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Abstract 

Recently, Ramis gave necessary and sufficient conditions for a linear algebraic group to be 
the Galois group of a Picard-Vessiot extension of the field @{x}[x-‘1 of germs of meromorphic 
functions at zero. In this paper, we give equivalent simple group theoretic conditions, and show 
how these generalize previous conditions of Kovacic in the solvable case. 

1. Introduction 

The general inverse problem in differential Galois theory can be stated as follows: 

Let k denote a differential field of characteristic 0 and C the subfield of constants 
of k, which we assume to be algebraically closed Characterize those linear alge- 
braic groups G that are Galois groups of Picard-Vessiot extensions of k. 

An early contribution to this problem is due to Bialynicki-Birula [l] who showed 

that if the transcendence degree of k over C is finite and nonzero then any connected 

nilpotent group is a Galois group over k. This result was generalized by Kovacic, who 

showed that the same is true for any connected solvable group. 

When one considers specific fields, more is known. If K = C(x), the field of rational 

functions over C, C. Tretkoff and M. Tretkoff [15] have shown that any linear algebraic 

group is a Galois group when C = C, the field of complex numbers. For arbitrary C, 

Singer [14] showed that a large class of linear algebraic groups (including all connected 
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groups) are Galois groups over C(X). A different, purely algebraic proof of this result 

for connected linear algebraic groups can be found in [9]. If K = ~{x}[x-‘I, Kovacic 

[S] showed that a necessary and sufficient condition for a connected solvable group G to 

be a Galois group over K is that the unipotent radical of the center of G/[R,, R,] have 

dimension at most 1, where R, is the unipotent radical of G. In [ 121, Ramis showed that 

any connected semisimple group is a Galois group over K. Recently, Ramis extended 

this result to show that a necessary and sufficient condition for a linear algebraic group 

to be a Galois group over K is that it have a local Galois structure (cf. infra), a 

condition expressed in terms of the Lie algebra of the group. 

In this paper, we give a simpler group theoretic condition that is equivalent to this 

latter condition and more in line with the condition of Kovacic. We can now state the 

solution of the inverse problem over K = @{x}[x-‘1 as: 

Theorem 1.1. Let G be a linear algebraic group. The following statements are equiv- 
alent: 

(1) G is the Galois group of some Picard-Vessiot extension of C{x}[x-‘I. 
(2) The following three conditions hold: 

(a) G/G0 is cyclic, 
(b) the dimension of R,/[R,, Go] is at most 1 

(c) G/Go acts trivially on RJR,, Go]. 

The rest of the paper is organized as follows. In section 2, we show the equivalence 

of Ramis’s conditions with the above group theoretic criteria. In section 3, we give 

two illustrative examples. 

2. Local Galois structures on linear algebraic groups 

The following theorem of Ramis [ 1 l] solves the local inverse problem of differential 

Galois theory. 

Theorem 2.1. Let G be a complex algebraic group. Then G is the dtserential Galois 
group of some Picard-Vessiot extension of C{x}[x-‘1 if and only if there is a local 

Galois structure on G. 

A local Galois structure on G, a linear algebraic group, was defined by Ramis as a 

triple (T, a, M) such that: 

1. T is a torus of G, a E No(T), 
2. The image of a in G/Go generates this finite group, 

3. JV is an algebraic sub-lie algebra of Q (the Lie algebra of G) commuting with 

T and a (via the adjoint action) and dim(N) < 1, 

4. Let Y be the Lie algebra of T. We decompose ‘S = flaEB Y,, where @ is the 

set of weights of F and Q, is the weight space corresponding to CI. Then B is the Lie 
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algebra Y + V(Y) + JV, where V(Y) is the Lie algebra generated by JJlxEQ* 9, and 

cP* is the set of roots (i.e., nonzero weights). 

We note that the last condition is equivalent to the condition that gs is the Lie 

algebra .Y + UorEQ* [a,, %_,] + JV. Furthermore, J&E@’ [B,, S-J is an ideal of 90. 

We now begin the proof of Theorem 1.1. The following result will be useful. We 

include the proof from [4] for the convenience of the reader. 

