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In this paper, I will give an exposition of the differential galois
theory of linear differential equations with the aim of trying to answer
the following question:

When can we effectively solve a linear differential equation
in terms of some "simple" class of functions?

To make this question more concrete, let us look at some
examples:

Example 0.1. The equation y** + (/)" — (1/dxD)y’ + (1/4x)y =
0 has a solution space that is spanned by X, yX, 1/yX. In general, one
can ask: when does a linear differential equation with coefficients in
C(x) have a solution space spanned by functions algebraic over C(x), (€
is the complex numbers) ?

Example 0.2. The equation y’’ + (1/2x)y” —xy = 0 has a solution
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space spanned by eI {x and e—I {x . Functions that are built
((x) using integration, exponentiation, algebraic functions and
composition are called liouvillian functions. One can ask: when does
a differential equation with coefficients in €(x) (or more generally,

coefficients that are liouvillian functions) have a solution space that is
spanned by liouvillian functions?

up from

Example 0.3. The equation y**

. " —d4xy’ —2y =0 has a solution space
spanned by YI= 2 Yy

= 242, Y3 = z, where zy and z, are linearly

independent solutions of y’’ —xy =0. One can ask: when can the

solutions of a linear differential €quation be expressed in terms of
solutions of second order linear differential equations? In, general
when can the solutions of a linear differential €quation be expressed in
(possibly more complicated) terms of solutions of lower order linear
differential equations? Note that in this example we have the relation

y1y3—~y% =0. In general, if linearly independent solutions of a linear

differential equation satisfy some homogeneous polynomial equation,
does this imply that all solutions of the linear differentia] equation can

be expressed in terms of solutions of lower order linear differential
equations?

We shall show that the questions raised in these examples can
be answered using the galois theory of linear differential equations and
in many cases one can even give algorithms to answer these questions.
In section 1, we will describe the basics of this galois theory. In
section 2, we will discuss the question of when a linear differential
equation has liouvillian solutions. Section 3 is devoted to the question
of when a linear differential equation can be solved in terms of second
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order linear differential equations. Section 4 is devoted to explaining
the deepest fact in the galois theory: the connection between rational
functions on the galois group and solutions of linear differential
equations. This connection is used in section 5 to describe when the
solutions of a linear differential equation can be expressed in terms of
solutions of linear differential equations of lower order. Finally, in
section 6, I will discuss the ramifications of a linear differential
equation having an algebraic relationship among its solutions. In all
these sections I will not aim at stating the most general results or even
giving complete proofs. My aim is always to give an overview of the
subject together with a taste of the techniques used. All the results
mentioned here appear in print in other sources. The reader familiar
with these sources will readily see how heavily I have relied on them
especially [KAPS57] and [KOL73].

1. Differential Galois Theory.

In this section, I will give an exposition of the basic facts of the
classical galois theory of homogeneous linear differential equations.
This theory was founded in the 19th century by Picard and Vessiot and
generalized and given modern mathematical rigor by Kolchin in the
middle part of this century. This theory is enough for my puxiposc.ts
here, but there are now alternative approaches that I will not mention in
detail. These are primarily due to Deligne [DEL70], Katz ([KATZ82],
[KATZ87a], [KATZ87b], [KAPI87]) and Ramis ([RAMSS5a],
[RAMS5b]). Their approaches have also been successful used in
[BEHS8], [BEHES7] and [DUMI88] to compute galois groups. :

In the ordinary galois theory of algebraic equations, questions of
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solvability of equations are translated into questions about fields and
finite groups. For differential €quations,
differential fields and algebraic groups.
follows that of Kaplansky [KAP57].

the proper setting  is
The exposition here closely

Definitions. Let k be a field. A map D:k + k is called a
for all a,b € k, D(a+b) = D(a) + D(b) and D(ab) = D(a)b + a D(b). We
shall usually denote a derivation by ’, je. a’ = D(a). A field with a
designated derivation is called a differential field. If k is a differential

field, the set {cek | c'=0)isa subfield called the field of constants
of k and denoted by Const(k).

derivation if,

A good example to keep in mind is the field C(x), where the
derivation is d/dx. The field of constants is (. In this paper all fields
will be of characteristic zero. One could also define a differential field
as a field with (possibly) several commuting derivations and the results
that follow could be generalized to this case.

We stick with one
derivation to simplify the exposition.

If F c E are differential fields
and S is a subset of E, we denote by F<S> the smallest differential

subfield of E containing F and S. Note that F<S> is the field generated
(over F) by the elements of S and their derivatives of all orders. In the

galois theory of algebraic equations, one associates a splitting field
with an algebraic equation.

The following definition gives the
analogous object in this setting.

Definition. Let k be a differential field and L(y) = y(n) +ta, y(n—l)

+ .. +a y with a, ek M is a Picard—Vessiot extension (or P-V

extension) of k associated with Liy) = 0if: (1) M = k<y1, Y
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where Yi» - oYy are solutions of L(y) = O linearly independent over

Const(k), and (2) Const(M) = Const(k).

h

; t
A set of linearly independent solutions Y{> - ¥ Of the n™" order

equation L(y) = O is called a fundamental set of solutions. It is well
known ([KAP57], p.21) that elements Yo o oY, are linearly

independent over the constant subfield if and only if the (]y;'ronskian
determinant Wr(yl, ,yn) = det (W) # 0, where W = (yi ), 1<i<n,

0<j<n—1.0ne can show that in any differential field K, the set of
solutions of L(y) = 0 forms a vector space over Const(k) of dimension
at most n ([KAP57], p. 21). If k = ((x), then classical existence
theorems guarantee that P—V extensions exist. In general if Const(k) is
algebraically closed, one can show that for any L(y) as above, there
exists a P-V extension associated with L(y) = O and that this extension
is unique up to a differential k—isomorphism.

Definition. Let k c K1 and k c K, be differential fields. A bijective
field isomorphism o : K, -+K, is a differential k—isomorphism if
(6(2))" = o(a’) for all a € K, and o(a) = a for all a ¢ flgfr;:; If
K. = K2 =K, G(K/k) = (0|0 is a differential k—automorphism of K)
is called the galois group of K over k.

Let k c K be differential fields with galois group G = G(K/k).
Fork c L c K, define L™ = {0eG| o(a) =a VYae L}. For H c G, define
H™ = {acK| o(a) = a Yo € H). Note that L™ is a subgroup of G and
G~ is a differential subfield of K. One can easily see that (L))" =
L and (H")") =H".
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Definition. A differential subfield k c L c K or a subgroup H of the

galois group is closed if it equals its double check, i.e. L™~ = L of Gi&
=G.

One easily has the following fundamental aspect of galois
theory:

Proposition 1.1. Any checked object is closed. Checking gives a

one—to—one correspondence between closed subgroups and closed
subfields.

To make this a wuseful fact one must answer the
qQuestions: Which subfields are closed? and Which subgroups are
closed? To do this we restrict ourselves to P—V extensions K of a

differential field k and assume that C = Const(k) is algebraically closed
(Proposition 1.1 is valid for any differential fields k ¢ K). If K is the
P—V extension of k associated with Liy)=0,let V= {yeK| L(y) = 0}.
As noted before, this is a C—vector space of dimension n. If 6 ¢ G and

v eV, then 0 = o(L(v)) = L(0(v)). Therefore, if Yq» - »¥y is a basis of

V, then o(yi) = Ecijyj, for some Cij in Const(k). The identification of
O — (cij) yields an isomorphism of G onto a subgroup of the group of

invertible n X n matrices with constant coefficients, GL(n,C). We shall
now describe a topology where the closed (in the above sense)
subgroups of G are precisely the subgroups of G that are topologically
closed (see [ROS80], [SPR81], and [HUMB1] for a fuller exposition of
this material and the material on linear algebraic groups).
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Definition. Let C be a field and m an integer. X ¢ C™ is Zariski
closed if there is a subset § of C[x}, ... x ] such that X = { ¢ e C™ |

f(c) =0 vfe S).

For example, if m = 1, the Zariski closed sets are the empty set,
C, and finite sets. If m = 2, the Zariski closed sets are the empty set,
C2, finite sets, curves (zero sets of a single polynomial), and finite
unions of these. The arbitrary intersection and finite union of Zariski
closed sets are Zariski closed, so the Zariski closed sets define a
topology, called the Zariski topology. This topology has some strange
features. For example, if C is infinite, any two nonempty open sets
intersect. The Hilbert Basis Theorem implies that this topology has the
descending chain condition on closed sets (any chain X1 5 X2 D e On

closed sets eventually stabilizes). This implies that any closed set can

be written as the disjoint union of a finite number of open and closed

connected sets, called the connected components of the closed set. If
2

we think of GL(n,C) as a subset of C" , we see that it is open in the

2
Zariski topology; GL(n,C) = { Ae C" | det(A) # 0}. Sometimes 2it is
convenient to identify GL(n,C) with a Zariski closed subset of C" +1.
To do this we identify A € GL(n,C) with (A,a) where a-det(A) = 1.

We make this identification in the following definition.

Definition. A linear algebraic group is a subgroup of GL(n,C) that is
closed in the Zariski topology.

For example, GL(n,C), SL(,C) = { A € GL(n,C) | det(A) = 1},
and T(n,C) = {A € GL(,C) | A = (ay) where 8;,=0ifi>j}. fGis
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a linear algebraic group then the maps A +— A_l, A — AB and
A +— BA are continuous maps (for fixed B), This is because if X is a
Zariski closed set and F : X — C" is a map given componentwise by
rational functions whose denominators are nowhere zero on X, then F
is continuous in the Zariski topology. If G is a linear algebraic group,
then one of the connected components of G contains the identity. This

connected component is denoted by G°, G° is, in fact, a normal
subgroup (of finite index) of G. To see this, note that (GO)_1 is again
a connected component of G and contains the identity. Therefore,
69" = G°. Similarly, for ¢ € G°, ¢-G° = G° and for 4 ¢ G,

a‘GO-a_1 =G°,

Proposition 1.2. If K is a P-V extension of k then G = G(K/K) c

GL(n,C) is Zariski closed. If H is a closed subgroup of G, then H is
Zariski closed.

