effectively solve homogeneous linear differential equations over E ( t )  and  that 
we can effectively f ind all exponential solutions o f  homogeneous linear differential equations 
over E. Then we can decide i f  a homogeneous linear differential equation L ( y ) = 0  with 
coefficients in E ( t )  has a solution e I" with u e  E ( t ) .  

PROOF. Assume that t '  e E. We wish to decide if there is a u in E ( t )  such that R ( u )  = 0 
where R ( u )  is the Riccati  equat ion associated with L ( y )  = 0. We shall try and de termine  
the possible partial f rac t ion decompos i t ion  for such a u. Let p( t )  be a monic  i rreducible 
po lynomia l  in E [  t] a nd  let u = u r / p  ~" + u:,_l/p ~-1 +" �9 . ,  where degt us < degt p and  3' > 1. 
I c laim that  one can find 3' and  u v up to some finite set o f  choices. The following m e t h o d  
is very  similar to the N e w t o n  polygon process used to expand algebraic functions.  Let  
L ( y )  = y(") + An-1 y(n-~) + . . .  + A o y  and At = ai~,/p 4, + . . . .  The leading powers in R (u) = 
Pn + A , - a  Pn-i  + ' ' "  + Ao must  cancel. The leading term of AiP~ is (at~,vi~,)fp ~'+~ (using 
the notat ion o f  L e m m a  2.2). Therefore for some i,j, i # j ,  we have o~+ i y =  o g + j T  or  
y =  c e t - a J ( i - j ) .  Fix a value of  y and a corresponding j such that  Cek+ ky<--o~j+jy for  
all o ther  k (of  course we only consider such 3' that are integers > 1). Summing over  all 

h h such that  at, + hy = o9 +j 'y  we have ~ a~,,~Vhv = 0. Lemma 2.2 implies tha t  ~ ah,,,u v = 
0 m o d  p. Since deg, uy < degtp,  this latter equation determines uy up to some finite set 
(to find uy we factor ~ ah~h yh  in ( E ( t ) / p ) [  Y]  and consider the l inear factors). We n o w  

Itu~llJV~ [.(u./p ) alter our  original L ( y ) .  L e t  /~(y) = L ( y  e ) /e  . We n o w  look for  solutions o f  
s  = 0  of  the form e I" with tTe E and tT= f f ~ / p ~ + . . ,  with 8 an integer. We p roceed  
now as above, except  we only consider those 8 with B < y .  Note that if u =  
ua/p n +.  �9 �9 satisfies R ( u )  = 0 with 8 > 1, then p must occur in the denominator  o f  some  
A~. Therefore,  we cont inue until we can assume that u is of  the fo rm Y. uj~/p~+s, where  
s e E [ t ] .  Some o f  the pj occur  in denominators  of  the A~ and some do not. Let  p = p j  
occur  in the denomina to r  o f  some A~ and let ut = uit. We then look for cancellat ion as 
before. Fixing a value o f  i and  summing over all h such that ah + h = a~ + i, we have that  
Y'. ah,,,VhhO. We have that Vh-----1-I;_~o 1 ( u ~ - j p ' ) m o d p  by Lemma 2.2, so ut will satisfy 

ahc,,,(I-[j--o (Ul - j p  ))----0 m o d  p. Tlais equat ion is a non-zero polynomial  in ul, and  ul is 
assumed to have degree less than the degree o f  p, so we can determine ul up to some  
finite set o f  choices, as before. We can alter L ( y )  as before and assume that  u is o f  the 
form u = ~. uj~/pj + s, where this sum is over all pj that do not occur  in the d e n o m i n a t o r  
of  some Ai. For  such a pj (which we again refer to as p),  the leading term in the p -ad ic  
expans ion  of  R ( u )  is v , / p  ~ (by Lemma 2.2), so v,, = 0  and so Iljffio ( u i - j p ' )  -= 0 m o d  p. 
Therefore  u~ = j p '  for some j, 1 -<j-< n - 1. This allows us to assume that u is of the f o r m  
u = ~  (n jp j ) / p j+  s where the nj are integers and s and the pj are polynomials  no t  yet  
determined.  We now proceed  to determine s = Smt m +" �9 �9 + SO. First assume that  m > 1. 
Expand ing  u in decreasing powers  of  t, we have u = s , , tm+smal le r  powers of t. L e m m a  

= s , , t  + l o w e r  powers of  t. Writing A~ = a , t~ ,+lower  powers  o f  2.2(ii) implies that  P~(u) J ~" 
t, we see that  for  cancellat ion to occur  in R ( u )  we must  have a t +  i m =  a~+jm for  some  
i # j .  Therefore m can be de termined up to some finite set of  possibilities by  cons ider ing  
the possible integer a~ - a j / ( j  - i). We fix such a value o f  m and a j such that o~ + k m  <- 
aj + j m  for  all other  k. Summing  over all h such that ah + hm = a~ + j m ,  we have ~ ans , ,=  O. 
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Therefore  St# is determined up to a finite set of  possibilities. We can again alter L(y)  
until  we are in a posit ion to assume that  u = u 0 + ~  (nip~)/pi. Looking for  cancellation in 
R ( u )  = 0, we have, by  Lemma  2.2(ii), that  ~ atP~(uo, . . . ,  u(0 i-l~) = 0, where the summat ion  
is over all  i wi th  as = m a x j  (as). Therefore e I"0 satisfies s  where / ~ ( y ) = ~  aly (~ 
the s u m m a t i o n  being over  all i with a~ = m a x s ( a j ) .  Since we can effectively find all 
exponent ia l  solutions of  homogeneous  linear differential equations over E, we can find 
a finite set {Vo, . . . ,  vr} such that  eI%/e Io, = r~ e E ( t )  for some i. For each i, we form 
L~(y) = L ( y  elO,)/e I~,. We then have that y = r~ exp 5 (~ (n~p~)/pi) = r i ~PT' will satisfy 
some L ; (y ) .  Since we can effectively solve homogeneous  linear differential equations over 
E( t ) ,  we can find such a solution, and so reconstruct  an exponential  solution of  our 
original differential equation.  

We n o w  deal  with the case when t ' / t  ~ E. We again try to determine the possible partial 
f ract ion expansions  for  solutions of  R ( u ) = 0 .  Let p be  a monic irreducible polynomial  
in E[t] and  assume p # t. I f p  occurs in the denominator  of  u to a power  larger than 1, 
t hen  p m u s t  occur  in the denomina tor  of  some Az. For  these p, we can proceed with the 
reduct ion  used  above. We can therefore assume that  u = ~  ujl/pj+s, where the pj are 
monic  i r reducible  polynomials ,  pj # t and s = s,, / t m +.  �9 �9 + so +" �9 ' + sMt M. We can elimi- 
nate  those  Ps that  appea r  in the denominator  of  some A~ as before and so assume that 
the pj t ha t  appea r  do not occur  in the denomina to r  of  any Ai. Fix some p~, say p. The 
leading te rm in R ( u ) = P ~ ( u ) + A , _ I P , _ ~ ( u ) + . .  "+Ao is (using the notat ion Lemma 
2.2(i)) v J p " ,  where v~ =--~.-~ ( u ~ - j p ' ) m o d p  and ul is the leading coefficient in the 
p -ad ic  expans ion  of u. Since v, = 0, we must  have u~ --jp'  mod p for  some j, 1 ---j -< n - 1. 
Since p is mon ic  and the degree of  p is the same as the degree o f  p' (say N) ,  we have 
that  ul = j p ' -  Nj~p where ~ = t '/t.  Therefore u = ~ ((n~p~+ mt~pi)/p~) + s, where the n~ and 
m~ are integers and degr (n,p ~ + m, ~Pt) < deg, p;. We now will determine the coefficients in 
s = s , , / t  m +.  �9 �9 +SM tM. If  A~ = a,=,/t~'+higher powers of  t, then the leading term in the 
t-adic expans ion  of A~P~ is ~ ~+'~ (a~,ssm)/t , . To get cancellat ion in R ( u )  = 0, we must have 
two such terms being equal.  This determines m up to some finite set of  choices. Selecting 
an rn and  a j such tha t  k m +  an <-jm + a~ for all other k and summing over all h such 

s h that  hm + ah = j m  + %, we have  ~ ah~,~ m = 0. Therefore  sm is determined up to some finite 
set of  possibilities. We can determine SM in a similar way. We can alter L(y )  as before 
until  we are in a posi t ion to assume that u = Uo+Y. (n~p[ + m~p~)/pi. Looking for cancella- 
t ion  in the ( 1 / t ) - a d i c  expansion of  R(u) ,  we have by Lemma  2.2(iii) that 

a h c ~ P h ( U O , . . . ,  U(0 i - I ) )  = 0 where At = a~,t ~' +higher  powers of 1/t  and the summation 
J'u n is over all  h such tha t  0t h = m a x j ( ~ j ) .  Therefore  e satisfies L ( y ) = 0  where L ( y ) =  

5~ a~ry ~ ,  the summat ion  being as before. Since we can  effectively find all exponential  
solutions of  homogeneous  linear differential equations over E, we can find a finite set 
{Vo . . . . .  v~} such that  e I~o /e I~  for some i. For each i, y i=ye - I~ '=  
w, exp(5 ~.. (n,p~ + m,~p,)(p,)= w~ttxm')I-[ p~, ~ E( t ) .  y, also satisfies the linear differential 
equat ion L ~ ( y ) = L ( y  e j , ) /e  I '----0. Since we can effectively solve homogeneous  linear 
differential equations over  E ( t ) ,  we can decide if this equation has a non-zero solution 
in E(t) .  I f  not,  then L ( y ) = 0  has no solution of the desired form and if so, we can 
reconst ruct  a solution o f  the desired form. 

