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1. Introduction

In [14] a differential Galois theory of linear difference equations was developed as a 
tool to understand the differential properties of solutions of linear difference equations. 
This theory associates to a system of linear difference equations Y (σ(x)) = A(x)Y (x)
a differential Galois group. This is a linear differential algebraic group, that is a group 
of matrices whose entries are functions satisfying a fixed set of (not necessarily linear) 
differential equations. Differential properties of solutions of the linear difference equation 
are measured by group-theoretic properties of the associated differential Galois group. 
For example, a group-theoretic proof is given in [14] of Hölder’s Theorem that the Gamma 
Function satisfies no polynomial differential equation, that is, the Gamma Function is 
hypertranscendental. In general, one can measure the amount of differential dependence 
among the entries of a fundamental solution matrix of Y (σ(x)) = A(x)Y (x) by the size 
of its associated differential Galois group: the larger the group, the fewer the differential 
relations that hold among these entries.

This theme has been taken up in [9], where the authors develop criteria that allow 
them to show that the generating series F (x) =

∑
n∈N xn of certain p-automatic sets 

N are hypertranscendental. It is known [2] that these generating series satisfy Mahler 
equations, that is, equations of the form

σm(F (x)) + am−1(x)σm−1(F (x)) + . . . + a0(x)F (x) = 0,

where σ(x) = xp and the ai(x) ∈ C(x). Dreyfus, Hardouin, and Roques develop criteria 
in [9] to ensure that certain Mahler equations have SLn or GLn as their associated dif-
ferential Galois groups. Using these criteria they show, for example, that the generating 
series associated with the Baum–Sweet and the Rudin–Shapiro sequences are hypertran-
scendental. In [10], the authors develop similar criteria to ensure that the differential 
Galois groups of certain q-difference equations are large, and apply these criteria to 
show that certain generalized q-hypergeometric series are hypertranscendental.

They prove the validity of their criteria by appealing to Bézivin’s result [3], which 
states that a power series that simultaneously satisfies a Mahler equation and a linear 
differential equation must be a rational function, and to Ramis’s result [21], which states 
that a power series that simultaneously satisfies a q-difference equation and a linear 
differential equation must also be a rational function. These classical results of Bézivin 
and Ramis are reproved and generalized by Schäfke and Singer in [23], where they also 
classify series and other functions that simultaneously satisfy either a shift-difference 
equation and a linear differential equation, or a pair of difference equations for suitable 
pairs of operators. The authors of [23] prove these results by considering systems of linear 
differential and difference equations

∂Y (x) = A(x)Y (x), σY (x) = B(x)Y (x),
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where ∂ = d
dx and σ is a shift operator σ(x) = x + a, q-dilation operator σ(x) = qx, or 

Mahler operator σ(x) = xp.
Here A(x) and B(x) are n × n matrices with rational function entries. Assuming a 

consistency hypothesis, they show in [23, Theorem 1] that such a system is equivalent to a 
system of a very simple form and deduce, among other conclusions, their generalizations 
of Bézivin’s and Ramis’s results.

In this paper we consider systems of difference equations

σ(Y (x)) = A(x)Y (x), (1.1)

where A(x) ∈ GLn(C0(x)), C0 is an algebraically closed field, and σ is a shift opera-
tor, q-dilation operator, or Mahler operator. Using Theorem 1 of [23], we characterize 
those groups that occur as differential Galois groups under the assumption that (1.1) is 
integrable (i.e., its solutions also satisfy a linear differential system) or projectively inte-
grable3 (i.e., it becomes integrable after “moding out by scalars”; for precise definitions 
see Definition 3.2 and Definition 4.1). In particular, we show in the integrable case that 
the Galois groups are abelian, and in the projectively integrable case that these Galois 
groups are finite abelian extensions of abelian groups.

Using these characterizations, we reprove and extend the criteria of [9] and [10] when 
σ is a Mahler or q-dilation operator, respectively. We also derive corresponding crite-
ria when σ is a shift operator, and apply them to show that the solutions of certain 
shift-difference equations are hypertranscendental.4 Besides applications to questions of 
hypertranscendence, our results are also useful in understanding the inverse problem 
for the differential Galois theory of difference equations by showing that certain groups 
cannot occur as differential Galois groups. These results have also been applied in [1] to 
develop algorithms that compute differential Galois groups of difference equations.

The rest of the paper is organized as follows. A key idea of this paper is that the results 
of [23] allow one to reduce questions concerning the differential Galois groups of integrable 
and projectively integrable equations (1.1) to questions concerning difference systems 
with constant coefficients. In Section 2 we discuss systems with constant coefficients 
and their Galois groups. In Section 3 we characterize the differential Galois groups of 
integrable systems (1.1), and in Section 4 we do the same in the projectively integrable 
case. In Section 5 we apply our results to questions of hypertranscendence and compare 
our results with those of [9] and [10].

3 Integrable/projectively integrable are also called isomonodromic/projectively isomonodromic in the lit-
erature, e.g., [9,10].
4 In [10] the authors also consider q′-difference relations among solutions of a q-difference equation, where 

q and q′ are sufficiently independent complex numbers. Using the Galois theory developed in [17], they 
develop Galois-theoretic criteria to deduce σq′ -transcendence results. Difference systems with such pairs 
of operators were also considered in [23]. Theorem 12 of this latter paper should yield new proofs and 
extensions of some of these results, but we do not consider this case or other pairs of difference operators 
in this paper.
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2. Galois groups of constant difference equations

Before we discuss the differential Galois theory of difference equations, we recall the 
Galois theory of linear difference equations [19].5 Let (k, σ) be a difference field, that is, a 
field6 k with an automorphism σ, and assume that kσ = {c ∈ k | σ(c) = c} is algebraically 
closed. This theory associates to an equation σ(Y ) = AY , where A ∈ GLn(k), a σ-simple 
ring S = k[Z, 1

det Z ], called the σ-Picard–Vessiot ring, which is generated by the entries of 
a fundamental solution matrix Z and the inverse of its determinant. This ring is unique 
up to σ-k-isomorphism and has no nilpotent elements but may have zero divisors. Its 
total ring of quotients K is called the total σ-Picard–Vessiot ring. It has the property 
that the subring Kσ of elements left fixed by σ coincides with the corresponding subring 
kσ of k. The group G of σ-k-algebra automorphisms of this ring is called the σ-Galois 
group and is a linear algebraic group defined over kσ. There is a Galois correspondence 
between linear algebraic subgroups of G and σ-subrings of K, containing k, all of whose 
nonzero divisors are invertible.

We begin by proving some general results about constant difference equations and 
their σ-Galois groups, before applying these results to our main cases of interest in 
Proposition 2.3.

Lemma 2.1. Let C be an algebraically closed field and σ : C → C be the identity map. 
Suppose that A ∈ GLn(C).

(i) The σ-Galois group of σ(Y ) = AY over C is the Zariski closure of the group gener-
ated by A.

(ii) If k is any σ-field with kσ = C, the σ-Galois group of σ(Y ) = AY over k is a closed 
subgroup of the Zariski closure of the group generated by A.

Proof. (i). Let E be the total σ-Picard–Vessiot ring of σ(Y ) = AY over C, and let 
G be its σ-Galois group. Note that σ induces a difference automorphism of E over C
leaving the elements of C fixed. Therefore σ ∈ G. If H is the Zariski closure of the group 
generated by σ, then H ⊂ G. The fixed ring of H is C, so by the Galois correspondence 
we have H = G.

(ii). Let F be the total σ-Picard–Vessiot ring of σ(Y ) = AY over k and Z ∈ GLn(F )
be a fundamental solution matrix of this equation. Let S = C[Z, 1

det Z ]. By [11, Lemma 19 
and Corollary 20], we can embed the total quotient ring E of S into F . By [19, Propo-
sition 1.23], E is the total σ-Picard–Vessiot ring of σ(Y ) = AY over C. Let G be the 
σ-Galois group of F over k and H be the σ-Galois group of E over C. The map sending 
γ ∈ G to its restriction γ|E to E is an isomorphism of G onto the σ-Galois group of E
over E ∩ k, which latter group is a subgroup of H. The result now follows from (i). �
5 More general theories exist (e.g., [24]) but the theory in [19] suffices for our purposes.
6 All fields considered in this paper are of characteristic zero.
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In order to apply Lemma 2.1, we will need to know which groups occur as Zariski clo-
sures of cyclic groups. This information is given in the next remark. We denote by Ga(C)
the additive group of C and by Gm(C) the multiplicative group of nonzero elements of C.

