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Let L{y)=>b be a linear differential equation with coefficients in a differential field K. We
discuss the problem of deciding if such an equation has a non-zero solution in K and give a
decision procedure in case K is an elementary extension of the field of rational functions or
is an algebraic extension of a transcendental liouvillian extension of the field of rational
functions. We show how one can use this result to give a procedure to find a basis for the
space of solutions, liouvillian over K, of L(y)=0 where K is such a field and L(y) has
coefficients in K.

1. Introduction

In this paper the following two questions will be considered. Let K be a differential field
and let a,_,,..., a0, be K. Let L(y)=y"+a,_ " D+ -+ ayy.

QuesTtioN 1. When does L(y)=b have non-zero solutions in K and how can one find
all such solutions?

QuEsTiON 2. When does L(y)=0 have a non-zero solution y such that y'/ye K and
how does one find all such solutions?

An algorithm is presented to answer these questions when K is an elementary extension
of C(x) or K is an algebraic extension of a purely transcendental liouvillian extension
of C(x), where C is a computable algebraically closed field of characteristic zero. We
will discuss why these are important questions and how they are related to each other.
Before starting, let us recall some definitions. A field K is said to be a differential field
with derivation D:K -~ K if D satisfies D(a-+b)=D(a)+D(b) and D(ab)=
(Da)b+ a(Db) for all a, be K. The set C(K)={c|Dc=0} is a subfield called the field
of constants of K. We will usually denote the derivation by ’, i.e. a’ = Da. A good example
to keep in mind is the field of rational functions C(x) with derivation d/dx (C denotes
the complex numbers). All fields in this paper, without further mention, are of characteris-
tic zero. We say K is a liouvillian extension of k if there is a tower of fields k=
Ky=K;=: -« K,=K such that for each i=1,...,n, K;=K; () where either,(a)
tie K;_, or (b) t}/t;e K;-, or (c} & is algebraic over K;_,. For example C(x, e"z, ele” ) is
a liouvillian extension of C(x). We say K is an elementary extension of k if there is a
tower of fields k=K < K< -+« K,= K such that for each i=1,..., n, K;=K;_(t;)
where either (a) for some u; #0 in K;_,, tj=uj/u; or (b) for some u; in K,_,, ti/t;=u}
or (¢) t; is algebraic over K;_,. For example, C(x, log x, 87} is an elementary extension
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of €(x). The example following the definition of liouvillian extension is not an elementary
extension of C(x) since | ¢* lies in no elementary extension of C(x) (Rosenlicht, 1972).
We say that w is liouvillian (elementary) over k if w belongs to a liouvillian (elementary)
extension of k.

Algorithms to answer questions 1 and 2 would be useful in solving two other problems.
First of all, an answer to question 1 would have a bearing on the Risch Algorithm. In a
series of papers (Risch, 1968; 1969; 1970), Risch gave a procedure to answer the following
question: Given a in an elementary extension K of C(x) (C a finitely generated extension
of the rational numbers Q and C(K)= C), decide if _[ a lies in an elementary extension
of K. Liouville’s Theorem (Rosenlicht, 1972) states that if « has an anti-derivative in an
elementary extension of K, then a=v)+Y ¢;(vi/v;) where v,e K, v;,...,v,€ CK and
c;e C, where C is the algebraic closure of C. Risch’s algorithm gives a procedure to
decide if such e¢lements exist. As a corollary of Liouville’s Theorem, one can show that
if « is of the form fef with f and g in K, then « has an elementary anti-derivative if
and only if y'+g'y =f has a solution y in K (i.e. if and only if there is a y in K such
that (y %) = e%). In general, Risch’s Algorithm forces one to deal, again and again,
with this same question: given f and g in an elementary extension K of C(x), decide if
y'+g'y =f has a solution in K. When K is a purely transcendental extension of C(x),
one may write K = E(t) with t'€ E or t'/te E and t transcendental over E. Letting

_ o e a4
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be the partial fraction decomposition of y, one can plug this expression into y'+g'y =f
Equating powers and using the uniqueness of partial fraction decompositions, one can
find a finite number of candidates for the p;s and bound the degree of h. This allows one
to find all possible solutions y. (In fact there are now improvements on this idea. Rothstein
(1976) showed how one can use ‘“‘Hermite Reduction” to postpone, as much as possible,
the need to factor polynomials.) When K is not a purely transcendental extension of
C(x), but involves algebraics in the tower, things are more complicated. In the purely
transcendental case, partial fractions gives us a global normal form that captures all the
necessary local information (e.g. the factors of the denominators and the powers to which
they appear). When algebraics occur, one does not have this normal form.
If K=E(ty) with y algebraic of degree n over E(t), one may write y=
bo+b,y+-+-+b,_;y""" with the b;e E(t). To find the b;, one is forced to work with
puiseux expansions (a local normal form) at each place of the function field E(¢, ).
Although Risch showed that this approach does yield an algorithm, it is much more
complex than the purely transcendental case (Bronstein (1990) has made significant
improvements in the Risch algorithm and can avoid puiseux expansions in many situations,
but he is still forced to consider them in certain cases). One would like to reduce the
question of deciding if y'+ g'y = f has a solution in E(¢, v) to a similar question in E(t),
where one could apply partial fraction techniques and a suitable induction hypothesis.
In section 3, we shall see that we can reduce the problem of solving such an equation
in an algebraic extension of a field to solving linear differential equations (more than
one and possibly of order greater than one) in that field. We are then forced to answer
question 1 for that field.

The secand place these questions arise is in the general problem of finding liouvillian
solutions of linear differential equations with liouvillian coefficients. In Singer (1981) it
was shown that given a homogeneous linear differential equation L{ ¥) =0 with coefficients
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in F, a finite algebraic extension of @(x), one can find in a finite number of steps, a basis
for the vector space of liouvillian solutions of L(y)=0. I would like to extend this result
to find, given a homogeneous linear differential equation with coefficients in a liouvillian
extension K of Q(x), a basis for the liouvillian solutions of L(») =0. One can show that
to solve this problem, it is sufficient to find one non-zero liouvillian solution. An inductive
procedure would then allow one to find all such solutions (see Lemma 2.5(iii) below).
To see how problem 2 fits into this, I will outline the procedure to decide if a given
L(y) =0 with coeflicients in K has a non-zero liouvillian solution. It is known (Singer,
1981) that if L(y)=0 has a non-zero liouvillian solution, then there is a solution y such
that u=y'/y is algebraic over K of degree bounded by an integer N that depends only
on the order of L(y). Furthermore there are effective estimates for N. Therefore, for some
m = N, u satisfies an irreducible equation of the form f(u) = u" + a,_u™ '+ -+a,=0
with the a; € K. We must now find the possible g;& K and test to see if, for such a choice
of a;, e/ satisfies L(y)=0. For example, let us try to determine the possible a,_,. If
u=1u,,...,u,aretheroots of f(u) =Oamdy,=e“l satisfies L(y)=0,thenfori=2,..., m,
y; = el% also satisfies L(y)=0. We have
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One can show that the product y =y, - - y, satisfies a homogeneous linear differential
equation L, (y)=0 and that y'/y € K. Finding all such solutions is just problem 2 above.
Theorem 4.2 below states that for certain liouvillian extensions K, we can fill in the details
of the above argument and give a procedure to find a basis for the vector space of all
solutions of L(y) =0 that are liouvillian over K.

Finally, we note that it appears that to answer one of these two questions we need to
be able to answer the other. The rest of the paper is organized as follows, Section 2 is
devoted to showing how one can algorithmically reduce guestion 2 to question 1. Section
3 contains procedures to answer question 1 in certain cases. Section 4 contains some final
comments and open problems. The results of this paper were announced in Singer (1989).

2. Reducing Question 2 to Question 1

In this section we shall consider fields of the forn E(t), where either t'e E, t'/te E
or t is algebraic over E and where E satisfies certain hypotheses. We shall show that for
these fields, if we can answer question 1 algorithmically then we can answer question 2
algorithmically. This is made precise in Proposition 2.1, but first we need some definitions.
We call a differential field K a computable differential field if the field operations and the
derivation are recursive functions and if we can effectively factor polynomials over K.
We say that we can effectively solve homogeneous linear differential equations over XK if
for any homogeneous linear differential equation L(y) =0 with coefficients in K, we can
effectively find a basis for the vector space of all y€ K such that L(y)=0, We say that
we can effectively find all exponential solutions of homogeneous linear differential equations
over K if for any homogeneous linear differential equation L(y) =0 with coefficients in
K, we can effectively find u,,..., u, in K such that if L(eI“) =( for some ue K, then
ef“/ef"' € K for some 1i.