The second statement in Proposition 1.2 follows from the first
since if H is closed then H = G(K/H’) and K is again a P-V extension

of H’. Before proving Proposition 1.2 in a special case, we will
consider two examples.

Example 1.2.1. Let L(y) =y’ —ay witha € k. The P-V extension of
k corresponding to L(y) is of the form K = k<y> = k(y), where y' = a y
(ie. y = exp(Ja)). If o € G(K/K) = G then o(y’'/y) =o(@) =a = y'ly.

From this we can conclude that (c(y)/y)’ = 0. Therefore o(y) = Cs'Y

for some ¢ € CH{0) = C* = GL(1,C). The only Zariski closed
subgroups of GL(1,C) are finite or all of GL(1,C). If G is finite, then it
must be cyclic. This implies that y™ € k for some m. If G is not finite
then G = GL(1,C).
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Example 1.2.2. Let a#0 be in k and L(y) =y’ — (@’/a)y’. The P-V
extension of k corresponding to L(y) = 0 is of the form K = k<l,y> =
k(y), where y” = a. For 6 € G(K/k) = G, (0(y) —y)' =0, so o(y) =y +
o for some ¢ B Const(k) = C. Since o(1) = 1, we can identify ¢ with

the matrix [ (1) (130'}. The set of matrices of the form [ (1) (1: ] force C

can be identified with the additive subgroup of C. Therefore, G is
either the trivial subgroup or isomorphic to C.

We will prove Proposition 1.2 under the assumption that k
€(x), x” = 1, and that K is a P-V extension of k associated with
second order homogeneous linear differential equation, ie. K
<y, yy> = Cx, Yi» ¥p» ¥1» ¥3)- We shall show that G

G(K/k) c GL(2,0) is the intersection of GL(2,€) and the zero set of a
collection of polynomials in four variables with coefficients in €. After
we make the identification A eGL(2,() «— (A,(det(A))_l) € CS, we
see that this implies that G is a linear algebraic group. We follow the
exposition in ((KOV86]). Let YI,Y2,Z1,22 be new variables and let

=

V. R = I[x,Yl,Yz,Zl,Zz] — K = C[x,yl,yz,yi,yz'] be the obvious

cd
€ GL(2,(), A acts on R by leaving ([x] fixed and sending
(YI’YZ’Zl’Zz) to (aY;+bY,, cY+dY,, aZ + bZ,, €Z,+dZ,). A will

substitution homomorphism. Let P be the kernel of y. For A = [ = ]

induce an automorphism of K if and only if A maps P to itself. We
may write P = (pl, ,ps) where the p, are linearly independent over (.
Let m be the maximum of the degrees of the p; AmapsV _ = {[peR
| deg p £ m} to itself. Extend Pys Py to a basis Pys - Py of Vm'

There exist polynomials Pij(a,b,c,d) such that the action of A on Vm is
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given by A-p, = EPij(a,b,c,d)pj. We then see that A € G if and only if
J

Pij(a,b,c,d) =0fori=1,..,sandj=s+1, .. L.

Note that the above proof is not constructive. Given L(y), the
proof does not show us how to construct the polynomials defining G.
In fact, it is not known in general how to produce such a set and this is
an important open problem in the galois theory. Many of the problems
we discuss below could be easily shown to be decidable if we could

effectively solve this problem. To show that the closed subgroups of G
are precisely the Zariski closed subgroups,

we need to show the
following:

Proposition 1.3. Let K be a P-V extension of k with galois group G.
Any Zariski closed subgroup of G is closed.

We shall follow ([KAP57], P.37) and only prove this
proposition when K is associated with a linear differential equation of

order 2, ie. K = k<y1, Yo>. It is enough to show that if H is a

subgroup of G c GL(2,C), then H is Zariski—dense in H™
and we will argue to a contradiction.

. Assume not

By assumption there is a
polynomial f(a,b,c,d) with constant coefficients vanishing on H but not
B Y1 ¥,|-1
on H™". Let = } ) . For new differential variables, y
CD Y1 Y3
and z, define the differential polynomial F(y,z) =

f(Ay+By',Az+Bz',Cy+Dy',Cz+Dz’). Foro = [ 3 3 ] inG, we sety =
o(y)) and z = 0(y,). We then have F(a(y;), 6(y,)) = f(a,b,c,d) = 0 for

al oceH but not all geH ", Among all differentia]

il ———
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polynomials in y and z with coefficients in K, let E(y,z) have the
smallest number of terms with this property. We can assume that some
coefficient in E is 1. For 1 € H, let E‘: be the polynomial gotten by

applying 1 to the coefficients of E. E—E,: is shorter than E and
vanishes for y = o'(yl) and z = G(yz) for all o0 € H. Therefore it must
vanish for y = G(yl) and z = 0'(y2) forall in H ", If E—E’t is not
identically zero, we can find an element Y € K such that E —y(E —E‘:)

is shorter than E and has the same property as E. This contradiction
shows that the coefficients of E are left invariant by H. Therefore E
has coefficients in H™ and these coefficients must be left invariant by
H™". For ¢ € H'", E(0(y,), 0(y,)) = OE© " (o(y )0 (0(y,)) =

O(E(y;.y,)) = 0. This contradicts the fact that E(o(y,).0(y,)) # 0 for

some ¢ € H™ " and finishes the proof of Proposition 2.2.

We now turn to the problem of characterizing the closed
subfields of K. It is a fact that the closed subfields of K are precisely
the differential subfields F with k ¢ F ¢ K. The key step in showing
this is the following proposition:

Proposition 1.4. Let K be a P—V extension of K and assume that C =
Const(k) is algebraically closed. If o € K — k then there is a 0 €
G(K/k) such that o(0) # o.

We only give a rough sketch of the proof of this result. The
proof proceeds in two steps. The first step is to show that for any
differential fields k c K and & € Kk, there is a differential field E
containing K and k-isomorphism y:K — E such that y(at) # a. The
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proof of this fact relies on the fact that one can construct differential
ideals not containing certain elements and Tequires a certain amount of

differential ideal theory ([KAP57], p-13—17). The second Step is to use
this result when K is a P—V extension of k.

isomorphism  is determined by its effect on Yo

In this case the
« ¥ Where K =

k<y1, Y>> W is given by a matrix (dij) in GL(n,Const(E)). The
fact that y is an isomorphism and V(@) # o is equivalent to to (dij)

satisfying a system of polynomials fl(dij) =0, ... ’fs(dij) =0, g(dij) #0.

Since this system is consistent (it has the solution (dij)), and Const(k) is

algebraically closed, we can find cij in Const(k) satisfying this system.

(cij) defines an element o € GL(n,Const(k)) with the desired properties.

Proposition 1.4 implies that any differential subfield E of K
containing k is closed since K is a P—V extension of E. Combining
Propositions 1.1, 1.2, 1.3 and 1.4 we have:

Theorem 1.5. Let k c K be differential fields with K a P—V extension

of k and Const(k) algebraically closed. Let G = GK/Kk) c

GL(n,Const(k)). Then G is a linear algebraic group and the

correspondence described above is a bijective correspondence between

Zariski closed subgroups of G and differential subfields E with k c E
K.

Just as in the galois theory of algebraic equations, one is able to

identify those subfields corresponding to normal subgroups of the
galois group.
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Definition. Let k c K be differential fields. We say that K is normal
over k if for any o € K—k there exists a 6 € G(K/k) such that o(c) # o.

Theorem 1.6. Let K be a P—V extension of k and assume Const(k) is
algebraically closed. A Zariski closed subgroup H of G = G(K/k) is
normal in G if and only if H” is normal over k. In this case, G(H /k)
is isomorphic to G/H.

Assume that H is normal in G. Since K is normal over k, given
any o € H™ there is a 6 € G such that (o) # & Since H is normal in
G, any o € G leaves H™ invariant and so induces an automorphism of
H". Therefore H™ is normal over k.

Now assume that H™ is normal over k. One first shows that any
k—automorphism W of H™ can be extended to a k—isomorphism y of K
into a differential field E containing K. This done in way similar to
that described in Proposition 1.4. As in Proposition 1.4, y is
determined by a matrix (dij) € GL(n,Const(E)) and the fact that

extends y and is an isomorphism is equivalent to a system of
equations. Since this system is consistent we can find a solution (cij) €

Const(k) that defines a k—automorphism that extends y. We now let
H; be the normalizer of H in G. One can show that H, is Zariski

closed. H1 contains any automorphism of K that leaves H™ invariant.

Since H" is normal over k and all automorphisms of H” extend to K,
Hi =k. Theorem 1.5 now implies that H, =G.

The final statement comes from the observation that restricting
any ce G to H” induces a homomorphism from G(K/k) to G(H /k)
whose kernel is H.
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The usual galois theoretic arguments ([KAP57] p. 18-20) for

algebraic extensions and algebraic equations can be generalized to
show:

Theorem 1.7. Let K be a PV extension of k and assume that Const(k)

is algebraically closed. Let H be a Zariski closed subgroup of G =
G(K/k). H has finite index in G if and only

if H” is algebraic over k.
In this case |G:H| = [H"k].

