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Abstract
Telescopers for a function are linear differential (resp. difference) operators annihi-
lating the definite integral (resp. definite sum) of this function. They play a key role
in Wilf–Zeilberger theory and algorithms for computing them have been extensively
studied in the past 30 years. In this paper, we introduce the notion of telescopers
for differential forms with D-finite function coefficients. These telescopers appear in
several areas of mathematics, for instance parametrized differential Galois theory and
mirror symmetry. We give a sufficient and necessary condition for the existence of
telescopers for a differential form and describe a method to compute them if they exist.
Algorithms for verifying this condition are also given.

Keywords Telescopers · Differential forms · D-finite elements · Parametrized
Poincaré’s lemma
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1 Introduction

In the Wilf–Zeilberger theory, telescopers usually refer to the operators in the output
of the method of creative telescoping, which are linear differential (resp. difference)
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operators annihilating the definite integrals (resp. the definite sums) of the input func-
tions. The telescopers have emerged at least from the work of Euler [22] and have
found many applications in the various areas of mathematics such as combinatorics,
number theory, knot theory as well as others (see Sect. 7 of [26] for details or [28] for
applications in Feyman integrals). In particular, telescopers for a function are often
used to prove the identities involving this function or even obtain a simpler expression
for the definite integral or sum of this function. As a clever and algorithmic process for
constructing telescopers, creative telescoping firstly appeared as a term in the essay
of van der Poorten on Apréy’s proof of the irrationality of ζ(3) [39]. However, it was
Zeilberger and his collaborators [3, 36, 44, 45, 48] in the early 1990s who equipped
creative telescoping with a concrete meaning and formulated it as an algorithmic tool.
Since then, algorithms for creative telescoping have been extensively studied. Based
on the techniques used in the algorithms, the existing algorithms are divided into four
generations, see [15] for the details. Most recent algorithms are called reduction-based
algorithms which were first introduced by Bostan et al. [7] and further developed, for
example, in [8, 9, 16, 20]. The termination of these algorithms relies on the existence
of telescopers. The question for which input functions the algorithms will terminate
has been answered in [1, 2, 11, 21, 46] for several classes of functions such as rational
functions and hypergeometric functions as well as others. The algorithmic framework
for creative telescoping is now called the Wilf–Zeilberger theory.

Most algorithms for creative telescoping focus on the case of one bivariate function
as input. There are only a few algorithms which deal with multivariate case (see, for
example, [10, 12, 14, 27]). It is still a challenge to develop the multivariate analogue
of the existing algorithms (see Sect. 5 of [15]). In the language of differential forms
(with m variables and one parameter), the results in [12, 27] dealt with the cases of
differential 1-forms and differential m-forms respectively. On the other hand, in the
applications to other domains such as mirror symmetry (see [30, 33, 34]), one needs
to deal with the case of differential p-forms with 1 ≤ p ≤ m. Below is an example.

Example 1 Consider the following one-parameter family of the quintic polynomials

W (t) = 1

5

(
x51 + x52 + x53 + x54 + x55

)
− t x1x2x3x4x5

where t is a parameter. Set

ω =
5∑

i=1

(−1)i−1xi
W (t)

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx5.

To obtain the Picard–Fuchs equation for the mirror quintic, the geometers want to
compute a fourth order linear differential operator L in t and ∂t such that L(ω) = dη
for some differential 3-form η. Here one has that

L = (1 − t5)
∂4

∂t4
− 10t4

∂3

∂t3
− 25t3

∂2

∂t2
− 15t2

∂

∂t
− 1.
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Set θt = t∂/∂t . Then

L̃ = − 1

54
L
1

t
= θ4t − 5t(5θt + 1)(5θt + 2)(5θt + 3)(5θt + 4)

and the equation L̃(y) = 0 is the required Picard–Fuchs equation.

We call the operator L appearing in the above example a telescoper for the differential
form ω (see Definition 4). In this paper, we study the telescopers for differential forms
with D-finite function coefficients. Instead of the geometric method used in [30, 33,
34], we provide an algebraic treatment. We give a sufficient and necessary condition
guaranteeing the existence of telescopers and describe a method to compute them if
they exist. In addition, we also present algorithms to verify this condition.

The rest of this paper is organized as follows. In Sect. 2, we recall differential
forms with D-finite function coefficients and introduce the notion of telescopers for
differential forms. In Sect. 3, we give a sufficient and necessary condition for the exis-
tence of telescopers, which can be considered as a parametrized version of Poincaré’s
lemma on differential manifolds. In Sect. 4, we give two algorithms for verifying the
condition presented in Sect. 3.

Throughout this paper, we assume the following notations:

• ∂t = ∂
∂t , the usual derivation with respect to t ;

• ∂xi = ∂
∂xi

, the usual derivation with respect to xi ;
• x = {x1, . . . , xn};
• ∂x = {∂x1, . . . , ∂xn }.

The following formulas will also be frequently used:

∂μ
x x

ν =
{

ν(ν − 1) · · · (ν − μ + 1)xν−μ + P∂x , ν ≥ μ

P∂x , ν < μ
(1)

xμ∂ν
x =

{
(−1)νμ(μ − 1) · · · (μ − ν + 1)xμ−ν + ∂x P, μ ≥ ν

∂x P, μ < ν
(2)

where P ∈ k〈x, ∂x 〉.

2 D-finite elements and differential forms

Throughout this paper, let k be an algebraically closed field of characteristic zero and
let K be the differential field k(t, x1, . . . , xn)with the derivations ∂t , ∂x1 , . . . , ∂xn . Let
D = K 〈∂t , ∂x〉 be the ring of linear differential operators with coefficients in K . For
S ⊂ {t, x, ∂t , ∂x}, denote by k〈S〉 the subalgebra over k of D generated by S. For
brevity, we denote k〈t, x, ∂t , ∂x〉 by W. Let U be the universal differential extension
of K in which every algebraic differential equation having a solution in an extension
of U has a solution in U (see page 133 of [24] for more precise description).

Definition 2 An element f ∈ U is said to be D-finite over K if for every δ ∈
{∂t , ∂x1 , . . . , ∂xn }, there is a nonzero operator Lδ ∈ K 〈δ〉 such that Lδ( f ) = 0.
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Denote by R the ring of D-finite elements over K , and by M a free R-module of
rank n with base {a1, . . . , an}. Define a map D × M → M given by

(
L,

n∑
i=1

fiai

)
−→ L

(
n∑

i=1

fiai

)
:=

n∑
i=1

L( fi )ai .