Examples  are now given to illustrate Proposit ion 2.3. 

EXAMPLE 2.3.1. Let E = r  and t = l o g  x. We shall consider the differential equat ion 

_ _  t l ,  , 1 

L ( y ) - y  x ( l o g x + l ) y ' - ( l o g x + l ) ~ y - - O  
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and decide if it has solutions of the form e I' '  with u ~ E(t). We shall assume that  the 
hypotheses of  the theorem are satisfied by E (this will be shown later). The associated 
Riccati equation is 

R(u)=_(u,+u2 ) 1 u _ ( l o g  x + l ) 2 = 0 .  
x(log x +  1) 

Assume that u is a solution of  R(u)  = 0  in E(t) =Q(x ,  log x). I f p ( t )  ~s t +  1 is irreducible 
in E[t], then as we have noted above the order of u at p(t) is bigger than or equal to 
-1 .  At t + l - - - l o g  x + l ,  we may write 

U~, uT-1 ~ . . . .  
u = (log x + 1) v 4 (log x +  1) ~-1 

Substituting this expression in R(u)  and comparing leading terms, one sees that i f  y > 1, 
then the leading term in R(u)  is u ~ ( l o g x + l ) 2 L  If  7 = 1, then the leading term (after 
some cancellation) is u~(log x + 1) 2. This means that u cannot have a pole at log x +  1. 
We therefore have that u = ~ pI/p~ + s where the p~ are irreducible polynomials in E[t], 
not equal to t + l  and s is a polynomial  in E[t]. We now proceed to determine s ( t )=  
Smt" +" " " + So. Plugging into R(u)  and comparing terms we see that m = 1 and sa = =al 
and so s ( t )=+t+So= +log x+so. We therefore alter L(y)  in two ways. Let 

LI(y)  = L(y e-'flogx)/e -II~ 

= Y " ' ~  - 2 x  log 2 x - 2x log x - 1 y ,  + - 2 x  log ~ x - 3x log x - x - 1 

x l o g x + x  x l o g x + x  Y" 

Let 

L2(y) = L(y gt~176 

= y'-t 2 x l ~ 1 7 6  y'+ - 2 x l ~ 1 7 6  y. 
x l o g  x + x  x l o g x + x  

To determine the possible So we consider L~ and L2 separately. In both cases we are 
looking for  solutions o f  this equation of the form y = e I'o+(rp',/p,) with So in E. For  L1, i f  
we expand the coefficients in decreasing powers of log x, we get 

LI(y)  = y"+ (2 log x + .  �9 . ) y ' +  ( - 2  log x + .  �9 .)y = 0. 

e Iso will satisfy/~I(Y) = 2y' . -2y  = 0. By the hypotheses, we can find exponential solutions 
of this latter equation over E = Q ( x ) .  In fact, e x is the only such solution, i.e. the only 
possibility for so is 1. We now modify L1(y) and form 

[q(y) = Ll (y  eX)/e ~ 

= y"-I- 2x log 2 x + 4x log x + 2x -- 1 y,. 

x log x + x  

We are looking for solutions of this latter equation of  the form r(exp(J (~  p~/p~))) with 
r in E(t) ,  that is, solutions in E(t) .  A partial fractions argument shows that the only  
such solutions are constants. This implies that our original equation has a solution of the 
form e I~176247 = e xl~ Repeating this procedure for L2(y) would yield a solution of our  
original equat ion of the form e Ic-~~ = e -x~~ 
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EXAMPLE 2.3.2. Let E = Q(x)  and t = e ~. We shall consider the differential equation 

L ( y )  = y " +  ( - 2  e ~ - 1 )y '+  eZ~y = 0. 

The  assoc ia ted  Riccati equat ion is 

R ( u )  = ( u ' +  u2) + ( - 2  e ~ -  1)u + e2~ = 0. 

One  easily shows that  all solutions in E ( t )  of R ( u ) = 0  must be of  the form u =  
s+Y.(n~pl+m~pg) /p~ where p~ are irreducible in E [ t ]  and not equal to t, and s =  
Sin~tin+ " " " + S~t  M. One easily sees that m = 0. Substituting u in R ( u )  and expanding in 
powers  o f  t, we have 

MsMt M + �9 �9 . + s ~  t T M  + . . . .  2MSMt M+I +" �9 �9 + t 2 = O. 

There fore  M = 1 and sM = 1. Therefore u = t + So + ~ (n,p~ + m,p~)/pt. We alter the equation 
L ( y )  = 0 to get L l (y )  = L ( y  eN*)/e s"') = y " - y ' .  We are looking for solutions of  the form 
e j~~ We find that s o = l  or 0. We now form the equations L ~ ( y ) =  
L~(y  eI~)/e D = y " + y '  and L~2(y) = L~(y e I ~ 1 7 6  ' and look for solutions of  these 
equat ions  that  lie in E ( t ) .  These have solutions e -~, 1 and e x, 1 respectively. Therefore 
the original equat ion L ( y )  has solutions e "* and e ~+"~. 

Note  that  in these last  two examples we have found all exponential  solutions of  L ( y )  = 0, 
not  just  a single one. The algori thm described in Proposi t ion 2.3 can be modified to do 
this, but we would ra ther  do this task in the following 

LEMMA 2.4. L e t  K be a computable differential field. 
(i) A s s u m e  that fo r  any  homogeneous linear differential equation L( y )  = 0 with coefficients 

in K we can decide i f  there exists a u ~ K such that L(e I ' ' )  = 0 and i f  so f ind  such an element. 
Then we can effectively f i n d  all exponential solutions o f  homogeneous linear differential 
equat ions over K.  

(ii) A s s u m e  that we can effectively solve homogeneous linear differential equations over 
K and that  we can f ind  all exponential  solutions o f  homogeneous linear differential equations 
over K. I f  L(  y )  = 0 is a homogeneous linear differential equation with coefficients in K then 
one can f i n d  ui, 1 <- i ~ r and vu , 1 < i <- r, 1 <- j ~- nj, such that i f  u ~ K and L(e I") = 0 then 
there exists an i, 1 ~ i < r and  constants c~s such that e Iu = (~j c~j uo ) e I",. 

PROOF. (i) We proceed  by induction on the order of  the linear differential equation. Let 
L ( y )  = 0 be  a homogeneous  linear differential equation of order n with coefficients in K. 
Decide if  there exists a u e K such that L(e  I") =0 .  I f  no such element exists, we are done. 
Otherwise find such an  element. Let L~(y)  = L ( y  e I " ) / e  f". La(y)  has no term of order 
zero, so we  m a y  write L l ( y ) = / ~ ( y ' ) ,  where /~.(y) has order n - 1 .  By induction we can 
find u l , . . . ,  ur in K such that  if  v is in K and/7(e  S~) = ~ then e l~  S", is in K. Let w E K 
satisfy L(elW) ---- 0. We then  have 0 = / ~ ( ( e l W - " ) ' ) = L ( e  f ..... +cw'-,'~/l~-,)). Therefore 
ef~ ' -" /e  I", E K or (eI~'-") ' =  0. We can conclude that i f  e Iw satisfies L ( y )  = 0, then either 
elW/e l"~+u ~ K or  elW/eS"~ K. 

(ii) Let L ( y )  = 0 be a homogeneous  linear differential equation with coefficients in K. 
We can find u l , . . . ,  u~ such that if  u ~ K and L(e J") = 0, the e I" /e  I", e K. For  each i, form 
L ~ ( y ) = L ( y  eI" , ) / e  I", and  find a basis {%} for the vector  space of  solutions in K of 
L r ( y )  = 0. This choice o f  u~ and u~j satisfies the conclusion of  the lemma. 
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EXAMPLE 2.4.1. We consider the same equation as in Example 2.3.2, L ( y ) =  
y " + ( - 2  e ~ -  1)y '+e2~y =0.  e su is a solution of this equation where u = e x, so we form 
L ~ ( y ) = L ( y  e ~ ) / e ~ X = y " - y  '. Therefore L ( y ) = y ' - y .  This latter equation has solution 
e Iu where u---x. Therefore if  w ~ K = I)(x, e x) and L(e I~) = 0 then either eJ'~/e'~ e K or 
elW/e ~x+~ ~ K. 

LEMMA 2.5. Let K be a computable differential field with an algebraically closed field o f  
constants and L( y ) =  0 a homogeneous linear differential equation with coefficients that lie 
in a finitely generated algebraic extension E of  K. Assume that one can effectively find all 
solutions o f  homogeneous linear differential equations over K and effectively f ind all exponen- 
tial solutions of  homogeneous linear differential equations over K. Then 

(i) One can decide i f  there exists an element u algebraic over K such that L(e b') = 0 
and i f  so f ind a minimal polynomial of  u over 1(. 