2. Liouvillian Solutions of Homogeneous Linear Differential Equations.

Recall that the notion of "solvability in terms of radicals" for
algebraic equations can be formalized in terms of towers of fields and
that necessary and sufficient conditions can be given in terms of the
galois group. An analogous situation holds for linear differential
equations and "solvability in terms of exponentials, integrals and
algebraics". We start with the

Definition. Let k c K be differential fields. K is a liouvillian extension
of k if there exists a tower k = K0 = K1 e hc Kn = K such that for

each i, Ki = Ki—l (ti) where either

(i) 4 is algebraic over Ki——l’ or

fu,
(ii) t{/ti €K, , Ge L=e ! for some U, € Ki—l)’ or

(i) tf e K, ; (e t, = Iui for some u; € K;_,).

For example y = e“7 lies in a liouvillian extension of ((x)
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since y € t(x,ﬁ,ej ﬁ). The galois theoretic criterion for solvability in
terms of these functions is

Theorem 2.1. K be a P-V extension of k with galois group G =
G(K/k) and assume that Const(k) is algebraically closed. K is
contained in a liouvillian extension of k if and only if the connected
component G° of the identity is a solvable group.

We start by assuming that K is contained in a liouvillian
extension E of k with Const(E) = Const(k) (in general one can show
that if K is contained in a liouvillian extension of k, then it is contained
in one with the same constants ([KOL73] p. 408). Let E be defined by
the tower k = E0 i ¥ Em =E. We proceed by

induction on m. Let E1 = k<z>.

Em: K<z> is a P-V extension of

K< zl> k<z>, so by the induction

E1=k il \K hypothesis G(K<z>/k<z>) has
\ / a solvable component of the
k<z>nK identity. Restricting  any

l’( o € G(K<z>/k<z>) to K gives a

k—automorphism of K. This gives
an isomorphism of G(K<z>/k<z>) onto the subgroup H = (k<z> n K)~
of G(K/k). We now consider the three possibilities for z. If z is
algebraic over k, then Theorem 1.7 implies that |G:H| < w. In this
case |GOH®| <=, so G° = HO, since G° is connected. Therefore G°
is solvable. If z’ € k or z’/z € k, then examples 1.2.1 and 1.2.2 show
that G(k<z>/k) is abelian. Theorem 1.6 (applied to the P—V extension
k<z> of k) then implies that k<z> n K is a normal extension of k with
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abelian galois group. Therefore H is normal in G and G/H is abelian.
We now get the desired conclusion from the following group theoretic
fact: If G is a linear algebraic group and H is a Zariski closed subgroup
such that H is normal in G, G/H is abelian and H is solvable, then G°
is solvable. We refer to ((KAP57] p.29) for a proof of this fact.

Now let us assume that the connected component G° of G is
solvable. The proof that K lies in a liouvillian extension of k relies

heavily on the following group theoretic result (the reader is referred to
([IKAP57 p. 30) or ([ROS80]) for a proof of this result):

Lie —Kolchin Theorem. Let C be an algebraically closed field and G
¢ GL(n,C) a solvable linear algebraic group that is connected in the
Zariski topology. Then there exists an A € GL(n,C) such that AGA

c T(n,C), i.e. the elements of G can be put in simultaneous triangular
form

To show that K lies in a liouvillian extension of k, we can first
replace k by (GO)“. This is a finite algebraic extension of k and allows
us to assume that the galois group G is connected and solvable. We
now specialize to the case where K is a PV extension of k associated
with a second order linear differential equation L(y) = 0 (the general
case follows in a similar fashion). G acts on the solution space V of
L(y) = 0 and, by the Lie —Kolchin Theorem, we may assume that V

has a basis Y1» ¥ such that for all ¢ € G there exists a ¢s € G such
that c(yl) =.c o(yl)‘ This implies that yi/y1 is left fixed G and so lieg
in K. Therefore k(yl) is a livovillian extension of k. Let W =
yiyz—yéyl. For 6 € G, o(W) = (det 6):W. Therefore W’/W is left
fixed by G and so lies in k. (yl/yz)' =W/y12 80 k(yl,W,yZ/yl) is a
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liouvillian extension of k that contains K.

Theorem 2.1 gives necessary and sufficient conditions for all
solutions of a linear differential equation to be liouvillian, but it does
not tell us how one can effectively decide this question. We will use
Theorem 2.1 to show that if a linear differential equation has a
liouvillian solution then it has one of a very special form. We will
then describe an algorithm to find such a solution. We first need a
more effective version of the Lie — Kolchin Theorem. Note that the
Lie —Kolchin Theorem implies that if G is a connected solvable linear
algebraic group in GL(n,C), then G has an invariant one dimensional
subspace in o

Proposition 2.2. Let C be an algebraically closed field. There is a
function I(n) such that if G is a subgroup of GL(n,C) and H is a normal
subgroup of finite index that leaves a one dimensional subspace of ct
invariant, then there exists a subgroup H of G of index < I(n) that
leaves a one dimensional subspace of C" invariant.

In fact we may take I(n) to be defined by I(0) = 1,2 I(n) =

2 2n 3
max{J(n), n!I(n—1)} where J(n) = ({80 + )" —({8n —1)" . This
proposition and the bounds depend heavily on Jordan's Theorem: any
finite subgroup of GL(n,C) contains an abelian normal subgroup of

index at most J(n). A proof of Proposition 2.2 can be found in
[SING81].

Proposition 2.3. Let k be a differential field, L(y) = 0 a linear
differential equation of order n with coefficients in k and assume
Const(k) are algebraically closed. If L(y) = 0 has a nonzero solution in
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a liouvillian extension of k, then L(y) = 0 has a nonzero solution z such
that z’/z is algebraic over k of degree < I(n).

To prove this proposition, we first note that we can assume that
if L(y) = 0 has a nonzero solution in a liouvillian extension of k, then
it has such a solution in the P—V extension K of k associated with L(y)
= 0 (this is a technical point whose proof is contained in [SING81]).
Let W = {w e K | L(w) = 0 and w lies in a liouvillian extension of k}.
W is a nontrivial vector space over Const(k) that is left invariant by the
G(K/k). Let wy, ..., w . be a basis of W and let L) = Wi(y, Wis o

,wm)/Wr(wl, ,wm). The coefficients of Lm(y) are left fixed by

G(K/k) since applying 6 € G(K/k) to these wronskians just multiplies
each of them by the determinant of the linear map induced by ¢ on W.
Therefore Lm(y) has coefficients in k and has all of its solutions lying

in some liouvillian extension of k. Since any solution of L ®M=0is
a solution of L(y) = 0, we will prove the result for Lm(y) =0.

Therefore, we may assume that the P-V extension K of k
associated with L(y) = O lies in a liouvillian extension of k. Theorem
2.1 implies that the connected component G° of G(K/k) is solvable and
the Lie — Kolchin Theorem implies that G® leaves a one dimensional
subspace invariant. Proposition 2.2 implies that G has a subgroup H of
index < I(m) < I(n) such that H has a one dimensional invariant
subspace. Let z be a solution of L(y) = 0 such that for all ¢ ¢ H there

isac o F Const(k) such that o(z) = ¢_z. We then have 6(z’/z) = z"/2

o
for all o € H so z e ()". Therefore [k(z)k] < [(F)":k] = |G:(F)7| <
I(n).
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Proposition 2.3 tells us that if we want to decide if an nth order
linear differential equation L(y) = 0 has a nonzero liouvillian solution
over k, we need to decide if there is an element u, algebraic over k of
degree < I(n), such that L(ej Yy = 0. I will describe an algorithm that
searches for the minimal polynomial of such a u when k = C(x), where
C is a computable algebraically closed field (a computable field is one
in which the field operations are recursive and over which one can

factor polynomials). This algorithm depends on the following two
propositions.

Proposition 2.4. Let Ll(y) = 0 and L2(y) = 0 be two homogeneous

linear differential equations with coefficients in C(x). One can

effectively construct homogeneous linear differential equations Li(y) =
0,L 4(y) =0 and L5(y) = ( such that
(a) the solution space of L3(y) = 0 contains {y1 ) | Li(yi)
=0fori=1,2},
(b) the solution space of L4(y) = (0 contains {yl+y2 ’ Li(yi)
=0fori=1,2}, and
(c) the solution space of Ls(y) = 0 contains {y” | Lo = 0].

I will only justify part (a) of this proposition. Assume that the
orders of Ll(y) and L2(y) are n and m respectively. Let U and V be

new differential variables. Formally differentiate UV n-m times.
Whenever UY occurs for i > n, we use the relation LU)=0 and its

derivatives to replace U(l) with a C(x)-linear combination of the U(’),
0sjsn—1. We proceed similarly for V) for i > m using LyV)=0. In
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this way the (UV)(S) 0<s<m'n yield m-n+1 linear forms in the
U(I)VO), O<i<n—1, 0<i<m—l, that is m-n+1 linear forms in m-n

indeterminates. Therefore we can find a € C(x), not all zero, such that

m-n
LyUV) = X aS(UV)(S) LD
s=0

Proposition 2.5. Let L(y) = 0 be a homogeneous linear differential
equation with coefficients in C(x). One can find an integer N such that

if z is a solution of I.(y) = 0 and z’/z ¢ C(x), then the degrees of the
numerator and denominator of z are less than N.