This map endows M with a leftD-module structure. Let

∧
(M) =

n⊕
i=0

∧i
(M)

be the exterior algebra of M, where
∧i

(M) denotes the i-th homogeneous part
of

∧
(M) as a graded R-algebra. We call an element in

∧i
(M) an i-form. Note

that
∧

(M) inherites a left D-module structure from M. In fact, for L ∈ D and
ω = ∑

fs1,...,si as1 ∧ · · · ∧ asi ∈ ∧i
(M), one can define

L(ω) =
∑

L( fs1,...,si )as1 ∧ · · · ∧ asi

and for ω = ∑
i ωi with ωi ∈ ∧i

(M), define L(ω) = ∑
i L(ωi ). Let d : R → M

be a map defined as

d f = ∂x1( f )a1 + · · · + ∂xn ( f )an

for any f ∈ R. Then d is a derivation over k. Note that for each i = 1, . . . , n one has
that dxi = ai . Hence in the rest of this paper we shall use {dx1, . . . , dxn} instead of
{a1, . . . , an}. The map d can be extended to a derivation on

∧
(M) which is defined

recursively as

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)iω1 ∧ dω2

for any ω1 ∈ ∧i
(M) and ω2 ∈ ∧ j

(M). For detailed definitions on exterior algebra
and differential forms, we refer the readers to Chapter 19 of [29] and Chapter 1 of [43]
respectively. As the usual differential forms, we introduce the following definition.

Definition 3 Let ω ∈ ∧
(M) be a form.

(1) ω is said to be closed if dω = 0, and exact if there is η ∈ ∧
(M) such that ω = dη.

(2) ω is said to be ∂t -closed (resp. ∂t -exact) if there is a nonzero L ∈ k(t)〈∂t 〉 such
that L(ω) is closed (resp. exact).

Definition 4 Assume that ω ∈ ∧
(M). A nonzero L ∈ k(t)〈∂t 〉 is called a telescoper

for ω if L(ω) is exact.
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3 Parametrized Poincaré’s lemma

The famous Poincaré’s lemma states that if B is an open ball inRn , any smooth closed
i-form ω defined on B is exact, for any integer i with 1 ≤ i ≤ n. In this section, we
shall prove the following lemma which can be viewed as a parametrized analogue of
Poincaré’s lemma for

∧
(M).

Lemma 5 (Parameterized Poincaré’s lemma) Let ω ∈ ∧p
(M). If ω is ∂t -closed then

it is ∂t -exact.

To prove the above lemma, we need some lemmas. Note that the annihilated ideal of a
D-finite element in theWeyl algebra k〈t, x1, . . . , xn, ∂t , ∂x1 , . . . , ∂xn 〉 is holonomic, as
demonstrated in [19] (or refer to [5, 23] for the proofs). Using a dimension argument,
the holonomic property implies the existence of a specific operator L in the annihilated
ideal. However, the proofs of two lemmas below are constructive, providing algorithms
for computing L .

Lemma 6 (Lipshitz’s lemma, see Lemma 3 of [32]) Assume that f is a D-finite
element over k(x). For each i = 1, 3, 4, . . . , n, there is a nonzero operator L ∈
k(x1, x3, . . . , xn)〈∂x2 , ∂xi 〉 such that L( f ) = 0.

The following lemma is a generalization of Lipshitz’s lemma.

Lemma 7 Assume that f1, . . . , fm are D-finite elements over k(x, t) and

S ⊂ {t, x1, . . . , xn, ∂t , ∂x1 , . . . , ∂xn }

with |S| > n + 1. Then one can compute a nonzero operator L in k〈S〉 such that
L( fi ) = 0 for all i = 1, . . . ,m.

Proof For each δ ∈ {∂t , ∂x1 , . . . , ∂xn } and i = 1, . . . ,m, let Ti,δ be a nonzero oper-
ator in K 〈δ〉 such that Ti,δ( fi ) = 0. Set Tδ to be the least common left multiple of
T1,δ, . . . , Tm,δ . Then Tδ( fi ) = 0 for all i = 1, . . . ,m and δ ∈ {∂t , ∂x1 , . . . , ∂xn }. The
lemma then follows from an argument similar to that in the proof of Lipshitz’s lemma.


�
Remark 8 Lemma 7 originally appears in [47] (see Lemma 4.1), where Zeilberger
proves the existence of the operator L in the setting of Weyl algebra and gives an
algorithm to compute L in the case of two variables. Furthermore, there is a Math-
ematica package called HolonomicFunctions developed by Koutschan which allows
one to compute L (see [25]).

Lemma 9 Assume that f1, . . . , fm are D-finite over k(x, t), I , J ⊂ {1, . . . , n} and
I ∩ J = ∅. Assume further that V ⊂ {xi , ∂xi |i ∈ {1, . . . , n}\(I ∪ J )} with |V | =
n − |I | − |J |. Then one can compute an operator P of the form

L +
∑
i∈I

∂xi Mi +
∑
j∈J

N j∂x j



   36 Page 6 of 23 S. Chen et al.

such that P( fl) = 0 for all l = 1, . . . ,m, where L is a nonzero operator in k〈{t, ∂t }∪
V }〉, Mi , N j ∈ W and N j is free of xi for all i ∈ I and j ∈ J .

Proof Without loss of generality, we assume that I = {1, . . . , r} and J = {r +
1, . . . , r + s} where r = |I | and s = |J |. Let

S = {t, ∂t } ∪ {∂xi |i ∈ I } ∪ {x j | j = r + 1, . . . , r + s} ∪ V .

Then |S| = n + 2 > n + 1. By Lemma 7, one can compute a T ∈ k〈S〉\{0} such that
T ( fl) = 0 for all l = 1, . . . ,m. Write

T =
∑

d=(d1,...,dr )∈	1

∂d1x1 · · · ∂drxr Td

where Td ∈ k〈{t, ∂t , xr+1, . . . , xr+s} ∪ V }〉\{0} and 	1 is a finite subset of Zr . Let
d̄ = (d̄1, . . . , d̄r ) be the minimal element of 	1 with respect to the lex order on Z

r .

Multiplying T by
∏r

i=1 x
d̄i
i on the left and using the formula (2) yield that

(
r∏

i=1

xd̄ii

)
T = αTd̄ +

r∑
i=1

∂xi T̃i (3)

where α is a nonzero integer and T̃i ∈ k〈S ∪ {xi |i ∈ I }〉. Write

Td̄ =
∑

e=(e1,...,es )∈	2

Lex
e1
r+1 · · · xesr+s

where Le ∈ k〈{t, ∂t } ∪ V 〉\{0} and 	2 is a finite subset of Zs . Let ē = (ē1, . . . , ēs)
be the maximal element of 	2 with respect to the lex order on Z

s . Multiplying Td̄ by∏s
i=1 ∂

ēi
xr+i on the left and using the formula (1) yield that

(
s∏

i=1

∂ ēixr+i

)
Td̄ = βL ē +

∑
j∈J

L̃ j∂x j (4)

where L̃i ∈ k〈{t, ∂t , xr+1, . . . , xr+s, ∂xr+1 , . . . , ∂xr+s }∪V 〉 and β is a nonzero integer.
Combining (3) with (4) yields the required operator P . 
�

Corollary 10 Assume that f1, . . . , fm are D-finite over k(x, t), J is a subset of
{1, . . . , n} and V ⊂ {xi , ∂xi |i ∈ {1, . . . , n}\J } with |V | = n − |J |. Assume fur-
ther that ∂x j ( fl) = 0 for all j ∈ J and l = 1, . . . ,m. Then one can compute a
nonzero L ∈ k〈{t, ∂t } ∪ V 〉 such that L( fl) = 0 for all l = 1, . . . ,m.