The main result of this section is:

ProrosiTion 2.1. Let E & E(t) be computable differential fields with C(E) = C(E(t)), an
algebraically closed field, and assume that either t'e E, t'/te E, or t is algebraic over E.
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Assume that we can effectively solve homogeneous linear differential equations over E(t)
and that we can effectively find all exponential solutions of homogeneous linear differential
equations over E. Then we can effectively find all exponential solutions of homogeneous
linear differential equations over E(t).

We will deal with each of the three cases for ¢ separately in the following propositions
and lemmas. We start by defining and reviewing some facts about the Riccati equation.
If u is a differential variable and y=e’*, formal differentiation yields y'"=
P(u, ', ..., u"") el* where the P, are polynomials with integer coefficients satisfying
Po=1and P.=P|_+uP,_, . I L(»)=y"+A,_,y" U+ -+ A,y =0is a linear differen-
tial equation, then y= e/ satisfies L(y)=0 if and only if u satisfies R(u)=
Po(u,...,u" ")+ A, Po_(u,...,u"" )+ - -+ Ay = 0. This latter equation is called the
Riccati equation associated with L(y)=0. We will need the following technical lemma,

LemmA 2.2, Let E(t) be a differential field with ¢ transcendental over E and either t'€ E
or t'/te E. Let p(t) be an irreducible polynomial in E[t] wherep# t if t'/te E.

(i) Letue E(t) have p-adic expansion of the form u = u,/p” + higher order terms, where
>0, u, #0, and deg, u, <deg, p. If y> 1 then fori=1, P(u,..., u"""")=0,/p"” + higher
order terms, where v, = (u,) mod p. If y=1thenfori=1, P,(u,..., u" ") = v,/p'+ higher
order terms where v; EH};; (u;—jp') mod p.

(i) Assume that t'€ E and that ue E(t) has (1/t)-adic expansion of the form u=
u,t”+ higher powers of 1/t, u,#0. If y>0 then the (1/t)-adic expansion of
Pi(u,..., u"" V) =ult" + higher powers of 1/t If y=0, then the (1/t)-adic expansion of
Piu,..., u"" VY =P(u,,...,ul ")+ higher powers of 1/1.

(iii) Assume that t'/te E and that uwe E(t). If u has t-adic expansion of the form
u =u,/t” + higher powers of t, y>0, u, #0, then P;(u,..., V) = ui,/t“’+ higher powers
of t. If u has (1/t)-adic expansion u=u,t”+ higher powers of 1/t, u,#0, then
Pi(u,...,u ")y =ult" + higher powers of 1/t if y>0 and P(u,...,u"" V)=
vi(ug, . .., ul" )+ higher powers of 1/t if y=0.

Proor. We proceed in all cases by induction.
(i): Note that for p as above, p does not divide p'. First assume that y>1. If i=1,
P,=u,so v,=u, If i>0, then

—I ! u ;.
R+,=p;+ug=(_}%l+...).;.(171:_;_...) (;‘J”#)

U, . . ,
=<p(,?'+1;’7+- . ) since (i+1)y>iy+1

_ Uity - i+1
=—Fn, T where vy, = (4,)"" mod p.

p
Now assume that y=1. If i =1 then the result is obvious. For i>0,

E+1=P;+u})i=<:i#_+. . .)+<ﬂ+. . ) (.2:.4.)
p P p

v, (4, —ip')
=

p

v ! .
=;7—E_'];+ v where v;, = ‘Ho (u;—jp') mod p.
j=
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(ii) and (iii): The proofs are similar to (i), proceeding by induction and comparing
leading terms.

ProrosITION 2.3. Let E < E(t) be computable differential fields with C(E) = C(E(t)) and
assume that either t'c E or t'/ t € E and that t is transcendenial over E. Furthermore, assume
that we can effectively solve homogeneous linear differential equations over E(t) and that
we can effectively find all exponential solutions of homogeneous linear differential equations
over E. Then we can decide if a homogeneous linear differential equation L(y)=0 with
coefficients in E(t) has a solution el with ue E(1).

ProoFr. Assume that ¢’ € E. We wish to decide if there is a u in E(t) such that R(u) =0
where R(u) is the Riccati equation associated with L(y) =0. We shall try and determine
the possible partial fraction decomposition for such a u. Let p(¢) be a monic irreducible
polynomial in E[¢] and let u=u,/p”+u,_,/p” "'+ -, where deg, u; <deg,p and y> 1.
I claim that one can find y and w, up to some finite set of choices. The following method
is very similar to the Newton polygon process used to expand algebraic functions. Let
L(y)=y"+ A,y P+ +Ayyand A = a,,/p“+- - - . Theleadingpowersin R(u) =
P.+A, P,_,+: +A, must cancel. The leading term of AP, is (a,-,,iu,-y)/p“"“" (using
the notation of Lemma 2.2). Therefore for some i, j, i#j, we have a;+iy=a;+jy or
y=a;—a;/(i—j). Fix a value of ¥ and a corresponding j such that o, + ky=a;+jy for
all other k (of course we only consider such vy that are integers > 1). Summing over all
h such that -+ hy=a;+jy we have ¥, a,, v, =0. Lemma 2.2 implies that ¥, a,,u}=
0 mod p. Since deg, u, <deg, p, this latter equation determines u,, up to some finite set
(to find u, we factor ¥, @y, Y" in (E(t)/p)[ Y] and consider the linear factors). We now
alter our original L(y), Let £(y) = L(y e/*/?")/e!*/?", We now look for solutions of
f(y) =0 of the form &'* with i€ E and = iis/p°+- - - with 8§ an integer. We proceed
now as above, except we only consider those 8§ with 8< . Note that if u=
us/p®+- - - satisfies R(u)=0 with §>1, then p must occur in the denominator of some
A,;. Therefore, we continue until we can assume that u is of the form }, u;/p;+s, where
s€ E[t]. Some of the p; occur in denominators of the A; and some do not. Let p=p;
occur in the denominator of some A; and let u, = u;,. We then look for cancellation as
before. Fixing a value of i and summing over all & such that a, + h = a;+ i, we have that
% o, Uy = 0. We have that v, El'[j'.:o1 (u;—jp'ymod p by Lemma 2.2, so u, will satisfy
) a,,ah(l'[j.‘;é (u; —jp'))=0mod p. This equation is a non-zero polynomial in u,, and u, is
assumed to have degree less than the degree of p, so we can determine u, up to some
finite set of choices, as before. We can alter L( y) as before and assume that u is of the
form u =} u;/p;+s, where this sum is over all p; that do not occur in the denominator
of some A;. For such a p; (which we again refer to as p), the leading term in the p-adic
expansion of R(u) is v,/p" (by Lemma 2.2), so v, =0 and so ]'[;;; (4;—jp'Y=0mod p.
Therefore u; = jp' for some j, 1<j=n—1. This allows us to assume that u is of the form
u=} (mp})/p;+s where the n; are integers and s and the p; are polynomials not yet
determined. We now proceed to determine s = s,t™ +- - - +5,. First assume that m>1.
Expanding u in decreasing powers of f, we have u = s,,t™ +smaller powers of . Lemma
2.2(ii) implies that P;(u) = sh.t™ + lower powers of £. Writing A; = a;t™ +lower powers of
1, we see that for cancellation to occur in R(u) we must have a;+ im = a;+ jm for some
i # j. Therefore m can be determined up to some finite set of possibilities by considering
the possible integer a; —a;/(j —i). We fix such a value of m and a j such that a, +km =
a;+ jm for all other k. Summing over all h such that a;, + hm = a; -+ jm, we have }. ans = 0.
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Therefore s,, is determined up to a finite set of possibilities. We can again alter L(y)
until we are in a position to assume that u = u,+7, (n;p?)/ p;. Looking for cancellation in
R(u)=0, we have, by Lemma 2.2(ii), that ¥, @, P;(uo, . . ., u§~")=0, where the summation
is over all i with a, =max;(«;). Therefore eI % satisfies L(y) 0, where L(y) Y ay'?,
the summation being over all i with o; =max;(e;). Since we can effectively find all
exponential solutions of homogeneous linear differential equations over E, we can find
a finite set {vo,.. y v,} such that e “O/ef"'=r e E(t) for some i For each i, we form
Li(»)=L(y e’™)/e!™. We then have that y=r,exp | (X (mp})/p:)=r ] p? will satisfy
some L;{ y). Since we can effectively solve homogeneous linear differential equations over
E(t), we can find such a solution, and so reconstruct an exponential solution of our
original differential equation.

