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Let L(y)= b be a linear differential equation with coefficients in a differential field k, of 
characteristic 0. We show that if L(y)= b has a non-zero solution Liouvillian over k, then 
either L(y) = 0 has a non-zero solution u such that u'/u is algebraic over k, or L(y) = b has a 
solution in k. If L(y) = b has a non-zero solution elementary over k, then either L(y) = 0 has a 
non-zero solution algebraic over k, or L(y)=b has a solution in k. This latter fact is a 
consequence of the fact that if L(y) = b has a solution elementary over k, then it has a solution 
of the form P(log ul . . . . .  log u,,), where P is a polynomial with coefficients algebraic over k 
whose degree is at most equal to the order of L(y), and the u~ are algebraic over k. Algorithmic 
considerations are also discussed. 

I. Introduction 

In  this  paper ,  we shall present  some results concerning Liouvil l ian and  e l emen ta ry  
s o l u t i o n s  of l inear  differential  equations.  We star t  by  giving some definit ions.  Let  k ~ K 
be  o r d i n a r y  differential  fields with der ivat ion  '. The cons tant  subfield C(K) of K is def ined 
to  be the  set of e in K such that  c' = 0. We say K is a Liouvillian extension o f  k if (1) 
C(K)  = C(k) and  (2) there is a tower of fields k = K0 ~ K t  c . . .  c K,  = K such tha t  for  
each  i = 1 . . . . .  r, Kl = K~_ 1 (0~) where either (a) 01 e K t -  1 o r  (b) 0}/0i s K t -  1 or  (c) 0i is 
a l g e b r a i c  over K~_ 1. K is said to be an elementary extension of  k if (1) C ( K ) =  C(k) 
a n d  (2) there is a tower of  fields k = K 0 c K l c . . . c K , = K  such tha t  for each  
i = 1 , . . . ,  r, K~ = K~_ t(01) where either (a) for some u ¢ 0 in Ks- 1, 01 = u'/u or (b) for some  
u in K~_ 1, 0'~ = u'Oi or (c) 0~ is algebraic over  K~_ 1. We say w is Liouvil l ian (e lementa ry )  
o v e r  k if w belongs to a Liouvi l l ian (elementary) extension of k. O u r  defini t ions differ 
f rom the  s t anda rd  definit ions in that  we assume tha t  the extensions have  the same  field o f  
c o n s t a n t s  as the base fields. If  C(k) is a lgebraical ly  closed, then a differential  equa t ion ,  
w i th  coefficients in k, has a non-zero  solut ion in a Liouvi l l ian  (elementary) ex tens ion  of  k 
p o s s i b l y  conta in ing  new constants ,  if and only if it has a so lu t ion  in an  extension of the  
s a m e  type  with no new constants .  Therefore  we could  remove  this restr ic t ion a n d  res ta te  
o u r  resul ts  to al low for the possible  in t roduct ion  of new a lgebra ic  constants .  
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Section 2 is devoted to proving: 

THEOREM 1. Let  k be a differential f ield o f  characteristic 0 with a,,_ t . . . . .  ao, b in k. I f  

L(y)  = y(") +a , ,_ ly (" -  1 ) + . . .  + a o y  = b 

has a non-zero solution Liouvillian over k, then either: 

(i) L(y) = 0 has a non-zero solution u such that u'/u is algebraic over k, or 
(it) L(y) = b has a solution h, k. 

This theorem generalises Theorem 2 of Davenport  (1986) where the case n = 2 was 
treated. In Section 2 we also use Theorem 1 to show, when k is an algebraic extension of 
Q(x), where x' = 1 and Q denotes the rational numbers, that one can decide if L(y)  = b 
has a Liouvillian solution, and if so find one. 

Section 3 is devoted to proving the following generatisation of Liouville's theorem on 
integration in terms of elementary functions: 

THEOREM 2. Let  k be a differential f ield o f  characteristic 0 and let a,,_~ . . . . .  ao, b be 
elements o f  k. I f  

L(y)  = y t " ) + a , _ ~ y t " - l ) + .  . .  +aoy  = b 

has a solution elementary over k, then L ( y ) =  b has a solution o f  the f o r m  P ( t l , . . . ,  tin) 
where P is a polynomial in t 1 . . . . .  t m o f  degree at most n with coefficients algebraic over k 
and each tl is transcendental over k and satisfies t~ = u~/uifor some non-zero ui algebraic over 
k. Furthermore, i f  P,(t 1, . . . .  tin) is the homogeneous part o f  P o f  degree n and a o = 0, then 
the coefficients in P,(t~ . . . . .  t,,) are constants. 