Proof In Lemma 9, set I = ∅. 
�
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The main result of this section is the following theorem which can be viewed as
a generalization of Corollary 10 to differential forms. To describe and prove this
theorem, let us recall some notation from the first chapter of [43]. For any f ∈ R, we
define d0( f ) = 0 and

ds( f ) = ∂x1( f )dx1 + · · · + ∂xs ( f )dxs

for s ∈ {1, 2, . . . , n}. We can extend ds to the module
∧

(M) in a natural way.
Precisely, letω = ∑m

i=1 fimi wheremi is a monomial in dx1, . . . , dxn . Then d0(ω) =
0 and

ds(ω) =
m∑
i=1

s∑
j=1

∂x j ( fi )dx j ∧ mi =
s∑

j=1

dx j ∧ ∂x j (ω).

By definition, one sees that

ds(u ∧ dxs) = ds−1(u) ∧ dxs and ds(u) = ds−1(u) + dxs ∧ ∂xs (u).

Theorem 11 Assume that 0 ≤ s ≤ n, V ⊂ {xs+1, . . . , xn, ∂xs+1 , . . . , ∂xn } with |V | =
n−s andω ∈ ∧p

(M). If dsω = 0, then one can compute a nonzero L ∈ k〈{t, ∂t }∪V 〉
and μ ∈ ∧p−1

(M) such that L(ω) = dsμ.

Remark 12 1. If p = 0, then ω = f ∈ R and ds f = 0 if and only if s = 0 or
∂xi ( f ) = 0 for all 1 ≤ i ≤ s if s > 0. Therefore Corollary 10 is a special case of
Theorem 11.

2. Note that the parametrized Poincaré’s lemma is just the special case of Theorem 11
when s = n.

Proof We proceed by induction on s. Assume that s = 0 and write

ω =
m∑
i=1

fimi

where mi a monomial in dx1, dx2, . . . , dxn and fi ∈ R. By Corollary 10 with I = ∅,
one can compute a nonzero L ∈ k〈{t, ∂t }∪V 〉 such that L( fi ) = 0 for all i = 1, . . . ,m.
Then one has that

L(ω) =
m∑
i=1

L( fi )mi = 0.

This proves the base case. Now assume that the theorem holds for s < � and consider
the case s = �. Write

ω = u ∧ dx� + v
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where both u and v do not involve dx�. Then the assumption d�ω = 0 implies that

d�−1u ∧ dx� + d�v = d�−1u ∧ dx� + d�−1v + dx� ∧ ∂xl (v) = 0.

Since all of d�−1u, d�−1v, ∂x�
(v) do not involve dx�, one has that d�−1v = 0 and

d�−1(u) − ∂x�
(v) = 0. By the induction hypothesis, one can compute a nonzero

L̃ ∈ k〈{t, x�, ∂t } ∪ V 〉 and μ̃ ∈ ∧p−1
(M) such that

L̃(v) = d�−1(μ̃). (5)

We claim that L̃ can be chosen to be free of x�. Write

L̃ =
d∑
j=0

N j x
d
�

where N j ∈ k〈{t, ∂t } ∪ V 〉 and Nd �= 0. Multiplying L̃ by ∂dx�
on the left and using

the formula (2) yield that

∂dx�
L̃ =

d∑
j=0

N j∂
d
x�
x j
� = αNd + Ñ∂x�

(6)

where α is a nonzero integer and Ñ ∈ k〈{t, x�, ∂t , ∂x�
}∪V 〉. The equalities (5) and (6)

togetherwith ∂x�
(v) = d�−1(ũ) yield that Nd(v) = d�−1(π) for someπ ∈ ∧p−1

(M).
This proves the claim. Now one has that

L̃(ω) = L̃(u) ∧ dx� + d�−1(μ̃) = L̃(u) ∧ dx� + dx� ∧ ∂x�
(μ̃) + d�(μ̃).

Since L̃ is free of x1, . . . , x�, L̃d� = d� L̃ . This implies that

0 = L̃(d�(ω)) = d�(L̃(ω)) = d�−1(L̃(u)) ∧ dx� + dx� ∧ d�−1(∂x�
(μ̃))

= d�−1

(
L̃(u) − ∂x�

(μ̃)
)

∧ dx�.

Note that μ̃ can always be chosen to be free of dx�. Hence one has that d�−1(L̃(u) −
∂x�

(μ̃)) = 0. By the induction hypothesis, one can compute a nonzero L̄ ∈
k〈{t, ∂x�

, ∂t } ∪ V 〉 and μ̄ ∈ ∧p−1
(M) such that

L̄
(
L̃(u) − ∂x�

(μ̃)
)

= d�−1(μ̄). (7)

Write

L̄ =
e2∑
j=e1

∂
j
x�
Mj
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where Mj ∈ k〈{t, ∂t } ∪ V 〉 and Me1 �= 0. Multiplying L̄ by xe1� on the left and using
the formula (2) yield that

xe1� L̄ = βMe1 + ∂x�
M̃

where β is a nonzero integer and M̃ ∈ k〈{t, ∂t , ∂x�
, x�} ∪ V 〉. Hence applying xe1� to

the equality (7), one gets that

βMe1

(
L̃(u) − ∂x�

(μ̃)
)

= d�−1(x
e1
� μ̄) + ∂x�

(
M̃

(
L̃(u) − ∂x�

(μ̃)
))

.

Set L = βMe1 L̃ . Then one has that

L(ω) = βMe1

(
(L̃(u) − ∂x�

(μ̃)) ∧ dx� + d�(μ̃)
)

=
(
βMe1

(
L̃(u) − ∂x�

(μ̃
))

∧ dx� + d�(βMe1(μ̃))

= d�−1(x
e1
� μ̄) ∧ dx� + ∂x�

M̃
(
L̃(u) − ∂x�

(μ̃)
)

∧ dx� + d�(βMe1(μ̃))

= d�

(
xe1� μ̄ + M̃

(
L̃(u) − ∂x�

(μ̃)
)

+ βMe1(μ̃)
)

.

The last equality holds because

d�−1

(
M̃

(
L̃(u) − ∂x�

(μ̃)
))

= M̃d�−1

(
L̃(u) − ∂x�

(μ̃)
)

= 0.