We now deal with the case when t'/¢ € E. We again try to determine the possible partial
fraction expansions for solutions of R(u)=0. Let p be a monic irreducible polynomial
in E[t] and assume p # t. If p occurs in the denominator of u to a power larger than 1,
then p must occur in the denominator of some A;. For these p, we can proceed with the
reduction used above. We can therefore assume that u=3 u;/p;+s, where the p; are
monic irreducible polynomials, p; # t and s=s5,,/t"++ - +5¢+* - ++5pt™. We can elimi-
nate those p; that appear in the denominator of some A; as before and so assume that
the p; that appear do not occur in the denominator of any A;. Fix some p;, say p. The
leading term in R(u)=P,(u)+A,_1P,_,(u)+- -+ A, is (using the notation Lemma
2.2(1)) v,/p", where v, = o (4;—jp') mod p and u, is the leading coefficient in the
p-adic expansion of u. Since v, =0, we must have u, =jp' mod p for some j, 1=j=n—1.
Since p is monic and the degree of p is the same as the degree of p' (say N), we have
that u, = jp' — Njip where { = t'/t. Thevefore u =Y ({n;pi+mp;)/ p:;) +s, where the n; and
m; are integers and deg,(n;pi+ m;{p;) <deg, p;. We now will determine the coefficients in
s=8,/t"+ +syt™. If A;=a,,/t*+higher powers of ¢, then the leading term in the
r-adic expansion of AP, is (a,-u,,sfn)/ t%*™ To get cancellation in R(u) =0, we must have
two such terms being equal. This determines m up to some finite set of choices. Selecting
an m and a j such that km + a, <jm+ a; for all other k and summing over all h such
that hm + ay, = jm + a;, we have }, Qpe, 5oy = 0. Therefore s,, is determined up to some finite
set of possibilities. We can determine sy, in a similar way. We can alter L(y) as before
until we are in a position to assume that u = uy+3. (n,pi+ m;{p;)/ p;. Looking for cancella-
tion in the (1/t)-adic expansion of R(u), we have by Lemma 22(iii) that
2 Qpe Prug, . . -, uf™Y) =0 where A;= a;,,t* +higher powers of l/t and the summatlon
is over all h such that a;, =max; (). Therefore /* satisfies L( y)=0 where L( y)=
2 i, y, the summation being as before. Since we can effectively find all exponential
solutions of homogeneous llnear differential equations over E, we can find a finite set
{vg,..., v} such that e "°/e %=we E(t) for some i. For each i y=ye %=
Wi exp(jZ (mp}+mdp:)/p) = witE™ [[ pfe E(t). y; also satisfies the linear differential
equation L;(y)=L(y Y ej"'-0 Since we can effectively solve homogeneous linear
differential equations over E(t), we can decide if this equation has a non-zero solution
in E(t). If not, then L(y)=0 has no solution of the desired form and if so, we can
reconstruct a solution of the desired form.

Examples are now given to illustrate Proposition 2.3.

ExAMrpLE 2.3.1. Let E =Q(x) and ¢ =log x. We shall consider the differential equation

L(y)=y"— y'—(log x+1)’y =0

1
x(log x+1)
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and decide if it has solutions of the form e'* with w e E(). We shall assume that the
hypotheses of the theorem are satisfied by E (this will be shown later). The associated
Riccati equation is

R(u)=(u'+u*) - u—(logx+1)*=0.

x(log x+1)

Assume that u is a solution of R(u)=0in E(t) =Q(x, log x). If p(¢) # t+ 1 is irreducible
in E[t], then as we have noted above the order of u at p(t) is bigger than or equal to
—1. At t+1=log x+1, we may write

pm———r g Myt
(logx+1)Y (logx+1)*"!

Substituting this expression in R(u) and comparing leading terms, one sees that if y> 1,
then the leading term in R(u) is u,(log x+1)?”. If y=1, then the leading term (after
some cancellation) is u?(log x +1)° This means that u cannot have a pole at log x+ 1.
We therefore have that u=) pi/p;+s where the p; are irreducible polynomials in E[¢],
not equal to t+1 and s is a polynomial in E[t]. We now proceed to determine s(t) =
Smt™ =+« -+ 55, Plugging into R(u) and comparing terms we see that m=1 and s, ==1
and so s(t) =+t+s,=+log x +5,. We therefore alter L(y) in two ways. Let

Ly(y)=L(y e71'e%)/e o0

vy 2% log” x~2xlogx—1 |,

~2x log*x—3xlogx—x—1
xlogx+x Y xlogx+x )

Let
Ly(y)=L(y el'#%)/el "8

L2 log> x+2xlogx—1 , —-2xlog’x—3xlogx—x+1
xlogx+x xlogx+x 4

ol

To determine the possible s, we consider L, and L, separately. In both cases we are

looking for solutions of this equation of the form y =gl @P/P) with 5, in E. For L,, if

we expand the coefficients in decreasing powers of log x, we get
Li(y)=y"+2logx+--)y'+(-2logx+- )y =0,

el will satisfy Liy)= 2y’ ~2y = 0. By the hypotheses, we can find exponential solutions
of this latter equation over E =Q(x). In fact, e* is the only such solution, i.e. the only
possibility for s, is 1. We now modify L,(y) and form

Li(y)=L(ye")/e"

+2x log® x+4x log x +2x~1
xlogx+x

'} '
- .

We are looking for solutions of this latter equation of the form r(exp(J (X p!/p:))) with
r in E(t), that is, solutions in E(z). A partial fractions argument shows that the only
such solutions are constants. This implies that our original equation has a solution of the
form el(loe=+1) = gx1o8x Reneating this procedure for Ly(») would yield a solution of our
original equation of the form e/(7108¥~1) = g ~xlogx
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ExampLE 2.3.2. Let E=Q(x) and ¢t =e" We shall consider the differential equation
Liy)=y'"+(—2e"—1)y'+e*y=0.
The associated Riccati equation is
R =+ u>+(~2e —Du+e?* =0,

One easily shows that all solutions in E{t) of R(u)=0 must be of the form u=
s+Y (mpi+mp)/p; where p; are irreducible in E[¢] and not equal to ¢, and s=
S/ 1™+ + 8pt™. One easily sees that m = 0. Substituting # in R(u) and expanding in
powers of t, we have

Mspt™ 4+ o 53 2™+ o —2Mspt ™M 4 2 =0

Therefore M =1 and s, = 1. Therefore u = 1+ 5o+, (n;p;+m;p;)/ p;- We alter the equation
L(») =0 to get L,(y) = L(y e!*")/e*") = y”" — 3. We are looking for solutions of the form
gl 5ot Zmpirme)/e  We find that s,=1 or 0. We now form the equations L, (y)=
Li(ye)/el'=p"+y" and Ly(y) = L(y e!%)/e!®=y"—y' and look for solutions of these
equations that lie in E(t). These have solutions e, 1 and e% 1 respectively. Therefore
the original equation L(y) has solutions e* and e*"®".

Note that in these last two examples we have found all exponential solutions of L(y) =0,
not just a single one. The algorithm described in Proposition 2.3 can be modified to do
this, but we would rather do this task in the following

LEMMA 2.4. Let K be a computable differential field.

(i) Assume thatfor any homogeneous linear differential equation L( y) = 0 with coefficients
in K we can decide if there exists a u € K such that L(eI Y= 0 and if so find such an element.
Then we can effectively find all exponential solutions of homogeneous linear differential
equations over K.

(ii} Assume that we can effectively solve homogeneous linear differential equations over
K and that we can find all exponential solutions of homogeneous linear differential equations
over K. If L(y) =0 is a homogeneous linear differential equation with coefficients in K then
one can find w;,, 1 si=rand v;, 1<i<r, 1=j=n;, such that ifue K and L(el“)=0 then
there exists an i, 1=<i= r and constants c; such that &’" = (¥, c;u;) el

Proor. (i) We proceed by induction on the order of the linear differential equation. Let
L({y)=0 be a homogeneous linear differential equation of order »n with coefficients in K.
Decide if there exists a u € K such that L(eJr “}=0. If no such element exists, we are done.
Otherwise find such an element. Let L.(») =~L(y ¢f “y/ el Li(y) has no term of order
zero, so we may write L,(y)=L(y'), where L(y) has order n—1. By induction we can
find u,,..., u, in K such that if v is in K and L(e’?) =0, then ej"/ej“" isin K. Letwe K
satisfy L(e!®)=0. We then have 0=L((e!"™*)")=L[(ef*-#+"'-v""/tw=u)y  Therefore
eg“"“/es“' e K or (e/*7%)' =0. We can conclude that if el¥ satisfies L(y) =0, then either
e/l e K or elv/el e K.

(ii) Let L(y)=10be a homogeneous linear differential equation with coefficients in K.
We can find u,, ..., u, such that if ue K and L(e’*) =0, the ¢’“/el* & K. For each i, form
Li(y)=L(y el “)/el" and find a basis {u;} for the vector space of solutions in K of
L;(y)=0. This choice of u; and uy satisfies the conclusion of the lemma.
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ExampPLE 2.4.1. We consider the same equation as in Example 232, L(y)=
y'+(-2¢e" ——1)y +ez"y 0. e “ is a solution of this equation where u=e¢", so we form
L (y) L(ye®)/e” =y"—y'. Therefore L(y)=y —y. Thls latter equatlon has solutlon

“ where u = x. Therefore if we K =Q(x, e*) and L(e!*) =0 then either e “’/e “eK or
eI »/e®T* e K.