Lemma 2.2. Let d be a nilpotent Lie algebra such that dim J$/[&‘,P~] 5 1. Then 
d is commutative and so dim d 5 1. 

Proof. Since d is nilpotent, we have d” = 0 for some positive integer n, where 

do = & and d’ = [&‘,J&~]. Therefore to show that [d,S] = 0 it is enough to 

show that [&,&I = d’ = ~4~ = [A?‘, [&,&I] ( an so ~22’ = d’ for all i). Clearly d 

[J&‘, [&‘, &]I c[sZ, .&‘I. To show the reverse inclusion, it is enough to show that for any 

u,v E d, we have that [u,v] E [a, [d,&‘]]. By assumption, there exists an element 

x E &’ such that u = c,x + ul, v = cDx + v1 where c,,cV E %? and ur,vr E [&‘,&I. We 

then have 

[u, VI = [cux + Ul, C& + Vll 

= [c,x,c,x1+ [w,v11+ [w,c”xl+ [W,Ull 

=cu[~,vll- c”[x,~ll+ [W,Vll E [d,[~,J41. q 

Let Go be the identity component of G (see [2] as a general reference). We may 

write Go as a semidirect product Go = R, >Q P, where R, is the unipotent radical of G 

and P is a reductive subgroup (this is the Levi decomposition, [lo]). This allows us to 

write the Lie algebra 9 of G as 9 = $A?,, + 9, where 4e, = Lie(R,) and B = Lie(P). 

Note that we can further decompose B = Y + J&_,_ 8, where 5 is the Lie algebra 

of a maximal torus T of P, and the 8, are the weight spaces corresponding to the 

set @* of roots of T on 9. Note that Y = 90 since P is reductive and that T is 

also a maximal torus for G. Conversely, for any given maximal torus T of G there 

is a Levi decomposition G = R,P such that T c P. Since R, is normal in G, the 

adjoint action of T leaves 9, invariant so we may decompose 9?u into weight spaces 

for T. We again denote the set of weights by @ and denote the corresponding weight 

spaces by (%$),. Using this notation, we have 9, = (9&), + 8,. We also introduce 

90 = Y + &a* [9,,9_,], which is an ideal of $90. We gather some simple facts in 

the following technical lemma. 

Lemma 2.3. With the notation as above, the following hold: 

(1) ~-II&* [9x, S-El = y + U@’ K~da, (~d-al+ LIE@. [9ciT (%lLzl. 
(2) [(%‘~)(I,(9$,)_J and [g)a,(9u)-or] are in (W,)O. Furthermore, 

(%I )o f-l I_I@B* [BE, S-al = &@*[(a”>,, (=@3-J + UorE@’ [~cz, (old-al. 
(3) [a,, Y] is invariant under the adjoint action ofS and [W,, Y] = [(%,)o, (%?,)a 

U&Q’[(W”),, (~“)--d(l+ Ucc@’ [YE> (~u)-LYl + I_I,,,*mdw 
II+ 
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(4) W”/P%l, 91 = (~do/(N%do, (idol -t LI&’ [(%da, (W&J + 
LI@D* [~a, (~&I)* 

(5) [BUT &Jo = K%Jo, wl)ol + Lror~@*r(~dm (.-@“b-dll. 
(6) There is a natural isomorphism 

Proof. The first claim follows by writing 9a = (a,), + PE and noting that [YE, S-,] 

c 5. The second claim follows similarly. To verify the third claim, we write 9 = 

(%l)o + UaoQ* (%A + y + UUE@’ 8, and 9, = (B&I + &,,..(B&. Taking the 
brackets of each of the components separately and noting that [(W,),,F] = (a,), for 

a E a* gives claim (3). Claim (4). follows from claim (3). Claim (5). is proved in a 

manner similar to claim (3). To prove claim (6). we note that ‘9s = (9”)s + .F and 

that (gd0 r-3 90 = LIaEB* [(%b, t~d-J + I_IlxEQ* [pa, PWal. q 

If we let f& = &@?,J[.@‘,, 91, ?@ = 9s/_Yo, then Lemma 2.3 yields a surjective homo- 

morphism n from YY to a!. One can show that @ = 9&/[9!!,, F?] is the Lie algebra of 

&I[&, Go]. There is a natural action (via conjugation) of G on R&R,, Go]. Since Go 

acts trivially on this latter group, we have an action of G/Go on R,/[R,, Go] with its 

corresponding adjoint action on %. 