�
Remark 13 Lemma 5 can be derived from the finiteness of the de Rham cohomology
groups of D-modules in the Bernstein class. To see this, let ω be a differential s-form
with coefficients in R and let M be the D-module generated by all coefficients of
ω and all derivatives of these coefficients with respect to ∂t . By Proposition 5.2 on
page 12 of [6], M is a D-module in the Bernstein class. Assume that ω is closed. Then
∂
j
t (ω) ∈ Hs

DR(M), the s-th de Rham cohomology group of M , for all nonnegative
integers j . By Theorem 6.1 on page 16 of [6], Hs

DR(M) is of finite dimension over

k(t). This implies that there are a0, . . . , am ∈ k(t) such that
∑m

j=0 a j∂
j
t (ω) = 0 in

Hs
DR(M), i.e.,

∑m
j=0 a j∂

j
t (ω) is exact. This proves the existence of telescopers for

the ∂t -closed differential forms. However the proof of Theorem 11 is constructive and
it provides a method to compute a telescoper if it exists.

The proof of Theorem 11 can be summarized as the following algorithm.

Algorithm 14 Input: ω ∈ ∧p
(M) and V ⊂ {xi , ∂xi |i = s + 1, . . . , n} satisfying that

ds(ω) = 0 and |V | = n − s.
Output: a nonzero L ∈ k〈{t, ∂t } ∪ V 〉 such that L(ω) = ds(μ).

1. If ω ∈ R, then by Corollary 10, compute a nonzero L ∈ k〈{t, ∂t } ∪ V 〉 such that
L(ω) = 0. Return L .
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2. Write ω = u ∧ dxs + v with u, v not involving dxs .
3. Call Algorithm 14 with v and V ∪ {xs} as inputs and let L̃ be the output.

(a) Write L̃ = ∑d
j=0 N j x

j
s with N j ∈ k〈{t, ∂t } ∪ V 〉 and Nd �= 0.

(b) Compute a μ̃ ∈ ∧p−1
(M) such that Nd(v) = ds−1(μ̃).

4. Write Nd(ω) = (Nd(u) − ∂xs (μ̃)) ∧ dxs + ds(μ̃).
5. Call Algorithm 14 with Nd(u) − ∂xs (μ̃) and V ∪ {∂xs } as inputs and let L̄ be the

output.
6. Write L̄ = ∑e2

j=e1
∂
j
xs M j with Mj ∈ k〈{t, ∂t } ∪ V 〉 and Me1 �= 0.

7. Return Me1Nd .

4 The existence of telescopers

It is easy to see that if a differential form is ∂t -exact then it is ∂t -closed. Therefore
Lemma 5 implies that given an ω ∈ ∧p

(M), to decide whether it has a telescoper,
it suffices to decide whether there is a nonzero L ∈ k(t)〈∂t 〉 such that L(dω) = 0.
Suppose that

dω =
∑

1≤i1<···<i p+1≤n

ai1,...,i p+1dxi1 · · · dxp+1, ai1,...,ap+1 ∈ U .

Then L(dω) = 0 if and only if L(ai1,...,i p+1) = 0 for all 1 ≤ i1 < · · · < i p+1 ≤ n. So
the existence problem of telescopers can be reduced to the following problem.

Problem 15 Given an element f ∈ R and its minimal annihilating operator P ∈
K 〈∂t 〉, decide whether there exists a nonzero L ∈ k(t)〈∂t 〉 such that L( f ) = 0.

Example 16 Let W (t) be as in Example 1. Then W (t) ∈ R since it is rational in
x1, . . . , x5, t . Its minimal annihilating operator in K 〈∂t 〉 is

P = ∂t + x1x2x3x4x5
1
5 (x

5
1 + x52 + x53 + x54 + x55) − t x1x2x3x4x5

.

Set L = ∂2t . Then L is a nonzero operator in k(t)〈∂t 〉 such that L(W (t)) = 0.

Note that f is annihilated by a nonzero L ∈ k(t)〈∂t 〉 if and only if P is a right-hand
factor of L , i.e. L = QP for some Q ∈ K 〈∂t 〉. For convenience, we introduce the
following definition.

Definition 17 An operator P ∈ K 〈∂t 〉 is called (x, t)-separable if there is a nonzero
L ∈ k(t)〈∂t 〉 such that L = QP for some Q ∈ K 〈∂t 〉.
Problem 15 then is reduced to the following one.

Problem 18 Given a P ∈ K 〈∂t 〉\{0}, decide whether P is (x, t)-separable.
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The above problem was called the separability problem in [13] that investigates the
possibility of eliminating the parameters x (not t) by left-multiplying the operator P
by a specific operator. Many special cases of the separability problem had been studied
in [13] and we will address the general D-finite case in this section. A similar idea has
been successfully applied in the desingularization of linear differential operators. In
this process, multiplying P by an operator on the left enables the removal of factors
of the leading coefficient of P that correspond to the removable singularities, see for
example [17, 18]. It is important to note that desingularization focuses on removing
factors (in t) within the leading coefficient, whereas in our case, the objective is to
eliminate the parameters x present in all coefficients. The rest of this paper is aimed
at developing an algorithm to solve the above problem. Let us first investigate the
solutions of (x, t)-separable operators.

Notation 19

Ct := {c ∈ U | ∂t (c) = 0} , Cx := {c ∈ U | ∀ x ∈ x, ∂x (c) = 0} .

Assume that L ∈ k(t)〈∂t 〉\{0}. By Corollary 1.2.12 of [38], the solution space of
L(y) = 0 in U is a Ct -vector space of dimension ord(L). Moreover we have the
following lemma.

Lemma 20 If L ∈ k(t)〈∂t 〉\{0}, then the solution space of L(y) = 0 in U has a basis
in Cx.

Proof Let A0 be the companion matrix of L(y) = 0, i.e.

A0 =

⎛
⎜⎜⎜⎜⎜⎝

0 1
0 1

. . .
. . .

0 1
−a0 −a1 −a2 . . . −am−1

⎞
⎟⎟⎟⎟⎟⎠

wherem = ord(L) and L = ∂mt +am−1∂
m−1
t +· · ·+a0. Set Ai = 0 for all i = 1, . . . , n.