The proof of this proposition depends on the following classical
fact ([SCH95] vol.I, section 94-95 and vol. 2 section 177 or [TOU8TY).
Given L(y) there exist finite sets S1 c Cand 82 ¢ C[x], which depend

on L and can be effectively determined such that if L(y) = 0 has a
solution of the form y = Axpep(x)d)(x) where p,A € C, p(x) € C[x], and
¢(x) of the form ¢(x) = co+c1x_l+ v €€ C, co;tO, the p € S1 and

p(x) € Sz. Now assume that L(z) = 0 and z’/z = R(x) € C(x). Let a be

a pole of R(x). If a is a nonsingular point of L(y) = 0 (i.e. a is not the
zero of a denominator of a coefficient of L(y)), then R(x) can have at
most a pole of order 1 at a with residue a positive integer. Therefore,
Rx) = px) + Cs+l,1/(x—as+l) s +cm,1/(x—am) +

n.
s .
b %: ¢ /(x—a.)), where a4, ... ag are the finite singular points of L
i=1 j=1 W 1 s >

i in
a.,1» - & are (unknown) nonsingular points and C41 10 Cm,1 aTe

positive integers. Let aj be a singular point. Expanding z at aj we

have
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C. n.—1
& i i spg) £e- 3
z = (x—aj) exp(—cj,Z/(x—aj) cJ,nj/(nJ 1)(x—aj) )p(x), where
¢ is a formal power series at aj and ¢(aj)¢0. Via the transform x —

1/(x—aj) we can use the above mentioned fact to determine nj and Ci,1

up to some finite set of possibilities. Expanding z at infinity, we get z

= xpexp(,f p(x))d, (x) where ¢, (x) has a power series expansion at
infinity, ¢, _(«)#0, and p = T ~*Ceqt W Again using the

above fact, we can determine p(x) up to a finite number of possibilities

and, since the set {c1 1 Cm 1} is determined up to a finite number
) t]

of possibilities and Cg o o o€ are positive integers, we can bound
2

m,1
m. These bounds allow us to find a suitable N. A more detailed
analysis of this procedure is given in [GRI88], where better bounds are
also given.

We now show how to effectively answer the question: Given
L(y) = 0 in C(x), does L(y) = 0 have a solution z such that z’/z is
algebraic over C(x) of degree < I(n). We start by fixing an integer N <
I(n). We want to test if there exist a; € C(x) and u satisfying P(u) =

N- fu

uN +ay_qu +toidaas 0 such that z = e’ ~ is a solution of L(z) =

0. We may assume that such a P is irreducible. In this case, if some u
with P(u) = 0 satisfies L(e’ %) = 0, then for all u with P(u) = 0, we have
L(e’") = 0. Let us consider the possibilities for ag_y- Ifug, oy

are the roots of P(u) = 0 then ay | = ~(Uy+ ... +up) =—{(yj/yg + -

+y{fyy) = ~ly,)’ /My, where y; = exp(/ u,) is a solution of L(y) = 0.

Proposition 2.4 allows us to construct a linear differential equation L)
N

such that L(w) = 0 for any w = TI y;, where the y, are solutions of
i=1
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L(y) = 0. Proposition 2.5 allows us to bound the degrees of the
numerators and denominators of solutions of w’/w € C(x) with L(w) =
0. This gives us a bound on the degrees of the numerators and
denominators of the possible ay_p- One can bound these degrees for

the other a, in a similar (but more complicated) way ([SING81], p.671).

We therefore write P(u) = P(u, Cpr weme ,cM) where the c. are
]

undetermined coefficients appearing in the a,. We then need to decide

if there exist € € C such that if u is a solution of P(y, Cpo o Ly =0,

then L(e u) = 0. Using P(u, 61, ,(”:M) = 0, we can replace all

I Y=0 by expressions that are polynomials in u
(of degree < N—1) with coefficients involving the éj. Dividing by e’"

derivatives of u in L(e

and equating coefficients of powers of u equal to 0, yields a system of
polynomials that determine the éj (with coefficients in C(x)). This is

equivalent to a system of polynomials with coefficients in C and we
can use elimination theory to decide if this system has a solution.

The above procedure can be generalized to show the following
[SIN88b]:

Proposition 2.6. Let F be either an algebraic extension of a purely
transcendental liouvillian extension of C(x) or an clementary extension
of C(x) (where C is as above). If L(y) = 0 is a linear differential
equation with coefficients in F then one can find in a finite number of

steps, a vector space basis for the space of solutions L(y) = 0 that are
liouvillian over F.

An elementary extension of a field k is a liouvillian extension
of k where condition (iii) of the definition of liouvillian extension ig
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¥
replaced by: (iii) t’ = u;/u, where u; € K, 4 (i.e. t; = log u,).

The problem of finding liouvillian solutions (or even algebraic
solutions) of linear differential equations has a long history. In the
1870's, H.A. Schwarz determined which hypergeometric equations have
only algebraic (over C(x)) solutions. Klein, in 1877, showed that if a
second order linear differential equation had only algebraic solutions
then it could be transformed, via a change of variables, to an equation
on Schwarz's list. Baldassari and Dwork made this method effective
([BADW79], see their paper for references to Schwarz, Klein and their
contemporaries). For n>2, Painleve and his student Boulanger gave a
procedure, [BOU98], to decide if an nth order linear differential
equation has only algebraic solutions. This procedure was rediscovered
in [SINGS80]. A procedure to decide when a second order linear
differential equation with coefficients in €(x) has liouvillian solutions is
given in [KOV86]. A procedure to find a basis for the space of
liouvillian solutions of L(y) = 0 when L(y) has coefficients in an
algebraic extension of ((x) is given in [SING81] (but many of the ideas
already occur in [MAR98] which was not known to me when [SING81]
was written). The problem of deciding if an inhomogeneous equation
L(y) = b has liouvillian solutions is discussed in [DAV84], [DAV85],
and [DASI86].

3. Solving Homogeneous Linear Differential Equations in Terms of
Second Order Linear Differential Equations.

Liouvillian extensions are defined by adjoining solutions of
algebraic equations or of the first order equations y’+ay=0 or y’=a.
Any first order linear differential equation y’+ay=b can be solved in

terms of these latter two equations. Therefore we can think of "solving
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in terms of liouvillian functions" as "solving in terms of first order
linear differential equations.” The next natural question is: when can

one solve homogeneous linear differential equations in terms of second

order linear differential equations. Intuitively this means that the

solutions lie in a tower of field where each field is gotten from the
previous one by adjoining a solution of a second order linear
differential equation or an algebraic equation (where we think of first

order equations as degenerate second order equations). The motivates
the following

Definition. Let F c E be differential fields. We say E is a second
order solvable extension of F (an SOS extension of F) if there is a
tower of fields F= F0 Ci5C Fn= E such that either

6)) Fi = Fi—l (ti) where t is algebraic over Fi’ or
(ii) Fi = Fi_l(ti) where t{ € Fi—l’ or

(iii) b= F._, (ti) where ti’/ti € Fi—l’ or

(iv) B = Fi—l(ui’vi) where u;,v; are linearly independent
solutions of an equation of the form y"+aiy = 0 with a, €
F

To give a group theoretic characterization of those P—V
extensions that lie in an SOS extension, we need the following

Definition. Let C be a field. We say that a linear algebraic group G ig
second order solvable (an SOS group) if there is a tower of subgroups

G = Gn 5 Gn_1 ey G0 = {e} such that Gi is a normal linear
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algebraic subgroup of Gi +1 and Gi +1/Gi is isomorphic to one of the

following:
(i) a finite group,
(ii) the additive group C = [(1) : ] lacC),
*

(iii) the multiplicative group C = GL(1,C),
(iv) SLR2,C),
W PSL2,O = 5L OV [ o | ).

Note that if we define a linear algebraic group G to be liouvillian if
there is a tower as above where each quotient is isomorphic to (i), (ii),
or (iii), one can show that the liouvillian groups are precisely the
groups where GP is solvable.

Theorem 3.1. Let K be a P—V extension of k where C = Const(k) is
algebraically closed. K lies in an SOS extension of k if and only if
G(K/k) is an SOS group.

A complete proof of this is given in [SING85]. If K lies in an
SOS extension of k, one shows that G(K/k) is an SOS group by
induction on the length of the tower defining the SOS extension
containing K. This is very similar to showing that G(K/k) has solvable
component of the identity if K lies in a liouvillian extension of k and is
omitted. If G(K/k) is an SOS group, one shows that K lies in an SOS
extension of k by induction on the length of the tower of groups. The
key step here is to show that if G(K/k) is isomorphic to a finite group,
C, C* SL@2,C), or PSL(2,C), then K lies in an SOS extension of k.
Before we outline the proof of this fact, we give the following
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Definitions. (1) A map p : C" — C™ is a polynomial map if p(c) =
(P1©)s - P (€)), where P1s ++ sPy, are polynomials in n variables.

2
(2) For G c GL(n,C) c C* +1 and m an integer, we say a

_ 2
homomorphism p:G— GLmM,C) ¢ C™ e is a polynomial
2 2
representation if p is a polynomial map from C" + to C™ +1.
(3) A polynomial representation p: G — GL(n,C) is irreducible
2

if the only p(G) invariant subspaces of C" are (0) and C" .
(4) Two polynomial representations P1:G — GL(m,C) and

p2:G — GL(m,C) are isomorphic if there is a linear isomorphism

m m -1 y
¢:C™ — C such that (90 p;(g) o @)(V) = py(g)(v) for all v e C
and g e G.

We will need the following fact that will be proved in the next
section.

Proposition 3.2. Let K be a P-V extension of k, an algebraically
closed field with constants C and G = G(K/k).

@If poG — GL@m,C) is an irreducible polynomial
representation of G then there exists a homogeneous linear differential

equation L(y) = y(m) + am_ly(m_l)+ wHa gy = 0 with the 3, ekanda

fundamental set of solutions {yl, wes¥) Of L(Y) = 0 in K such that the

action of G on the C—span of {yl, we ¥} 18 isomorphic to p.

(OIf G = C, the additive group, then K = k(y) for some y € K
with y'eK.

