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A CLASS OF DIFFERENTIAL FIELDS WITH
MINIMAL DIFFERENTIAL CLOSURES

MICHAEL F. SINGER

ABSTRACT. We give examples of differential fields which are not
differentially closed but which become differentially closed when one
adjoins V-1 ; differential fields whose differential closures are therefore
minimal.

Kolchin [1], Rosenlicht [2], and Shelah [6] have shown that the differential
closure of the rational numbers is not minimal. It is not generally known (cf.
[8, p. 350]), though, that there are nontrivial examples of differential fields
with minimal differential closures. In this note we show that there is a class of
differential fields, the closed ordered differential fields, which are not
differentially closed but which become differentially closed when one adjoins
V'— 1. This will give us the desired examples. I would like to thank C. Wood
for conversations which stimulated the work in this note.

We will assume that the reader is familiar with the model theory of
differential fields (3], [8]). We only recall that a differentially closed field of
characteristic 0 is a differential field of characteristic 0 which is algebraically
closed and which has, for every pair of differential polynomials f(y), g(»)
with ord f > ord g, a solution of f(y) =0, g(y) #0. An ordered (real)
differential field is a differential field which is also an ordered (real) field. In
[7], we showed that the theory of ordered differential fields has a model
completion called the theory of closed ordered differential fields. A closed
ordered differential field K is a differential field which is also a real closed
ordered field and which satisfies the following property: let f(y),
81(»), . . ., &n() be differential polynomials such that n = ord f > ord g, for
i =1,..., m If there exist elements ¢, . . ., ¢, in K such that f(cy, ..., c,)
=0, (3f/)ec-..,¢)#0 and gi(cp -..,c,) >0 (here we are
considering these polynomials as algebraic polynomials and substituting c; for
»®) then there is a z in K such that f(z) =0, g(z) >0 fori=1,...,m
(here the polynomials are considered differential polynomials). In the
theorem below we will use two embedding theorems. The first one, whose
proof appears in [7], states that if K = Q<u,, ..., u,> is a real differential
extension of the rationals Q, then K is isomorphic to Q{u, ..., i,» where
each y; is a real analytic function of x, defined in some neighborhood of 0
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and where the derivation on Q{u,, ..., u,y is d/dx. The second theorem,
due to Seidenberg, [4] and [5], states that if K C K, are finitely generated
differential extensions of the rational numbers and 7: K— K* is an
isomorphism of K onto a field of meromorphic functions on some complex
domain §, then 7 can be extended to an isomorphism 7, of K; onto K, a
field of meromorphic functions on a domain §;, C §. Furthermore, given K
and K,, there are at most a countable number of points {e;} in § such that
given any « in §, not equal to some a;, we can choose §, to be an open disk
around a.
We can now show

THEOREM. If K is a closed ordered differential field, then K(i) is a
differentially closed field of characteristic 0, where i =V — 1.

PrOOF. Since K is real closed, K (i) is an algebraically closed field of
characteristic 0. Therefore, to verify the conclusion, we need only show that if
f(») and g(y) are differential polynomials with coefficients in K (i) and
ord f > ord g, then f = 0, g # 0 has a solution in K (i). Substitute y, + iy,
for y (where y, and y, are new differential indeterminants) and write f(y, +

i) = fiyy2) + ih(r1, ) and g(y1 + ) = g1(¥1, 7)) + i8(¥1, ;) where
fis o 815 &, have coefficients in K. Let f(y,,y,) = i+ fFand g(yy, p) = g
+ g2 If F is any real differential extension of k (the smallest subfield of K
containing the coefficients of f,, f,, g1, 8,) and u,, u, are members of F, we
then have that f(u,, u,) = 0, g(u,, 4,) # 0 if and only if f(u) = 0, g(u) # O in
F(i) where u = u; + iu,, We now claim that ODF U D (K) U {3y, »,
(f(r1,y2) =0, g(y),y,) # 0)} is consistent (where ODF is the theory of
ordered differential fields and ) (K) is the diagram of K). Assuming this for
a moment, we can finish the proof of the proposition. Let F be a model of
these formulas and embed F in a closed ordered differential field F'. F
contains a copy of K, and since the theory of closed ordered differential fields
is model complete, K must be an elementary submodel of F’. Therefore there
must exist a ¥, and u, in K such that f(u;, u,) = 0 and g(u,, u,) # 0. This
implies f(y) = 0, g(») # 0 has a solution in K (i).