Let ∂0 = ∂t , ∂i = ∂xi for i = 1, . . . , n. Then the system

∂0(Y ) = A0Y , ∂1(Y ) = A1Y , . . . , ∂n(Y ) = AnY

satisfies the integrability conditions:

∂i (A j ) − ∂ j (Ai ) = Ai A j − A j Ai

for all 0 ≤ i < j ≤ n. Therefore there is a solution V in GLm(U). Let v be the first
row of V . Note that det(V ) is the Wronskian determinant of v and det(V ) �= 0. These
imply that v is a basis of the solution space of L(y) = 0. Since ∂i (v) = 0 for all
1 ≤ i ≤ n, v has entries in Cx. 
�
As a consequence, we have the following corollary.
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Corollary 21 Assume that P ∈ K 〈∂t 〉\{0}. Then P is (x, t)-separable if and only if
the solutions of P(y) = 0 in U are of the form

s∑
i=1

gi hi , gi ∈ Ct , hi ∈ Cx ∩ { f ∈ U | Q( f ) = 0} (8)

for some Q ∈ K 〈∂t 〉.
Proof The “only if" part is a direct consequence of Lemma 20. For the “if" part, one
only need to prove that if h ∈ Cx ∩ { f ∈ U | Q( f ) = 0} then h is annihilated by a
nonzero operator in k(t)〈∂t 〉. Suppose that h ∈ Cx ∩ { f ∈ U | Q( f ) = 0}. Let L be
the monic operator in K 〈∂t 〉\{0} which annihilates h and is of minimal order. Write

L = ∂�
t +

�−1∑
i=0

ai∂
i
t , ai ∈ K .

Then for every j ∈ {1, . . . , n}

0 = ∂x j (L(h)) =
�−1∑
i=0

∂x j (ai )∂
i
t (h) + L(∂x j (h)) =

�−1∑
i=0

∂x j (ai )∂
i
t (h).

The last equality holds because h ∈ Cx. By theminimality of L , one sees that ∂x j (ai ) =
0 for all i = 0, . . . , � − 1 and all j = 1, . . . , n. Hence ai ∈ k(t) for all i . In other
words, L ∈ k(t)〈∂t 〉. 
�
For convention, we introduce the following definition.

Definition 22 (1) We say f ∈ U is split if it can be written in the form f = gh where
g ∈ Ct and h ∈ Cx, and say f is semisplit if it is the sum of finitely many split
elements.

(2) We say a nonzero operator P ∈ K 〈∂t 〉 is semisplit if it is monic and all its coeffi-
cients are semisplit.

The semisplit operators have the following property.

Lemma 23 Assume that P = Q1Q2 where P, Q1, Q2 are monic operators in
K 〈∂t 〉. Assume further that Q2 ∈ k(t)[x, 1/r ]〈∂t 〉 where r ∈ k[x, t]. Then P ∈
k(t)[x, 1/r ]〈∂t 〉 if and only if Q1 is also.

Proof Comparing the coefficients on both sides of P = Q1Q2 concludes the proof. 
�
As a direct consequence, we have the following corollary.

Corollary 24 Assume that P = Q1Q2 where P, Q1, Q2 aremonic operators in K 〈∂t 〉.
Assume further that Q2 is semisplit. Then P is semisplit if and only if Q1 is also.
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4.1 The completely reducible case

In Proposition 10 of [12], we show that given a hyperexponential function h over K ,
ann(h) ∩ k(t)〈∂t 〉 �= {0} if and only if there is a nonzero p ∈ k(x)[t] and r ∈ k(t)
such that

a = ∂t (p)

p
+ r ,

where a = ∂t (h)/h. Remark that a, p, r with p �= 0 satisfy the above equality if and
only if 1

p (∂t − a) = (∂t − r) 1p . Under the notion of (x, t)-separable and the language
of differential operators, Proposition 10 of [12] states that ∂t − a is (x, t)-separable if
and only if it is similar to a first order operator in k(t)〈∂t 〉 by some 1/p with p being a
nonzero polynomial in t . In this section, we shall generalize Proposition 10 of [12] to
the case of completely reducible operators. We shall use lclm(Q1, Q2) to denote the
monic operator of minimal order which is divisible by both Q1 and Q2 on the right.
We shall prove that if P is (x, t)-separable and completely reducible then there is a
nonzero L ∈ k(t)〈∂t 〉 such that P is the transformation of L by some Q with semisplit
coefficients. To this end, we need to introduce some notations from [35].

Definition 25 Assume that P, Q ∈ K 〈∂t 〉\{0}.
1. We say P̃ is the transformation of P by Q if P̃ is the monic operator satisfying

that P̃ Q = λlclm(P, Q) for some λ ∈ K .
2. We say P̃ is similar to P (by Q) if there is an operator Q with gcrd(P, Q) = 1 such

that P̃ is the transformation of P by Q, where gcrd(P, Q) denotes the greatest
common right-hand factor of P and Q.

Definition 26 1. We say P ∈ K 〈∂t 〉 is completely reducible if it is the lclm of a
family of irreducible operators in K 〈∂t 〉.

2. We say Q ∈ K 〈∂t 〉 is the maximal completely reducible right-hand factor of
P ∈ K 〈∂t 〉 if Q is the lclm of all irreducible right-hand factors of P .

Given a P ∈ K 〈∂t 〉, Theorem 7 of [35] or Theorem 1.1 on page 4 of [37] implies that
P has the following unique decomposition called Loewy decomposition,

P = λHr Hr−1 . . . H1

where λ ∈ K and Hi is the maximal completely reducible right-hand factor of
Hr . . . Hi . For an L ∈ k(t)〈∂t 〉, it has two Loewy decompositions viewed as an opera-
tor in k(t)〈∂t 〉 and an operator in K 〈∂t 〉 respectively. In the following, we shall prove
that these two decompositions coincide. For convenience, we shall denote by Pxi=ci
the operator obtained by replacing xi by ci ∈ k in P .

Lemma 27 Assume that P, L are two monic operators in K 〈∂t 〉. Assume further that
P ∈ k(t)[x, 1/r ]〈∂t 〉 with r ∈ k[x, t], and L ∈ k(t)〈∂t 〉. Let c ∈ kn be such that
r(c) �= 0.

1. If gcrd(Px=c, L) = 1 then gcrd(P, L) = 1.
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2. If gcrd(P, L) = 1 then there is a ∈ kn such that r(a) �= 0 and gcrd(Px=a, L) = 1.

Proof 1. We shall prove the lemma by induction on n = |x|. Assume that n = 1,
and gcrd(P, L) �= 1. Then there are M, N ∈ k(t)[x1]〈∂t 〉 with ord(M) < ord(L)

such that MP + NL = 0. Write

M =
m−1∑
i=0

ai∂
i
t , N =

s∑
i=0

bi∂
i
t

where m = ord(L). If the ai ’s have a common factor c in k(t1)[x1], then one sees
that c is a common factor of the bi ’s. Thus we can cancel this factor c. So without
loss of generality,wemay assume that theai ’s have no common factor. This implies
thatMx1=c1 �= 0 andMx1=c1 Px1=c1+Nx1=c1L = 0. Since ord(Mx1=c1) < ord(L),
gcrd(Px1=c1 , L) �= 1, a contradiction. For the general case, set Q = Px1=c1 .
Then Qx2=c2,...,xn=cn = Px=c. This implies that gcrd(Qx2=c2,...,xn=cn , L) = 1. By
the induction hypothesis, gcrd(Q, L) = 1. Finally, regarding P and L as opera-
tors with coefficients in k(t, x2, . . . , xn)[x1, 1/r ] and by the induction hypothesis
again, we get gcrd(P, L) = 1.