Proposition 3.2 says that any irreducible polynomial
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representation of G(K/k) already occurs in K. This result can be
proven without the assumption that k is algebraically closed, but we
will only need this weaker form. The importance of this fact cannot be
overestimated and I will return to it several times in the next sections.
I will now show that if G(K/k) is isomorphic to one of the five types of
groups mentioned above, then K lies in an SOS extension of k. I deal
with each case separately.

(i) G(K/) is finite. For any o € K, let f a(x) = II(x—o(a))

where this latter product is over all 6 € G(K/k). f oL(x) has coefficients
in k and fa(a) = 0 so o is algebraic over k. Therefore K is an

algebraic extension of k and so is an SOS extension of k.

(ii) G(K/k) = C. If we replace k by its algebraic closure k, then ¢
G(K-k/k) = G(K/k), since G(K/k) is connected. It is enough to show
that K-k is contained in a SOS extension of k, since this will imply
that K is contained in an SOS extension of K. We therefore can
assume that k is algebraically closed. Applying Proposition 3.2(b), we
have that K = k(y) with y” ¢ k. This clearly implies that K is an SOS
extension of k.

(i) G(K/K) = C". We again can assume that k is algebraically
closed. Applying Proposition 3.2 to the representation of G(K/k) as
GL(1,C), we see that there is a first order homogeneous linear
differential equation with coefficients in k and solution y in K such that
for each o € G(K/k), o(y) =c_y for some ¢ - € C. This implies y'lye

k and so k<y> is an SOS extension of k. k<y> c K and one sees that
(k<y>)" is the trivial subgroup. Therefore the galois theory implies
that k<y> = K..

(iv) G(K/k) = SL(2,C). Again, we may assume that k is
algebraically closed. One shows as above that there is a second order
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homogeneous linear differential equation with coefficients in k and

solutions ¥{» ¥, such that K = k<y1,y2>. This means that K is an SOS

extension of k.

(v) G(K/k) = PSL(2,C). The idea of the construction in this last
case is the following. PSL(2,C) does not have a representation as 2x2
matrices but there is a finite map p:SL(2,C) — PSL(2,C) and of course
SL(2,C) has a 2x2 matrix representation. This allows us to construct

an algebraic extension of K that is generated by solutions of a second

order linear differential equation. We again assume that k is

Note that SL(2,C) acts on the space of
polynomials in two variables x,y via substitution x — ax+by, y —

cx+dy. This action leaves each space Vn of homogeneous polynomials

algebraically closed.

of degree n invariant. The representation of SL(2,C) on V3 with
respect to the basis x2, Xy, y2 is given by
1%, a2 2ab b2
q’[cd] = {ab ad+bc bd}.
b2 2cd d2
This induces an isomorphism p of PSL(2,C) into SL(3,C). Applying
Proposition 3.2 to this p, we see that there exists a third order
homogeneous linear differential equation L(y) = 0 with coefficients in
k and solutions Y Yo Y3 in K such that the action of G(K/k) on the

C-span of [yl, Yo y3} is given by p. As before, the galois theory
implies that K = k<y1, Yo ¥3> I will now show that k<y1, Yo ¥3>

lies in a P—V extension of an algebraic extension of k corresponding to
a second order homogeneous linear differential equation. Let a,b, and
¢ be indeterminates and consider the expressions z; = ay, + by{ + cy{ 4

fori=1,23. The expression z;z, — 23 is a polynomial in a,b,c whose
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coefficients are left invariant by G(K/k). Therefore we can select a,b,c
in an algebraic extension k, of k such that z;z, —z% =0. Let w; =
+{z, and W, =£{z, and select the signs so that Zy = W W,. One can

show that any k o—isomorphism o of ko(wl’WZ) into any differential

field F sends Wy to aw;+bw, and w, to cw,+dw, where dct[ ab }:

cd
1 and ab,cd e

Const(F). This implies that L2(y) =

Wr(y,yl,yz)/Wr(yl,yz) is a second order linear differential equation

whose coefficients are left fixed by any such isomorphism. A
generalization of the galois theory shows that L2(y) has coefficients in

k- T will now show that K lies in ko<wy.w,>. Since z, = ay, + by{
+ cy{ ’, the action of the galois group G(ko<y1, Yo y3>/ko) on the

span of {Zl’ Z,, z3} is the same as the action on the span of {yl, Yo

y3}. Therefore, (k0<zl, Zy, z3>)“ is this group and cho<y1, Yy

Yapr= ko<zl, Z5, z3> & ko<w1, w2>.

We now specialize these results to solving third order
homogeneous linear differential equations in terms of second order
linear differential equations. We first need some sharper group

theoretic statements.

Proposition 3.3. Let C be an algebraically closed field and G an SOS
linear algebraic subgroup of SL(3,C). Then either
(i) G is finite, or
(i) G° leaves a one dimensional subspace of c3
invariant, or
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(iii) G leaves a two dimensional subspace of C3
invariant, or

(iv) G° leaves no nontrivial subspaces invariant and
G s conjugate to p(SL(2,C)), p as above.

This is proven in [SING8S5], as is the following application.

Proposition 3.4. Let k be a differential field with algebraically closed
field of constants. Let L{y) = y"*" — Py —q v = 006  linens

differential equation with p,q € k and let K be the associated P—V
extension. K lies in an SOS extension of k if and only if one of the
following holds:

(1) all solutions of L(y) = 0 are algebraic over k, or
(i) L(y) = L, (Ly(y), where L,(y) =y’" +ay’ + by and

L 1(y) =y’ +cy, where a,b,and ¢ are algebraic over k, or
(iii) L(y) = L, (L,(y)) with L), Ly(y) as in (ii) with a,b,
and cin k, or

(iv) there exist a o 31> A b, ¢ algebraic over k such that for
some fundamental set of solutions {u,v} of L,(y) =y’ +
by’ +cy =0, {yl’y2’y3} forms a fundamental set of
solutions for L(y) = 0, where

YT ao(uz) + al(uz)' w a2(u2)’ {

Yo = a,uv) + a;@v)” +a(uv)’’

Yg = ao(vz) ¥ al(vz)' + az(VZ)' o

This result follows from Theorem 3.1 and Proposition 3.3.
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Conclusions (i) and (iv) follow from (i) and (iv) of Proposition 3.3 for
the reasons given in the discussion following Theorem 3.1.
Conclusions (ii) and (iii) follow from (ii) and (iii) of Proposition 3.3
using the following result

Proposition 3.5. Let K be a P—V extension of k corresponding to an
nth order homogeneous linear differential equation L(y) = 0 and
assume that Const(k) is algebraically closed. Let V be the solution
space of L(y) = 0 in K. If G(K/k) leaves an m dimensional subspace of

V invariant, then L(y) = Ln_m(Lm(y)) where Ln_m(y) and Lm(y) have

coefficients in k and are of order m—n and m.

To see why this is true, let Y Ym be a basis of the invariant
subspace. The linear differential equation Lm(y) = Wr(y, yp» -
,ym)/Wr(yl, ,ym) has coefficients that are fixed by G(K/k) and so
must lie in k. If we formally divide L(y) by Lm(y) (thinking of these

as differential operators in k[D]), we have L = L L o)+ R(y),

where the order of R(y) is less than m. Since L(yi) = Lm(yi) =0, we

have R(yi) =0fori=1,..,m. This implies that R(y) = 0.

Proposition 3.4 is the heart of a decision procedure given in
[SING84]. This procedure allows one to decide if a given third order
homogeneous linear differential equation with coefficients in Q(x) can
be solved in terms of second order linear differential equations. A
related open problem is to give a decision procedure to decide if a third
order homogeneous linear differential equation can be solved in terms

of a restricted class of second order linear differential equations such as
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the equations defining the Bessel functions.

4. Picard—Vessiot Extensions and Rational Functions on the Galois
Group.

In this section I will show how solutions of homogeneous linear

differential equations can be though of as functions on the galois group

of the associated P—V extension. This point of view is very fruitful

and will be used to justify Proposition 3.2 above. I first need some

more definitions and facts concerning Zariski closed sets.

Let C be an field and V c C" be a Zariski closed set. Denote
by I(V) the set (f € C[xl, ,xn]| f@) =0forall ae V). I(V) is an
ideal in the ring C[xl, ,xn].

Definitions. a) V is irreducible if V ¢ X1 u X2 with X1 and X2 Zariski
closed, implies that V c X1 of Vc X
b) C[x

2
o ,xn]/I(V) is called the coordinate ring of V and is denoted
by C[V].

¢) If V is irreducible, the quotient field of C[V] is called the function
field of V and is denoted by C(V).

Note that V is irreducible if and only if I(V) is a prime ideal if
and only if C[V] is an integral domain. If V is a linear algebraic
group, then V is irreducible if and only if V is connected. We give two
examples of the above concepts.

Example 4.1.1. Consider the linear algebraic group GL(1,C) = C
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{(a,b) € C2 | ab = 1}. I(GL(1,0)) = (X1x2—1) so C[GL(1,0)] =
Clx; X /(X Xy 1) = Clx;x71]. CGL(L,C) = Cx)).

7

Example 4.1.2. Consider the linear group C = { [ i:; ig } | x11 = X2

=1, Xp; = 0, and xy is arbitrary}. I(C) = (xi1 — 1, x5 — 1, X231 ), sO
CIC] = C[xy] and C(C) = C(xp).

Definition. If V is an irreducible Zariski closed set, the dimension of V
is defined to be the transcendence degree of C(V) over C and is
denoted by Dim(V).

For example, Dim(GL(n,C)) = n, Dim(SL(n,C)) =n’~1, and
Dim(T(n,C)) = n(n+1)/2.