Remark 2.2. We recall the following well-known classification (cf. [20, Exercise 5.3]).
Suppose that A ∈ GLn(C).

(i) A linear algebraic group G is the Zariski closure of the group generated by A if and 
only if G is isomorphic to a group of the form

Gm(C)r ×Ga(C)s × Z/tZ,

where r and s are nonnegative integers, s ≤ 1, and t is a positive integer.
(ii) Suppose furthermore that A is diagonalizable. A linear algebraic group G is the 

Zariski closure of the group generated by A if and only if G is isomorphic to a group 
of the form

Gm(C)r × Z/tZ,

with r and t as above.

We will now consider three concrete examples of difference fields (k, σ). In each of 
these cases, we have that kσ = C, which we always assume to be algebraically closed.

case s: The field k := C(x) and σ is the shift operator defined by σ(x) = x + 1.
case q: The field k := C(x) and σ is the q-dilation operator defined by σ(x) = qx for 

some q ∈ C, q �= 0 and not a root of unity.
case m: The field k := C(log(x), {x1/� | � ∈ N}) and σ is the Mahler operator defined 

by σ(xα) = xqα and σ(log(x)) = qlog(x) for some integer q ≥ 2.

The following result characterizes which linear algebraic groups occur as σ-Galois 
groups for constant linear difference equations over the difference fields (k, σ) corre-
sponding to cases s, q, and m.

Proposition 2.3. Suppose that A ∈ GLn(C).

(i) A linear algebraic group G is a σ-Galois group for σ(Y ) = AY over C if and only 
if it is isomorphic to a group of the form

Gm(C)r ×Ga(C)s × Z/tZ,

where r and s are nonnegative integers, s ≤ 1, and t is a positive integer.
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(ii) In case s, a linear algebraic group G is a σ-Galois group for σ(Y ) = AY over k if 
and only if it is isomorphic to a group of the form

Gm(C)r × Z/tZ,

where r is a nonnegative integer and t is a positive integer.
(iii) In case q, a linear algebraic group G is a σ-Galois group for σ(Y ) = AY over k if 

and only if it is isomorphic to a group of the form

Gm(C)r ×Ga(C)s × Z/tZ× Z/pZ,

where r and s are nonnegative integers, s ≤ 1, and t and p are positive integers.
(iv) In case m, a linear algebraic group G is a σ-Galois group for σ(Y ) = AY over k if 

and only if it is isomorphic to a group of the form

Gm(C)r ×Ga(C)s × Z/tZ× Z/pZ,

where r and s are nonnegative integers, s ≤ 1, and t and p are positive integers.

Proof. (i) follows directly from Lemma 2.1(i) and Remark 2.2(i).
(ii). Let G be isomorphic to Gm(C)r × Z/tZ. Let a1, . . . , ar ∈ C be multiplicatively 

independent, let A0 :=
( 1 1

0 1

)
, and let A = diag(a1, . . . , ar, A0, ζ), where ζ is a primitive 

t-th root of unity. From Remark 2.2 we see that the Zariski closure of the group generated 
by A is isomorphic to Gm(C)r×Ga(C) ×Z/tZ, and so the σ-Galois group of σ(Y ) = AY

over C is this group as well. Let K be the total σ-Picard–Vessiot ring of σ(Y ) = AY

over C. Considering the equation σ(Y ) = A0Y , one sees that K contains a solution 
u of the equation σ(u) = u + 1. Therefore C(u) is σ-isomorphic to k. Furthermore, 
the σ-Galois group of K over C(u) is isomorphic to Gm(C)r × Z/tZ. This yields one 
implication of (ii).

Given A ∈ GLn(C), let G be the σ-Galois group of σ(Y ) = AY over k. We begin 
by showing that this equation is gauge equivalent over k to an equation σ(Y ) = ÃY , 
where Ã ∈ GLn(C) is diagonalizable. Write A = AsAu with As, Au ∈ GLn(C), where 
As is diagonalizable, Au is unipotent, and AsAu = AuAs. Let Au = exp(N), where N
is nilpotent, and let M := exp(−xN). Note that M ∈ GLn(k) commutes with As and 
σ(M) = MA−1

u . Making the gauge transformation V = MY , we have

σ(V ) = σ(M)AM−1V = MA−1
u AuAsM

−1V = AsV.

Therefore we may assume that A is diagonalizable. Lemma 2.1(2) and Remark 2.2(ii) 
imply that G is a closed subgroup of a group isomorphic to Gm(C)r × Z/tZ. The 
unipotent radical of G must therefore be trivial, so G is isomorphic to a group of the 
form Gm(C)r × H, where H is a finite group. Now [19, Proposition 1.20] implies that 
G/G0 	 H is a cyclic group, so G is of the desired form.
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(iii). Let G be isomorphic to Gm(C)r×Ga(C)s×Z/tZ ×Z/pZ, and assume that s = 1
(the case when s = 0 is similar but easier). Let a1, . . . , ar ∈ C be such that q, a1, . . . , ar
are multiplicatively independent. Let A = diag(q1/p, a1, . . . , ar, A0, ζ), where A0 is as 
above and ζ is a primitive t-th root of unity. From Remark 2.2 we see that the Zariski 
closure of the group generated by A is isomorphic to Gm(C)r+1 × Ga(C)s × Z/tZ, and 
so the σ-Galois group of σ(Y ) = AY over C is this group as well. Let K be the total 
σ-Picard–Vessiot ring of this equation. Then K contains a solution u of the equation 
σ(u) = q1/pu, and so v = up satisfies σ(v) = qv. Therefore C(v) is σ-isomorphic to k. 
Furthermore, the σ-Galois group of K over C(v) is isomorphic to Gm(C)r × Ga(C)s ×
Z/tZ × Z/pZ. This yields one implication of (iii).

Given A ∈ GLn(C), let G be the σ-Galois group of σ(Y ) = AY over k. Lemma 2.1(ii) 
and Remark 2.2(i) imply that G is a closed subgroup of a group isomorphic to Gm(C)r×
Ga(C)s × Z/tZ. The unipotent radical of G must therefore be a subgroup of Ga(C)s. 
Furthermore, since G is abelian, it is isomorphic to a group of the form Gs×Gu, where Gs

is a product of copies of Gm(C) and a finite abelian group H, and Gu is a product of copies 
of Ga(C). Therefore the identity component G0 of G is of the form Gm(C)r × Ga(C)s, 
where r is a nonnegative integer and s = 0 or 1. Now [19, Proposition 12.2.1] implies 
that G/G0 	 H is a finite abelian group with at most two generators, so G is of the 
desired form.

(iv). We will prove this result by reducing the problem to (iii) above. Note that the 
difference field C(log(x)) with σ(log(x)) = q log(x) is isomorphic as a difference field to 
C(x) with σ(x) = qx. Therefore necessary and sufficient conditions for a group to be a 
σ-Galois group of σ(Y ) = AY are the same for these fields, since A ∈ GLn(C). We will 
show that the σ-Galois group for such an equation over k is the same as the σ-Galois 
group over F := C(log(x)).

Let K be the total Picard–Vessiot ring for σ(Y ) = AY over k, and let L be the total 
Picard–Vessiot ring for the same equation over F . Let G be the σ-Galois group of K
over k, and let H be the σ-Galois group of L over F . As in the proof of Lemma 2.1, the 
map sending γ ∈ G to its restriction γ|L is an isomorphism of G onto the σ-Galois group 
of L over L ∩ k, which is a subgroup of H (note that L ∩ k is again a σ-field). If we can 
show that E := L ∩ k = F , then it will follow that these two σ-Galois groups are the 
same.

We claim that E is finitely generated as a field extension of C. We have that L is 
the total quotient ring of a Picard–Vessiot ring S = F [Z, 1/ det(Z)] over F . It follows 
from [19, Corollary 1.16] that S = S1 ⊕ . . .⊕ St, where each Si is a domain and finitely 
generated over F . Therefore L = R1 ⊕ . . . ⊕ Rt, where each Ri is a finitely generated 
field extension of F . Letting π1 : L → R1 be the projection map, we have that π1 is an 
injection of E into R1. Since a subfield of a finitely generated field is finitely generated, 
we have that E is finitely generated over F = C(log(x)), and so finitely generated over C.