To prove the claim we will use the compactness theorem. Let S be a finite
subset of (K). We will show that ODF U S U {3y,,», f(¥1,»2) =0,
&(»1, y,) # 0} has a model. We can assume S contains terms representing the
coefficients of f), f,, g, and g,. We can also assume that any use of the symbol
“>”in S occurs as “a > 0” where a is some term. Take atomic formulas in S
of the form “a > 0” and replace them by formulas “a = 5% and “b # 0" for
some term b. We can do this since K is real closed. Let S* be the resulting set
of formulas after we have done all of this. S* has no occurrence of “>”. We
will show that RDF U S* U {3y,, ¥, (f = 0, g # 0)} has a model E, (where
RDF is the theory of real differential fields). This E would then be a real field
and therefore orderable. Any ordering of E will satisfy the formulas “a > 07
in S since a will have a nonzero square root in E. Thus, any ordering on E
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will turn E into a model of ODF U S U {3y, y, (f= 0,8 # 0)}. The reason
for switching to real fields instead of dealing directly with ordered fields is
that we can now use the first representation theorem. To see that RDF U S*
U {3y, y, (f=0, g # 0)} has a model, let k¥ be the smallest differential
subfield of K containing elements representing all the terms mentioned in S*
and the coefficients of f}, f,, g, and g,. Since K can be ordered, this is a real
differential field. Since it is finitely generated over Q, it is isomorphic (by the
first embedding theorem mentioned above) to a field k£ of real functions,
meromorphic in some real neighborhood of 0. We can formally extend & to a
differential field (not necessarily real) k{y) containing a solution of f = 0,
g % 0. k can also be considered a field of meromorphic functions in some
complex neighborhood § of zero. Using the second embedding theorem, we
can extend the isomorphism of k onto K to an isomorphism of k(y> onto
k{7, where y is analytic in some smaller open set §’ C § and where 8’ can
be chosen to contain a point a on the real axis. Any function A(z),
meromorphic at a, can be written as h(z) = h(z) + ih,(z) where h, and h,
are real meromorphic functions. Note that if # € k then h = h, + ih, where
hy = 0. Let E be the differential field generated by the A, h, corresponding to
all # in k(y). E is a real field since it can be considered a subfield of
O ((x — a)) and by the above, E contains a copy of k. If we write y = y, +
iyy, theny, and y, are in E andf_(yl,yz) =0, g(y;,y,) # 0, so E is a model of
RDF U $* U {Fy,y, (f(y1,02) =0, g(y1,»2) # 0)}. This concludes the
proof.

It is now easy to see that any closed ordered differential field K has a
minimal differential closure, since K (i) is differentially closed and there are
no fields properly between K and K(i). This fact suggests two questions.
First, precisely which differential fields have minimal differential closures?
Secondly, what characterizes the class of fields of finite codimension in their
differential closures, i.e. which differential fields K have the property that
[K : K] is finite (and therefore equal to 2), where K is the differential closure
of K? Both classes contain the differentially closed fields and the closed
ordered differential fields, but I do not know if either class contains more
fields or if the classes are different. On the other hand, the second class of
differential fields mentioned above does coincide with the class of differential
fields K which have the property that the differential closure of X is finitely
generated (in the differential sense) over K. Clearly, the latter class contains
the former. To see that the former class contains the latter, let K be a
differential field, K its differential closure and say K = K(y,, ..., y,>. I will
show that the y;’s must be algebraic over K. If the y;’s were not algebraic over
K, we could then find a field L (not necessarily a differential field) so that L
would be a pure transcendental extension of K and K would be a finite
algebraic extension of L. If u were an element of L, not in K, then L could
not possibly contain roots of X" — u for all n. K would not be algebraically
closed and therefore, would not be differentially closed, a contradiction.
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