(ii) One can find an algebraic extension F o f  E and elements ui, u o. in F such that i f  u 
is an element in F and L(e I~) ---0, then there exist an i and constants c o such that e I~--  
(Ej cu u0 ) e s'''. 

(iii) One can find elements yx, . . . , Yr, liouvillian over K, that span the space o f  aII solutions 
of  L ( y )  = 0 that are liouvillian over K. 

PROOF. (i) This follows f rom the techniques and results of  Singer (1981). For the 
convenience of the reader we outline the proof  here. We know from Theorem 2.4 of  
Singer (1981) that if L ( y )  = 0 has a solution of the prescribed form then it has one where 
u is algebraic over E o f  degree bounded by an integer N that depends only on the order  
n of  L. Furthermore,  there is a recursive function I (n )  such that N<_I(n) .  Therefore u 
will satisfy a polynomial  equation over F of degree at most I ( n ) [ E : F ] .  Fix an integer 
m <--I (n)[E:F].  We wish to decide if there exist a m - i , . . . ,  ao in K such that i f  f (u) - - -  
u m + a,~_lu m-~ +" ' "+ ao = 0, then L(e I") = 0. We shall first determine the possible am-a 
that can occur. We may assume that  E is a normal extension of F and let G = { c q , . . . ,  crt} 
be the galois group o f  E over K. For each o-~ e G, let L~(y)= 0 be the homogeneous  
linear differential equation obtained by applying cr~ to the coefficients o f  L(y)  = 0. Let  
/2 ,(y)=0 be the homogeneous linear differential equation whose solution space is 
{Y~ +" " "+Ym I L~(y~) = 0, i = 1 . . . . .  m} (see Lemma 3.8 of  Singer (1981)). Assuminug that  
f is irreducible, we have that  /~(e Iu,) --0 for all roots ug of f ( u ) =  0. Let y~ = e J ~. We 
see that 

am_l = - ( u l + '  �9 .+u , , )  

+ 
\Yl Ym ] 

Z J 
Let L I ( y ) = 0  be the homogeneous linear differential equation with coefficients in E, 
satisfied by zm --Yl " " �9 ym. This can be calculated from L(y)  using L e m m a  3.8 of  Singer 

A rrl 

(1981). Since z ' / z m  e K, L l ( z m ) = 0  where L l ( y ) = ~ = ~  (L l (y ) )  ~. L t (y )  has coefficients 
in K, so by Lemma 2.4(ii), we can find v~ and v e in K such that z,~ --- (~  cove) e Io, for  
some constants c U. Therefore, for some i, am-t = v~ + (2  co vo)'/(Y~ cevo ). We can conclude 
that we can construct a finite number of  rational functions R,,_~.t(c~.j) with coefficients 
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in K such that  for some choice of  constants cq and i, ar,-~ = Rm-t.~(c~d). To compute  
a m _ e ,  note  tha t  

1--< i , j : ~  m 

Y~Yj 
l~-i,]~m Y i Y j  

= e ( I I  y j )  -~ E ' ' " ' "  Y i z Y i: Yi3 Yi,,, 

where this lat ter  sum is taken over  all permutat ions of  (1 . . . .  , m). Let P(  Y~ . . . . .  Ym) = 
~. YI, Y~z Y~3 " " " Y~o." We can construct a linear differential equation L2(y) with coefficients 
in E, such  that  for any  solutions y~ . . . . .  Ym of L(y)  = 0, L2(P(y~ . . . .  , y, ,))  =0 .  Note that 
t-I Yj = ~.s %vu eft '  for some i and constants c U (as above).  Therefore,  for some i, we have 
tha t  (l-I Y j )am-2=~  cijVO eI~am-2 = P ( Y ~ , . . . ,  Y,~) and so e - S ~ ' P ( y l , . . . ,  y~) is in K. Let 
L2.,(y) ~ L2(eI~'y)/e I~ and let L2.,(y) ~ F~=~ (L2,t(y)) ~',. Since/.~,~(eI~,p(yl . . . . .  y , ) )  --- 0, 
a n d  e - I  ' P (Y l ,  . . . ,  ym)~  K, we have/.a_,i(e -I , P ( y ~ , . . . ,  y,~)) =0.  By assumption,  we can 
find {wv} in K such that  for  each i, {w~.j} forms a basis  of the vector space of solutions 
of  I_a.j(y)=O in K. Therefore,  for some i and constants c o , du, a , , -2=  
c ( ~  y , ) - l p (  y l ,  . .. , y , )  = (~j cuvo " eI~,)-~p(y 1 . . . .  , y , )  = (~j cuvo.)-a(Y.i d~j wo.). We denote 
this ra t ional  funct ion as R2.t. In a similar way we can find, for  the other a ,  _~, expressions 
Rh.t that are rational funct ions of  known quantities with unknown constant coefficients. 
For  all poss ib le  choices of  i = (io . . . .  , i , , - l )  we form 

f , ( u )  = u "  + R m - , . ,  ..... u ~ - ~  + - .  �9 + Ro j0 .  

We wish to determine if there is a choice of constants co., d~ . . . .  such that  any solution 
o f f , ( u ) - - 0  is a solution o f  R(u)  =0,  where R ( u ) = O  is the Riccati equation associated 
with L ( y )  =0 .  I f  we reduce  R(u)  with respect to f~(u) as in Ritt (1966, p. 6), we get a 
r ema inde r  Hi(u)  that must  vanish identically. This forces a collection of  polynomials  
(with coefficients in E )  in the c u, do.,.., to vanish identically. Since we are looking for 
constant  solutions,  there  is an equivalent set of  polynomials  with constant  coefficients. 
We can then  decide i f  there exist constants that  satisfy these polynomial  equations. If  
such a set o f  constants  do not  exist then L ( y )  = 0 does not  have a solution of the desired 
form. I f  such a set does exist, then  we factor  f~(u) to find a minimal  polynomial  for u. 

(ii) We proceed  by induct ion on the order  of  L(y).  I f  the order is 1, then L(y)  = y '+ ay, 
for  some a ~ K. We then  let F - -  E and note that  for any  u in F such that L(e I ~) = 0, we 
have  e I~ = e e f-~,  for some constant  c. Now assume tha t  L(y)  has order n > 1. By part  
(i) o f  this l emma,  we can  decide i f  there is a u algebraic over K such that L(e I") =0 .  Let 
Ll ( y )  = L (y  e I " ) / e  I~. LI(y )  has  no term of order zero so we may write L1(y) = L(Y') ,  
where /~ (y )  has order n - 1 and  coefficients in E(u).  By induction, there exists an algebraic 
extension F o f  E(u)  and elements  v~ in F such that  i f  v is in F and /~(e f~) = 0, then 
eJ~ /e f~ ' eF .  I f  w e F  and  L(e  ) = 0 ,  then /~((e ~- ) ) = 0 ,  so ( w - u )  e - /e  
e I ~ ' = c e  I" for  some constant  c. Therefore e I /eI~,+~eF or e I ~ / e I " ~ F .  Let u~= 
v ~ + u , . . . ,  u~= v~+u, u~+~= u and  L~(y) = L ( y  e~ , ) / e  ~,  for i = l , . . . ,  r + l .  Each L~ has 
coefficients in F, an explicit ly given algebraic extension of K. In Proposi t ion 3.1 we shall 
see that  we  can effectively solve homogeneous  linear differential equations in F. Therefore,  
we can f ind u U such that ,  for each i, {uo.} forms a basis fo r  the set of solutions of L~(y) = 0 
in 17. We have  then  found  the desired u~ and u~. 
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(iii) We again proceed by induction on the order of  L(y). When L(y) has order 1, 
then L ( y ) = y ' + a y  for some a in K. Therefore y~ = e  -I" will satisfy the conclusion of the 
lemma. For n > 1, Theorem 2.4 of  Singer (1981) implies that if L(y)=0  has a solution 
liouvillian over K, then there exists an element u algebraic over K such that L(J")  = O. 
Part (i) of  this lemma lets us decide if this is the case and if so, find such an element. 
For such a u, let L~(y)=L(y  elU)/e ~". Since L~ has no term of order 0, we may write 
LI(y) = f--.(y'), where L(y) has order n - 1. By induction, we can find z~ , . . . ,  zr that span 
the space of solutions o f /Z(y)  = 0 liouvillian over K(u).  e I", e ~" ~ z~ . . . .  , e I" J zr then 
span the solutions of L(y )=  0 liouvillian over K. 

EXAMPLE 2.5.1. Let K = Q(x, log x) and consider the linear differential equation 

L(y )=y"q  4 x l o g x + 2 X y , _  1 
4x 2 log x 4X 2 log X y = 0. 