Now assume that E �= F . This implies that for some integer �, there exist nonzero 
polynomials f and g with coefficients in F , at least one of them with positive degree, 
such that f(x1/�)/g(x1/�) ∈ E. This implies that x1/� is algebraic over E of some positive 
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degree, say N . Applying σ−1 to the coefficients of the minimal polynomial of x1/� over 
E, we see that x1/q� is also algebraic over E of degree N . Since E(x1/�) ⊂ E(x1/q�) we 
have E(x1/�) = E(x1/q�). In this way we see that E(x1/�) = E(x1/qm�) for all m ∈ N. 
Since E is finitely generated over C, we have that E(x1/�) is also finitely generated 
over C. This implies that C({x1/qm� | m ∈ N}) ⊂ E(x1/�) is finitely generated over C, 
and in particular that the degree of C({x1/qm� | m ∈ N}) over C(x1/�) is bounded. This 
contradiction implies that E = L ∩ k = F , and so G = H. �

In the next section we apply Proposition 2.3 to completely characterize those linear 
algebraic groups that occur as Galois groups for integrable linear difference equations.

3. Integrable systems

In the differential Galois theory of linear difference equations, we let (k, σ, δ) be a 
σδ-field, that is, a field k with an automorphism σ and a derivation δ such that σδ = δσ. 
Following the presentation in [14], we assume that C = kσ is a differentially closed field.7
For a difference equation σ(Y ) = AY with A ∈ GLn(k), one has a σδ-Picard–Vessiot 
ring R = k{Z, 1

det Z }δ, which is a σδ-simple k-algebra differentially generated by the 
entries of a fundamental solution matrix Z and the inverse of its determinant. This ring 
is unique up to σδ-k-isomorphism and has no nilpotent elements but may have zero 
divisors. Its total ring of quotients K is called the total σδ-Picard–Vessiot ring and has 
the property that Kσ = kσ. The group G of σδ–k-algebra automorphisms is called the 
σδ-Galois group and can be identified with a linear differential algebraic group over C, 
that is, G ⊂ GLn(C) is defined by a set of algebraic differential equations over C. Finally, 
there is a Galois correspondence between differential subgroups of the σδ-Galois group 
and σδ-subrings of K, containing k, all of whose nonzero divisors are invertible.

Note that any linear algebraic group G defined over C is a fortiori a linear differential 
algebraic group. Given a linear differential algebraic group G, one can consider the set of 
elements of G whose entries belong to C0 = Cδ = {c ∈ C | δ(c) = 0}, and this set is also 
a linear differential algebraic group. We will distinguish these two groups by denoting 
the first group by G(C) and the second group by G(C0).

The following result, proved in [14, Proposition 6.21], compares the σ-Galois group 
and the σδ-Galois group of an equation σ(Y ) = AY , A ∈ GLn(k) over k.

Proposition 3.1.

(i) If R = k{Z, 1
det Z }δ is a σδ-Picard–Vessiot ring for σ(Y ) = AY , A ∈ GLn(k), then 

S = k[Z, 1
det Z ] is a σ-Picard–Vessiot ring for this equation.

(ii) With the above identification, the σδ-Galois group of σ(Y ) = AY is a Zariski-dense 
subgroup of the σ-Galois group of this equation.

7 See [14] for definitions and properties. Presentations assuming only that C is algebraically closed are 
given in [8,25].
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Definition 3.2. Given A, Ã ∈ GLn(k), we say that the systems σ(Y ) = AY and σ(Y ) =
ÃY are equivalent if there exists T ∈ GLn(k) such that Ã = σ(T )AT−1.

In this case, if Z is a fundamental solution matrix for the first system then Z̃ := TZ is 
a fundamental solution matrix for the second system, and therefore they have the same 
Picard–Vessiot rings and Galois groups.

Definition 3.3. The system σ(Y ) = AY with A ∈ GLn(k) is integrable over k if one of 
the following equivalent conditions is satisfied:

(i) The σδ-Galois group G for σ(Y ) = AY over k is δ-constant, i.e., G is conjugate to 
a subgroup of GLn(C0).

(ii) There exists B ∈ gln(k) such that

σ(B) = ABA−1 + δ(A)A−1. (3.1)

The equivalence of these two conditions is proved in [14, Prop. 2.9].8 Note that if 
σ(Y ) = AY is integrable then after a change of fundamental solution matrix we may 
assume that its σδ-Galois group G is contained in GLn(C0). Since the derivation is trivial 
on C0, we have that G is actually a linear algebraic group defined over C0. Its Zariski 
closure in GLn(C) must therefore be G(C). This and Proposition 3.1 imply the following 
result.

Proposition 3.4. If the linear difference equation σ(Y ) = AY with A ∈ GLn(k) is inte-
grable, then its σ-Galois group is G(C) ⊂ GLn(C) if and only if its σδ-Galois group is 
G(C0).

In this section we will completely characterize the Galois groups of integrable linear 
difference equations in the following three cases of triples (k, σ, δ) as above, corresponding 
to the three cases of σ-fields discussed in the previous section. However, in this section 
we will always assume that C is a differentially closed field of characteristic zero, instead 
of just algebraically closed. It is known that C0 = Cδ is algebraically closed [6, §9.1].

case S: The field k := C(x), σ is the shift operator defined by σ(x) = x + 1, and the 
derivation is defined by δ(x) = x.

case Q: The field k := C(x), σ is the q-dilation operator defined by σ(x) = qx for some 
q ∈ C, q �= 0 and not a root of unity, and the derivation is defined by δ(x) = x.

case M: The field k := C(log(x), {x1/� | � ∈ N}), σ is the Mahler operator defined by 
σ(xα) = xqα and σ(log(x)) = qlog(x) for some integer q ≥ 2, and the derivation 
is defined by δ(xα) = α log(x) xα and δ(log(x)) = log(x).

8 There is an error in the proof of this proposition that is fixed in the Erratum of [14].
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Our point of departure is the following result, which is contained in Theorem 1 and 
Corollary 7 of [23]9:

Theorem 3.5. (Schäfke–Singer, [23]) Let A ∈ GLn(C0(x)) and B ∈ gln(C0(x)), and 
suppose that the system

{
σ(Y ) = AY

∂(Y ) = BY
(3.2)

satisfies the consistency condition

μσ(B)A = AB + ∂(A), (3.3)

where ∂ and μ are defined as follows: in case S, μ = 1 and ∂ = δ; in case Q, μ = 1 and 
∂ = δ; and in case M, μ = q and ∂ = x d

dx = (log(x))−1δ. Then, in each of these cases, 
the system σ(Y ) = AY is equivalent over k to a system σ(Y ) = ÃY , where Ã ∈ GLn(C0).

In the following result we show that the hypotheses of Theorem 3.5 can be relaxed 
somewhat, and related to the integrability of the difference system.

Proposition 3.6. Suppose we are in case S, case Q, or case M. If the system σ(Y ) = AY

with A ∈ GLn(C0(x)) is integrable over k, then it is equivalent over k to a system 
σ(Y ) = ÃY with Ã ∈ GLn(C0).

Proof. We begin by observing that (3.1) and (3.3) are equivalent in cases S and Q, 
whereas in case M we have that B ∈ gln(k) satisfies (3.3) if and only if log(x)B satisfies 
(3.1). Let us first consider cases S and Q. To see that the existence of B ∈ gln(C(x))
satisfying (3.3) implies the existence of B′ ∈ gln(C0(x)) satisfying the same equation, 
observe that (3.3) defines a system of algebraic equations for the unknown coefficients 
of the matrix entries of B, considered as rational functions in x. The algebraic variety V
defined by this system of equations is defined over C0, because A ∈ GLn(C0(x)). Since 
C0 is algebraically closed, if V has a C-point, then it must also have a C0-point, which 
yields B′ ∈ gln(C0(x)) satisfying (3.3). This concludes the proof in cases S and Q, by 
Theorem 3.5.

In case M, we still have to show that the existence of B ∈ gln(k) satisfying (3.1)
implies the existence of B′ ∈ gln(C(x)) satisfying (3.3). To see this, first note that there 
is an integer � ∈ N such that B ∈ gln(C(x1/�, log(x))). Since log(x) is transcendental over 
C(x1/�), we may write B as a Laurent series 

∑
i≥N Bilogi(x), where Bi ∈ gln(C(x1/�))

and logi(x) := (log(x))i. Substituting this expression for B in (3.1), we obtain

9 N.B.: our choice of notation for A and B here is the opposite from that of [23].
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σ(
∑

Bilogi(x))A = A
∑

Bilogi(x) + δ(A)∑
qilogi(x)σ(Bi)A =

∑
logi(x)ABi + log(x)∂(A),

whence the equality of logi(x) terms for i = 1:

qlog(x)σ(B1)A = log(x)(AB1 + ∂(A)),

which implies that B1 ∈ gln(C(x1/�)) satisfies (3.3).
Suppose that � ∈ N is the smallest integer such that B1 ∈ gln(C(x1/�)), and let 

d := �/gcd(q, �). Since A ∈ GLn(C0(x)) and σ(B1) ∈ gln(C(x1/d)), it follows that

B1 = qA−1σ(B1)A−A−1∂(A) ∈ gln(C(x1/d)).