Lemma 2.4. We have dim % 51 if and only if dim YV 51. In this case x is an 
isomorphism, so G/Go acts on YY. 

Proof. Since the homomorphism x is surjective, dim % < dim ?Y always holds. Note 

that the kernel of rc is [w, w]. If dim !& 51 then by Lemma 2.2 the kernel of K is 

trivial and dim YF 51. 0 

Lemma 2.5. If G has a local Galois structure, then G has a local Galois structure 
(T,a, N) where T is a maximal torus of G and a is semisimple. 

Proof. Let (T’,a’, .N’) be a local Galois structure of G .Then T’ is contained in a 

maximal torus T of G. Let us denote by Q, (resp. $) the weight spaces relative 

to T (resp. T’ ). Recall that 9s = 7 + UorEB* [A,$,] is an ideal of GO and let 

96 = 7’ + &** [GA,6’-J, which is an ideal of GA. 

We have a decomposition GA = & @ (UBEB9?b) for some subset of roots B c a* 

and the local Galois structure gives !& = 9;“t, + Jlr’. Since clearly Lb II &7’0 C LO and 

_Y;=(Y;ns,)@(dR;n~ BEB9p) we get surjective homomorphisms 

so dim GA/LA I 1 implies dim &/LO 5 1. 
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Since (a’)-t Ta’ is again a maximal torus of G there exists g E Go such that (u’)-‘Ta’ = 
gTg-‘. Therefore a’g E No(T). Let a = (u’s), denote the semisimple part of u’g. Then 

we also have u E NG(T) and Ad(u) permutes the weight spaces of T, leaving LO in- 

variant. Since a is semisimple, there exists a complement N of to in & which is 

Ad(u)-invariant. Note that a and a’ have the same image in G/Go and that the action 

of G/Go on 96’” = 90/P’s (described in Lemma 2.4) is induced by the adjoint action 

of a’ on %b/_Yb given by the local Galois structure. Since u’ acts trivially on Jf’ , 

the action of a on Bo/_%‘o, hence on .Af, is also trivial and (T, u,N) provides a local 

Galois structure on G. 0 

Lemma 2.6. G has a local Gulois structure if and only if for some maximal torus T 
and a E NG(T) , and with notations us before, 

(1) a is semisimple and the image of a generates G/Go, 
(2) dim(V) < 1, 

(3) the action of a on W is trivial. 

Proof. Let (T, a, J(T) be a Galois structure. By Lemma 2.5, we may assume that T is a 

maximal torus and that a is semisimple. Note that 90 = Y+((w,)c. Therefore (a,)~ = 

(U,,,*[re,,~-aln(~~)O)+J1T = (UBE~*[(~~)8’(~~)-81+UBEO*[~B’(5e,)-81)+~. 
This implies that there is a natural surjective map 

6: J-~e%l)o 
I( 

L1. N~llh73 t~&?l+ LT. [~)B~(%lL~l 
> 

7 
BE@‘ BEa* 

that is, from JV to W and that this map commutes with the action of u. Since 

dim X < 1 and a commutes with JV, we get the conclusion of the lemma. 

Now assume that there is a maximal torus T and a E NG(T) satisfying (l), (2), 

and (3). As in the proof of Lemma 2.4, since a normalizes T, Ad(u) will normalize 

Ad(T). Therefore Ad(u) will permute the weight spaces of T, preserving the group 

structure of the weights. In particular, Ad(u) will preserve &rEQ..[(91?,),s,(5&,_~] + 

r&r@‘[~j% c%d-Bl. s ince a is semisimple, there is a complementary Ad(u)-invariant 

Lie algebra JV c(~?,)o such that 

Therefore 
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Note that the action of a on JV is trivial since a acts trivially on w. This proves that 

(T, a, _V) is a local Galois structure. 0 

Proposition 2.7. Let G be a linear algebraic group. Then G has a local Galois struc- 
ture tf and only tf the following three conditions hold: 

(1) G/Go is cyclic, 

(2) the dimension of R,IIR,,G”] is at most 1, 

(3) G/Go acts trivially on RJR,, Go]. 