We will find all liouvillian solutions of this equation. We start by looking for all solutions 
of the form e J" where u is algebraic over K of degree at most 2. In general, we would 
have to decide if there is such a solution with u algebraic over K of degree bounded by 
some computable function of  the order of  L, but in this case we will see that the number  
2 is enough, u satisfies an equation of the form f ( u )=  u2+ au+ b = 0 with a, b ~ K. We 
will furthermore assume that f (u)  is irreducible. We then have that a =-(y '~/y~ +Y~/Y2) 
where y~ and Y2 are solutions of L(y) = 0. We now construct a linear dif[erential equation 
L2(y) satisfied by all elements Yl Y2 where Yl and Y2 are solutions of  L(y)  = 0. An algorithm 
for this is given in Singer (1981). We have 

L2 (y) = y,,,_~ 6x log x + 3x ,, 2 log x + 1 y, = O. 
~ - i i ~ g  x Y q 2x21ogx 

We need to find all solutions y of this latter equation such that y ' /y  a K. An algorithm 
for this is given in Lemma 2.3 and Lemma 2.4. We find that the only such solutions are 
constants. This implies that a = 0 .  To determine b, we note that b=(y~y~.)/yty2, so 
y~y2b =y~y'~. Since YlY2 must be a constant, Y'~Y'2 must be in K. We again construct a 
linear differential equation L3(y) = 0 satisfied by all expressions of  the form y'~ y~. We find 

L3 (y)  = y'" + 18x z log 2 x + 9x 2 log x Y" -~ 38 log 2 x + 43 log x + 6x y, 
2x 3 log 2 x 2x 3 l og  2 X 

16 log 2 x + 3 2 1 o g x +  10 
4 2X 3 log 2 x Y 

= 0 .  

We must find all solutions of  this latter equation in K. An algorithm for this is given in 
Proposition 3.10. We find that the only such solutions are constant multiples of  
1/(4x 2 log x). Therefore f (u)  must be of the form u2+ c/(4x 2 log x) for some constant c. 
If  f (u) = 0, then u 2 = - c / ( 4 x  2 log x) and u' = -�89 log x+4x / (4x  2 log x)] �9 u. Substitut- 
ing these expressions in 

R(u) -~ u2+ u'-~ 4x log x + 2 x  1 
4x 2 log x u 4x 2 log-~ - 0 

we see that c = - 1 .  Therefore f ( u ) =  u 2-1 / (4x  2 log x) so L(y) has solutions of the form 
y = e TM where w = :e(log x) 1/2. These two solutions form a basis for the space of  all solutions 
of L(y)  = 0. 
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PROPOSITION 2.6. Let E c E( t )  be computable differential fields and assume that t is 
algebraic over E and that C ( E ) =  C ( E ( t ) )  is algebraically closed. Assume that we can 
effectively solve homogeneous linear differential equations over E and that we can effectively 
f ind all exponential solutions of homogeneous linear differential equations over E. Then we 
can decide i ra  homogeneous linear differential equation L ( y ) = 0  with coejffTcients in E(  t) 
has a solution e I" with ua  E( t ) .  

PROOF. Let F, ui, u;j be  as in Lemma 2.5 (ii) where E (t) c F. I f  L(e Iv) = 0 for  some u ~ E (t), 
then  there exists an i and constants c~i such that u = u i + ( ~  co.u~i)'/(~, cuuo.). Therefore 
we need to decide if  there exist constants c o. such that  u~ + (Y. c~ uu)'/(~ co.u U) E E(  t). If  
we write this in terms o f  a basis of  F over E (t), this is equivalent to a system of  polynomials 
in the c~, with coefficients in E ( t )  vanishing. There is an equivalent polynomial  system 
with constant  coefficients and we can decide if this has a solution in the subfield of 
constants .  

PROOF OF PROPOSITION 2.1. This follows immediately  f rom Proposit ions 2.3 and 2.6 
and  L e m m a  2.4(i). 

3. Question 1 

In this sect ion we discuss the problem of  answering question 1 for fields of  the form 
E ( t )  where E satisfies a suitable hypothesis and either t ' / t ~ E ,  t '~ E or t is algebraic 
over  E. We actually deal with a slightly more general question related to the following 
definition. Let K be a differential field. We say that we can effectively solve parameterized 
linear differential equations overK if  given a , _ ~ , . . . ,  ao, b , , , . . . ,  bo in K, one can effectively 
find h i , . . . ,  hr in K and a system ~ in m + r  variables with coefficients in C ( K )  such 
that  y~)  + a,~-i y(n-1) + . . .  + aoy ~ ctbl + '  " "+ crab,, for y ~ K and c; in C( K)  if  and only 
i f y  =ylh l  +" " " +yrhr where the Yi ~ C ( K )  and Cl, �9 �9 �9 cm, Yl . . . .  , Yr satisfy ~. Obviously, 
if  K is compu tab l e  and  we can effectively solve parameter ized linear differential equations 
over  K, then  we can effectively solve homogeneous  linear differential equations over K. 
Proposi t ions  3.1 and 3.4 can be proved if both  the hypotheses  and conclusions regarding 
solving parameter ized  l inear  differential equations are replaced by the weaker statement 
that  we can  effectively solve homogeneous  linear differential equations. In  Proposition 
3.9, we need  the  stronger s ta tement  to make  the induction work. We prove these stronger 
s ta tements  with the hope  that  they will be more useful in applications. 

We first deal with the field E( t )  where t is algebraic over E. Let E[D] be the ring of 
differential operators  with coefficients in E. This is the set of  expressions of  the form 
a,Dn+" " "+ ao where mult ipl icat ion corresponds to composit ion o f  these operators. In 
general, this is not  a commuta t ive  ring, since Da = D ( a ) +  aD. It is known that this ring 
has  a r ight  and  left division algorithm (Poole, 1960, p. 31), so we can row and column 
reduce any  matr ix  with coefficierlts in E[D] (Poole 1960, p. 39). 

PROPOSITION 3.1. Let E be a computable differential field and t an element algebraic over 
17,. I f  we can effectively solve parameterized linear differential equations over E then we can 
effectively solve parameterized linear differential equations over E( t). 

PROOF. Let  1, t , . . . ,  t N fo rm a vector space basis of E(t )  over E and let y =  
y o + y ~ t + ' ' "  +yNt  N where Y0 . . . .  , YN are new variables. Using the fact that t' may be 



Liouvillian Solutions of Differential Equations 263 

explicitly written as an element of E(t) ,  we may then write 

L( y ) = y ( ~  + a~-i y(~- l~+ . . .  + aoy = ctbl +" �9 "+ cmbm 

as 

Lo(Yo . . . .  , y N ) +  L , ( yo ,  . . . ,  y N ) t + "  " "+ L N ( y o  . . . .  , y N ) t  N 

= Bo(Cl . . . .  , Cm)+ BI(Cl . . . .  , era)t+" �9 . + B N ( A , . . . ,  Cm)t N 

where the L, are linear differential equations in the yj with coefficients in E and the B~ 
are linear polynomials in the cj with coefficients in K. We can write this latter expression 
in matrix form A Y = B  where A is an N + l x N + I  matrix with entries in E [ D ] ,  
Y =  (Yo . . . .  , yN)  T and B = (Be, . . . ,  BN) 7". Using row and column reduction, we can find 
matrices U and V with entries in E [ D ]  such that U has a left inverse, V has a right 
inverse and U A V =  C where 

C =  If~176176 ] s  0 " "  

and t h e / ~  are in E [ D ] .  Y is a solution of A Y =  B if and only if W =  V -~ Y is a solution 
of C W =  UB. Solving this latter system is equivalent to solving N +  1 equations/7,f(w~) = 
Y. efl~ U , where the ]91 are in E. Since we can effectively solve parameterized linear differential 
equations in E we can find appropriate h U in E and systems of linear equations ~ .  Using 
these we can construct elements h~ in E ( t )  and a system .~ of linear equations satisfying 
the conditions for L(y)  = ~ c~b~ in the definition o f  effectively solving parameterized linear 
differential equations. 

An example illustrating the above proposition is given in Davenport  & Singer (1986, 
p. 242). We now turn to fields of the form E ( t )  where t ' / t ~  E or t '~ E. 

LEMMA 3.2. Let  E c E ( t )  be computable differen tial fields with C ( E ) = C ( E ( t ) ) ,  t transcen- 
dental  over E and either t ' /  t E E or t' E E. Assume:  

(i) we can effectively solve parameterized linear differential equations over E, 

(ii) i f  t ' / t ~ E  and An,  . . .  , A o ,  B m , . . . ,  B1 are in E[ t ,  t - ' I ,  we can effectively f i nd  an 
integer M such that i f  Y = Yv/ tv +" " "+Yo +" " ' + Y8 t8 with Yi e E, y~y~, # 0, satisfies An Y("~ + 
�9 . . + A o Y = c , , B m +  ." "+ctB1 f o r s o m e  ei~ C ( E ) ,  then 7 < - M a n d  8<-M. 

(iii) i f  t' ~ E and A~, . . . , Ao ,  B, , ,  . . . , B1 ~ E [  t], we can effectively f ind an integer M 
such that if Y=y0  + . . . + y ~ , F  with y i ~ E ,  y v # 0 ,  satisfies A n Y ( n ) + . . . + A o Y =  
CmBm + " "  +clB1 fo r  some  e~ in C ( E ) ,  then 7 < - M.  

Then we can effectively solve parameterized linear differential equations over E ( t) .  