Since � is minimal and d ≤ �, it follows that d = �, that is, � and q are relatively prime. 
Now let τ be a cyclic generator of Gal(C(x1/�)/C(x)), so that τ(x1/�) = ζ�x

1/�, where 
ζ� is a primitive root of unity. Then we see that τσ = στ q, and since the q-power map 
is an automorphism of the group Gal(C(x1/�)/C(x)) 	 μ� of �-th roots of unity, we see 
that the trace operator Tr :=

∑�−1
i=0 τ

i : C(x1/�) → C(x) commutes with σ. Applying Tr
to both sides of

qσ(B1)A = AB1 + ∂(A),

we find that B̃1 := Tr(B1)/� ∈ gln(C(x)) satisfies (3.3). Arguing as in cases S and Q we 
conclude that there exists B′ ∈ gln(C0(x)) satisfying (3.3) in case M as well. �

The main result of this section is the following.

Theorem 3.7. Consider a difference system of the form

σ(Y ) = AY, with A ∈ GLn(C0(x)). (3.4)

(i) In case S, a δ-constant group G ⊂ GLn(C0) is the σδ-Galois group of (3.4) over k
if and only if it is isomorphic to a group of the form

Gm(C0)r × Z/tZ

where r is a nonnegative integer and t is a positive integer.
(ii) In case Q, a δ-constant group G ⊂ GLn(C0) is the σδ-Galois group of (3.4) over k

if and only if it is isomorphic to a group of the form

Gm(C0)r ×Ga(C0)s × Z/tZ× Z/pZ

where r and s are nonnegative integers, s ≤ 1, and t and p are positive integers.
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(iii) In case M, a δ-constant group G ⊂ GLn(C0) is the σδ-Galois group of (3.4) over k
if and only if it is isomorphic to a group of the form

Gm(C0)r ×Ga(C0)s × Z/tZ× Z/pZ

where r and s are nonnegative integers, s ≤ 1, and t and p are positive integers.

Proof. (ii). Assume that a δ-constant group G ⊂ GLn(C0) is the σδ-Galois group of (3.4). 
Then σ(Y ) = AY is integrable with respect to the derivation δ = x d

dx . Proposition 3.6
implies that σ(Y ) = AY is equivalent to a system σ(Y ) = ÃY , with Ã ∈ GLn(C0) ⊂
GLn(C). Proposition 2.3 implies that the σ-Galois group of σ(Y ) = ÃY is isomorphic to 
a group of the form Gm(C0)r×Ga(C0)s×Z/tZ ×Z/pZ, with r, s, t, p as above. Therefore 
Proposition 3.4 yields the conclusion.

Now assume that G is isomorphic to a group of the described form. Proposition 2.3
implies that there is A ∈ GLn(C0) such the σ-Galois group of σ(Y ) = AY over C0(x) is 
Gm(C0)r×Ga(C0)s×Z/tZ ×Z/pZ. By [7, Proposition 2.4 and Corollary 2.5], this equation 
has Gm(C)r ×Ga(C)s ×Z/tZ ×Z/pZ as its σ-Galois group over k. Since δ(A) = 0, this 
system is integrable. By Proposition 3.4, its σδ-Galois group is Gm(C0)r × Ga(C0)s ×
Z/tZ × Z/pZ.

(i) and (iii). The proofs of these statements are the same, mutatis mutandis, as that 
of (ii). �
4. Projectively integrable systems

In this section we extend some of the conclusions of the previous section for integrable 
systems to the larger class of projectively integrable systems. We begin by proving some 
preliminary results for an arbitrary σδ-field k with C := kσ differentially closed and 
C0 := Cδ, before specializing to the cases S, Q, and M defined in the previous section. 
We write Scaln(C) ⊂ GLn(C) for the group of invertible scalar matrices, and In for the 
n × n identity matrix.

Definition 4.1. The system σ(Y ) = AY with A ∈ GLn(k) is projectively integrable over 
k if one of the following equivalent conditions is satisfied:

(i) The σδ-Galois group G for σ(Y ) = AY over k is projectively δ-constant, i.e., G is 
conjugate to a subgroup of GLn(C0) · Scaln(C) = SLn(C0) · Scaln(C).

(ii) There exists B ∈ gln(k) such that

σ(B) = ABA−1 + δ(A)A−1 − 1
nδ(det(A))det(A)−1 · In. (4.1)

The equivalence of these two conditions follows, mutatis mutandis, from the proof of 
[9, Proposition 2.10].
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We now show how certain questions concerning projective integrability can be reduced 
to questions concerning integrability. To do this we show that, given a projectively in-
tegrable system, there is a naturally associated system that is integrable. The following 
result makes precise the statement made in the introduction that a projectively integrable 
system becomes integrable after “moding out by scalars.”

Proposition 4.2. Suppose that σ(Y ) = AY with A ∈ GLn(k) is projectively integrable, 
and let H and G denote its σ-Galois group and σδ-Galois group over k, respectively. Let

Ã := det(A)−1 ⊗ (A⊗n).

Then:

(i) The system σ(Y ) = ÃY is integrable.
(ii) If H̃ and G̃ are the σ-Galois group and σδ-Galois group, respectively, of σ(Y ) = ÃY , 

we have short exact sequences

1 → Scaln(C) ∩H → H → H̃ → 1 and

1 → Scaln(C) ∩G → G → G̃ → 1. (4.2)

Proof. (ii). Let V denote the σ-module associated with σ(Y ) = AY . Since the difference 
module associated with σ(Y ) = ÃY is given by

Ṽ := (
n∧
V )∨ ⊗k V ⊗n,

the Tannakian formalism implies that the homomorphism ρ : H � H̃ ⊂ GLnn(C)
corresponding to the action of H on the solution space for Ṽ is given by

ρ(T ) = det(T )−1 ⊗ (T⊗n).

Note that ρ(T ) = Inn if and only if T is a scalar matrix.
(i). We remark that G is projectively δ-constant if and only if

δ(T ) = δ(det(T ))
n · det(T ) · T (4.3)

for every T ∈ G. In the following computation we adopt the convention that T⊗0 = (1). 
Let us assume for the moment that G ⊆ GLn(C0) · Scaln(C). It follows from (4.3) that

δ(T⊗n) =
n−1∑
i=0

T⊗i ⊗ δ(T ) ⊗ T⊗(n−i−1) =
n−1∑
i=0

T⊗i ⊗ ( δ(det(T ))
n·det(T ) · T ) ⊗ T⊗(n−i−1)

= δ(det(T ))
det(T ) · T⊗n.
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for each T ∈ G. Therefore

δ(det(T )−1 ⊗ T⊗n) = (δ(det(T )−1)) ⊗ T⊗n + det(T )−1 ⊗ δ(T⊗n)

= (− δ(det(T ))
det(T ) · det(T )−1) ⊗ T⊗n + det(T )−1 ⊗ ( δ(det(T ))

det(T ) · T⊗n)

= (− δ(det(T ))
det(T ) + δ(det(T ))

det(T ) ) · (det(T )−1 ⊗ T⊗n) = 0,

so G̃ = ρ(G) ⊂ GLnn(C0) provided that G ⊆ GLn(C0) · Scaln(C). In general, if D ∈
GLn(C) is such that DGD−1 ⊆ GLn(C0) · Scaln(C) then we have just shown that 
ρ(D)G̃ρ(D)−1 ⊂ GLnn(C0), and therefore G̃ is δ-constant, as we wanted to show. �
Proposition 4.3. Let G ⊆ GLn(C) denote the σδ-Galois group for the system

σ(Y ) = AY, with A ∈ GLn(k). (4.4)

The system is integrable if and only if it is projectively integrable and any of the following 
conditions is satisfied:

(i) The system σ(y) = det(A)y is integrable.
(ii) det(G) ⊆ Gm(C0).
(iii) There exists b ∈ k such that σ(b) − b = δ(det(A))det(A)−1.
(iv) G ∩ Scaln(C) ⊆ Scaln(C0).