Proof. The proof follows directly from Lemma 2.4 and 2.6 and from the fact that %! 

is the Lie algebra of R,/[R,, Go]. 0 

This proposition, together with Ramis’s Theorem, finishes the proof of Theorem 1.1. 

Corollary 2.8. Let G be a connected nilpotent group. The following statements are 

equivalent: 
(1) G is the Galois group of some Picard-Vessiot extension of C{x}[x-‘I. 
(2) The dimension of R, is at most 1. 

Proof. A connected nilpotent group may be written as a direct product G = RUT , so 

the quotient R&R,, Go] is RJR,, R,]. This has dimension at most one if and only if 

R, has dimension at most one, by Lemma 2.2. 0 

Kovacic proves the following result in [5]. Kovacic’s techniques allow him to re- 

duce the inverse problem for an arbitrary connected group to the same problem for 

semisimple groups [6], but he readily admits that the techniques seem to take him no 

further. 

Corollary 2.9. Let G be a connected solvable group. The following statements are 

equivalent. 
(1) G is the Galois group of some Picard-Vessiot extension of C{n}[x-‘I. 
(2) The dimension of the unipotent radical of the center of Gf[R,,R,] is at most 

one. 

Proof. Since G is solvable, it is a semi-direct product G = R,M T for some torus 

T. Therefore G/[R,, R,] = R&R,, R,] M T. The quotient R&R,, R,] is a commutative 

unipotent group and so isomorphic to C” for some m. Since T is reductive and acts on 

R&R,, R,] by conjugation, we may write RJR,, R,] as the sum of weight spaces for 

T (we write the group of weights additively). Therefore the unipotent radical of the 

center of R,/[R,,R,]>a T is (R,/[R,,R,])o. We shall calculate the Lie algebra of this 

group. Clearly this Lie algebra is (~,J[W,,W,])O. Since T is reductive, we may write 

9& = @+[9&,W,] for some T-invariant space 4. Therefore, (&?,,)a = @o+[W,, B,,]o so 

go = (~“/[~U,~“l)O = (~u)o/[%l,%l1o. L emma 2.2 implies that (9?,)a/[&?U,9&,]a = 

(9” )ol([(a” )O> (B” )ol + LLpg* [(z%?~)~,(~~)_~]). Noting that 9, = 0 for all 01 E @*, 



C. Mitschi, M.F. Singer1 Journal of Pure and Applied Algebra 110 (1996) 185-194 191 

Lemma 2.3 shows that this is the same as the Lie algebra of RJR,, Go]. Therefore the 

unipotent radical of the center of G/[Ru, R,] and R&R,, Go] have the same dimension 

and the result now follows from the main theorem. 0 

Corollary 2.10. Let G be a reductive group with G/Go cyclic. Then G is the Galois 
group of some Picard-Vessiot extension of C{x}[x-‘I. 

Proof. R, is trivial. 0 

3. Examples 

We now give two examples that illustrate the above theorem. 

Example 3.1. Let k = C{x}[x-‘1 an d consider the following linearly independent func- 

tions {Se-‘/+;,J , , e’/fi 1 logx}. The first three satisfy a third order linear differential 

equation Li( y) = 0 over C(x). The last two satisfy a second-order linear differential 

equation ,52(y) = 0. These two equations will have a one-dimensional solution space 

in common (the solution space generated by 1). Taking a least common multiple of 

these two equations, we will get a linear differential equation of order 4 with the above 

set as a basis for its solution space. 

We will show that the Galois group of this equation over k is 

a 0 Ob 
0 a-’ 0 c 
0 0 Id 

0 0 01 1 la E C*,b,c,d E @ 

In group theoretic terms, this is the semidirect product (C3 N C*)M Z/22, where the 

action of C* on C3 is given. by the representation 

( 
a 0 0 

a- Oa-‘0 
0 0 1 

and the action of Z/22 is given by permuting the first two columns of any matrix. 

One sees that R, = C3 and that [R,, Go] = C* x (0). It then follows that the action of 

Z/2H on R,/[R,,G’] is trivial. 