Let V be a Zariski closed set. The set of polynomial maps from
Vto C! forms a ring that can be seen to be isomorphic to C[V]. If F:
V — W c C™ is a polynomial map, Lhen F induces a ring
homomorphism F C[W] — C[V] given by F (H = foF. Conversely
any such ring homomorphism is induced by a polynomial map. If F A%
— W is a polynomial map with F(V) Zariski dense in W, then F is
injective. If in addition V and W are irreducible F induces a map from
C(W) to C(V). For example, if G is a linear algebraic group and g €
G, we can define the polynomial map p g:G — G by pg(h) = hg.

p;: C[W] — C[V] is an isomorphism. One can similarly define )"g by
A_(h) = hg.
o™ =he

It will be necessary in the following to consider points in a
Zariski closed set whose coordinates lie in different fields. If C c k are
fields, we say that a subset V C k™ is C—closed if it is the zeros of a
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collection of polynomials with coefficients in C. Given a Zariski

n
closed subset V of C", then we can use the equations defining V to

define a Zariski closed subset Vk of k". We shall let VC denote the

points in Vk’ all of whose coordinates are in C. If C is algebraically

closed and V is a Zariski closed subset of C", then VC is Zariski dense

in Vk' As an example, let K be a P-V extension of k and assume C =

Const(k) is algebraically closed. Assume further that k is algebraically
closed. This implies that G(K/k) is connected since the fixed field of
G(K/k)° is a finite extension of k and so must equal k. The galois
group G(K/k) is a linear algebraic group defined over C, but these

equations also define a linear algebraic group G over k. GC then gives

those elements of G corresponding to the galois group. Given g € GC
g acts*(via the galois action) as an automorphism of K and also acts

(via pg) as an automorphism of k(G). The following theorem relates

these two actions:

Theorem 4.1. Let k be an algebraically closed differential field with
constants C and K a P—V extension of k with galois group G = G(K/k).
There exists a k—isomorphism y:K — k(G) such that for any 6 € G

. C
andze K, o(z)= PV (@)

The condition that k be algebraically closed can be removed but
this leads to several complications. First of all G(K/k) need not be
connected and we must define k(G) in a different manner. Secondly, K
is not necessarily isomorphic to k(G), but is isomorphic to the function
field of a principal homogeneous space for G (this result was originally
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proved by Kolchin and Lang, see [KOLAS8], [BIA62], or [SING88a]).
In his book [KOL73], Kolchin develops a theory of differential galois
cohomology that gives the machinery to understand the correspondence
between P—V extension (or more generally, strongly normal extensions)
and principal homogeneous spaces of the galois group. We will only
prove the above result (following [SING88a]) since it will be sufficient
for our purposes. We first need the following result.

Proposition 4.2. (a) Let k c K be differential fields with the same
fields of constants and assume that K = k(xl, ,xn) where x;/xi €k

fori=1, . ,n. Ifye Kandy’/y € k, then there exists a d € k and
n.

integers n, such thaty = deil.

(b) Let k c K be differential ficlds with the same field of constants and

assume that K is*ﬁnitely generated (as a field) over k. If E = {y i K |

y’/y € k} and k is the set of nonzero elements of k, then E/k is a

finitely generated abelian group.

To prove a), we first show that if Zy, - ,Z,, are nonzero
elements of K such that z”/z € k and Zi/zj ¢ k for i#j, then 32, # 0.
Assume this is not true and let N be the smallest integer for which

N N

there are such elements with Y, z, = 0. We then have.Elzi’ =0, so 122
i=1 1= 1=

(z] /2, —z{/21)z; = 0. By minimality, this would imply that z:/z, —
zi/zl =0 fori=2, .. N, and therefore that (zi/zl)’ = 0. This
contradicts the fact that zi/z1 ¢ k.

Now let y € K satisfy y’/y € k. We may choose a k—basis {u.}
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of k[xl,
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,xn] such that each u, is a monomial in Xps o X . If we

n
write y = (Z‘aiui)/(ibjui) with ai’bj € k, then F_aiyui - ijuj = 0. Note

that for ij, aiyui/ajyuj = aiui/ajuj ¢ k and biui/bjuj £ k since the u; are
linearly independent over k. Therefore the discussion

paragraph implies that for some i and s

o
y= dI_Ixi :

in the preceding
we must have aiyui/bjuj € k, so

To prove (b), note that k(E) is finitel

Y generated over k and so
can be written as k(E) = k(xl, -

. X ) for s :
n) ome X1 X, € E

*
Therefore part (a) implies that E/k is generated by X{s e X

We now proceed to prove Theorem 4.1.

-1 -1
= k(yl, D A ,ygn ), ,yr(ln )). Let E =

Proposition 4.2 implies that there exist x

Let K = k<y1, Y >
{yeK | y'lye k).

1’ Xy € E that generate
* (n-1) x
E/k . Therefore R = k[yl, ¥ X Xy X4

3y ,xn—]l] is a
finitely generated integral k-algebra. Let R = k[Yl’

,YS]/P where P

I(V) for some Zariski closed set V. For any
Ce GC, 0 induces an automorphism on R. Since G

is a prime ideal. P =

C is dense in G,
this implies that for any 6 € G, o acts on V and w

€ denote this action
by o:vforve V. I wil show that for any v

1 Vo in V there is a

unique o € G such that G'V] = v,. Assuming that this is shown, we

fix an element v of V. Note that we can find such an element with
coefficients in k since we are assuming that k is algebraically closed,
The map 6 — 6-v is then an isomorphism of G onto V. This induces

a map y:R — k[G], which in turn gives the desired map VK — k(G)
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since K is the quotient field of R. : g G
First we show that for any vy and v, in V there exists a 0 i

iski
such that o-v To do this it is enough to show that the Zaris

L Yo 2
; t the Zariski
closure of G~v1 is all of V (if we select v{ suchytha

1 has minimal dimension, then ('§-v1 —G-v1

i all v, € V). To
must be empty, so V = G-v, for this v, and so for 1

closure GW of G-v

g =V, it is enough to show that
show that the Zariski closure of G:v/= V, it is enoug

the only G-invariant ideals of R are (0) and R. .Let I1#0 be a
G-invariant ideal of R. Since the generators of R satisfy homogcnec.)us
linear differential equations with coefficients in k, a nonconstructive
version of Proposition 2.4 shows that the same is true f’or al¥ elemer.lts
in R. Therefore any element v of R lies in a Gc—mvanant finite

pa vV E en we can assume tha cl Let

dimensional C—space W. If I th S . th t’W I. L1

Wl w__ e I be a basis of such a space. Since I is an ideal,
e em

i - nding w using minors
W= Wr(wl, ,wm) is in I ( we see this by expanding S
of the first row). Furthermore, for any ¢ € G, 6(W) = ¢ (W fo

-1 R
c__€ C. Therefore, w’/w € k. This meansthatwe E,sow ~ e EcCR.
(4]
o | i
Again, since [ is an ideal, 1 =w-w e I, soI=R. L
I will now show that there is at most one 0 € G suc 1

= V5. To do this it is enough to show that for any ve Vand h e G

such that h-v = v, we have h = e, the identity element of G. Let v =

xn matrix (v. .) formed from the
(Vl,l’ Ve ) and let A be the nxn i

y

first n2 entries of v. For any h e G there is an nxn matrix S such that
- > e
ihie first |02 enitries 6f hivare gotten from the entries of AS. Sinc
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Wr(yl, ,yn) and 1/Wr(y1, ,yn) € R, we have det(yi(i))-det(yi(i))_1
=1 . Since the aij satisfy all relations that the yi(j) satisfy, we have

det(A) # 0. Since AS = A, we have S =
determines the action of hon V, so h = e,

the identity matrix. S

We shall deduce many corollaries from Theorem 4.1,

Corollary 4.3. Let K be a P-V extension of k and assume Const(k) is

algebraically closed. The transcendence degree of K over k equals the
dimension of G(K/k)

To see this, note that if we replace k by its algebraic closure k,
we have that K-k is a P-V extension of K, tr. deg. k(K) tr.deg. k(K k)

and G(K-k/k) = G(K/k) . Therefore we can assume that k is
algebraically closed. Theorem 4.1 implies that K = k(G) where G =
G(K/k). Since G is a C—closed set and C is algebraically closed,
tr.degkk(G) = tr.degCC(G) = dimension of G.

This result means that the dimension of G(K/k) measures the
algebraic dependence among solutions Yp oYy of a homogeneous
linear differential equation and their derivatives. For example, one can
show that the galois group of y’” —xy = 0 over C(x) is SL(2,0). This
implies that for {yl,yz}, a fundamental set of solutions, Y1»¥y» and yi

are algebraically independent over ((x). Note that ylyé —yiyz e (.

Corollary 4.4. Let K be a P-V extension of k, an algebraically closed
field with constants C, and G = G(K/k).
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(@ If pG — GL(mC) is an irreducible polynomial
representation of G then there exists a homogeneous linear differential
equation L(y) = y(m) + am_ly(m_1)+ ~HR Y = 0 with the a € kand a

fundamental set of solutions { Yqr oo } of L(y) = 0 in K such that the

Ym
action of G on the C—span of {yl’ - ¥y} 18 isomorphic to p.

(b) If G = C, the additive group, then K = k(y) for some y € K
with y'eK.

This corollary is just Proposition 3.2. To prove part (a), we first
note that our assumptions imply that K = k(G). Let ¢ : C" — C be a
nonzero lmear map. Define ¢ : C" — k[G] by (9())(g) = ¢(p()V).
We have Ph(<P(V)(g)) = o(v)(gh) = 9(p(gh)y) = @(p(h)v)(g). This

¢ n - .
implies that the kernel of @ is an invariant subspace of C" and so P is
injective. Therefore ¢ is an isomorphism of representations. Let V be

the image of ¢ and let Y{» - ¥y, be a basis of V. V is left invariant by
G(K/k). Therefore the coefficients of L(y) =
Wr(y, Yo oo ,ym)/Wr(yl, ,ym) are in k.