Proof. Since det(G) is the σδ-Galois group over k for the system σ(y) = det(A)y, it 
is clear that (i) ⇔ (ii) ⇔ (iii). Moreover, since the restriction of det to G ∩ Scaln(C)
coincides with the n-power map on Scaln(C) 	 Gm(C), we have that (ii) ⇒ (iv).

If (4.4) is integrable, then G is conjugate to a subgroup of GLn(C0) ⊂ GLn(C0) ·
Scaln(C), so the system is also projectively integrable and det(G) ⊆ Gm(C0). Hence, the 
integrability of (4.4) implies that condition (ii) is satisfied, and therefore conditions (i), 
(iii), and (iv) are satisfied as well.

At this point it would be sufficient to show that if (4.4) is projectively integrable 
and (iv) holds then (4.4) is integrable. However, let us first give a simple proof that if 
(4.4) is projectively integrable and (iii) holds then (4.4) is integrable. So suppose that 
(4.4) is projectively integrable and b ∈ k satisfies σ(b) − b = δ(det(A))det(A)−1. Suppose 
B ∈ gln(k) satisfies (4.1), and let B′ := B + b

n · In. Then

σ(B′) = σ(B) + σ(b)
n · In

= ABA−1 + δ(A)A−1 − 1
nδ(det(A))det(A)−1 · In + σ(b)

n · In

= A(B + b
n · In)A−1 + δ(A)A−1 − 1

nδ(det(A))det(A)−1 · In + σ(b)−b
n · In

= AB′A−1 + δ(A)A−1,
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and therefore (4.4) is integrable.
Let us now show that if (4.4) is projectively integrable and (iv) holds then (4.4) is 

also integrable. Let us assume without loss of generality that G ⊂ GLn(C0) · Scaln(C). 
Let H and H̃ denote the σ-Galois groups for σ(Y ) = AY and σ(Y ) = ÃY , respectively, 
where Ã := det(A)−1 ⊗ (A⊗n). Observe that H ⊂ GLn(C) and H̃ ⊂ GLnn(C) are both 
algebraic groups defined over C0. By Proposition 4.2, the system σ(Y ) = ÃY is integrable 
and its σδ-Galois group G̃ ⊂ GLnn(C0). By Proposition 3.4, G̃ can be identified with 
the C0-points of H̃, and we may write G̃ = H̃(C0).

Let R be the σδ-Picard–Vessiot ring for (4.4) over k, and let S ⊂ R be the σ-Picard–
Vessiot ring, both generated by the same choice of fundamental solution matrix Z.

We will first make the supplementary assumption that R is a domain. In this case, 
L := Frac(S) and K := Frac(R) are fields. If we let

R̃ := k
{
det(Z)−1 ⊗ (Z⊗n)

}
δ

then R̃ ⊂ R is a σδ-Picard–Vessiot ring for σ(Y ) = ÃY over k. Since this equation is 
integrable, R̃ is also a σ-Picard–Vessiot ring for the same equation over k. Moreover, 
since R̃ ⊂ S ⊂ R, R̃ is also a domain. Let k̃ := Frac(R̃). Then k̃ is the fixed field of 
H ∩ Scaln(C) in L, and therefore H ∩ Scaln(C) is the σ-Galois group for (4.4) over k̃. 
Similarly, k̃ is the fixed field for G ∩ Scaln(C) in K, and therefore G ∩ Scaln(C) is the 
σδ-Galois group for (4.4) over k̃. It follows from Proposition 3.1 that G ∩ Scaln(C) is 
Zariski-dense in H ∩ Scaln(C). If G ∩Scaln(C) ⊆ Scaln(C0) then G ∩Scaln(C) coincides 
with the C0 points of H ∩ Scaln(C), which latter group is defined over C0. Let us write 
D := H ∩ Scaln(C), so that G ∩ Scaln(C0) = D(C0). From the short exact sequence

1 → H ∩ Scaln(C) → H → H̃ → 1

of Proposition 4.2(2), we obtain the short exact sequence of C0-points

1 → D(C0) → H(C0) → H̃(C0) → 1. (4.5)

On the other hand, we have shown that the other short exact sequence

1 → G ∩ Scaln(C0) → G → G̃ → 1

of Proposition 4.2(2) may be rewritten as

1 → D(C0) → G → H̃(C0) → 1. (4.6)

It follows from (4.5) and (4.6) that the images of H(C0) ⊂ GLn(C) and G ⊂ GLn(C) in 
GLn(C)/D(C0) are equal, and therefore G = H̃(C0). In particular, G is δ-constant.

In general, when R is not assumed to be a domain, we proceed as follows. By [19, 
Corollary 1.16] and [14, Lemma 6.8], there exists a positive integer t such that R =
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R0⊕· · ·⊕Rt−1 (resp., S = S0⊕· · ·⊕St−1), where each Ri (resp., Si) is a domain, and a 
σtδ-Picard–Vessiot extension (resp., σt-Picard–Vessiot extension) for σt(Y ) = AtY over 
k considered as a σtδ-field, where At := σt−1(A) . . . σ(A)A. If we let Gt and Ht denote 
the σtδ-Galois group and σt-Galois group, respectively, for σt(Y ) = AtY over k, still 
considered as a σtδ-field, we have short exact sequences

1 → Ht → H → Z/tZ → 1 and 1 → Gt → G → Z/tZ → 1. (4.7)

Since σt(Y ) = AtY is also projectively integrable and Gt ∩ Scaln(C) ⊆ Scaln(C0), the 
argument in the previous paragraph shows that Gt coincides with the C0-points of Ht. It 
follows from (4.7) that G also coincides with the C0-points of H, whence G is δ-constant 
in this case also. �
Corollary 4.4. Suppose σ(Y ) = AY with A ∈ GLn(k) is projectively integrable but not 
integrable, and let H and G denote its σ-Galois group and σδ-Galois group over k, 
respectively. Then H ∩ Scaln(C) = Scaln(C) and G ∩ Scaln(C) � Scaln(C0).

Proof. If G ∩ Scaln(C) were finite then this group would be δ-constant, and so the 
equation would be integrable by Proposition 4.3. Therefore we may assume that G ∩
Scaln(C) and H ∩ Scaln(C) are infinite, in which case H ∩ Scaln(C) = Scaln(C). It 
follows from [4, Proposition 31] that any infinite δ-subgroup of Gm(C) 	 Scaln(C)
contains Gm(C0). By Proposition 4.3, the containment Scaln(C0) ⊂ G ∩ Scaln(C) must 
be proper. �
Lemma 4.5. Assume that we are in case S, Q, or M. Suppose that σ(Y ) = AY with 
A ∈ GLn(C0(x)) is projectively integrable but not integrable, and let G be its σδ-Galois 
group. Then G ∩ Scaln(C) and det(G) coincide as subgroups of Gm(C).

In particular, in cases S and M we have that G ∩Scaln(C) = Gm(C), whereas in case 
Q we have that G ∩ Scaln(C) is either Gm(C) or {c ∈ C× | δ( δ(a)

a ) = 0}.

Proof. Since σ(Y ) = AY is not integrable, it follows from Proposition 4.3 that det(G) �⊂
Gm(C0). In cases S and M this forces det(G) = Gm(C), by [14, Corollary 3.4(1)] in case 
S and [9, Proposition 3.1] in case M (since det(A) ∈ C0(x)). In case Q we know that 
either det(G) = {a ∈ C× | δ( δ(a)

a ) = 0} or else det(G) = Gm(C), by [14, Corollary 3.4(2) 
and Proposition 4.3(2)].

First suppose that det(G) = Gm(C). Then the δ-type of G is at least 1. Since G̃ is 
δ-constant, its δ-type is 0. It now follows that G ∩ Scaln(C) has δ-type 1, for otherwise 
it would follow from Proposition 4.2 that G has δ-type 0, a contradiction. This shows 
that G ∩ Scaln(C) = Scaln(C), because any proper δ-subgroup of Gm(C) has δ-type 0.

Now suppose that det(G) = {a ∈ C× | δ( δ(a)
a ) = 0} =: W . Since det|Scaln(C) coincides 

with the n-power map and G ∩ Scaln(C) is infinite, and therefore divisible, it follows 
that G ∩ Scaln(C) ⊆ W . If L is a linear differential operator then any δ-subgroup of the 
group {a ∈ C | L(a) = 0} is of the form {a ∈ C | L1(a) = 0} where L1 is a right factor 
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of L. Therefore the infinite δ-subgroups of W are defined by right-hand factors of the 
operator δ, but these are only δ and 1. It follows that either G ∩ Scaln(C) = W , or else 
G ∩Scaln(C) = Scaln(C0). It now follows from Corollary 4.4 that G ∩Scaln(C) = W . �

The following technical lemma will allow us to restrict the possible groups that may 
occur as Galois groups for projectively integrable linear difference equations in cases S, 
Q, and M.