To verify that this is actually the Galois group, one checks that the Picard-Vessiot 

extension of k corresponding to L(y) = 0 is 

k 
( 

fi, logx, ,1/\/r; ,Jei/d, Je-l/G). 
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Letting k0 = k(&) , we have the following facts: 

(1) logx is transcendental over ko. 
(2) e’ifi is transcendental over b(logx). This follows from the Kolchin-Ostrowski 

Theorem [4] which implies that if e’/d is not transcendental over h(logx) then 

(e “fi)n E ko for some nonzero n E Z. This is easily seen to be impossible by expand- 

ing power series. 

(3) Je”fi and Je-“fi are algebraically independent over kc(logx, e’/fi). If not, 

the Kolchin-Ostrowski Theorem implies that cl J e’/fi + c2 J e-l/G E ks(logx, e’/fi) 

for some constants ct,c2, not both zero. In particular cl J el/G + c2 J eel/fi lies in an 

elementary extension of ko(e l/d) We will now use the following result of Rosenlicht . 
([13, Theorem 21): 

Let kCk(yl,..., y,,) be an ordinary dtfherentialjield of characteristic zero with the 
same field of constants. Assume that the field of constants is algebraically closed, 
that yi/yi E k and assume that yi/yj $ k for i # j. If yl+. . . + y,, is the derivative of 
an element in some elementary diSferentia1 extension of k(yl, . . . , y,,) having the same 
constants as k, then the same is true of each yi. In this case, tf yi is not algebraic 
over k, then it is the derivative of ayi for some ai E k, i.e., there is an ai E k such 
that al + aiyi/yi = 1. 

We therefore need to show that neither 

a’ _ Lx-Wa = 1 
2 

nor a’ + !x-3i2a = 1 
2 

has a solution in k+ This can be done by showing that any Laurent series solution (in 

powers of XI/~) must be divergent. Note that the situation changes completely if one 

replaces k by the field of formal Laurent series. 

Now one easily sees that any differential isomorphism o must do one of the follow- 

ing: a(l)= l,o(&)= ~,o(logx)=logx+d,o(JeliJjZ) = aJe’/fi+b,u(Je-‘Ifi)= 

a-‘Je-‘/fi + c or o(l) = Lo(&) = -,&o(logx) = logx + d,a(Je’/fi) = 
u-l J e-l/fi + b, o(J e-‘/G) = a J e ‘/fi + c for some constants a E @*, b, c, d E @. 

Example 3.2. cf. [3, 71. 

Lemma 3.3. The local Galois group at injinity of any confluent generalized hyperge- 
ometric equation 

D,, = (-l)q-px (lYJa+iQ) - (l!Ja+vj-l)~ 

a =x&, pi - /lj $ Z for i # j, satisfies 

R, = [R”, Go] . 
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Proof. The formal monodromy at oc (cf. [8]) is 

where D = diag(e-2iRpI,. . . , e-2ixpLp), and R = e2ixAl(q--P)P, 

0 . . . . . . . . . 1 

10 . . . . ..o 
P= ( IT *. . . *. . . . 

0 . . . 0 10 

J = i(q - p + 1) - ~~zl pj - c;=, vj. Therefore B is semisimple. 

Following Ramis, we know that G is endowed with a local Galois structure (Y, a, M), 

where JV is generated by the logarithm of au, the unipotent part of i$. Consider- 

ing the form of A? above, we see that ~4’” = 0. By Lemma 2.5 we may moreover 

suppose that T is a maximal torus. From the proof of Lemma 2.6, we get a smjec- 

tive homorphism from JV to %, hence dim % = 0, where 9 is the Lie algebra of 

&I[&, GoI. 0 

As an example, for a = x&, the equation 

D31y=a3Y-Xay+ iy 

=x2y”‘+33xy”+(l -x)y'+ hy 

=o 

has Galois group 

G = (PSL(2, C)X C*)X Z,‘ZZ 

and a local Galois structure is 

(C=*,a,O) 

where the maximal torus @* is the exponential torus (cf. [S]) T = (diag(l,il,i-‘) ) A E 

C*} and a is the formal monodromy 

( -1 0 0 -1 0 0 -1 0 0 ) 
generating G/G0 p Z/22. 
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