PROOF. We first consider the case where t ' / t  ~ E. Let 

L ( y )  = y t ~  + a~_l y(~-,~ + . . .  + aoy = c~ bl +" �9 �9 + crab,, (1) 



2 6 4  M . F .  S i n g e r  

with the aj, b~ ~ E ( t ) .  Let p be a monic irreducible polynomial  in E[ t ] ,  p # t, and let 

y = Y ~ + . . .  
p~ 

a f a ~  

at = - ~ +  ' �9 �9 

b~ = b j ~  + . . .  

be the p -ad ic  expans ions  o f  these elements (for convenience we define a ,  = 1 so a.o = 1). 
Differentiat ing,  we see that  

y(j~ = uj 
p,,+i + .  �9 . 

where uj ~ • ~ ( a + 1 ) . �9 �9 ( ce + j - 1)y~ ( p ' )  j mod p. Note  that p '  and p are relatively prime 
so that  uj ~ 0. I f  a > 0, then some ~i > 0 or some fli > 0. Therefore only p # t that occur 
to negative powers in the part ial  fraction decomposi t ion of  a solution of  (1) have this 
proper ty .  We shall first try to bound ~ for such a p. In order for cancellation to occur 
in (1), we must  have that either max;(oz + i+  at)-< max;/3~, in which case we can bound 

or 7 = m a x f ( a  + i + o~i) > maxj/3~. In this latter case we must have ~ a~,u~ =- 0 mod p, 
where the  sum is over all i such that y = t~ + i + at. This latter equation can be rewritten 
as ~ a ~ , , ( ~ a ( a + l ) . . . ( e z + i - 1 ) y ~ ( p ' ) ~ ) - O m o d p .  We can divide by  y,~ and get 

a~,~,(• + 1) �9 �9 �9 ( a  + i - 1 ) (p ' )  i) = 0 mod  p. Since p '  and p are relatively pr ime and, 
for  each i, ai~, and  p are relatively prime, this latter equat ion gives a non-zero polynomial  
that  ~ mus t  satisfy. ~ is therefore  determined up to some finite set of  choices and so we 

. . . cr ~ can effectively find a b o u n d  ~*. Set y = y / p ~ T  p k  ~, where the  pj are those monic 
i r reducible  po lynomia l s  ( #  t) appear ing in the denominators  of  some at or b~ and the o~* 
are the b o u n d s  calculated above.  Substitute this into L ( y )  = c~b~ + .  �9  + crab,, and clear 
denomina tors  to get 

A ,  Y ( " )  + A ~ - I  y ( ~ - l )  + . . .  + Ao Y = craB,, +" " " + c, ,Bm, (2) 

where  

Y =  y v / t  ~ +"  ' "+ yo+"  ' "+ y d  ~ 

with the y~ and the a~,  in E and A~, . . . ,  Ao, B ~ , . . . ,  Bm in E [ t ,  t-~].  By our hypotheses, 
we can find an M such that  8 < - M  and 7 ~ M. 

We n o w  wish to de termine  the yj .  Substituting our expression for Y into (2) and writing 
this in te rms o f  powers  of t, we have 

L N , ( Y r , .  � 9  Y~) t - n '  +" �9 "+ L N 2 ( y ~ , . . . ,  Ys)tN2 

= C m ( c ~ , . . . ,  c , , ) t - ~ +  �9 "" + C N ~ ( C ~ , . . . ,  C, , ) t  u" 

for  some N~ ----- N= and Na----- N4 integers, where the L~ are linear differential equations in 
the yy with coefficients in E and the ~ are linear in the c, with coefficients in E. If  
N3 > N~, we set  CN~ . . . . .  CNt+~ = 0 and  get a system of linear equations ~ for the c~. 
We similarly can  get a system o f  linear equations ~ if N :  > N4. For N~ --- i - N2, we 
have  the equat ions  L ~ ( y , ~ , . . . ,  Yr)  = C ~ ( c ~ , . . . ,  c,,,). This system can be written as A Y  = B, 
where A is an [ N = + N I + I ] x [ N = + N ~ + I ]  matrix with coefficients in E [ D ] ,  Y =  
( Y v , " . ,  y~) r  and  B = ( C v , . . . ,  C~) 7". We can find (as in Proposit ion 3.1) an equivalent 
d iagonal  sys tem C W =  U B  and apply the hypotheses of  this proposi t ion to find linear 
systems ~ in the  cj and  appropr ia te  ho.. Transforming these back to our system A Y =  B 
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and then substituting into y ~ y~t-~'+ . .  . + y d  's gives us the appropriate  h~ for the con- 
clusion of this proposition. We may take Ze=Za~ uZP2 u (w .~) .  

The p roof  when t ' e  E follows in a similar manner  and will be omitted. 

LEMMA 3.3. Let  E ~ E ( t ) be computable differential fields with C ( E ) = C ( E ( t ) ), t transcen- 
dental over E and t'/  t E E. Assume: 

(i) we can effectively f ind all exponential solutions o f  homogeneous linear differential 
equations over E, and 

(ii) for  any u in E, we can decide i f  y '+  uy has a non-zero solution in E ( t )  and f ind  such 
a solution. 

Then given any A,,, . . . ,  Ao, B in , . . . ,  B1 in E[  t, t-l], we can effectively f i nd  an M such 
that i f  Y = y ~ / t v + . . . + y ~ t  ~ with y j ~ E ,  y~ya#O,  satisfies A , , Y t " I + . . . + A o Y  = 
c,,Bm +.  �9 �9 + clB~ for  some c~ ~ C ( E ) ,  then 3`<- M and ~ ~ M. 

PROOF. We first show how to bound 3'. Let 

Ai = ~ +  ' �9 "+ ai~i t ~ 

Cl B 1 +" �9 �9 + craB m = tb-~ + �9 �9 �9 + b.t" 

with the a e in E and the b~ linear in the cj with coefficients in E. Note that (if 3' > O) we 
have 

y t  = _ ~ + . . .  where ui = t v e E. 

Furthermore,  u; ~ 0, since otherwise t would be algebraic over E. Substituting the above 
expression for Y into 

Am yC , ) + . . .  + Ao Y = craB,, +. �9 �9 + cl B1 (3) 

and equating coefficients, we see that 6 = max;(3" + ~ ; ) <  max~/3~, in which case 3  ̀can be 
bounded,  or  ~ > maxl/3i. In this latter case, the leading term on the left hand side of  (3) 
is ~ a~, u~/t v+"' where the summation is over all i such that 3' + ot~ = 6. We then will have 

(Yv~ '" 
0 = t - r  2 ai~,u, = 2  at~, \ - ~ ]  �9 

Therefore,  Z = y v / t  v is a solution of  L ( Z ) = ~  ai, Z m =0.  By our assumptions we can 
find uj and u~j in E such that for some j, y r t - v = Y ,  dsuue Iu, for some constants di. This 
implies that  for some j ,  y ' - u y = O  has a solution in E( t ) .  Finding all such solutions 
allows us to bound 3'. We can bound 8 in a similar way. 

PROPOSITION 3.4. Let E c E ( t )  be computable differential fields with C ( E )  = C ( E ( t ) ) ,  t 
transcendental over E and t'/  t ~ E. Assume  that we can effectively f ind all exponential 
solutions o f  homogeneous linear differential equations over E and that for  any u in E decide 
i f  y '  + uy = 0 has a non-zero solution in E ( t ) and f ind all such a solution if  it exists. Then 
we can effectively solve parameterized linear differential equations over E (  t). 

PROOF. Immediate  from Lemma 3.2 and Lemma 3.3. 
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EXAMPLE 3.4.1. Let E = Q and t = e ~. Consider  the linear differential equat ion 

L ( y ) = y , , . +  - 2 4 e ~ - 2 5  , 20e ~ 
4eX+5 y + ~ y = 0 .  

We wish to find all solut ions & t h i s  equation in Q(eX). Using p-adic  expansions for p ~ t, 
one  can easily show tha t  any  solution must  be of  the fo rm y ~ / t  r + . . .  + y~ t ~. We therefore 
clear denomina tors  in the above differential equation and consider 

(4t + 5)y"+ ( - 2 4 t  - 2 5 ) / +  20 ty = 0. (4) 

C o m p a r i n g  highest powers  of  t, we see that  y~ t ~ satisfies 4 y " - 2 4 y '  +20y  = 0, This latter 
equat ion has solutions e 5x and e -~ that are exponential  over E = Q. Both of  these are in 
Q(eX). There fo re  6_< 5. Compar ing  lowest powers of  t, we see that y v / t  ~ satisfies 5 / ' -  
2 5 y ' + 2 0 y = 0 .  This latter equat ion has solutions e 4~ and e x in Q(eX). Since y _ 0 ,  we 
conclude that  either 3' = 0 or  yv = 0. Therefore y = ys tS+  . .  . +Yo for some yi constants. 
I f  we substi tute this expression in (4) we get the following 

- 12y4 t s + ( -20y4 - 16y3) t 4 + (-30y3 -- 12y2) t a + ( --3 0y2) t 2 + (20yo -- 20yt ) t = 0. 

Equat ing powers  of t to 0 and  solving gives us that Y2 - Y3 = Y4 = 0 and Yo --- Yl. Therefore, 
solutions of  (4) in E ( t )  are of the form c~eS~+ c2(eX+ 1) where cl and cz are arbitrary 
constants.  