LEMMA 2.5. Let K be a computable differential field with an algebraically closed field of
constants and L(y)=0 a homogeneous linear differential equation with coefficients that lie
in a finitely generated algebraic extension E of K. Assume that one can effectively find all
solutions of homogeneous linear differential equations over K and effectively find all exponen-
tial solutions of homogeneous linear differential equations over K. Then
(i) One can decide if there exists an element u algebraic over K such that L(e!*)=0

and if so find a minimal polynomial of u over K.

(ii) One can find an algebraic extension F of E and elements u;, u; in F such that 1fu
is an element in F and L(e'*)=0, then there exist an i and constants ¢; such that e/*
(Xjciuz)e fu,

(ili) One can find elementsy,, ..., y,, liouvillian over K, that span the space of all solutions
of L(y) =0 that are liowvillian over K.

Proor. (i) This follows from the techniques and results of Singer (1981). For the
convenience of the reader we outline the proof here. We know from Theorem 2.4 of
Singer (1981) that if L(y)=0 has a solution of the prescribed form then it has one where
u is algebraic over E of degree bounded by an integer N that depends only on the order
n of L. Furthermore, there is a recursive function I(n) such that N = I(n). Therefore u
will satisfy a polynomial equation over F of degree at most I(n)[ E: F]. Fix an integer
m= I(n)[E:F]. We wish to decide if there exist a,,—,,..., @ in K such that if f(u)=
U™+ a,_u™ '+ +ay=0, then L(e/*) =0. We shall first determine the possible a,,_,
that can occur. We may assume that F is a normal extension of F and let G={oy,..., 0}
be the galois group of E over K. For each o,€ G, let Li(y)=0 be the homogeneous
linear differential equation obtained by applying o; to the coefficients of L(y)=0. Let
L(y)=0 be the homogeneous linear differential equation whose solution space is
I+ +y.  L(y)=0,i=1,..., m} (see Lemma 3.8 of Singer (1981)). Assuming that
f is irreducible, we have that I:(ef”')=0 for all roots u; of f(u)=0. Let y;=ej“". We
see that

Ap1=—(++ - +u,)

=,_(y_i+. : .g&)
B4 Ym

___((yl e YM)I>
V1" Vm .
Let Li(y)=0 be the homogeneous linear differential equatlon with coefficients in E,
satisfied by z,, = * ¥m- This can be calculated from L(y) using Lemma 3.8 of Singer
(1981). Since z,,,/z,,, EK L (z,,) =0 where L ()=, (Li(y)°. Ll(y) has coeﬁiments
in K, so by Lemma 2.4(ii), we can find v; and v; in K such that z, = (T ;) e¥ for

some constants c;. Therefore, for some i, a,,—, = v; + (X ¢;vy)"/ (¥ ¢;v4). We can conclude
that we can construct a finite number of rational functions R,,-1,:(¢;;) with coefficients
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in K such that for some choice of constants ¢; and i, a,_,= Ry-,(c;;). To compute
a.,_,, note that

Am-2= ), Wl

1=ij=m

_ yiy;
1sij=m Yi}j

=c([I¥) 7 T YhyvLyy Vi

where this latter sum is taken over all permutations of (1,...,m). Let P(Y,,..., Y, )=
2 YL YLY, -+ Y, .Wecan constructa linear differential equation L,(y) with coefficients
in E, such that for any solutions yy, ..., ¥m of L{y) =0, Lo,(P(y1, ..., Ym))=0. Note that
Myi=%;cyvy ¢’ for some i and constants ¢; (as above). Therefore, for some i, we have
that (T] y;)a,—2=Y cyvy eI“fam,%=P(y1, .+.» ¥m) and so e’s”iP(yl, cees V) is in K. Let
Lyi(y) = La(e!y)/e’ and let L, ()= Lix, (Lyu(»)) . Since Ly e/ P(yy,..., y.)) =0,
and e " P(yy,...,¥m) €K, we have LQ,;(e‘j"'P(y‘, .+« » ¥m)) =0. By assumption, we can
find {Awif} in K such that for each i, {w;;} forms a basis of the vector space of solutions
of L,i(y)=0 in K. Therefore, for some i and constants c¢;,dy,an_p=
eIy P(yay ooy pa) = (2, ety ) T Py, .., 3a) = (T ey0y) (S, dy wy). We denote
this rational function as R, ;. In a similar way we can find, for the other a,_,, expressions
R;,; that are rational functions of known guantities with unknown constant coefficients.
For all possible choices of i=(i,..., in—1) we form

fiu)=u"+ Ry g, 0™ o Roge

We wish to determine if there is a choice of constants ¢;, dy, ... such that any solution
of fi(u) =0 is a solution of R(u) =10, where R(u)=20 is the Riccati equation associated
with L(y) =0. If we reduce R(u) with respect to f;(u) as in Ritt (1966, p.6), we get a
remainder H;(u) that must vanish identically, This forces a collection of polynomials
(with coefficients in E) in the c;, d;, .. .to vanish identically. Since we are looking for
constant solutions, there is an equivalent set of polynomials with constant coefficients.
We can then decide if there exist constants that satisfy these polynomial equations. If
such a set of constants do not exist then L(y) =0 does not have a solution of the desired
form, If such a set does exist, then we factor f;{u) to find a minimal polynomial for u.

(ii) We proceed by induction on the order of L(y). If the orderis 1, then L(y) = y'+ ay,
for some a < K. We then let F=E and note that for any u in F such that L(e'") =0, we
have e/“ =c e/™9, for some constant c. Now assume that L(y) has order n> 1. By part
(i) of this lemma, we can decide if there is a u algebraic over K such that L(eI “Y=0. Let
Li(») -——;L(y ef“)/ef“. L,(y) has no term of order zero so we may write Ll(y)=f,(y'),
where L( y) has order n —1 and coefficients in E(u). By induction, there exists an algebraic
extension F of E(u) and elements v, in F such that if v is in F and f(ej")==0, then
e/ /ef"e F. If weF and L(e!*)=0, then I:((ej“"")’) =0, so (w—u)el” */el%cF or
e/"=cel" for some constant c. Therefore el*/el**“e F or el*/e/*c F Let u,=
vyt+u,..., U, =0.+u v =uand L(y)=L(y ej"‘)/ej"' for i=1,...,r+1. Each L; has
coefficients in F, an explicitly given algebraic extension of K. In Proposition 3.1 we shall
see that we can effectively solve homogeneous linear differential equations in F. Therefore,
we can find uy such that, for each i, {u;} forms a basis for the set of solutions of Li( y)=0
in F. We have then found the desired w; and u;.



Liouvillian Solutions of Differential Equations 261

(iii) We again proceed by induction on the order of L(y). When L(y)} has order 1,
then L(y)= y'+ ay for some a in K. Therefore y, = =e 3 will satisfy the conclusion of the
lemma. For n> 1, Theorem 2.4 of Singer (1981) implies that if L(y)=0 has a solutlon
liouvillian over K then there exists an element u algebraic over K such that L) =
Part (i) of this lemma lets us decide if this is the case and if s0, find such an element
For such a u, let L,(y)=L(y el“)/e". Since L, has no term of order 0, we may write
L(y)= L(y ), where L(y) has order n—1. By induction, we can find z,, . . ., z, that span
the space of solutions of L(y)=0 liouvillian over K(u) e el iz, .. ,ej"jz, then
span the solutions of L(y)=0 liouvillian over K.

