
REMARKS ON ANALYTIC CONTINUATION

F. HAIMO, M. F. SINGER AND M. TRETKOFF

The collection Jt of multi-valued analytic functions with three singular points
z = a, b,c on the Riemann sphere <0 includes such classical examples as the hyper-
geometric functions and the inverse of Legendre's modular function A(T). In the
present note we show that this class also contains 2No transcendentally transcendental
functions with essentially distinct branching behaviour. Here, we say that two functions
with the same set of singular points have "essentially distinct branching behaviour"
if their monodromy groups are not isomorphic qua permutation groups to conjugate
subgroups of the group of all permutations of a countable set.

A function w(z) is called transcendentally transcendental if it does not satisfy any
algebraic differential equation; thus there is no polynomial P(z, w0>..., wn) ^ 0 with
complex coefficients which vanishes identically when w0 is replaced by w(z) and the
Wj are replaced by dj w/dzj. According to a theorem of Holder, the gamma function
has this property, but T(z) is single-valued and has poles at the negative integers.

Our result is obtained by supplementing the reasoning employed in [4] with that
of Ritt and Gourin [3]. Moreover, replacing the Golod-Shafarevitch group utilized
in [4] by interesting two-generator groups permits us to restrict our attention to the
collection of functions with three singular points and to make a few additional
observations about the branching behaviour of some of its members. Finally, we
prove a theorem about the symmetric group on a countable set which yields yet
another interesting function in our class Ji.

Throughout this paper we replace the phrase "homogeneous linear differential
equation with single-valued analytic coefficients with singularities at z = ah

i = 1, . . . ,r + l, r a positive integer", by the term "linear differential equation".
Now, suppose that G is an infinite group generated by r elements; of course, G is

countable. Selecting r + 1 arbitrary points z = aif i = l , . . . , r + l on <D, the con-
struction given in [4] establishes the existence of transcendental functions T(z) on
<D with singular points z = ah i = 1,..., r +1 and monodromy group isomorphic to G.
The analytic key to this result is the Mittag-Leffier Anschmiegungssatz for non-
compact Riemann surfaces; it permits us to prescribe arbitrary polynomials

R{a) = £ aj{a)(z-zoy, n{a) ^0,<reG, ao(a) # ao(x) when a # T,
/ = o

as the initial terms of the Taylor expansions of the branches of T(z) at a base point
z0 =£ ahi = 1, . . . , r + l .

Adapting the beautiful argument of Ritt and Gourin [3], we find that the aj(p)
may be selected so that T(z) is transcendentally transcendental. Namely, we have:

THEOREM 1. If z = ai}i = 1, . . . , r + l are arbitrary points on C, and if the infinite
group G is generated by r elements, then there are transcendentally transcendental
functions on C whose only singularities occur at z = ah i = 1,..., r+1 and whose mono-
dromy groups are isomorphic to G.
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Proof. Since the collection {Pa(z, w0,..., wn(<r))} of polynomials in a finite number
of variables with integral coefficients is countable, we may suppose that the indices u
belong to G. Now, select complex numbers bo(a), ...,bn{o),n = n(o), such that
bo{<*) # bo(r) when o # T and Pa(z0,b0(a), -.-,bn{o)) # 0. Setting aj(a)j\ = 6,(<T),

we see that the branch of T(z) beginning with R(a) cannot satisfy the differential
equation defined by Pa(z, w0,..., wn).

However, if T{z) satisfies the algebraic differential equation defined by
P(z,w0, ...,wm), it must also satisfy an algebraic differential equation defined by a
polynomial with integral coefficients. Indeed, viewing the monomials appearing in
P(z, w0,..., wm) as linearly dependent analytic functions of z, we see that their
Wronskian vanishes and furnishes the required polynomial Pa(z, w0, ...,wn), which
can be seen to be not identically zero. We can therefore conclude that T(z) must in
fact be transcendentally transcendental and our proof is complete.

Of course, not every function with an infinite monodromy group is transcen-
dentally transcendental; the transcendental hypergeometric functions are obvious
counter examples. In fact, Theorem 1 shows that we cannot find a sufficient condition
for a function to satisfy an algebraic differential equation which is expressed only in
terms of branching behaviour. However, since the totality of branches at z = z0 of a
solution of a linear differential equation spans a finite dimensional complex vector
space V, the monodromy group of such a function has a faithful representation as a
group of non-singular linear transformations. We call groups with this property
linear, and recall some theorems about them (cf. [5], pages 52, 71, 112).

THEOREM. Let G be a finitely generated linear group.