Lemma 4.6. Suppose that H is a linear algebraic group such that Scaln(C) ⊂ H ⊂
GLn(C) and

H/Scaln(C) 	 Gm(C)r ×Ga(C)s × Z/tZ× Z/pZ,

where r and s are nonnegative integers, s ≤ 1, and t and p are positive integers.
Then the connected component of the identity H0 	 Gm(C)r+1 × Ga(C)s, and there 

are exact sequences

1 −→ H0 × Z/tZ −→ H −→ Z/pZ −→ 1 (4.8)

and

1 −→ H0 × Z/pZ −→ H −→ Z/tZ −→ 1. (4.9)

Moreover, if gcd(n, t, p) = 1, then both exact sequences are split, and

H 	 Gm(C)r+1 ×Ga(C)s × Z/tZ× Z/pZ. (4.10)

Proof. Let H̃ := Gm(C)r ×Ga(C)s × Z/tZ × Z/pZ and ρ : H � H̃ be the quotient by 
Scaln(C).

We begin by showing that the connected component of the identity H0 is in the 
center Z(H), so in particular H0 is commutative. For any g, h ∈ H0, we have that 
ρ(ghg−1h−1) = 1, and therefore ghg−1h−1 ∈ Scaln(C). But since det(ghg−1h−1) = 1, it 
follows that ghg−1h−1 lies in the cyclic subgroup μn ⊂ Scaln(C) consisting of n-th roots 
of unity. For any fixed g ∈ H, the map H0 → μn : h �→ ghg−1h−1 has image {1}, since 
H0 is connected, so gh = hg for any g ∈ H and h ∈ H0.

Now we show that ρ restricts to a surjection H0 � H̃0. The group ρ(H0) is of finite 
index in H̃ so H̃0 ⊂ ρ(H0) by [16, Proposition 7.3(b)]. Since ρ(H0) is connected, we 
have ρ(H0) ⊂ H̃0 and so ρ(H0) = H̃0.

We claim that H0 	 Gm(C)r+1 × Ga(C)s. Since H0 is commutative and connected, 
we know that H0 	 Gm(C)r′ × Ga(C)s′ for some nonnegative integers r′ and s′. We 
claim that r′ = r+ 1 and s′ = s. We have Scaln(C) ⊂ Gm(C)r′ , ρ(Gm(C)r′) ⊂ Gm(C)r, 
and ρ(Ga(C)s′) ⊂ Ga(C)s. Comparing dimensions, we have r′ = r + 1 and s′ = s.

To prove the exact sequence (4.8), let h ∈ H be chosen so that ρ(h) generates Z/tZ. 
Since ρ(ht) = 1, we have that ht ∈ Scaln(C). Since Scaln(C) is divisible, there is some 
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h̄ ∈ Scaln(C) such that h̄t = ht. For h1 = hh̄−1 the group < h1 > generated by h1 is 
isomorphic to Z/tZ and < h1 > ∩H0 = {1}. Therefore we have an exact sequence

1 −→ H0× < h1 >−→ H −→ Z/pZ −→ 1,

yielding (4.8). A similar argument produces h2 ∈ H of order p together with an exact 
sequence

1 −→ H0× < h2 >−→ H −→ Z/tZ −→ 1,

yielding (4.9).
In order to prove (4.10), it would be sufficient to show that the lifts h1 and h2 chosen 

above commute. Since ρ(h1h2h
−1
1 h−1

2 ) = 1, it follows that h1h2h
−1
1 h−1

2 ∈ Scaln(C). Since 
det(h1h2h

−1
1 h−1

2 ) = 1, it follows that h1h2h
−1
1 h−1

2 =: α ∈ μn ⊂ Scaln(C), the group of 
n-th roots of unity. Since αhi = hiα for i = 1, 2, it follows that

αt = h−t
1 αt = (h−1

1 α)t = (h2h
−1
1 h−1

2 )t = h2h
−t
1 h−1

2 = 1

and

αp = αphp
2 = (αh2)p = h1h

p
2h

−1
1 = 1,

and therefore α ∈ μn ∩ μt ∩ μp = μd, where d := gcd(n, t, p). Hence, the lifts h1 and h2
commute whenever d = 1. �
Theorem 4.7. Suppose that, in case S, Q, or M, the system

σ(Y ) = AY with A ∈ GLn(C0(x)) (4.11)

is projectively integrable but not integrable.

(i) In case S, G is isomorphic to a group of the form

Gm(C) ×Gm(C0)r × Z/tZ,

where r is a nonnegative integer and t is a positive integer.
(ii) In case Q, the connected component of the identity G0 	 W ×Gm(C0)r ×Ga(C0)s, 

where W is either Gm(C) or 
{
a ∈ C×

∣∣∣ δ( δ(a)
a

)
= 0

}
, r and s are nonnegative 

integers, and s ≤ 1. There are exact sequences

1 −→ G0 × Z/tZ −→ G −→ Z/pZ −→ 1 (4.12)

and
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1 −→ G0 × Z/pZ −→ G −→ Z/tZ −→ 1, (4.13)

where p and t are positive integers. Moreover, if gcd(n, t, p) = 1, then both sequences 
(4.12) and (4.13) are split, and

G 	 W ×Gm(C0)r ×Ga(C0)s × Z/tZ× Z/pZ. (4.14)

(iii) In case M, the connected component of the identity G0 	 Gm(C) × Gm(C0)r ×
Ga(C0)s, where r and s are nonnegative integers and s ≤ 1. There are exact se-
quences

1 −→ G0 × Z/tZ −→ G −→ Z/pZ −→ 1 (4.15)

and

1 −→ G0 × Z/pZ −→ G −→ Z/tZ −→ 1, (4.16)

where t and p are positive integers. Moreover, if gcd(n, t, p) = 1, then both sequences 
(4.15) and (4.16) are split, and

G 	 Gm(C) ×Gm(C0)r ×Ga(C0)s × Z/tZ× Z/pZ.

Proof. (ii). If H ⊂ GLn(C) is the σ-Galois group of (4.11) over k, it follows from Corol-
lary 4.4 that Scaln(C) ⊂ H. By Proposition 4.2, H/Scaln(C) 	 H̃, where H̃ is the 
σ-Galois group of an integrable system σ(Y ) = ÃY with Ã ∈ Gnn(C0(x)). By Proposi-
tion 3.4 and Theorem 3.7, H̃ 	 Gm(C)r × Ga(C)s × Z/tZ × Z/pZ, where r and s are 
nonnegative integers, s ≤ 1, and t and p are positive integers.

We have just shown that H satisfies the hypotheses of Lemma 4.6, which we remark 
remains valid after replacing C with C0. In the proof of Lemma 4.6, we found partial 
sections

ψ0 : H̃0(C0) ↪→ H0(C0); ψ1 : H̃0(C0) × Z/tZ ↪→ H(C0); and

ψ2 : H̃0(C0) × Z/pZ ↪→ H(C0)

to the surjection ρ : H � H̃ yielding the isomorphism H0(C0) 	 Scaln(C0) × H̃0(C0)
as well as (the restrictions to C0-points of) the exact sequences (4.8) and (4.9). Under 
the supplemental hypothesis that gcd(n, t, p) = 1, we also showed that there is a section 
ψ3 : H̃(C0) ↪→ H(C0) yielding the isomorphism (4.10).

From Proposition 4.2 and Proposition 3.4, we have an exact sequence

1 −→ G ∩ Scaln(C) −→ G −→ H̃(C0) −→ 1. (4.17)

Hence, to prove Theorem 4.7(ii)—i.e., that G0 	 (G ∩Scaln(C)) × H̃0(C0); the existence 
of the exact sequences (4.12) and (4.13); and that if gcd(n, t, p) = 1 then (4.14) holds—it 
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suffices to show that the image of any of these partial sections ψ is contained in G. To 
see this, let h̃ ∈ H̃(C0) and ψ(h̃) =: h ∈ H(C0). We wish to show that h ∈ G. In 
any case, it follows from (4.17) that there exists g ∈ G such that ρ(g) = h̃. It follows 
that ρ(gh−1) = 1 and therefore g = αh for some α ∈ Scaln(C). Since h ∈ H(C0)
and αh = hα, it follows that δ(αh)(αh)−1 = δ(α)α−1. Since α ∈ Scaln(C), we have 
δ(α)α−1 = 1

n (δ(det(α))/det(α)) · In. On the other hand, since G ⊂ GLn(C0) · Scaln(C), 
we know that δ(g)g−1 = 1

n (δ(det(g))/det(g)) · In. It follows from Lemma 4.5 that α ∈
G ∩ Scaln(C), and therefore h ∈ G, as we wanted to show.