ExamrLE 2.5.1. Let K =Q(x, log x) and consider the linear differential equation
4xlog x+2x 1

- - 0.
4x’logx 7 4x’logx”

L(y)=y"+

We will find all liouvillian solutions of this equation. We start by looking for all solutions
of the form e/* where u is algebraic over K of degree at most 2. In general, we would
have to decide if there is such a solution with u algebraic over K of degree bounded by
some computable function of the order of L, but in this case we will see that the number
2 is enough. u satisfies an equation of the form f(u) = u*+au+ b =0 with a, be K. We
will furthermore assume that f(u) is irreducible. We then have that a = —(y|/y, + 3/ y2)
where y, and y, are solutions of L{ y) =0. We now construct a linear differential equation
L,(y) satisfied by all elements y, y, where y, and y are solutions of L(y)=0. An algorithm
for this is given in Singer (1981). We have

6xlogx+3x 2logx+1

L(y)=y "t =0,
282 2x*log x Y 2x210gxy

We need to find all solutions y of this latter equation such that y’/y € K. An algorithm

for this is given in Lemma 2.3 and Lemma 2.4. We find that the only such solutions are

constants. This implies that a=0. To determine b, we note that b=(y}{y5)/» ¥, so

Y1y2b = y1yh. Since y; y, must be a constant, y;y; must be in K. We again construct a

linear differential equation L;( y) = 0 satisfied by all expressions of the form y}y;. We find

Li(y) ="+ > 3810g x+43log x+6x
x* log? x 2x> log® x

16 log? x +32 log x + 10
2x7 log® x

18x” log? x +9x” log x

" 1

=),

We must find all solutions of this latter equation in K. An algorithm for this is given in
Proposition 3.10. We find that the omly such solutions are constant multiples of
1/(4x?log x). Therefore f(u) must be of the form u”+ ¢/(4x?log x) for some constant c.
If f(u) =0, then u?=—c/(4x* log x) and u'=~—3[8x log x+4x/(4x log x)] - u. Substitut-
ing these expressions in

4x log x +2x 1

3 u—"-3 =
4x~log x 4x° log x

R(u)=u’+u'+

we see that ¢ = —1. Therefgre f(u) =u’—1/(4x” log x) so L(y) has solutions of the form
y=e"” where w = *x(log x)1/2, These two solutions form a basis for the space of all solutions
of L{y)=0.
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ProrosITION 2.6. Let E < E(t) be computable differential fields and assume that t is
algebraic over E and that C(E)= C(E(t)) is algebraically closed. Assume that we can
effectively solve homogeneous linear differential equations over E and that we can effectively
Jind all exponential solutions of homogeneous linear differential equations over E. Then we
can decide if a homogeneous linear differential equation L(y) =0 with coefficients in E(t)
has a solution €' with ue E(t).

Proor. Let F, u;, u; be asin Lemma 2.5(ii) where E(t) = F.If L(e'*) =0for some u € E (1),
then there exists an i and constants ¢; such that u=u,+ (X ¢;u;)/ (¥ ¢;uy). Therefore
we need to decide if there exist constants c; such that w;+ (Y ¢;u;) /(X cyuy) € E(1). If
we write this in terms of a basis of F over E (), this is equivalent to a system of polynomials
in the ¢;, with coefficients in E(¢) vanishing. There is an equivalent polynomial system
with constant coefficients and we can decide if this has a solution in the subfield of
constants.

Proor oF ProrosiTioN 2.1. This follows immediately from Propositions 2.3 and 2.6
and Lemma 2.4(i).

3. Question 1

In this section we discuss the problem of answering question 1 for fields of the form
E(1) where E satisfies a suitable hypothesis and either t'/t€ E, t'¢ E or t is algebraic
over E. We actually deal with a slightly more general question related to the following
definition. Let K be a differential field. We say that we can effectively solve parameterized
linear differential equations over K if given a,_,,..., @y, by, ..., byin K, one can effectively
find h,,..., k. in K and a system & in m+r variables with coefficients in C(K) such
that "+ a,, " U+ +agy=cb,++* +cnb, for ye K and ¢; in C(K) if and only
ify=yh,+---+yh wherethe y,e C(K)and ¢,,..., tm, ¥1, ..., ¥, satisfy Z. Obviously,
if K is computable and we can effectively solve parameterized linear differential equations
over K, then we can effectively solve homogeneous linear differential equations over K.
Propositions 3.1 and 3.4 can be proved if both the hypotheses and conclusions regarding
solving parameterized linear differential equations are replaced by the weaker statement
that we can effectively solve homogeneous linear differential equations. In Proposition
3.9, we need the stronger statement to make the induction work. We prove these stronger
statements with the hope that they will be more useful in applications.

We first deal with the field E(z) where ¢ is algebraic over E. Let E[ D] be the ring of
differential operators with coefficients in E. This is the set of expressions of the form
a,D"++ - -+ a, where multiplication corresponds to composition of these operators. In
general, this is not a commutative ring, since Da = D{a)+ aD. It is known that this ring
has a right and left division algorithm (Poole, 1960, p. 31), so we can row and column
reduce any matrix with coefficients in E[ D] (Poole 1960, p. 39).

ProrosiTioN 3.1. Let E be a computable differential field and t an element algebraic over
E. If we can effectively solve parameterized linear differential equations over E then we can
effectively solve parameterized linear differential equations over E(t).

ProoF. Let 1,¢,...,t"Y form a vector space basis of E(t) over E and let y=
Yottt -+ ynt" where y,,...,yy are new variables. Using the fact that t' may be
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explicitly written as an element of E(t), we may then write
L(y)=y"+a, "Vt agy=cibyt - o+ e,
as

Lo(¥os - s YN)F Li(Fos o sy -+ Ly(¥o, oy yIEY
=B0(C],..-, Cm)+B|(C1,...,Cm)t+' * '+BN(C1,...,Cm)tN

where the L, are linear differential equations in the y; with coefficients in E and the B;
are linear polynomials in the ¢; with coefficients in K. We can write this latter expression
in matrix form AY =B where A is an N+1XxN+1 matrix with entries in E[D],
Y=(¥s,...,¥n)" and B=(B,,..., By)™. Using row and column reduction, we can find
matrices {J and V with entries in E[D] such that U has a left inverse, V has a right
inverse and UAV = C where

L, oo -~ o0
P I A 0
0 - - Ly

and the L; are in E[D]. Y is a solution of AY = B if and only if W= V™'Y is a solution
of CW = UB. Solving this latter system is equivalent to solving N +1 equations Liw)=
by c]l;,, , where the 51 are in E. Since we can effectively solve parameterized linear differential
equations in E we can find appropriate h; in E and systems of linear equations ;. Using
these we can construct elements h; in E(t) and a system Z of linear equations satisfying
the conditions for L(y) =7} ¢;b; in the definition of effectively solving parameterized linear
differential equations.

An example illustrating the above proposition is given in Davenport & Singer (1986,
p. 242). We now turn to fields of the form E(z) where t'/t€ E or t'€ E,

LEMMA 3.2. Let E < E(t) be computable differential fields with C(E) = C(E(t)), t transcen-
dental over E and either t'/te E or t' € E. Assume:

(i) we can effectively solve parameterized linear differential equations over E,

(ii) if t'/te E and A,,...,Aq, Bu,..., By are in E[1,t™'], we can effectively find an
integer Msuch thatif Y =y, /t" 4+« -+ y,+-+ ‘+ yst’ with y, € E, ysy,, # 0, satisfies A, Y +
< -+AY=c,B,+ - +c B, for somec,e C(E), then y=M and § < M,

(iii) if '€ E and A,, ..., Aqs Bm,..., Bi€ E[t], we can effectively find an integer M
such that if Y=y,+- - -+y,t? with y,€eE, y, #0, satisfies A Y"+...+A Y=
CnB,, ++ -+ By for some ¢, in C(E), then y= M.

Then we can effectively solve parameterized linear differential equations over E(1).

Proor. We first consider the case where t'/te E. Let

L(y)=y"+a, y" "+ tagy=eibite "t Cubyy, (1)
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with the a;, b, € E(t). Let p be a monic irreducible polynomial in E[t], p # ¢, and let

Ja
y:—-&——}-. .

p

(117
al.z——::—r'—i-.. .

b,
bi=——g-:-+. P

be the p-adic expansions of these elements (for convenience we define a, =1 50 a,0=1).
Differentiating, we see that
. u;
y(J) = pa_{w

where yy=xa(a+1) - -+ (@+j—1)y.(p') mod p. Note that p’ and p are relatively prime
so that u; # 0. If «> 0, then some &;> 0 or some B,> 0. Therefore only p # t that occur
to negative powers in the partial fraction decomposition of a solution of (1) have this
property. We shall first try to bound « for such a p. In order for cancellation to occur
in (1), we must have that either max;(« + i+ ;) <max; 8;, in which case we can bound
a or y=max;{a+i+a;)>max; ;. In this latter case we must have }, a;,,4;=0mod p,
where the sum is over all i such that ¥ = a + i+ ;. This latter equation can be rewritten
as ) @ (xa(a+1)- - (a+i—1)ya(p’)i)EOmodp. We can divide by y, and get
2 e (fa(ae+1) - (a+i—1)(p’'))=0mod p. Since p’ and p are relatively prime and,
for each i, a;,, and p are relatively prime, this latter equation gives a non-zero polynomial
that @ must satisfy. @ is therefore determined up to some finite set of choices and so we
can effectively find a bound a*. Set y =Y/p%i- - pi*, where the p; are those monic
irreducible polynomials (#¢) appearing in the denominators of some a; or b; and the af
are the bounds calculated above. Substitute this into L(y) = ¢,b,+" - ++c,b,, and clear
denominators to get