2. Since gcrd(P, L) = 1, there are M, N ∈ K 〈∂t 〉 such that MP + NL = 1. Let
a ∈ kn be such that r(a) �= 0 and both Mx=a and Nx=a are well-defined. For such
a, one has that Mx=aPx=a + Nx=aL = 1 and then gcrd(Px=a, L) = 1. 
�

Lemma 28 Let L ∈ k(t)〈∂t 〉. The Loewy decompositions of L viewed as an operator
in k(t)〈∂t 〉 and an operator in K 〈∂t 〉 respectively coincide.
Proof We first claim that an irreducible operator of k(t)〈∂t 〉 is irreducible in K 〈∂t 〉.
Let P be a monic irreducible operator in k(t)〈∂t 〉 and assume that Q is a monic
right-hand factor of P in K 〈∂t 〉 with 1 ≤ ord(Q) < ord(P). Then P = Q̃Q for
some Q̃ ∈ K 〈∂t 〉. Suppose that Q ∈ k(t)[x, 1/r ]〈∂t 〉. By Lemma 23, Q̃ belongs
to k(t)[x, 1/r ]〈∂t 〉. Let c ∈ kn be such that r(c) �= 0. Then P = Q̃x=cQx=c and
1 ≤ ord(Qx=c) < ord(P). These imply that P is reducible in k(t)〈∂t 〉, a contradiction.
So P is irreducible in K 〈∂t 〉 and thus the claim holds. Let L = λHr Hr−1 · · · H1 be
the Loewy decomposition in k(t)〈∂t 〉. The above claim implies that H1 viewed as
an operator in K 〈∂t 〉 is completely reducible. Assume that H1 is not the maximal
completely reducible right-hand factor of L in K 〈∂t 〉. Let M ∈ K 〈∂t 〉\K be a monic
irreducible right-hand factor of L satisfying that gcrd(M, H1) = 1. Due to Lemma 27,
there is a ∈ kn satisfying that gcrd(Mx=a, H1) = 1. Note that Mx=a is a right-
hand factor of L . Therefore Mx=a has some irreducible right-hand factor of L as
a right-hand factor. Such irreducible factor must be a right-hand factor of H1 and
thus gcrd(Mx=a, H1) �= 1, a contradiction. Therefore H1 is the maximal completely
reducible right-hand factor of L in K 〈∂t 〉. Using the induction on the order, one sees
that λHr Hr−1 · · · H1 is the Loewy decomposition of L in K 〈∂t 〉. 
�
Lemma 29 Assume that P is monic, (x, t)-separable and completely reducible.
Assume further that P ∈ k(t)[x, 1/r ]〈∂t 〉 with r ∈ k[x, t]. Let c ∈ kn be such that
r(c) �= 0. Then Px=c is similar to P.
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Proof Let L̃ be a nonzero monic operator in k(t)〈∂t 〉 with P as a right-hand factor.
Since P is completely reducible, by Theorem 8 of [35], P is a right-hand factor of
the maximal completely reducible right-hand factor of L̃ . By Lemma 28, the maximal
completely reducible right-hand factor of L̃ is in k(t)〈∂t 〉. Hence we may assume
that L̃ is completely reducible after replacing L̃ by its maximal completely reducible
right-hand factor. Assume that L̃ = QP for some Q ∈ K 〈∂t 〉. By Lemma 23, Q ∈
k(t)[x, 1/r ]〈∂t 〉. Then L̃ = Qx=cPx=c, i.e. Px=c is a right-hand factor of L̃ . We claim
that for a right-hand factor T of L̃ , there is a right-hand factor L of L̃ satisfying
that gcrd(T , L) = 1 and lclm(T , L) = L̃ . We prove this claim by induction on s =
ord(L̃)−ord(T ).When s = 0, there is nothing to prove.Assume that s > 0. Then since
L̃ is completely reducible, there is an irreducible right-hand factor L1 of L̃ such that
gcrd(T , L1) = 1. Let N = lclm(T , L1). We have that ord(N ) = ord(T ) + ord(L1).
Therefore ord(L̃)− ord(N ) < s. By induction hypothesis, there is a right-hand factor
L2 of L̃ such that gcrd(N , L2) = 1 and lclm(N , L2) = L̃ . Let L = lclm(L1, L2).
Then

L̃ = lclm(N , L2) = lclm(T , L1, L2) = lclm(T , L).

Taking the order of the operators in the above equality yields that

ord(lclm(T , L)) = ord(lclm(N , L2)) = ord(N ) + ord(L2)

= ord(T ) + ord(L1) + ord(L2).

On the other hand, we have

ord(lclm(T , L)) ≤ ord(T ) + ord(L) ≤ ord(T ) + ord(L1) + ord(L2).

This implies that

ord(lclm(T , L)) = ord(T ) + ord(L).

So gcrd(T , L) = 1 and then L is a required operator. This proves the claim. Now let Lc
be a right-hand factor of L̃ satisfying that gcrd(Px=c, Lc) = 1 and lclm(Px=c, Lc) =
L̃ . Let M ∈ k(t)〈∂t 〉 be such that L̃ = MLc. Then Px=c is similar to M . It remains to
show that P is also similar to M . Due to Lemma 27, gcrd(P, Lc) = 1. Then

ord(lclm(P, Lc)) = ord(P) + ord(Lc) = ord(Px=c) + ord(Lc) = ord(L̃).

Note that lclm(P, Lc) is a right-hand factor of L̃ . Hence lclm(P, Lc) = L̃ and thus
P is similar to M . 
�

For the general case, the above lemma is not true anymore as shown in the following
example.
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Example 30 Let y = x1 log(t + 1) + x2 log(t − 1) and

P = ∂2t + (t − 1)2x1 + (t + 1)2x2
(t2 − 1)((t − 1)x1 + (t + 1)x2)

∂t .

Then P is (x, t)-separable since {1, y} is a basis of the solution space of P = 0 in
U . We claim that P is not similar to Px=c for any c ∈ k2\{(0, 0)}. Suppose on the
contrary that P is similar to Px=c for some c = (c1, c2) ∈ k2\{(0, 0)}, i.e. there
are a, b ∈ k(x, t), not all zero, such that gcrd(a∂t + b, Px=c) = 1 and P is the
transformation of Px=c by a∂t +b. Denote Q = a∂t +b. As {1, yx=c} is a basis of the
solution space of Px=c, {Q(1), Q(yx=c)} is a basis of the solution space of P = 0. In
other words, there is C ∈ GL2(Ct ) such that

(
b, a

(
c1

t + 1
+ c2

t − 1

)
+ byx=c

)
= (1, y)C .