A few words need to be said about  the assumption in the previous proposi t ion that 
for  u e E  we can  decide if  y ' + u y = O  has a solution in E ( t ) .  A priori, this is stronger 
than  the assumpt ion  that  we can decide effectively find all exponential  solutions or all 
solutions of  homogeneous  l inear differential equations over E. Since t ' / t  e E, it is known 
(Rosenlicht ,  1976, Theo rem  2) that  any solution in E ( t )  of  y ' + u y = O  must be of  the 
fo rm y . t  ~ for  some integer n. y. will then satisfy y~, + (u + n ( t ' / t ) ) y .  = 0. We are therefore 
asking to decide if there is some integer n such that this latter equat ion has a non-zero 
solution in E. Similar p rob lems  come up in the Risch algorithm f o r  integration in finite 
terms (we are asking if  f u = log y,, + n log t for some y .  and integer n). We do not know 
how to reduce  this question to the assumptions that we can effectively find all exponential  
solutions or  effectively solve homogeneous  linear differential equations. The following 
1emma shows tha t  there are classes of  fields for which this hypothesis  is true. 

LEMMA 3.5. Let  E c E ( t )  be computable differential f ields with C ( E ) = C ( E ( t ) ) and assume 
t is t ranscendental  over E with t ' / t e  E or t ' ~ E .  

(i) I f  E is an elementary extension o f  C ( x ) ,  x ' =  1, and u e E, then one can decide i f  
y ' +  uy = 0 has a non-zero solution in E ( t )  and f ind  such a solution. 

(ii) I r E  is a purely transcendental  liouvillian extension of  C ( x ) ,  x '  = 1, and u e E, then 
one can decide i f  y '  + uy  = 0  has a non.zero solution in E ( t ) and  f ind such a solution. 

PROOF. In  this p roof  we shall rely heavily on the results of Rothstein & Caviness (1979) 
and the a p p e n d i x  of Singer et al. (1985). I f  t ' e  E, then the Corollary to Theorem 1 of 
Rosenl icht  (1976) implies that  any solution u of  y ' + u y  = 0  in E ( t )  is actually in/3. I f  E 
is an e lementary  extension o f  C ( x ) ,  the result follows f rom Risch (1968). I f  E is a purely 
t ranscendental  l iouvill ian extension of C ( x ) ,  the result follows from Theorem A l ( b )  of  
Singer et al. (1985) and  the fact that we can effectively embed such an extension in a 
log-explicit  extension. We now assume that t ' / t  e E and let t ' / t =  v. 
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(i) Assume that E is an elementary extension of  C(x) .  We can use the Riseh Algorithm 
(Risch, 1968) to decide if  v has an elementary anti-derivative. I f  it does, then we can find 
v t , . . . , v ~  in E such that E ( ~ v ) c E ( l o g v ~  . . . .  , logv~). Since, for each i, E~= 
E(log v ~ , . . . ,  log v~) is an elementary extension of  E, we can inductively decide if log V~+l 
is algebraic over E; (and so in E~) or  transcendental over Ev Therefore we can assume 
that E~ = E (log v ~ , . . . ,  log v~) is a computable differential field. The corollary to Theorem 
1 of Rosenlicht (1976) implies that t is transcendental over E~. E~(t) is a generalized 
log-explicit extension of  C and we can write E~(t)= C ( t ~ , . . . ,  t~) as in (Rothstein & 
Caviness, 1979, Theorem 3.1). It is enough to decide, for a given u in E, if y ' + u y = O  
has a solution in Er(t),  since the corollary to Theorem 1 of Rosenlicht (1976) implies 
that such a solution will lie in E(t ) .  To decide if y'+ uy has a solution in E~(t), we use 
Corollary 3.2 of  Rothstein & Caviness (1979). According to this result, if such a solution 
existed then 

u = c + Y. r~t~ + ~ r~a~ 

where c is a constant, ~ = (i1 t', = a~/ai, for some a, �9 C ( t l , . . . ,  ti-l)}, and $ = {i[ t~/t, = a~ 
for some a~ �9 C ( t ~ , . . . ,  t~_~)}. Writing this last equation as u'---~ r~t~ + ~ r~a'~, and expand-  
ing in terms of a Q-basis o f  C ( t ~ , . . . ,  t,), we can find a rational solution {r~} if  one exists. 
I f  such a solution exists, then y = e l " =  d I-JilL ae I - [ ~  ~' t~, for same constant d. This means  
that for some integer N (that can be determined from the r~) ( y / (d~ /N) )  N ~ E~(t). E , ( t )  
is a computable  field, so to determine if y �9 E, we need only factor y N  _ ( l I~  L a ~' I-[~, E t")N 
over E~(t). 

I f  ~ v is not elementary over E, then E(~ v, t) is a log explicit extension of  C and we 
can proceed as above. 

(ii) Either ~ v is in E or it is transcendental over E. Lemma 3.4 of  Rothstein & Caviness 
(1979) and Theorem A1 of  Singer et al. (1985) imply that one can effectively embed E ( t )  
into a regular (i.e. purely transcendental) log-explicit extension F of C. Furthermore F 
will be of  the form E ( t ~ , . . . ,  t,), with the t~ in E. The corollary to Theorem I of  Rosenlicht 
(1976) implies that t is transcendental over F. Given u in E it is enough to decide if 
y '+ uy = 0 has a solution in F( t ) ,  since the corollary to Theorem 1 of Rosenlicht (1976) 
will imply this solution lies in E. Therefore, let us assume that E is a regular tog-explicit 
extension of  C. Theorem Al(b)  now allows us to decide if y '+ uy = 0 has a solution in 
E( t )  and find such a solution if it does. 

We will now prove a result similar to Lemma 3.3 for fields of the form E ( t )  with t 'E E. 
This l emma will describe an algorithm to find a certain integer M that  bounds the degree 
of solutions in E[t]  of linear differential equations. To show the algorithm is correct, we 
need to consider more general extensions of E and we will prove two simple lemmas  
about these extensions. 

Let E c E ( t )  be countable differential fields, C ( E )  = C ( E ( t ) ) ,  t transcendental over  
E and t' E E. Since C ( E )  is countable we may assume that C ( E )  c C. Let F = C @c~z~ E. 
We first note that t is transcendental over E I f  not, then t" +a,,_~ tn- t+ �9 . .  a 0 = 0  for  
some a~�9 F. Differentiating this equation, we have ntn-~t'+ a'~_~ tn-~+ . . . .  0 so t '=  
( 1 / n ) a ' _ l .  Therefore there exists a u �9 F such that u ' =  t'. Let {y~} = C be an E-basis o f  
F and write u = ~  ylut for  some u ; �9  E. We then have ~ .y~ul= t ' � 9  E. Therefore for some 
i, % = 1 and t ' =  ul. This implies that in E( t ) ,  ( u -  t ) ' = 0  so t � 9  E, a contradiction. 
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We n o w  consider  the field K = F(( t -~ ) ) ,  the field of  formal Laurent  series in t -a with 
coefficients in F. We can extend the derivation on F to K by defining 

a f  =a~ot%+ y. ( iai t '+a~_Ot'  '-~. 
i 0 i '~no 

Let K ~ C - Q  and define an  extension K ( u )  of K where u is t ranscendental  over K and 
u ' /  u = ~ t ' /  t. We then have 

LEMMA 3.6. (i) C ( F )  = C ( K ) .  (ii) C ( K )  = C ( K ( u ) ) .  

PROOF. ( i ) L e t  (Z~, ,0a~t~) '=0.  First assume that no#0 .  We then have a ' o =  
! _ _  ? noa,ot' + a~_~ - O. Therefore  t' ~ ( a~o_J noa,o) , so t -  ( a ,o_J  noa~o) ~ C (  F )  contradicting 

the fact that  t is t ranscendental  over F. I f  no = 0, let n~ < no be the largest integer such 
that  a , , ~ 0 .  We then have a , o ~ a , , - 0  and n~a,,t  + a , , _ ~ - 0  and we get a similar 
contradic t ion as above. 

(ii) I f  C ( K )  is proper ly  contained in C ( K ( t ) )  then there exists an integer n and a 
v e K such that  v ' / v  = nKt ' / t  (Risch, 1969). I f  we write v = a,ot"o+ a , o _ ~ t ' o - ~ + . . . ,  then 

/3 t t n o ~ r t ~ a~ot + (noa,ot + a,o_Ot'o-Z + .  . . 
- - =  . . . . . .  = h i ( - - .  
v a . ~ t  no + �9 . �9 t 

Therefore ,  a ' . o= 0  and  (noa~ot '+a'no_O/a.o=nKt' .  This implies that  ( n r - n o ) t ' =  
(a.o_l/a~o)'. Since t~  K, we must have nK - no = 0, contradicting the fact that K ~ Q. 

We need  one more 1emma before we can prove that the algorithm described in Lemma 
3.8 terminates.  