AYM+A, YU+ A Y =¢, B+t 6B, (2)

where
L e S
with the y; and the a;,, in E and A,, ..., Aq, B,,..., B, in E[4, t~']. By our hypotheses,
we can find an M such that §=M and y=M.
We now wish to determine the y;. Substituting our expression for Y into (2) and writing

this in terms of powers of t, we have

Ln,(yy, .. S PR e L, (Pys oo ,vs)the

=Cny(Cry e ey )t H e+ Oy, ey Oyt

for some N;= N, and N,= N, integers, where the L; are linear differential equations in
the y; with coefficients in E and the C; are linear in the ¢; with coefficients in E. If

N;> Ny, we set Cy, = - »= Cyn,+1 =0 and get a system of linear equations %, for the c;.
We similarly can get a system of linear equations %, if N,> N,. For N;=i=N,, we
have the equations Li{ y., ..., ¥y) = C(e1, ..., ¢). This system can be written as AY = B,

where A is an [N+ N;+1]%X[N,+ N,+1] matrix with coefficients in E[D], Y=
(¥ys---»¥5)" and B=(C,, ..., Cs)". We can find (as in Proposition 3.1) an equivalent
diagonal system CW = UB and apply the hypotheses of this proposition to find linear
systems %, in the ¢; and appropriate hy;. Transforming these back to our system AY =B
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and then substituting into y =y t™"+-- -+ yst® gives us the appropriate h; for the con-
clusion of this proposition. We may take =%, U %, u (U £).
The proof when t'€ E follows in a similar manner and will be omitted.

LEMMmA 3.3. Let E < E(t) be computable differential fields with C(E) = C(E(1)), t transcen-
dental over E and t'/t € E. Assume:

(i) we can effectively find all exponential solutions of homogeneous linear differential
equations over E, and

(ii) for any u in E, we can decide if y'+ uy has a non-zero solution in E(t) and find such
a solution.

Then given any A,, ..., A, By, ..., B, in E[t,t7'], we can effectively find an M such
that if Y=y, /t"+ - -+y;t° with y,€E, y,ys#0, satisfies A, Y+ - -+AY=
CpBp++ 4+ ¢;B, for some ;e C(E), then y=M and 8 < M.

ProoF. We first show how to bound . Let

a;

A,'= t:‘i"" * '+a,',3.,tB'.

b
B+ -+cmB,,,=7f+- <+ bt”

with the a; in E and the b; linear in the ¢; with coefficients in E. Note that (if y>0) we
have
w AR
YW=—=+...  where u,-=<—") t"eE.
t'Y t'Y
Furthermore, u; # 0, since otherwise ¢ would be algebraic over E. Substituting the above
expression for Y into

A Y+ .+ A Y=c,B,+ - +¢,B, 3)

and equating coefficients, we see that & = max;(y + ;) <max; B;, in which case y can be
bounded, or &> max; B;. In this latter case, the leading term on the left hand side of (3)
is ¥ dja,u;/ t”** where the summation is over all i such that y+a; = & We then will have

P\
0=1""3 Qo Ui =, Qi (TZ) .

Therefore, Z=y,/t" is a solution of L(Z)=Y a;,Z"=0. By our assumptions we can
find u; and uy in E such that for some j, y, 177 =} duy e!* for some constants d;. This
implies that for some j, y'—u;y=0 has a solution in E(f). Finding all such solutions
allows us to bound y. We can bound § in a similar way.

ProPOSITION 3.4. Let E = E(t) be computable differential fields with C(E)=C(E (1)), t
transcendental over E and t'/te E. Assume that we can effectively find all exponential
solutions of homogeneous linear differential equations over E and that for any u in E decide
if '+ uy =0 has a non-zero solution in E(t) and find all such a solution if it exists. Then
we can effectively solve parameterized linear differential equations over E(t).

Proor. Immediate from Lemma 3.2 and Lemma 3.3.



266 M. F. Singer

ExamrLE 3.4.1. Let E=Q and = e" Consider the linear differential equation

—24¢* 25 20e*

’

de+s5 ) Taertst

We wish to find all solutions of this equation in Q(e*). Using p-adic expanasions forp#1,
one can easily show that any solution must be of the form y,/¢”+ - - +y;t . We therefore
clear denominators in the above differential equation and consider

(4t+5)y"+(—24t—-25)y'+20ty = 0. (4)

L{y)=y"+ 0.

Comparing highest powers of t, we see that y;1° satisfies 4y” ~24y'-+20y =0. This latter
equation has solutions e°* and e” that are exponential over E =Q. Both of these are in
Q(e*). Therefore § <5, Comparing lowest powers of ¢, we see that y,/t” satisfies 5"~
25y'+20y =0. This latter equation has solutions e** and e* in Q(e*). Since y=0, we
conclude that either ¥ =0 or y, =0. Therefore y = yst°+- - - +y, for some y; constants.
If we substitute this expression in (4) we get the following

—12y4t5+ (_‘20_}’4 - 16y3) t4+ (“30}’3 - 12y2) t3+ (—'30}’2) t2+ (20y0"20y1)t ={,

Equating powers of f to 0 and solving gives us that y, = y, =y, =0 and y, = y,. Therefore,
solutions of (4) in E(¢) are of the form ¢;°"+ c,(e*+1) where ¢, and ¢, are arbitrary
constants,

A few words need to be said about the assumption in the previous propasition that
for ue E we can decide if y'+uy =0 has a solution in E(z). A priori, this is stronger
than the assumption that we can decide effectively find all exponential solutions or all
solutions of homogeneous linear differential equations over E. Since t'/t € E, it is known
(Rosenlicht, 1976, Theorem 2) that any solution in E(¢) of y'+upy =0 must be of the
form y,t" for some integer n. y, will then satisfy y, +(u-+n(t'/t))y, =0. We are therefore
asking to decide if there is some integer n such that this latter equation has a non-zero
solution in E. Similar problems come up in the Risch algorithm for integration in finite
terms (we are asking if [ u=1log y,+ nlog ¢ for some y, and integer n). We do not know
how to reduce this question to the assumptions that we can effectively find all exponential
solutions or effectively solve homogeneous linear differential equations. The following
lemma shows that there are classes of fields for which this hypothesis is true.

LemmMma3.5. Let E ¢ E(t) be computable differential fields with C(E) = C(E(1)) and assume
t is transcendental over E with t'/te E or t' € E.

(i) If E is an elementary extension of C(x), x'=1, and uc E, then one can decide if
¥'+uy=0 has a non-zero solution in E(t) and find such a solution.

(ii) If E is a purely transcendental liouvillian exiension of C({x), x'=1, and u € E, then
one can decide if y'+uy =0 has a non-zero solution in E(t) and find such a solution.

ProoF. In this proof we shall rely heavily on the results of Rothstein & Caviness (1979)
and the appendix of Singer et al. (1985). If ¢'¢ E, then the Corollary to Theorem 1 of
Rosenlicht (1976) implies that any solution # of y'+uy =0in E(t) is actually in E. If E
is an elementary extension of C(x), the result follows from Risch (1968). If E is a purely
transcendental liouvillian extension of C(x), the result follows from Theorem A1(b) of
Singer et al. (1985) and the fact that we can effectively embed such an extension in a
log-explicit extension. We now assume that ¢'/te E and let t'/t= .
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(i) Assume that E is an elementary extension of C(x}. We can use the Risch Algorithm
(Risch, 1968) to decide if v has an elementary anti-derivative. If it does, then we can find
v,...,0, in E such that E(Jv)< E(logv;,...,logv,). Since, for each i, E;=
E(log vy, ...,log v;) is an elementary extension of E, we can inductively decide if log v;.,
is algebraic over E; (and so in E;) or transcendental over E;. Therefore we can assume
that E, = E(log v,, ..., log v,} is a computable differential field. The corollary to Theorem
1 of Rosenlicht (1976) implies that ¢ is transcendental over E,. E,(t) is a generalized
log-explicit extension of C and we can write E.(1)=C(t,,..., t,) as in (Rothstein &
Caviness, 1979, Theorem 3.1). It is enough to decide, for a given u in E, if y'+uy=0
has a solution in E,(¢), since the corollary to Theorem 1 of Rosenlicht (1976) implies
that such a solution will lie in E(#). To decide if '+ uy has a solution in E,(t), we use
Corollary 3.2 of Rothstein & Caviness (1979). According to this result, if such a solution
existed then

u=c+ ) rt+ 73 ra
ied ie¥

where c is a constant, £ = {i| ¢} = a}/ a;, for some a,€ C(t,,..., t;_,)},and € ={i|t}/t, = a}
for some a; € C(t,, ..., t;_;)}. Writing this last equation as w’' =} rt}+¥ ra!, and expand-
ing in terms of a Q-basis of C(1,,...,t,), we can find a rational solution {r;} if one exists.
If such a solution exists, then y = ¢/*=d [[,., a} [, t7, for some constant d. This means
that for some integer N (that can be determined from the r,) (y/(d"™))N € E.(1). E.(1)
is a computable field, so to determine if y € E, we need only factor YN — ([, ai [1,cp tV
over E,(1).