(i) and (iii). The proof of case Q also works in cases S and M, where it also follows 
from Lemma 4.5 that G ∩ Scaln(C) 	 Gm(C). Moreover, in case S it follows from 
Theorem 3.7(1) that s = 0 and p = 1. �
4.1. Example

The following example shows that Theorem 4.7(2) is optimal, in the sense that se-
quences (4.12) and (4.13) are not always split. Working in case q, we claim that the 
σ-Galois group G for

σ2(y) = q1/2xy or equivalently σ(Y ) =
(

0 1
q1/2x 0

)
Y (4.18)

is G = Q8 · Gm(C) = D8 · Gm(C), a projectively δ-constant group. To be precise, we 
claim that

G =
{(

α 0
0 α

)
,

(
α 0
0 −α

)
,

(
0 α
α 0

)
,

(
0 α
−α 0

) ∣∣∣∣ α ∈ C×
}
. (4.19)

Fix once and for all square roots q1/2 and x1/2 of q and x, respectively, and extend σ
to k2 := k(x1/2) by σ(x1/2) = q1/2x1/2. Considering (4.18) as an equation over k2, note 
that (4.18) is gauge equivalent to

σ(Z) =
(
x1/2 0

0 −x1/2

)
Z, (4.20)

via the gauge transformation given by

T :=
(

1 x−1/2

1 −x−1/2

)
.

Let Z := diag(z1, z2) denote a fundamental solution matrix for (4.20) over k2, so that 
σ(z1) = x1/2z1 and σ(z2) = −x1/2z2, each zi is invertible, and z1 and z2 are C-linearly 
independent.

If we let y1 := z1 + z2 and y2 := z1 − z2 then
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Y :=
(

y1 y2
σ(y1) σ(y2)

)
(4.21)

is a fundamental solution matrix for (4.18) over k2 that satisfies

σ(y1) = x1/2y2 and σ(y2) = x1/2y1. (4.22)

Let S := k2[Y, det(Y )−1] denote the corresponding Picard–Vessiot-ring for (3.4) over k2. 
Since

y2
1 − y2

2
y1σ(y2) − y2σ(y1)

= y2
1 − y2

2
x1/2(y2

1 − y2
2)

= x−1/2,

we have that k2 ⊂ k[Y, det(Y )−1] = S is also a Picard–Vessiot ring for (3.4) over k. Let 
G := Galσ(S/k).

We claim that y1y2 = 0. By the results of [15], the choice of fundamental solution 
matrix Y as in (4.21) identifies G with a subgroup of

{(
α 0
0 λ

) ∣∣∣∣ α, λ ∈ C×
}
∪
{(

0 β
ε 0

) ∣∣∣∣ β, ε ∈ C×
}
.

If Tγ ∈ GL2(C) is the matrix associated to γ ∈ G we see that γ(y1y2) = ±det(Tγ)y1y2
for every γ ∈ G. On the other hand, if we let ω := y1σ(y2) − y2σ(y1) = det(Y ) we 
see that γ(ω) = det(Tγ)ω for every γ ∈ G. Therefore γ(y2

1y
2
2/ω

2) = y2
1y

2
2/ω

2 for every 
γ ∈ G, which implies that y2

1y
2
2 = fω2 for some f ∈ k, by the Galois correspondence. 

We proceed by contradiction, as in [1, §8.3]. Note that if y1y2 �= 0, then f �= 0 is 
invertible. On the other hand, σ2(y1y2) = qx2y1y2, by (4.22). Since σ(ω) = −q1/2xω, 
we have that σ2(ω) = q3/2x2ω. It follows that σ2(y1y2/ω) = q−1/2y1y2/ω, and therefore 
σ2(y2

1y
2
2/ω

2) = q−1y2
1y

2
2/ω

2. It follows that

σ(fσ(f))
fσ(f) = σ2(f)

f
= σ2(y2

1y
2
2/ω

2)
y2
1y

2
2/ω

2 = q−1,

and therefore there exists c ∈ C× such that fσ(f) = cx−1. But this is impossible, because 
fσ(f) has even order of vanishing at 0. This proves that y1y2 = 0, as we wanted to show.

There is a decomposition S = S0 ⊕ · · · ⊕ St−1, where each Si is a domain and a 
σt-Picard–Vessiot ring over k, considered as a σt-field, for σt(Y ) = σt−1(A) . . . σ(A)AY , 
where A :=

(
0 1

q1/2x 0

)
and σ : Si (mod t) → Si+1 (mod t) is an isomorphism of σt-rings. 

We claim that t = 2. In general, t is the largest integer such that there exists z ∈ S with 
σ(z) = ζtz, where ζt is a primitive t-th root of unity. Since σ(z1/z2) = −z1/z2, we have 
that t is even, and therefore S = S(0) ⊕ S(1), where each of

S(0) :=
⊕

Si and S(1) :=
⊕

Si
i even i odd
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is a σ2-Picard–Vessiot ring over k for

σ2(Y ) =
(
q1/2x 0

0 q3/2x

)
Y, (4.23)

where we consider k as a σ2-field.
Let us consider (4.23) as an equation over the underlying σ2-field of k2, and observe 

that

(
y1 0
0 x1/2y1

)
=

(
w1 0
0 w2

)
(4.24)

is a fundamental solution matrix for (4.23) over k2. We see that k2[y1, y
−1
1 ] is a σ2-Picard–

Vessiot ring for (4.23) over k2, and that k2 ⊂ k[w1, w2, (w1w2)−1] = k2[y1, y
−1
1 ] is a 

σ2-Picard–Vessiot ring for (4.23) over the underlying σ2-field of k. Using the algorithm 
of [15], we see that S(0) and S(1) are domains, which implies that t = 2, S(0) = S0, and 
S(1) = S1.

It follows from (4.22) and the fact that y1y2 = 0 that we may take S0 = k2[y1, y
−1
1 ]

and S1 = k2[y2, y
−1
2 ], which we emphasize are actually σ2-Picard–Vessiot rings for (4.23)

over k, not just over k2. Letting G2 := Galσ2(S0/k), we have that the embedding G2 ↪→
GL2(C) corresponding to the solution matrix (4.24) is given by

G2 =
{(

α 0
0 α

)
,

(
α 0
0 −α

) ∣∣∣∣ α ∈ C×
}
, (4.25)

where γ(w1) = αw1 and γ(w2) = ±αw2 for every γ ∈ G2 and the sign is determined by 
γ(w2

w1
) = γ(x1/2) = ±x1/2.

There is also an exact sequence

1 → G2 → G → Z/2Z → 1, (4.26)

where the map G2 → G : γ �→ γ̃ is determined by the rule γ̃(y1) = γ(y1) and γ̃(y2) =
σγσ−1(y2). It follows from (4.22) that

σγσ−1(y2) = σγ(q1/2x−1/2y1) = σ(q1/2(±x−1/2)(αy1)) = q1/2(±q−1/2x−1/2)(αx1/2y2)

= ±αy2.

Therefore the image of G2 ↪→ G : γ �→ γ̃ is also given by (4.25).
Finally, it is clear that the k-linear map defined by y1 �→ y2 and y2 �→ y1 is a 

σ-automorphism of S over k. Therefore 
( 0 1

1 0

)
∈ G lifts the generator of Z/2Z in (4.26), 

and G is given by (4.19), as claimed.
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5. Hypertranscendence

In [9] and [10], the authors develop criteria to guarantee that the σδ-Galois group of 
(1.1) is large when σ is a q-dilation or a Mahler operator. They prove the validity of 
their criteria by showing that certain linear differential algebraic groups cannot occur as 
σδ-Galois groups of integrable or projectively integrable equations. In their proof, they 
did not classify the σδ-Galois groups of such equations. Using this classification, we are 
now able to reexamine and extend their criteria. We begin with some preliminary results 
concerning Galois groups.

Lemma 5.1. Let C, C0, k, σ, and δ be as in one of the cases S, Q, or M. If the identity 
component of the σ-Galois group H(C) of

σ(Y ) = AY, A ∈ GLn(C0(x))

over k is a semisimple linear algebraic group then the σδ-Galois group is also H(C).