A. If every element has finite order, G is finite (Burnside).

B. / / G is simple, G is finite (Malcev).

C. G has soluble word problem (Rabin).

R. Camm [2] exhibited 2No non-isomorphic two-generator infinite simple groups.
It follows from B that these are not linear, so if we take G in Theorem 1 to be one of
these groups we obtain:

THEOREM 2. There are 2N° transcendentally transcendental functions on C with
singular points z = a, b, c. No two of these functions have essentially the same branching
behaviour. Moreover, none of these functions has the branching behaviour of a solution
of a linear differential equation.

There are two-generator groups with unsolvable word problem (see, for example,
Adyan [1]). Also, Adyan proved that there are two-generator infinite groups in which
each element has order dividing a certain positive integer N. In view of (A), (C) and
Theorem 1, we have the following results:

THEOREM 3. There is a transcendentally transcendental function T(z) with singular
points z = a,b,c whose branching behaviour is the same as that of an algebraic function.
More precisely, there is a positive integer N such that continuing any branch of T(z)
along any loop avoiding z = a,b,c yields the original branch if repeated N times.

Theorem 3 generalizes the result in [4].
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THEOREM 4. If a function f (z) in Jl has a monodromy group with unsolvable word
problem, then it cannot satisfy a linear differential equation.

The unsolvability of the word problem suggests the following interpretation:
"There is no algorithm to decide whether analytic continuation of a branch of/(z)
along a loop avoiding the singularities of/(z) yields the chosen branch." This state-
ment can be made rigorous if we know that the power series expansion of a branch of
/ (z ) is computable; that is, there is a computer program that gives the mth term of
the decimal expansions of the real and imaginary parts of the wth coefficient, for all
non-negative integers m and n. In turn, this leads to the questions: (i) Can the
Anschmiegungssatz be strengthened to assert the existence of computable functions
and (ii) If a function in Jt has computable coefficients, must its monodromy group
have a solvable word problem ?

Finally we show:

THEOREM 5. There is a function whose monodromy group is free of rank two and
whose Riemann surface has a single "infinite spiral ramp" over two of its three singular
points.

By way of contrast, the inverse of Legendre's modular function also has a free
group of rank two as its monodromy group, but its Riemann surface has "countably
many infinite spiral ramps" over each singularity. Invoking the existence of functions
with prescribed monodromy group, we see that Theorem 5 is a purely algebraic
statement:

LEMMA. There are two infinite cycles which permute the integers and generate a free
group of rank two.

Proof. Recall that a permutation of the integers is called an infinite cycle if it is
conjugate to the permutation given by x(n) = n+1, n an integer.

We begin by partitioning the integers into a family of disjoint finite subsets SJ}

j an integer, of consecutive integers. The cardinality of Sj is supposed to exceed by
one the length of the corresponding member Wj(x,y) of a list of all reduced words on
the symbols x and y. Recall that Wj(x,y) is an expression of the form x^1 ... xt

Ct,
where each xt is x or y, et = ± 1 and et ei+l > 0 if xt = xi+1; its length is t. Now, for
simplicity, suppose Sj = {1, . . . , t+l}, and if xt = x write a/ / ) = i + l when et = 1
and Gj(i +1) = i when e{ = — 1. Thus, a,- maps a proper subset of Sj injectively into Sj.
Selecting an integer Pj not in the domain of Oj and an integer Qj not in its image, we
see that there is a permutation dj of Sj which extends Oj, maps Pj to Qj} and is a
cycle of length t+l. Replacing xt = x by x{ = y in this construction, we obtain a
cycle tj of length t+l carrying Mj to Nj. Substituting dj and T,- for x and y in Wj(x, y),
we find that the permutation Wj{dj, £,) maps 1 to t+1, so it is not the identity. Finally,
we construct an infinite cycle a permuting the integers by setting a{Pj) = Qj+i and
o(R) = dj(R) for all other ReSj,j = 1,2,....

Replacing dj, Pj and Qj by f,-, Mj and Nj respectively, this construction yields a
second infinite cycle T. Moreover, Wj(a, z) is not the identity, j = 1,2,..., so a and T
generate a free group of rank two as desired.

Noting that a* = n~l an and T* = /x"1 T/X generate a free group of rank two for
all permutations fx of the integers, we see that one of the two infinite cycles we have
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constructed may be prescribed arbitrarily. In fact, with obvious modifications of the
construction of the collection of S7- we have:

THEOREM 6. / / x is a permutation of the integers that has infinite order, then there
is a permutation a of the integers such that x and a generate a free group of rank two.

COROLLARY. If x is a permutation of the integers that has infinite order, then there
is a function inM whose monodromy group is free of rank two and is generated by x and
another permutation, a.
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