If f v is not elementary over E, then E( v, 1) is a log explicit extension of C and we
can proceed as above,

(ii) Either [ visin E oritis transcendental over E. Lemma 3.4 of Rothstein & Caviness
(1979) and Theorem Al of Singer et al. (1985) imply that one can effectively embed E(t)
into a regular (i.e. purely transcendental) log-explicit extension F of C. Furthermore F
will be of the form E(t,, ..., t,), with the 7} in E. The corollary to Theorem 1 of Rosenlicht
(1976) implies that ¢ is transcendental over F. Given u in E it is enough to decide if
y'+uy =0 has a solution in F(), since the corollary to Theorem 1 of Rosenlicht (1976)
will imply this solution lies in E. Therefore, let us assume that E is a regular log-explicit
extension of C. Theorem Al(b) now allows us to decide if y'+uy =0 has a solution in
E(t) and find such a solution if it does.

We will now prove a result similar to Lemma 3.3 for fields of the form E(t) with ¢'e E.
This lemma will describe an algorithm to find a certain integer M that bounds the degree
of solutions in E[t] of linear differential equations. To show the algorithm is correct, we
need to consider more general extensions of E and we will prove two simple lemmas
about these extensions.

Let E < E(t) be countable differential fields, C(E)= C(E(t)), ¢ transcendental over
E and t'€ E. Since C(E) is countable we may assume that C(E)< C. Let F=C Q¢ s, E
We first note that ¢ is transcendental over F. If not, then t"+a,_,t" '+ -+ a,=0 for
some a; € F. Differentiating this equation, we have nt" " 't'+al_,t"'+.. =0 s0 t'=
(1/n)a’,_,. Therefore there exists a u € F such that u’=1t’. Let {y;} = C be an E-basis of
F and write u=3 yu, for some u; € E. We then have ¥ y;u!=t'€ E. Therefore for some
i, v;=1 and t'=uj{. This implies that in E(t), (u—1) =0 so t € E, a contradiction.
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We now consider the field K = F((t™")), the field of formal Laurent series in ¢~ with
coefficients in F. We can extend the derivation on F to K by defining

!
< by ait’) =al t"+ ¥ (ig;t'+aj-,)t'"".
isng i=ng

Let k e C—Q and define an extension K(u) of K where u is transcendental over K and
u'/u=kt'/t. We then have

LEMMA 3.6. (i) C(F)=C(K). (ii) C(K)= C(K(u)).

Proor. (i) Let (.., ai')'=0. First assume that no#0. We then have aj =
Noayt'+ ay _, = 0. Therefore t' = (a,,-1/Mon,)’, 50 t —(@p—1/ Noan,) € C(F) contradicting
the fact that ¢ is transcendental over F. If ny=0, let n, < n, be the largest integer such
that a, #0. We then have a,,=a), =0 and ma,t'+a, ., =0 and we get a similar
contradiction as above.

(ii) If C(K) is properly contained in C(K (#)) then there exists an integer n and a
ve K such that v'/v = n«xt'/t (Risch, 1969). If we write v = a, 1"+ a,,,t""'+- - -, then

A e G O L SRR
v Ap "0+ t

Therefore, a,=0 and (nya,t'+an_)/a,,=nkt’. This implies that (nk—ny)t'=
(@n,—1/ an,)'. Since t & K, we must have nk —n, =0, contradicting the fact that « £ Q.

We need one more lemma before we can prove that the algorithm described in Lemma
3.8 terminates,

LeMMA 3.7. Ler K « F be differential fields and assume that we can solve parameterized
linear differential equations over K. Let Agy, ..., A,, By, ..., Bn,€ K and let £ be a set of
homogeneous linear equations with coefficients in C(K) and z,,..., z, be elements of K
such that A,y "+ +Ayy=cpBm+ "+, B, forye K, ¢,e C(K) ifand only if y =7 hg,
for some h,e C(K) and ¢,, ..., Cu, By, ..., h, satisfy &. Then for ye K- C(F) and ¢ &
C(F), we have A,y +-+-+Ayy=cuBn~++-+c,B, if and only if y=7Y h;z, for some
heC(F)andc,,..., Cn, M1,..., h, satisfy 2.

ProoF. The proof follows by expanding ye K- C(F) in a K-basis and noting that all
equations (both differential and algebraic) involved are linear.

LEMMA 3.8, Let Ec E(t) be computable differentiable fields with C(E)= C(E(T)), t
transcendental over E and t' € E. Assume that we can effectively solve parameterized linear
differential equations over E. Let A,,...,Ag, Bn,..., Bic E[t]. Then we can effectively
Jfind an integer M such that if Y = yo+- - -+ y,t7, ¥, #0, is a solution of

A, Y+ +AY=¢,B,+ -+ B (5)
for some ¢, C(E) then y< M.

ProoF. We shall describe a procedure that successively attempts to compute y,, Yy-1,-- -
We shall then show that for some i, in the process of computing y,—;, we shall find a
bound for y. This bound will be independent of the ¢;5. At present we have no way of
giving an a priori estimate for the i such that the computation of y,_; gives us the bound
for +.
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Let
A,=a,-n,t“+- . '+a,'0

B,'T-b,ptﬁ‘f" . '+b,'o

where some a;, #0 and some bz #0. We replace Y in (5) by Y=y,t"+- -+ and
equate powers of t. We first consider the highest power of f, that is {7"*. There are two
cases: either y+a=<f or y+a> 3 and

Lv(yv Z aray(v')

By our hypotheses, we can find z,,, ..., z,, in E such that any solution y, of L,(y,)=0
in E is of the form y, =Y, ¢, z,; for some ¢,; in C(E). If there are no non-zero solutions
of L.(y,) =0, we stop and have y =< B ~ . Otherwise, we now replace y, in (5) by . ¢,;z,,
(where the c,; are indeterminants) and consider the coefficients of r***~! Either y+ta—1=
B or y+a—1> B and the coefficient of t"**7" is

y—l(yy l) Z alay(') (2 cyjeyj+2 ‘)’C'yjf—yj) =O

where the e, and f,; are known eclements of E. By our hypotheses we can find
Zy A1sens Zy=1r,, i0 E and a linear system £, _, in r,_,+r, variables with coefficients
in C(E) such that y,_, =Y ¢,_,2,-1, is a solution of L,_,(y,-,) =0 for some choice of
Cptsevvs Cyryy Yifand onlyif (ey g1, vy Gty s Cpts e e s Cprys Yy, -+ - 5 YEyr,) Satisfies
&£,-1. We can replace £,_, with a linear system £%_, having coefficients in C[y] such

that y,_, =Y ¢,_,,;2,-1,; is a solution of L,,_,(y.,_l)=0 for some choice of ¢,;,..., ¢y,
if and only if (¢,—1 1, .+ s Cym1r_ys Cy1s - -+ » Gy, ) Satisfies Z%_,. Using elimination theory,
we can effectively ﬁnd systems £V, .. .:’/’ﬁ,‘l where each .S”(”—{ fir=0,....fi) =0,

gtV # 0} where £V ¢V e C(E)[y] such that for vy in some algebraically closed extension
ﬁeld k of C(E), 7 satisfies some &{" if and only if £%_, has asolution (¢, ;,..., ¢
Cptsevs Cyr) With (Cy1, .0, €0 ) # (0,. .., 0). We shall deal with two cases:

Case 1 Each #") has only a finite number of solutions . In this case we can bound
v by y=max(B ~ q, integer solutions of the #{").

Case 2. Some %" has an infinite number of solutions. In this case, such an ¥ is of
the form {0=0, g{""# 0}. When this happens we continue and attempt to calculate y,_»
in the following way.