Proof. Proposition 3.1 implies that the σδ-Galois group G of this equation is Zariski-
dense in H. In particular, the Kolchin-connected component G0 of G is Zariski-dense 
in the Zariski-connected component H0 of H. Let H0(C) =

∏d
i=1 Hi(C), where the Hi

are the minimal closed connected normal subgroups of H0 as in [16, Theorem 27.5] (we 
emphasize that this is not a direct product, just a product). Cassidy [5, Theorems 19 
and 20] has shown that a Zariski-dense differential algebraic subgroup G0 of H0 is conju-
gate to a group of the form 

∏d
i=1 Gi where for each i either Gi = Hi(C) or Gi = Hi(C0). 

We write this product as

G0 =
∏
i∈I

Gi

∏
i∈J

Gi,

where Gi = Hi(C) for i ∈ I and Gi = Hi(C0) for i ∈ J .
We claim that 

∏
i∈I Gi is normal in G. For any g ∈ G, we have that gGi(C)g−1 is 

again a minimal normal simple subgroup of H0, and so gGi(C)g−1 = Gj(C) for some j. 
We have that G′ = Gj ∩

∏
��=j G� is finite [16, Theorem 27.5]. Therefore if j ∈ J then 

gGig
−1 lies in G′ · Gj(C0). This latter group has differential type 0, contradicting the 

fact that Gj(C) has differential type 1. Therefore 
∏

i∈I Gi is normal in G.
We now claim that J is empty. The Galois correspondence implies that there is a 

difference equation σ(Y ) = A0Y, A0 ∈ GLm(k) with σ-Galois group H̃ = H/ 
∏

i∈I Hi

and σδ-Galois group G̃ = G/ 
∏

i∈I Gi. We may assume without loss of generality that the 
subgroup 

∏
i∈I Hi is defined over C0. The Tannakian theory implies that the difference 

module associated to σ(Y ) = A0Y can be obtained from the difference module associated 
to σ(Y ) = AY using only constructions of linear algebra over C0(x). Therefore, we may 
assume that A0 ∈ GLm(C0(x)).
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The identity component G̃0 of G̃ is the quotient of a connected δ-constant semisimple 
group and so is δ-constant as well (cf.[18, Corollary 1] or [12, Theorem 4.6]). Since 
G̃0 is δ-constant, we have that G̃ is δ-constant as well [13, Proposition 2.48], and so 
σ(Y ) = A0Y is integrable. Theorem 3.7 implies that the σδ-Galois group of an integrable 
equation cannot be of this form. Therefore J is empty and the σδ-Galois group is also 
H(C). �

We can now prove the following. If H is a linear algebraic group we denote the derived 
subgroup of the identity component of H by H0,der.

Theorem 5.2. Let C, C0, k, σ, and δ be as in one of the cases S, Q, or M. Let H be the 
σ-Galois group over C0(x) of

σ(Y ) = AY, A ∈ GLn(C0(x)). (5.1)

Assume that H0 is a reductive group. Then, the σδ-Galois group of this equation over k
is a subgroup of H(C) containing H0,der(C).

Proof. Let K be the total quotient ring of a σδ-Picard–Vessiot extension R =
k{Z, 1

det Z }δ of k corresponding to (5.1), and let G be its σδ-Galois group over k. Then 
S = k[Z, 1

det Z ] is a σ-Picard–Vessiot extension for this equation, and its total quo-
tient ring F is a subring of K [11, Corollary 20]. Since H0 is reductive, we have that 
H0 = Z(H0) ·H0,der, where Z(H0) is the center of H0 and H0,der is semisimple.

Let G̃ = H0,der ∩ G. We claim that G̃ is Zariski-dense in H0,der. To see this, note 
that G0 = G ∩ H0 is Zariski-dense in H0, and therefore G0 × G0 is Zariski-dense in 
H0 ×H0. By [22, Theorem], the map φ : (a, b) �→ aba−1b−1 maps H0 ×H0 surjectively 
onto H0,der. Therefore G̃ ⊃ φ(G0 ×G0) is Zariski-dense in H0,der.

We will argue by contradiction that G̃ = H0,der. Since H0,der is semisimple, we may 
write H0,der =

∏d
i=1 Hi as in Lemma 5.1. If G̃ is a proper subgroup of H0,der, then we 

may assume that G̃ =
∏d

i=1 Gi, where for each i either Gi = Hi or else Gi is conjugate 
to Hi(C0). Assuming that G̃ �= H0,der, we have that some Gi = Hi(C0).

Since Z(H0) is normal in H, we can form H ′ = H/Z(H0). By the Galois correspon-
dence, H ′ is the σ-Galois group for a difference equation

σ(Y ) = A′Y, A′ ∈ GLm(C0(x)). (5.2)

To see this, we proceed as in the proof of Lemma 5.1: since Z(H0) is defined over C0, 
a Tannakian argument shows that the difference module associated to (5.2) is obtained 
from the difference module associated to (5.1) using only constructions of linear algebra 
over C0(x). Moreover, there is a σ-Picard–Vessiot ring S′ = k[Z ′, 1

det Z′ ] ⊂ FZ(H0), where 
Z ′ is a fundamental solution for (5.2), and we see that Z(H0) = {γ ∈ H | γ(Z ′) = Z ′}. 
It follows that the σδ-Galois group of the σδ-Picard–Vessiot ring R′ = k{Z ′, 1

det Z′ }δ for 
(5.2) is precisely G′ = G/G ∩Z(H0). Since H ′ is a finite extension of the semisimple group 
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H0,der/Z(H0) ∩H0,der, Lemma 5.1 implies that G′ = H ′. Since G′ is a finite extension 
of G̃/G̃ ∩ Z(H0), it is not possible for G̃ to be a proper subgroup of H0,der. �

Theorem 5.2 allows us to reprove and generalize the results of [9] and [10]. In [9], the 
authors consider case M and show in Theorem 3.5 that if H is a subgroup of GLn(C)
containing SLn(C) and the σδ-Galois group of σ(y) = det(A)y is a subgroup of C×

0 then 
the σδ-Galois group of (5.1) is a subgroup of C×

0 SLn(C) containing SLn(C). Theorem 5.2
allows us to remove the restriction on the σδ-Galois group of σ(y) = det(A)y and also 
show that C×SLn(C0) cannot be a σδ-Galois group over k for a difference system defined 
over C0(x) in cases S, Q, or M.

In Part I of [10], the authors consider case Q and show in Theorem 3.1 that if H0,der

is an irreducible almost simple algebraic subgroup of SLn(C) then the σδ-Galois group 
contains H0,der. This result easily follows from, and is generalized by, Theorem 5.2. 
Furthermore, this latter theorem now extends these results to cases S and M.

The hypertranscendence results of [9] and [10] (e.g., the hypertranscendence of certain 
generalized hypergeometric series and the generating functions of the Baum–Sweet and 
Rudin–Shapiro sequences) follow as indicated in these papers. Similarly, Theorem 5.2
can be used to show hypertranscendence results in case S.

Example 5.3. Let C, C0, k, σ, and δ be as in case S. In [19, Lemma 3.9], the authors 
show that the equation

Y (x + 1) =
(

0 −1
1 a

)
Y (x),

where a ∈ C0[x] and a(0) = 0, has σ-Galois group SL2(C0) over C0(x). The above results 
show that the σδ-Galois group is SL2(C) and so the differential transcendence degree of 
the associated σδ-Picard–Vessiot extension is 3. Therefore if

Z =
(
z1,1 z1,2
z2,1 z2,2

)

is a fundamental solution matrix in any σδ-Picard–Vessiot extension then any three of 
the entries of Z are differentially independent.

Furthermore, in [19, Lemma 3.9] the authors show that for A = diag(A1, . . . , Am), 
where

Ai =
(

0 −1
1 xi

)
,

the equation Y (x + 1) = A(x)y(x) has σ-Galois group SL2(C0)m over C0(x). Therefore 
the differential transcendence degree of the associated σδ-Picard–Vessiot extension is 3m. 
This implies that if K is a σδ-Picard–Vessiot extension of C0(x) and Z� = (z�i,j) ∈ SL2(K)
satisfies Z�(x + 1) = A�(x)Z�(x) for each � = 1, . . . , m then the elements
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{z1
1,1, z

1
1,2, z

1
2,1, z

2
1,1, z

2
1,2, z

2
2,1, . . . , z

m
1,1, z

m
1,2, z

m
2,1}

are differentially independent.
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