LEMMA 3.7. L e t  K ~ F be differentiaI f ie lds  and assume that we can solve parameterized 
linear dif ferential  equations over K.  Let  A o , .  �9 �9 A~, B ~ , . . . ,  Bm ~ K and let ~ be a set  o f  
homogeneous  linear equations with coegOTcients in C ( K )  and Z l , . . . ,  Zr be elements o f  K 
such that A , y  ~ + .  �9 + Ao y = c,,B,~ +.  �9 �9 + c~ B1 fo r  y E K,  ci ~ C ( K ) i f  and only i f  y = Y. hizi 
f o r  some hi ~ C ( K )  a n d  cl ,  . . . ,  cm, h i , . . . ,  hr satisfy &P. Then for  y ~ K .  C ( F )  and  cie 
C ( F ) ,  we  have  A , y  (~) + .  �9 �9 + A o y  = cmBm +" " " + clBI i f  and  only i f  y = ~ hlz~ fo r  some 
hi ~ C ( F )  and c l , . . . ,  Cm, h~ . . . .  , h~ satisfy Le. 

PROOF. The  p roo f  follows by expanding y ~ K .  C ( F )  in a K-basis  and noting that all 
equat ions (both differential and algebraic) involved are linear. 

LEMMA 3.8. Le t  E ~  E ( t )  be computable differentiable f ields with C ( E ) = C ( E ( T ) ) ,  t 
t ranscendental  over E and  t' ~ E. A s s u m e  that we can effectively solve parameterized linear 
differential equations over E. Let  A ~ , . . . ,  Ao,  B i n , . . . ,  B ~  E [  t]. Then we can effectively 
f i n d  an integer M such t h a t / f  Y = y 0 + "  �9 " + y~.t ~, Yv ~ O, is a solution o f  

A~ yC, ~ + . . .  + Ao Y = c,,B~ + .  �9 �9 + cl B1 (5) 

f o r  some c~ ~ C ( E )  then 7 <  M. 

PROOF. We  shall describe a procedure  that  successively attempts to compute  Yv, Yv-l, �9 �9 �9 �9 
We shall then show tha t  for  some i, in the process o f  computing Yr-i, we shall find a 
b o u n d  for  3'. This  bound  will be independent  of  the cts. At present we have no way of 
giving an a pr ior i  estimate for  the i such that the computat ion of yr_~ gives us the bound 
for 3'. 



Liauvillian Solutions of Differential Equations 269 

Let  
Ai = ai~ t" + . .  �9 + ale 

Bi = b;~ t ~ +.  �9 �9 + bio 

where some a~ , r  and some b ~ 0 .  We replace Y in (5) by Y = y ~ t r +  ," "+Yo and 
equate powers of  t. We first consider the highest power of t, that is t r+~. There are two 
cases: either y + a - < / ~  or y+c~> /3  and 

Lv(yv) = ~,, ,~ . ci~ - - i a y y  = 0 .  
i = 0  

By our  hypotheses, we can find Zv l , . . . ,  z~r, in E such that any solution yr of  Lv(y~) = 0 
in E is of  the form yy = ~ i  c~;z~t for  some c~ in C ( E ) .  I f  there are no non-zero solutions 
of  L r (y r )  =0 ,  we stop and have y ~ / 3  -c~. Otherwise, we now replace y ,  in (5) by ~ c~zy~ 
(where the c,~ are indeterminants) and consider the coefficients of t y+~-l. Either y +  a - 1 --- 
/3 or y + a - l > / 3  and the coefficient of t ~+~-1 is 

L , - I ( Y r - 1 )  = E  ,-,~ " y" tl)~_l - ( E  cvj evj+Z 7c,jfy2) = 0  

where the eyj and frJ are known elements of  E. By our hypotheses we can find 
zr_~,~, . . . ,  Zy-l.~_, in E and a linear system Zey_ l in rr_ t+r  ~ variables with coefficients 
in C ( E )  such that y~_~ = ~  c~_~.~z~,_~.~ is a solution of Lr_l (yr_ t )  --0 for some choice of  
c r .~ , . . . ,  cy.,r, y if  and only if ( C 7 _ 1 , 1 ,  . �9 . , Cy-l ,r: ,_l ,  Cy.1 . . . .  , Cy.rv, 3 ,Cr .1 , . . .  , 3,Cv.r, ) satisfies 
27v_ ~. We can replace ~v-1 with a linear system L~*_~ having coefficients in C[7]  such 
that yr_~ = ~  cv_~,~zr_~.i is a solution of Lv_~(yv_~) = 0  for some choice of  cv.~, . . . ,  cv.~ " 
if and only if (cv_~,t , . . . ,  Cv_l.~,_,, cv ,~ , . . . ,  c v ~..) satisfies .~*_~. Using elimination theory, 
we can effectively find systems c.om it5 m _  m _  ~ _ ,,a , . . . , 6 e , ,  where each 9~ - { f i ,  t - 0 , . . . , f ~ , m , - 0 ,  
gl~)r 0} wheref~} ), g~)~ C ( E ) [ y ]  such that for 3/in some algebraically closed extension 
field k of C (E) ,  3' satisfies some 5e~)if and only if ~*_~ has a solution (cv_x. t . . . . .  cy_ ~,rv_~, 
c~.~,. . . ,  c~,.~,) with (cy,~, . . . ,  cr,,,) # ( 0 , . . . ,  0). We shall deal with two cases: 

Case 1. Each ~~ has only a finite number of  solutions 3,. In this case we can bound  
3, by y _ m a x ( / 3 -  a, integer solutions of the 9~ 

Case 2. Some 3~ ~ has an infinite number of solutions. In this case, such an Sel~) is of  
the form {0 = 0, gl ~) # 0}. When this happens we continue and attempt to calculate yv_a 
in the following way. 

We now replace Yr-~ by F. c~_~jzr_~,g in (5), where the c~_~,j- are undetermined 
coefficients and consider the coefficient of  t ~-~. This will be of the form 

a~. y~_2 - M~_~(cv.~, yc~, d, y (y  - 1)cvj, c~_~,;, 7c~_~,j ) 

where M~_2 is a linear form in the c~.j, ycy, j., y ( y  - 1 )c r j , . . .  with known coefficients from 
E. By our hypotheses, we can find zr_:.~ . . . .  , zr_~.~,_~ in E and a system of linear equations 
Let_ ~ with coefficients in C ( E )  such that Yv-: = Y. cv_:.~ zr_:,~ is a solution of L~,_2(y~,_:) = 0 
for some choice of  (%~, 3,crj, 3'(y - 1)cr. J, c~_~.j, ,/cr_~.j) if and only if (cvd, 3,%j, y ( y  - 
1) crj  , cy_ ~j, 3,c~_~,~, Cy-aj) satisfies ~ _ ~ .  As before, we can absorb 3' into the coefficients 

Z%_a with coefficients in C ( E ) [ y ]  and produce a system of  homogeneous linear equations * 
such that (crj  , 3'cr. j, y ( y - 1 ) c r ,  ;, cy_~,~, "/c~,_~,~, cr_~,j) is a solution of Le~_a if and only 
if (er, j ,  cy_~j, cy-2,i) is a solution of  ~*_~. Again there exist systems S~ a~ . . . .  , S~ ) where 

( 2 )  _ ( 2 )  - -  ( 2 )  - -  �9 ( 2 1  ( 2 )  each S; - { f i , ~ - 0  . . . .  ,f~,., - 0 ,  g~r w~th f ~ j ,  g~ C ( E ) [ y ] ,  such that for any 
3, in some algebraically closed extension k of  C (E) ,  ~*_~w~*_~ has a solution 
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(c~,s, c~_aj ,  c~/-2j) in k with the first r v coordinates  no t  identical ly zero if and only  if y 
satisfies b~ 2~ fo r  some  i. We  again  have two cases: 

Case 1. E a c h  S~ 2~ has on ly  a finite n u m b e r  of  solut ions.  In this ease we can b o u n d  y 
b y  y --- m a x ( f l  - a - 1, integer solut ions o f  the S~ 

Case 2. S o m e  S~ 2) has an  infinite n u m b e r  o f  solutions.  I n  this case such an ,9~ 2) is of  
the  f o r m  {0 = 0, gl 2) ~ 0}. 

I f  we encoun te r  case  2, we cont inue  this process,  otherwise we stop. Assume tha t  we 
do  no t  e n c o u n t e r  case  1 before  the kth repeti t ion o f  the process.  We have at this point  
f o u n d  Zv . l , . . . , Z r . r~ , . . . , Z~_k+l ,~ , . . . , Zv_k+l , r , _k . ,  and  systems of  l inear equat ions 
~,_~,.. �9 . ,  &~ with coefficients in C ( E ) [ y ]  such  that for some c,- in C ( E )  if y = 
y r t r +  �9 �9 �9 is a solut ion o f  (5) with y r # 0  and  7 > 3  - a + k - 1 ,  then there  exist c~,r_j~ 

' ~ - y -  1 U C ( E ) ,  l ~ i ~ r ~ _ j ,  O ~ j < - k - 1  such that  y~ ,_ j -~ '~ , ,C i~ ,_ jZ i~- j  and {c~.v_ j} satisfy * 
(k - l )  ' (k-l)  * . �9 �9 w.LPv*_k+ t . Fur the rmore ,  there  are systems J l  , �9 . . ,  ~,k-~ such tha t  ~v-~  w �9 �9 �9 u 

, c~p(k-1) ~L~r_k+~ has  a so lu t ion  with cva �9 �9 �9 C~.r~ not  all zero i f  and  only  if y satisfies some _~ . 
W e  can  con t inue  if  a n d  on ly  if  some 6~ k-~) is o f  the  form {0 = 0, gl k-l) # 0}. We shall 
show tha t  fo r  some k, we have that  no  6alk-~ is o f  this form. This will show that  the 
a lgo r i t hm terminates .  