To prove part (b), recall from example 4.1.2 th*at if G = C, then
k[G] = k[y] for some indeterminate y. For o € Ge, pgy) =y + ¢ for

some ¢ - in C. Therefore, o(y’) = y’ for all ¢ € G(K/k). The galois
theory implies that y” € k.

Corollary 4.5. Let K be a P-V extension of an algebraically closed
field k and let G = G(K/k). y € K satisfies a homogeneous linear
differential equation with coefficients in k if and only if y e k[G].




Here we are implicitly using Theorem 4.1 to identify K with
k(G). Corollary 4.5 appears in [BIA62]. To prove this result, T will
first show that k[G] = (y € k(G) | the orbit of y lies in a finite
dimensional k—space}. Let k[G] = k[x P ]. Since for each g € G,

. ‘ *
there exist Cyj, in k such that Py(x)) = 'ZCIJXJ it is easy to see that for

any y € Kk[G], the orbit of y lies in a finite dimensional space.
Conversely, assume y € k(G). We shall use the fact that k[G] consists
precisely of those elements of k(G) that are defined everywhere on G,
i.e. y € k|G] if and only if for any g € G, there exist u and v € k[G]
such that y = u/v and v(g) # 0. Assume that the orbit of y lies in a
finite dimensional space W. This implies that there is a proper Zariski
closed subset H of G such that for g e G —H, all elements of the orbit
are defined at g (let H = zero set of the denominators of a basis of W).
On the other hand if y ¢ k[G], then y is not defined at a point g € G,

This implies that for any h € G, p 1) is not defined at h. When h
gh

€ G —H, we get a contradiction, showing that y e k[G].

Since GC is dense in G, to prove the above result it is now

enough to show that the set of y in k(G) that satisfy a homogeneous
linear differential equation with coefficients in k is precisely the set of
y such that the orbit of y under the action of the galois group spans a
finite dimensional C-space. Clearly, if y satisfies such a linear
differential equation L(y) = 0, then its orbit lies in the solution space of
L(y) = 0 and so spans a finite dimension C—space. Conversely, if the
orbit of y spans a finite dimensional space V, then V is left invariant by
G(K/k). Ify,, .. ¥, is a basis of V, L(y) = Wr(y,y s ... YWy, ..

¥,,) has coefficients that are left fixed by G and so lie in k.

M. F. Singer
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Corollary 4.6. Let K be a P-V extension of an algebraically closed
field k with with galois group G = G(K/k). If H is a normal subgroup
of G, the H™ is a P—V extension of k with galois group G/H.

If H is normal in G, the theory of linear algebraic groups tells
us that G/H is again a linear algebraic group ((HUMS1], p.82). One
can show that H™ =k(G/H). k[G/H] = k[yl, ,yn] for some ¥y As

noted above the G/H orbits of Ypr - ¥y lie in a finite dimensional
vector space. If Zys e 5Zg form a basis of this space then H™ is the P-V

extension of k associated with L(y) = Wr(y, Zys e ,ZS)/ Wr(zl, wl'lz S).

Using the next corollary, I will give a proof of the fact that
although sin x satisfies a linear differential equation over ((x), 1/sin x
does not.

Definition. Let k be an algebraically closed field a G a linear algebraic
group. x € k[G] is a haractg if x(g h) = x(g)x(h) for all gh e G and
) =1. Y- RlG) o Q@

Note that if % is a character then X(g) # O for all g € G.
Conversely, it is known [ROS61], that if f € k[G] and f(g) # O for all g
€ G, then f = a-( where & is a character and a € k. The following
originally appears [HASI85] and again in [SPER86] and [SING86].

Corollary 4.7. Let K be a P-V extension of an algebraically closed
field k. If y, and y, € K satisfy homogeneous linear differential

equations over k and y, -y, = 1, then y{/y; = ¥5/y, € k.
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We may write K = k(G) where G = G(K/k). Corollary 4.5
implies that Y ¥y € k[G]. Since Y'Yy =1, y1(8) # 0 for all g € G.

Therefore, by the above remark, g = ay(x) for some character x(x) €
k[G] and a € k. For any o ¢ G(K/k) c(yl) = o(ay) = aX(P:,(X)) =

ax(x)x(o). Therefore o(yy) = CsYy for some c o € k. Iclaim that ¢ o i

actually in Const(k). To see this let L(y) = y(m) +a ly(m—l) T oA
ey

ajy be of minimal order such that L(yl) = 0 and a; € k. Since

L(o(y;)) = 0, y, also satisfies a_y™
( (yl)) Y1 also satisfies agy".’ + (am—lao

’ (m—l) i
+ ma G)y +

0 . Therefore, a4 = ma(’)_ + A 1% - This implies that a(')_ = Q.

Since a; € Const(k), o(y/y,) = yi/y; € k.

If 1/sin x satisfied a homogeneous linear differential equation
with coefficients in C€(x), then sin x and 1/sin x would lie in a P-V

extension K of ((x). The above corollary implies that we could then
conclude that (sin x)’/sin x = cot x would be algebraic over ((x). This

is a contradiction since the only periodic functions algebraic over ((x)
are constants.

5. Solving Homogeneous Linear Differential Equations in Terms of
Linear Differential Equations of Lower Order.

In sections 2 and 3, I discussed the problems of solving
homogeneous linear differential equations in terms of first and second
order linear differential equations. I am now ready to discuss the
general problem mentioned in the title. ’
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Definition. Let k be a differential field witil algebraically closed
Const(k). We say that L(y) = y(n) + an_ly(n_ Dipitgig oY With a, € k

can be solved in terms of linear differential equations of lower order if
the associated P—V extension K of k lies in a tower of fields k = k AT

- C kg where for each i, k, = k. _,(t,) where t, is algebraic over k; 4

or satisfies y(m) +a; y(m_l) + .. +a; vy =0 for some ajje k4

—1
and m < n.

Let us look at some cases when this can happen. We may
a
3 n—l .
assume that k is algebraically closed and by replacing y by ye if

necessary assume that L(y) = y(") +a n_zy(n_ + . +ajy, ie. no

y(n_l) term appears in L(y). This does not effect the property of being

solvable in terms of lower order linear differential equations. If
{y1» - »¥,} is a fundamental set of solutions of L(y) = 0, then L(y) =

Wr(y, Yot ,yn)/Wr(yl, ,yn). Expanding this we see that 0 = a na

= W’'/W, where W = Wr(y|, ... ,y,)- Therefore W ¢ k. Since W =

o(W) = det(c) W for all ¢ ¢ G(K/k), we have that det(c) = 1.
Therefore G = G(K/k) c SL(n,C) where ¢ = Const(k). Let V be the
solution space of L(y) = 0 in K.

If G leaves a nontrivial subspace of V invariant, then

Proposition 3.5 implies that L(y) = Ln_m(Lm(y)) for some linear

operators of order lower than n. If n>3, then this implies that L(y) = 0
is solvable in terms of lower order linear differential equations (the n>3
requirement is due to the fact that finding solutions of L(y) = 0 from

solutions of L = 0 and L_(y) = O requires us to

Aty
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An integral satisfies a first order linear
differential equation, but only a second order homogeneous linear
differential equation).

integrate a certain element.

Assume that G leaves no nontrivial subspace of V invariant, i.e.
G acts irreducibly. From lie theory ([HUM?72], p.- 102),we know that
such a subgroup of SL(n,C) is semisimple. This means ((HUMS1],p.
167) that there exist normal Zariski closed simple subgroups H, such

that G = H1 HS (simple means no normal subgroups of positive

dimension). Let us assume for a moment that G is itself simple. If
there exists a nontrivial representation P:G — GL(m,C) with m < n
then C™ can be written as the direct sum of minimal invarian;
subspaces. Each of these yields a representation of smaller size so
Proposition 3.2 implies that L(y) = 0 is solvable in terms of lower order
linear differential equations. But it can happen that L(y) = 0 is
solvable in terms of linear differential equations of lower order and that
G is simple and has no nontrivial representations of dimension less than
n. In example 0.3, the galois group of Y —dxy’ — 2y =0 is
PSL(2,C). This has no nontrivial representations of dimension less
than three, but this equation is clearly solvable in terms of lower order
linear equations. Note that there exists a finite map ¢: SL(2,C) —,
PSL(2,C) and SL(2,C) has a two dimensional representation. In
general, if G is simple and there exists a linear algebraic group H ang
homomorphism ¢: H — G with finite kernel, such that H has g
nontrivial representation of dimension less than n, then L(y) = 0 ig
solvable in terms of lower order linear differential €quations. To see
this we write K = k(G). k(H) can be thought of as a finite algebraic
extension of k(G). One can show ([SING88]) that the derivation op

k(G) can be extended to a derivation on k(H) such that HC is the galoig
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group of k(H) over k. Furthermore, one can show that k(H) is a P-V

extension of k. Since H has a representation of order less than n, it
must have an irreducible representation of order less than n (note that
H is also simple).  Proposition 3.2 implies that k(H) is the P-V
extension associated with a homogeneous linear differential equation of
order less than n. Therefore L(y) = 0 is solvable in terms of linear
differential equations of lower order.