Note that log(t + 1), log(t − 1), 1 are linearly independent over k(x1, x2, t). We have
that b ∈ Ct\{0} and bc1 = c̃x1, bc2 = c̃x2 for some c̃ ∈ Ct . This implies that
x1/x2 = c1/c2 ∈ k, a contradiction.

When the given two operators are of length two, i.e. they are the products of two
irreducible operators, a criterion for the similarity is presented in [31]. For the general
case, suppose that P is similar to Px=c by Q. Then the operator Q is a solution of the
following mixed differential equation

Pz ≡ 0 mod Px=c. (9)

An algorithm for computing all solutions of the above mixed differential equation is
developed in [41]. In the following, we shall show that if P is (x, t)-separable then Q
is an operator with semisplit coefficients. Note that Q can be chosen to be of order less
than ord(Px=c) and all solutions of the mixed differential equation with order less than
ord(Px=c) form a vector space over k(x) of finite dimension. Furthermore Q induces
an isomorphism from the solution space of Px=c(y) = 0 to that of P(y) = 0.

Proposition 31 Assume that P is monic and completely reducible. Assume further that
P ∈ k(t)[x, 1/r ]〈∂t 〉 with r ∈ k[x, t]. Let c ∈ kn be such that r(c) �= 0. Then P is
(x, t)-separable if and only if P is similar to Px=c by an operator Q with semisplit
coefficients.

Proof Denote m = ord(Px=c) = ord(P). Assume that {α1, . . . , αm} is a basis of
the solution space of Px=c(y) = 0 in Cx and P is similar to Px=c by Q. Write
Q = ∑m−1

i=0 ai∂ it where ai ∈ K . Then

(Q(α1), . . . , Q(αm)) = (a0, . . . , am−1)

⎛
⎜⎜⎜⎝

α1 α2 · · · αm

α′
1 α′

2 · · · α′
m

...
...

...

α
(m−1)
1 α

(m−1)
2 · · · α

(m−1)
m

⎞
⎟⎟⎟⎠

and Q(α1), . . . , Q(αm) form a basis of the solution space of P(y) = 0.
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Now suppose that P is (x, t)-separable. Due to Lemma 29, P is similar to Px=c
by Q. By Corollary 21, the Q(αi ) are semisplit. The above equalities then imply that
the ai are semisplit. Conversely, assume that P is similar to Px=c by Q and the ai
are semisplit. It is easy to see the Q(αi ) are semisplit. By Corollary 21 again, P is
(x, t)-separable. 
�

Using the algorithm developed in [41], we can compute a basis of the solution
space over k(x) of the Eq. (9). It is clear that the solutions with semisplit entries
form a subspace. We can compute a basis for this subspace as follows. Suppose that
{Q1, . . . , Q�} is a basis of the solution space of the Eq. (9) consisting of solutions
with order less than ord(Px=c). We may identify Qi with a vector gi ∈ Km under the
basis 1, ∂t , . . . , ∂

m−1
t . Let q ∈ k(x)[t] be a common denominator of all entries of the

gi . Write gi = pi/q for each i = 1, . . . , �, where pi ∈ k(x)[t]m . Write q = q1q2
where q2 is split but q1 is not. Note that a rational function in t with coefficients
in k(x) is semisplit if and only if its denominator is split. For c1, . . . , c� ∈ k(x),∑�

i=1 cigi is semisplit if and only if all entries of
∑�

i=1 cipi are divided by q1. For
i = 1, . . . , �, let hi be the vector whose entries are the remainders of the corresponding
entries of pi by q1. Then all entries of

∑�
i=1 cipi are divided by q1 if and only if∑�

i=1 cihi = 0. Let c1, . . . , cs be a basis of the solution space of
∑�

i=1 zihi = 0. Then
{(Q1, . . . , Q�)ci | i = 1, . . . , s} is the required basis. Consequently, the required basis
can be computed by solving the system of linear equations

∑�
i=1 zihi = 0.

In the following, for the sake of notations, we assume that {Q1, . . . , Q�} is a basis of
the solution space of the Eq. (9) consisting of solutions with semi-split coefficients. By
Proposition 31 and the definition of similarity, P is (x, t)-separable if and only if there
is a nonzero Q̃ in the space spanned by Q1, . . . , Q� such that gcrd(Px=c, Q̃) = 1.
Note that Q̃ induces a homomorphism from the solutions space of Px=c(y) = 0 to
that of P(y) = 0. Moreover, one can easily see that gcrd(Px=c, Q̃) = 1 if and only
if Q̃ is an isomorphism i.e. Q̃(α1), . . . , Q̃(αm) form a basis of the solution space
of P(y) = 0 where {α1, . . . , αm} is a basis of the solution space of Px=c(y) = 0.
Assume that Q̃ = ∑m−1

i=0 a0,i∂ it with a0,i ∈ K . Using the relation Px=c(α j ) = 0 with
j = 1, . . . ,m, one has that for all j = 1, . . . ,m

Q̃(α j )
′ =

(
m−1∑
i=0

a0,iα
(i)
j

)′
=

m−1∑
i=0

a1,iα
(i)
j

for some a1,i ∈ K . Repeating this process, we can compute al,i ∈ K such that for all
j = 1, . . . ,m and l = 1, . . . ,m − 1,

Q̃(α j )
(l) =

m−1∑
i=0

al,iα
(i)
j .
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Now suppose that Q̃ = ∑�
i=1 zi Qi with zi ∈ k(x). One sees that the al,i are linear in

z1, . . . , z�. Set A(z) = (ai, j )0≤i, j≤m−1 with z = (z1, . . . , z�). Then one has that

A(z)

⎛
⎜⎝

α1 · · · αm
...

...

α(m−1) · · · α
(m−1)
m

⎞
⎟⎠ =

⎛
⎜⎝

Q̃(α1) · · · Q̃(αm)
...

...

Q̃(α1)
(m−1) · · · Q̃(αm)(m−1)

⎞
⎟⎠ . (10)

It is well-known that Q̃(α1), . . . , Q̃(αm) form a basis if and only if the right-hand
side of the above equality is a nonsingular matrix and thus if and only if A(z) is
nonsingular. In the sequel, one can reduce the problem of the existence of Q̃ satisfying
gcrd(Q̃, Px=c) = 1 to the problem of the existence of a ∈ k(x)� in k(x) such that
det(A(a)) �= 0.

Suppose now we already have an operator Q with semisplit coefficients such that
P is similar to Px=c by Q. Write Q = ∑m−1

i=0 bi∂ it where bi ∈ K is semisplit. Write
further bi = ∑s

j=1 hi, jβ j where hi, j ∈ k(x) and β j ∈ k(t)\{0}. Let L0 = Px=c and

let Li be the transformation of Li−1 by ∂t for i = 1, . . . ,m−1. Then Li annihilatesα
(i)
j

for all j = 1, . . . ,m and Li
1
βl
annihilates βlα

(i)
j for all l = 1, . . . , s and j = 1, . . . ,m.