We a rgue  by  cont radic t ion ,  so assume the process cont inues  indefinitely. We now think 
o f  C ( E )  as being e m b e d d e d  in C and fix some r ~ C t ranscendenta l  over  C ( E )  (note 
t h a t  C ( E )  is coun tab le  a nd  so this can be done) .  Fo r  each k, We are assuming  that  there 
is an ~ k - l )  o f  the f o r m  {0 =0 ,  g~k-1)~ 0}. Clearly K satisfies S~ k-~). Therefore ,  for this 

we c a n  solve ~*_x u �9 �9 �9 u ~v-k+~ in C with non-zero  c r ,~ , . . . ,  cv. , .  N o t e  that  for  fixed 
ZPv-~ u ' ' ' u L~v_k+ ~ has a solut ion is a k the set  Vk o f  (cv .~ , . . .  , c~,,,~) in C'~ such that  * * 

vec tor  space .  Not ice  tha t  V~ ~ Vk+~ and Vk ~ O. Therefore ,  for some k, we have Vk = Vk+~ = 
�9 �9 �9 ~ 0. This  implies (us ing  L e m m a  3.7) that  there exist c~,~_~ e C, 1 -< i - r~-j, 0 -< r~_~ < oo 
s u c h  tha t  

= ~t.~_jZi,~_j t ~-J 
j~O \ i = !  

is a so lu t ion  o f  A,y(">+ �9 �9 �9 + A o y  = 0 with c , o , . . . ,  C~,r, not  all zero. We can repeat  the 
above  a r g u m e n t  for 7 = ~ - 1 , . . . ,  3' = ~c - n and  p roduce  n + 1 solutions w~ . . . . .  w,_ ,  in 
E ( ( t - ~ ) ) ( t  ~) o f  A , y ( " ) +  �9 �9 �9 + A o y  =0.  N o t e  tha t  by  looking  at leading terms,  we can see 
tha t  these solut ions are  l inearly independen t  over C ( E )  and  therefore (by L e m m a  3.6) 
over  C ( E ( ( t - ~ ) ) ( f f ) .  Since a h o m o g e n e o u s  l inear differential equat ion can  have at most  
n so lu t ions  l inearly i n d e p e n d e n t  over the constants  (Kaplansky,  1957), this yields a 
con t rad ic t ion .  There fo re  the  process  descr ibed above  terminates. 

PROPOSITION 3.9. Let  E c E (  t) be computable differential f ields with C(  E ) = C(  E ( t ) ), t 
t ranscendental  over E and  t' ~ E. A s s u m e  that we can effectively solve parameterized linear 
differential equations over  E. Then we can effectively solve parameterized linear differential 
equat ions  over E ( t ) .  

PROOF. I m m e d i a t e  f r o m  L e m m a  3.2 and L e m m a  3.9. 

EXAMPLE 3.9.1. Let E = Q ( x )  and  t = l o g x .  Let 

L ( y )  = (x 2 log 2 x ) y " +  (x  log 2 x -  3x log x ) y ' + 3 y  = 0 

We will l o o k  fo r  solut ions y o f  L ( y )  = 0 in E ( t )  = Q(x, log x). Consider ing y as a rational 
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function of t, we see that the only possible irreducible factor of  the denominator  is 
t = log x. I f  we expand y in powers of log x and write y =y~ / ( log  x)'~+ �9 � 9  we see that  
the leading coefficient in L(y)  is y,~[t~(ct + 1 ) - 3 ( - a ) + 3 ] .  Since this must equal zero, we 
have that ( a + 3 ) ( a +  1) =0.  This means that any solution of L ( y ) = 0  in E( t )  is actually 
in E[t]. We let y=yvt~+y~,_lt~-a+ . . .  and substitute into L(y )=0 .  Calculating the 
coefficients of  powers o f  t, we get the following: 

1 Coefficient o f  t t 

y + 2  Lv(yv) 2 . t ..~x y~Wxy v 
_ 2 t~ d -  t + t y + l  Lv-l(Yz,-O-x Y~.-I xYv-a (2yx-3x)y~, 
_ 2 n t + t 2 "t- 

y L~_2(yv_2)-xy.e_2+xy~_~ (2yx -5x )yv_ l+(y -4y  3)y v 

It is easy to see that L~(yv)=0 has only constant solutions in E. Replacing yv by c~.~ �9 1 
in Lv-t(Yv-2) yields the equation x2y'~_~ + xy'r_a = 0 for Y,-1. This new equation has only 
constant solutions in E and places no restrictions on 3'. We let y~_~= cr_~.a �9 1 and 
substitute in the expression Lv_2(yv_2 ). We obtain 

2 t~ t 2 x yr_2+xyv_2+(3 , -43 '+3)cv .1=0 .  

Since cr.~ # 0, this latter equation has a solution in E if and only if 3 '2-43"+3 = 0. This 
implies that 3" -< 3. Therefore y = Y3 t3 -b Y2 t24" Y~ t + Y0- Substituting this expression into 
L(y)  = 0 and calculating the coefficients of  powers of  t, we find: 

l Coefficient of t t 

5 La(ya)=xay~l+xy~a 
4 L2(y2)=x2y~+xy~+3xy~ 
3 Ll (y  I) =x2y~'+xy~+Xy~ 
2 Lo(yo)--x2yg+xy~-xy~-4y2 
1 -3xy~ 
0 3y0 

Successively setting these expressions equal to zero and finding solutions in E yields that  
Y3 and Yl are arbitrary constants and Y2 and Yo are 0. Therefore all solutions of L(y)  = 0 
in Q(x, log x) are of the form c~(log x)3+ c2 log x. 

4. Final Comments 

Using the results of the last two sections, we can answer questions 1 and 2 for certain 
classes of  fields. 

THEOREM 4.1. Let C be an algebraically closed computable field and assume that either: 
(i) K is an elementary extension of C(x) with x'= 1 and C ( K ) =  C, or 

(ii) K is an algebraic extension of  a purely transcendental liouvillian extension of C with 
C ( K ) = C .  

Then one can effectively find exponential solutions of homogeneous linear differential 
equations over K and effectively solve parameterized linear differential equations over K. 
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PROOF. It  is easy to see that  one can find exponential  solutions of  homogeneous  linear 
differential equat ions and  effectively solve parameter ized linear differential equations 
over  C. Us ing  Proposi t ions 2.1, 3.1, 3.4, 3.9 and L e m m a  3.5, one can prove  this theorem 
b y  induct ion on the num ber  of  elements used to define the tower leading to K. 

As a consequence  of  this and Lemma 2.5(ii), one can generalize the results of  Singer 
(1981) in the  following way: 

THEOREM 4.2. Let C and K be as in Theorem 4.1. I f  L ( y ) = O  is a homogeneous linear 
differential equation with coefficients in K, then one can find a basis for the space of  solutions 
o f  L( y ) = 0 liouvillian over K. 

There  r ema in  several open  problems and directions for further research. 
(a) The  algori thms presented above are certainly not very efficient. Efficiency could 

certainly be improved  b y  using (where possible) Hermite  reduction techniques (el. 
Bronstein,  1990). We also have sometimes assumed that  the field of  constants is algebrai- 
cally closed. For  actual  computat ions one has a finitely generated field and one is forced 
to compute  the  necessary algebraic extension. Work needs to be done efficiently to find 
min ima l  algebraic extensions that  are sufficient and also incorporate the D 5 method (Della 
Dora  et aL, 1985; Dicrescenzo & Dural ,  1989). 

(b) There  should be  a more  direct algorithm to solve the prob lem stated in Proposition 
2.6. In part icular ,  one  should not have to first decide if there exists a u algebraic over 
E ( t )  such tha t  L(e f~) = 0 in order  to decide if  there is a u in E( t )  satisfying this property. 
A procedure  jus t  working in E (t)  would be preferable and would possibly avoid the need 
to assume that  the field o f  constants is algebraically closed. 

(e) We do not  have  a priori  bounds on how many cycles are required in the procedure 
presented  in L e m m a  3.8. Is there a simple function f ( n )  (where n is the order of  the 
differential equat ion)  such that the algorithm terminates after f ( n )  steps? 

(d) We  wou ld  like to extend Theorems 4.1 and 4.2 to other classes of fields, in particular 
l iouvill ian extensions of C (not just purely t ranscendental  liouvillian extensions). At 
present  this would require extending L e m m a  3.5 to such fields. This seems to be related 
to the p r o b l e m  of paramete r ized  integration in finite terms ment ioned in Davenpor t  & 
Singer (1986). 
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The author would like to thank the Research Institute for Symbolic Computation (RISC-LINZ) 
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