We are therefore left with two cases. Either G is semisimple
but not simple or G is simple and there does not exist a linear algebraic
group H and a finite—to—one homomorphism ¢:H — G such that H has
a representation of lower dimension. If the first case holds, then one
can show that G = Hl- . -HS, s > 1, and for each i, there is a linear

algebraic group H{ and a finite—to—one homomorphism ¢.:H; — H,
such that Hi has a nontrivial irreducible representation of dimension
less than n ([SAM69], p. 109). If we let Gi = Hl' . 'Hi—lHi+1' . -HS,
then Gi is a normal subgroup of G and G; is a P—V extension with
galois group G/Gi. This latter group is a quotient of Hi and so is
simple. We have a map (p{ HI — G/G;, so by the discussion above

G; is generated by solutions of a linear differential equation of order

less than n. Therefore, L(y) = 0 is solvable in terms of linear
differential equations of lower order.

The above discussion outlines a proof of half of the following (a
complete proof is contained in [SING88]):

Theorem 5.1. Let k be a differential field with algebraically closed
field of constants C and let L(y) = y(n) + an_ly(n_l) + oAy
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with a; € k. L(y) = 0 is NOT solvable in terms of linear differential

equations of lower order if and only if the associated P—V extension
has galois group G whose connected component G° of the identity is
(i) simple, and
(ii) there does not exist a linear algebraic group H with
finite—to—one homomorphism ¢o:H— G° such that H has a
nontrivial representation of dimension less than n.

There is a cleaner statement of this result if one uses the
language of lie algebras. Given a linear algebraic group G, one can
associate to G a lie algebra g, the tangent space at the identity of G.
There is a map A —— exp(A) sending g to a neighborhood of the
identity. For example, the group SL(n,C) is associated with the lie
algebra sI(n,C) = {nxn matrices A | tr(A)=0). Zariski closed
connected normal subgroups of G correspond to ideals in g. Therefore
simple groups have simple lie algebras. If ¢: H — G is a finite to one
map then H and G have the same lie algebra. If P:G —GL(”n,0) is a
rational representation then p induces a lie algebra homomorphism p: g
— gl(n,C) = the lie algebra of all nxn matrices. Conversely, if g is
simple and if p: ¢ — gI(n,C) is a lie algebra homomorphism, then there
exists a linear algebraic group H, a finite—to—one homomorphism ¢o:H
— GL(,C) and a representation p: H— GL(n,C) such that P is
induced by p. Using this latter fact, we have:

Theorem 5.1 (bis). Let k be a differential field with algebraically
closed field of constants C and let L(y) = y(n) + an_ly(n—l) -1 iy +aoy

with a, € k. L(y) = 0 is NOT solvable in terms of linear differentia]

equations of lower order if and only if the associated P—V extension
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has galois group G such that G° has a lie algebra g that is simple and

such that if p: g — gl(m,C) is a lie algebra homomorphism with m < n,
the p =0.

For future reference, we list the simple lie algebras. There are
the following infinite families:

() sin)={ AeglnC) | r(A)=0} n22.
(ii) sp(2n) = {A € gl(2n,C) | AT +JA =0} n>2, where
J= r n|andI o is the identity matrix.
-1 0
n

(iii) o(n) = {A € gl(n,C) | A'+ A=0), n27.

There are 5 more exceptional simple lie algebras and these
appear as algebras of nxn matrices for certain n > 7. We shall not need
these later. In (iii) above, the condition that n 2 7 is given because

0(2) is abelian, o(3) = sl(2), o(4) = sI(2) sl(2), o(5) = sp(4) and o(6) =
si(4).

6. Algebraic Relations Among Solutions of Homogeneous Linear
Differential Equations.

In this section I shall assume that the reader is familiar with the
definition of projective space P"(C) and the basic properties of its
Zariski closed subsets (see [HUM81], Ch. 1).

In 1883, Fuchs considered the following situation. Let L(y) =0
be a homogeneous linear differential equation with coefficients in €(x).
In a neighborhood @ of any nonsingular point, there exist analytic
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functions yl(x), y2(X), and y3(x) forming a fundamental set of
solutions of L(y) = 0. The assignment x +— (yl(x), y2(x), y3(x))
defines a map Y: 0 — IPZ(D. Fuchs showed

Theorem 6.1. If the image of Y lies on an algebraic curve in IPZ(C),
then either

(1) all solutions of L(y) = 0 are liouvillian over C(x), or

(i) there is a second order linear differential equation

Yy + Py’ + Qy =0, P,Q € ((x), and linearly independent
solutions Z):2y such that [z%, 2,25, z%} is a fundamental set

of solutions of L(y) = 0.

Motivated by this result, Fano [FANOQO] considered the

following situation. Given L(y) = y(n) bl ly(n—l) +..+ay=0
= (4}

with a; € C(x), there exist functions yl(x), ,yn(x), analytic in the

neighborhood ¢ of a nonsingular point, such that {yl, ’yn} is a

fundamental set of solutions of L(y) = 0. We can define a function
Y() = (57 (), .y, (%)) : 0 — P"7(0). He showed

Theorem 6.2. If the image of Y lies on an algebraic curve then either
() all solutions of L(y) = 0 are liouvillian over ((x), or
(ii) there is a second order linear differential equation
y''+Py’ +Qy=0, PQ, ¢ ((x), and linearly independent

: -1 n-l —
solutions 1.2y such that {zrl1 sZ] 2y, ,zg 1] forms 3

fundamental set of solutions of L(y) = 0.
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These results suggest that one could ask the following question:
If the image of Y lies on a proper algebraic subset V of an—l (C), can
L(y) = 0 be solved in terms of linear differential equations of lower
order? Fano investigated in [FANOQOQ] this question and showed that if
n =3, 4, or 5, then the answer is yes. He also got some positive partial
results when n = 6. Furthermore, he was able to show that the answer
was yes for all n if the dimension of V is 1 or 2 and partial positive
results if the dimension of V is 3. In [SIN88], I showed that the
answer is yes for all n < 6, but for all n > 7, there exists an nth order

homogeneous linear differential equation Ln(y) = (0 with coefficients in
€(x) such that L n(y) = 0 is not solvable in terms of linear differential

equations of lower order and that for some fundamental set of solutions
{yl, ,yn}, we have y% P o +yi = (. Using the results of section 5, I

will prove this below. Notice that we need only consider n > 3 since
linearly independent solutions of a second order homogeneous linear
differential equation can never satisfy a homogeneous equation f(yl,yz)

= 0 with coefficients in €.

Proposition 6.3. Let n be a positive integer <6. Let k be a differential
field with algebraically closed field of constants C and let L(y) be a
homogeneous linear differential equation with coefficients in k. If L(y)
= 0 is not solvable in terms of lower order linear differential equations,
then for any fundamental set of solutions ({y;, .. ,y } and

homogeneous polynomial 0# P € C[Yy, ... ,Y ], we have P(y,, ... ,y,))
£ 0.

Using Theorem 5.1 (bis), it is enough to show that, for n < 6, if
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the lie algebra g of the connected component of the galois group G of
the P—V extension associated with L(y) = 0 is (i) simple, and (ii) g has
no nontrivial lie algebra representation of dimension less than n, then G
leaves invariant no proper algebraic subset of [Pn_l(C). We list below
the lie algebras and corresponding groups satisfying (i) and (ii)

n Lie Algebra Group

3 si(3,0) SL@3,0)

4 s1(4,C),sp(4,0) SL(4,(),SP(4,0)
5 sl(5,0) SL(5,0)

6 s1(6,0),sp(6,0) SL(6,0),SP(6,C)

SP(2n,() is the group on 2nx2n matrices satisfying Al [_(J) (J) ]A
01J

- [ o ] where J = [ .1}. It is well known ([JAC74], p.360 and
o .

p.374) that SL(n,() and SP(2n,() act transitively on ¢ and €2n

respectively and so have no invariant algebraic subsets of P2 (©).
Notice that o(n,() does not appear on this list because the list

stops before n =7. O(n,0) = {A | AlA = I} leaves the zero set of Y% +

e Yﬁ invariant. This observation is crucial to the following

Proposition 6.4. For all n 2 7, there exists a homogeneous linear

differential equation L n(y) = 0 with coefficients in {(x) such that Ln(y)

is not solvable in terms of lower order linear differential equations, but

for some fundamental set of solutions {yl, ,yn} we have ViiT

2
yn=0.
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The proof depends of a result from [TT79]: Given any linear
algebraic group G ¢ GL(n,(), there is a homogeneous linear differential
equation I:n(y) = 0 with coefficients in ((x) such that the galois group

of the associated P—V extension K is G. Therefore, there exist
homogeneous linear differential equations L(y) = 0 with galois group
O(n,(). Let {z]s oo zn} be a fundamental set of solutions of such an
equation such that z% + ..+ zi is left fixed by G. Fori =1, ... ,n, let
Y; Sufens uzzi’ + u3z{ ’ with the u; to be determined. y%+ o yr21 =
Q(ul,uz,uB) is a homogeneous quadratic form in UpUsug whose

coefficients are left fixed by G and so lie in ((x). It is known
([GRE69], p.22) that this implies that there exist ap, 2y, a3, not all

zero, in ((x) such that Q(al, a,, a3) = 0. Replacing each uj with aj in

all Yp We gety; in K. The y; are linearly independent since if Zciyi =

3 5
0, we have ¥ a (Zc.z.) =0, so L(y) = 0 and a3y”+a2y’+aly =0
= 164

have a space of common solutions. This space would be invariant
under O(n,C) and so must be {0}. This implies that each Cig = 0.

Therefore the y; satisfy the homogeneous linear differential equation
L) = Wy, e Y Wy, .

C(x). Differentiating the relations Vi alzi+azzi+a3zi" n—1 times

,yn) = 0, which has coefficients in

allows one to conclude that (yi(i)) = A~(zi0)) where A is an nxn matrix
with coefficients in ((x). Since the matrices (yi(')) and (zi(])) are

invertible, A is invertible. Therefore, C(x)<y1,

V> =

((x)<z,, ... z >, and L(y) = 0 has the desired properties.
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