We now replace y,—; by Y ¢,—, 2z, in (5), where the ¢, ,; are undetermined
coefficients and consider the coefficient of ¢”~2, This will be of the form

y—1lyry

Ly—z(Yy-z) =Y Qo y(yl)z_ M-y-2(c'y,js YCo.js y(y— l)cv.j: Cy—1,j» YCy-1,)

where M, _, is a linear form in the ¢, ;, y¢,,;, y(7 —1)¢y;, . - . with known coefficients from
E. By our hypotheses, we canfind z,_»1,..., 2,2, in E and a system of linear equations
&,, with coefficients in C(E) such that y,_, =Y. ¢,_5;2y-2,1s a solutionof L,_,(»,-5) =0
for some choice of (¢, vcy;, Y(¥—1)¢,), €51 Vey-1,;) if and only if (¢, ;, vey;, (¥ —
1)C,;, Cym1js Yey—1.js Cy—a ;) Satisfies &£,_». As before, we can absorb vy into the coefficients
and produce a system of homogeneous linear equations &%, with coefficients in C(E)[v]
such that (c,;, ¥¢,.;, Y(¥=1)¢Cy s Cymrjs YCy=1js €y-2,;) 18 @ soOlution of £, _, if and only
if (¢y,75 Cym1,)s 7~,,_J) is a solution of #%_,. Again there exist systems S\, ..., S where
each §¥'={f¥=0,...,f2 =0, g#0} with [}, gi’e C(E){y] such that for any
vy in some algebralcally closed extension k of C(E), £¥_,u %% | has a solution
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(€45, €y=1,j5 €y—2;) in k with the first ., coordinates not identically zero if and only if y
satisfies ¥ for some i. We again have two cases:

Case 1. Each #* has only a finite number of solutions. In this case we can bound y
by y=max(B ~a~1, integer solutions of the ¥\?).

Case 2. Some ¥ has an infinite number of solutions. In this case such an #{* is of
the form {0=0, g!¥ # 0}.

If we encounter case 2, we continue this process, otherwise we stop. Assume that we
do not encounter case 1 before the kth repetition of the process. We have at this point
found z,,,..., Zyrys-eos Bymkt1ds e oo s Zymktlyr, ,,, and systems of linear equations
LE 1, L% s, with coefficients in C(E)[y] such that for some ¢; in C(E) if y=
yyt¥+- - +is a solution of (5) with y,#0 and y>p —a-+k—1, then there exist ¢,,_;€
C(E), 1=i=r,;, 0=j=k—1 such that y, ;=Y ¢, ,—;2 ,~; and {c,y;} satisfy £¥_u
++ 0 Z%_ ... Furthermore, there are systems FEV L, 5"5,'::1” such that £¥_0u-- .U
£%_i+1 has a solution with ¢, - - - ¢, not all zero if and only if y satisfies some F1“™",
We can continue if and only if some $*71 is of the form {0=0, g{“~" #0}. We shall
show that for some k, we have that no ¥ is of this form. This will show that the
algorithm terminates.

We argue by contradiction, so assume the process continues indefinitely. We now think
of C(E) as being embedded in C and fix some « € C transcendental over C(E) (note
that C(E) is countable and so this can be done). For each k, We are assuming that there
is an ¥~V of the form {0 =0, g{*~V# 0}. Clearly « satisfies ¥{*~V. Therefore, for this
k we can solve 3 U+ - U LY, in C with non-zero ¢,4, ..., ¢, . Note that for fixed
k the set Vi of (c¢yy,..., cwy) in C' such that £¥_, U U %*_, . has a solution is a
vector space. Notice that V,, = Vi, and V, # 0. Therefore, for some k, we have Vi = V.. =
-+ +#0. This implies (using Lemma 3.7) that there exist ¢;,,€C, 1=<isr, _;,0=r,_ ;<0
such that

w© fTe-} .
We = Y, ( > ci,x—jzi,x—j) <
J=0 \i=1

is a solution of A,y +:+ -+ Agy=0with ¢, ..., C,, not all zero. We can repeat the
above argument for y=x—1,..., y=« —n and produce n+1 solutions w,,..., W._, in
E((+)(t*) of A,y +-+ -+ A,y =0. Note that by looking at leading terms, we can see
that these solutions are linearly independent over C(E) and therefore (by Lemma 3.6)
over C(E{(t1))(t*). Since a homogeneous linear differential equation can have at most
n solutions linearly independent over the constants (Kaplansky, 1957), this yields a
contradiction. Therefore the process described above terminates.

PrOFPOSITION 3.9, Let E < E(t) be computable differential fields with C(E)=C(E(1)), t
transcendental over E and t' € E. Assume that we can effectively solve parameterized linear
differential equations over E. Then we can effectively solve parameterized linear differential
equations over E(t).

Proor. Immediate from Lemma 3.2 and Lemma 3.9.

ExamrLE 3.9.1. Let E =Q(x) and t=log x. Let
L(y)=(xlog® x)y"+ (x log? x ~3x log x)y'+3y =0
We will look for solutions y of L(y) =0 in E(t)=Q(x, log x). Considering y as a rational
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function of f, we see that the only possible irreducible factor of the denominator is
t=log x. If we expand y in powers of log x and write y =y,/(Jog x)*+- - -, we see that
the leading coefficient in L( y) is y,[a(a +1)—3(~a)+3]. Since this must equal zero, we
have that (a +3)(a-+1) =0. This means that any solution of L(y)=0in E{t) is actually
in E[t]. We let y=y,t”+y, ;1" '+ .- and substitute into L(y)=0. Calculating the
coefficients of powers of f, we get the following:

! Coefficient of ¢'

Y+2 L () =Xy +xy
v+1 Ly i(yy1) = X2y4_ +xyl_ + (2yx = 3x)y),
¥ Lo ¥yea) = X2y0 o Xyl o+ (2yx = 5x)y), H (2 — 4y +3)p,

It is easy to see that L, (y,)=0 has only constant solutions in E. Replacing y, by ¢,, - 1
in L,_,(y,-,) yields the equation x?y’_, +xy’,_; =0 for y,_,. This new equation has only
constant solutions in E and places no restrictions on y. We let y,.,=c¢,,; 1 and
substitute in the expression L,_,(y,_,). We obtain

X2yt Xy, o+ (¥ —4y+3)c,, =0.

Since c,, # 0, this latter equation has a solution in E if and only if y*~4y+3=0. This
implies that y = 3. Therefore y=y;t*+y,t*+y,t+y,. Substituting this expression into
L(y)=0 and calculating the coefficients of powers of f, we find:

I} Coefficient of ¢*

5 Ly(ps)=xpi+xy}

4 Ly(yp)=xyi+xph+3xp)

3 Lp)=xyi+xyi+xyy

2 Lo(ye) =Xyl +xpi—xp; — 4y,
1 —3xy4

0 3ya

Successively setting these expressions equal to zero and finding solutions in E yields that
¥s; and y, are arbitrary constants and y, and y, are 0. Therefore all solutions of L(y)=0
in Q(x, log x) are of the form ¢,(log x)’+ ¢, log x.

4. Final Comments

Using the results of the last two sections, we can answer questions 1 and 2 for certain
classes of fields.

THEOREM 4.1. Let C be an algebraically closed computable field and assume that either:

(i) K is an elementary extension of C(x) with x'=1 and C(K)=C, or

(ii) K is an algebraic extension of a purely transcendental liouvillian extension of C with
C(K)=C

Then one can effectively find exponential solutions of homogeneous linear differential
equations over K and effectively solve parameterized linear differential equations over K,



272 M. F. Singer

Proor. It is easy to see that one can find exponential solutions of homogeneous linear
differential equations and effectively solve parameterized linear differential equations
over C. Using Propositions 2.1,3.1,3.4, 3.9 and Lemma 3.5, one can prove this theorem
by induction on the number of elements used to define the tower leading to K.

As a consequence of this and Lemma 2.5(ii), one can generalize the results of Singer
(1981) in the following way:

THEOREM 4.2. Let C and K be as in Theorem 4.1. If L(y)=0 is a homogeneous linear
differential equation with coefficients in K, then one can find a basis for the space of solutions
of L(y) =0 liouvillian over K.

There remain several open problems and directions for further research.

(a) The algorithms presented above are certainly not very efficient, Efficiency could
certainly be improved by using (where possible) Hermite reduction techniques (cf.
Bronstein, 1990). We also have sometimes assumed that the field of constants is algebrai-
cally closed. For actual computations one has a finitely generated field and one is forced
to compute the necessary algebraic extension. Work needs to be done efficiently to find
minimal algebraic extensions that are sufficient and also incorporate the D° method (Della
Dora et al.,, 1985; Dicrescenzo & Duval, 1989).

(b) There should be a more direct algorithm to solve the problem stated in Proposition
2.6. In particular, one should not have to first decide if there exists a u algebraic over
E(t) such that L(eI “}=0 in order to decide if there is a u in E(t) satisfying this property.
A procedure just working in E(t) would be preferable and would possibly avoid the need
to assume that the field of constants is algebraically closed.

(¢) We do not have a priori bounds on how many cycles are required in the procedure
presented in Lemma 3.8. Is there a simple function f(n) (where n is the order of the
differential equation) such that the algorithm terminates after f(n) steps?

{(d) We would like to extend Theorems 4.1 and 4.2 to other classes of fields, in particular
liouvillian extensions of C (not just purely transcendental liouvillian extensions). At
present this would require extending Lemma 3.5 to such fields. This seems to be related
to the problem of parameterized integration in finite terms mentioned in Davenport &
Singer (1986).
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The author would like to thank the Research Institute for Symbolic Computation (RISC-LINZ)
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