Set

L = lclm

({
Li

1

βl
| i = 0, . . . ,m − 1, l = 1, . . . , s

})
.

Then L annihilates all Q̃(αi ) and thus has P as a right-hand factor. We summarize the
previous discussion as the following algorithm.

Algorithm 32 Input: P ∈ K 〈∂t 〉 that is monic and completely reducible.
Output: a nonzero L ∈ k(t)〈∂t 〉which is divided by P on the right if it exists, otherwise
0.

1. Write

P = ∂mt +
m−1∑
i=0

ai
r

∂ it

where ai ∈ k(t)[x], r ∈ k[x, t].
2. Pick c ∈ kn such that r(c) �= 0. By the algorithm in [41], compute a basis of the

solution space V of the Eq. (9).
3. Compute a basis of the subspace of V consisting of operators with semisplit coef-

ficients, say Q1, . . . , Q�.
4. Set Q̃ = ∑�

i=1 zi Qi and using Q̃, compute the matrix A(z) as in (10).
5. If det(A(z)) = 0 then return 0 and the algorithm terminates. Otherwise compute

a = (a1, . . . , a�) ∈ k� such that det(A(a)) �= 0.
6. Set bi to be the coefficient of ∂ it in

∑�
j=1 a j Q j and write bi = ∑s

j=1 hi, jβ j where
hi, j ∈ k(x) and β j ∈ k(t). Let L0 = Px=c and for each i = 1, . . . ,m−1 compute
Li , the transformation of Li−1 by ∂t .
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7. Return lclm
({

Li
1
β j

| i = 0, . . . ,m − 1, j = 1, . . . , s
})

.

4.2 The general case

Assume that P is (x, t)-separable and P = Q1Q2 where Q1, Q2 ∈ K 〈∂t 〉. It is clear
that Q2 is also (x, t)-separable. One may wonder whether Q1 is also (x, t)-separable.
The following example shows that Q1 may not be (x, t)-separable.

Example 33 Let K = k(x, t) and let P = ∂2t . Then P is (x, t)-separable and

∂2t =
(

∂t + x

xt + 1

) (
∂t − x

xt + 1

)
.

The operator ∂t + x/(xt + 1) is not (x, t)-separable, because 1/(xt + 1) is one of its
solutions and it is not semisplit.

On the other hand, the lemma below shows that if Q2 is semisplit then Q1 is also
(x, t)-separable.

Lemma 34 (1) Assume that Q1, Q2 ∈ K 〈∂t 〉\{0}, and Q2 is semisplit. Then Q1Q2 is
(x, t)-separable if and only if both Q1 and Q2 are (x, t)-separable.

(2) Assume that P ∈ K 〈∂t 〉\{0} and L is a nonzero monic operator in k(t)〈∂t 〉. Then
P is (x, t)-separable if and only if the transformation of P by L is also.

Proof Note that the solution space of lclm(P1, P2)(y) = 0 is spanned by those of
P1(y) = 0 and P2(y) = 0. Hence lclm(P1, P2) is (x, t)-separable if and only if so are
both P1 and P2.

(1) For the “only if" part, one only need to prove that Q1 is (x, t)-separable. Assume
that g is a solution of Q1(y) = 0 in U . Let f be a solution of Q2(y) = g in U . Such f
exists because U is the universal differential extension of K . Then f is a solution of
Q1Q2(y) = 0 in U . By Corollary 21, f is semisplit. Since Q2 is semisplit, one sees
that g = Q2( f ) is semisplit. By Corollary 21 again, Q1 is (x, t)-separable.

Now assume that both Q1 and Q2 are (x, t)-separable. Let Q̃ ∈ K 〈∂t 〉 be such that
Q̃Q2 = L where L ∈ k(t)〈∂t 〉 is monic. By Corollary 24 and the “only if" part, Q̃
is semisplit and (x, t)-separable. Thus lclm(Q1, Q̃) is (x, t)-separable. Assume that
lclm(Q1, Q̃) = N Q̃ with N ∈ K 〈∂t 〉. Since Q̃ is semisplit, by the “only if" part
again, N is (x, t)-separable. Let M ∈ K 〈∂t 〉 be such that MN is a nonzero operator
in k(t)〈∂t 〉. We have that

M lclm(Q1, Q̃)Q2 = MN Q̃Q2 = MNL ∈ k(t)〈∂t 〉.

On the other hand, M lclm(Q1, Q̃)Q2 = MM̃Q1Q2 for some M̃ ∈ K 〈∂t 〉. Hence
P = Q1Q2 is (x, t)-separable.

(2) Since L is (x, t)-separable, we have that P is (x, t)-separable if and only if
lclm(P, L) is also. Let P̃ be the transformation of P by L . Then P̃ L = lclm(P, L).
As L is semisplit, the assertion then follows from (1). 
�
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Assume that P is a nonzero operator in K 〈∂t 〉. Let P0 be an irreducible right-hand
factor of P . ByAlgorithm32,we can decidewhether P0 is (x, t)-separable or not. Now
assume that P0 is (x, t)-separable. Then we can compute a nonzero monic operator
L0 ∈ k(t)〈∂t 〉 having P0 as a right-hand factor. Let P1 be the transformation of P by
L0. Lemma 34 implies that P is (x, t)-separable if and only if P1 is also. Note that

ord(P1) = ord(lclm(P, L0)) − ord(L0)

≤ ord(P) + ord(L0) − ord(P0) − ord(L0) = ord(P) − ord(P0).

In other words, ord(P1) < ord(P). Replacing P by P1 and repeating the above process
yield an algorithm to decide whether P is (x, t)-separable.

Algorithm 35 Input: a nonzero monic P ∈ K 〈∂t 〉.
Output: a nonzero L ∈ k(t)〈∂t 〉which is divided by P on the right if it exists, otherwise
0.

1. If P = 1 then return 1 and the algorithm terminates.
2. Compute an irreducible right-hand factor P0 of P by algorithms developed in [4,

40, 42].
3. Apply Algorithm 32 to P0 and let L0 be the output.
4. If L0 = 0 then return 0 and the algorithm terminates. Otherwise compute the

transformation of P by L0, denoted by P1.
5. Apply Algorithm 35 to P1 and let L1 be the output.
6. Return L1L0.

The termination of the algorithm is obvious. Assume that L1 �= 0. Then L1 = Q1P1
for some Q1 ∈ K 〈∂t 〉. We have that P1L0 = lclm(P, L0). Therefore

L1L0 = Q1P1L0 = Q1lclm(P, L0) = Q1Q0P

for some Q0 ∈ K 〈∂t 〉. This proves the correctness of the algorithm.
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