In Section 3, we shall discuss the relation between this theorem and LiouviUe's theorem 
and give an example to show that the coefficients of P and the ui's do not necessarily lie in 
k. In the process of proving Theorem 2, we shall also generalise work of Ostrowski (1946) 
concerning the integration of elementary functions that are built up using only logarithms 
(and no exponentials), Lemma 7, as well as showing that the vector space of elementary 
solutions of L(s) = 0 has a basis of a very particular form, Lemma 8. As a corollary to 
Theorem 2, we shall also show the following "elementary" version of Theorem 1: 

THEOREM 3. Let  k be a differential f ield o f  characteristic 0 with a,_ i . . . . .  a o, b in k. I f  

L(y)  = y (" )+a , ,_ ly (" - l )+  . . .  + a o y  = b 

has a non-zero solution elementary over k, then either: 

(i) L(y) = 0 has a non-zero solution algebraic over k, or 
(if) L(y)  = b has a solution in k. 

This theorem generalises Theorems 1 and 4 of Davenport  (1986) where the cases n = 1 
and 2 are treated. We end the section with a discussion of the problem of deciding if 
L(y) = b has an elementary solution. Although we are not able to completely solve this, 
we are able to reduce the problem to finding an effective procedure for the following: 
given y~ . . . . .  y,,  algebraic over Q(x), find a system L of linear equations with constant 
coefficients such that c l Y l + . . .  +c, ,y ,  has an elementary anti-derivative if and only if 
(c~ . . . . .  c,) satisfies L. This problem can further be reduced (although we do not  do so 
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here) to a problem in algebraic geometry: given divisors D~ . . . . .  D, on a curve C, find a 
basis for the vectors of rational numbers c~ such that 2c~D~ is a torsion divisor. 

Section 4 concludes the paper with a discussion of open problems. 

2. Liouvillian Solutions of Linear Differential Equations 

Theorem 1 follows easily from parts (a) and (b) of Lemma 1 below. The proof  of this 
lemma involves several facts from the theory of Puiseux expansions. Let K be a function 
field of one variable of characteristic 0, that is, K is a finite algebraic extension of a field of 
the form k(t), where t is transcendental over k. It is known that for some m, we can embed 
K in k((tl/")), the field of formal power series in P/" with coefficients in k, the algebraic 
closure of k, via a map that is the identity on k(t) (Chevalley, 1951, p. 64). Furthermore, if 
D is a derivation of K that maps k into itself, then D extends to a derivation of k((P/'~)) in 
such a way that for any element 

t 

U :--- Z o~it~ 

in k((tt/m)) we have 
l i 

Vu = Z (Da,)t~ + ( Z  (i/,n)a,t-~- 1)Dt 
l~:r i>~r 

(Chevalley, 1951, p. 114). We shall be interested in derivations D such that either Dt~ k or 
Dt/t ~ k, in which case this fact may be verified directly. Note that part (a) of Lemma 1 is 
proved by Rosenlicht (1973) and parts (b) and (c) follow from Corollary 3 of Singer 
(1976). We give a simplified presentation for the convenience of the reader. 

LEMMA l. Let k be a differential field of characteristic 0 and let a,,-1 . . . . .  a o, b be in k. Let 

L(y) = y(,O + a,_ x Y("- 1) + . . .  + ao y. 

(a) I f  L(y)= 0 has a non-zero solution Liouvillian over k, then L(y)= 0 has a non-zero 
solution u such that u'/u is algebraic over k. 

(b) I f  L(y)= 0 has no non-zero Liouvillian solutions and L(y)= b has a non-zero 
Liouvillian solution z, then z is in k. 

(c) I f  L(y)= 0 has no non-zero elementary solutions and L ( y ) = b  has a non-zero 
elementary solution z, then z is in k. 

PROOF. We first recall some facts about Ricatti equations. Let y be a non-zero solution of 
L(y) = 0 and let w = y'/y. We see that y' = wy, y" = w'y + way, y" = w"y + 3w'v0y + w3y, etc. 
Substituting these expressions in L(y) = 0 and dividing by y, we see that w satisfies a non- 
linear differential equation of order n -  1 of the form 

R ( w )  = w " + f ( w ,  w', . . . .  w ~'-I~) = O, 

where f is a polynomial of degree less than n. Conversely, if w satisfies R(w) = O, then 
y = exp (~ w) satisfies L(y)= O. R(w)= 0 is called the Ricatti equation associated with 
L(y) = 0. Furthermore, the constant term off(w, w', . . . .  w C'- ~1) (and therefore of R(w)) is 
ao. Therefore R(w) has no constant term if and only if L(1) = 0, i.e. L(y) has no term of 
order 0. The Lemma is trivial if L(1)= 0 so we may assume L(1)va 0. 

(a) From the preceding discussion, we see that it is sufficient to prove the following: 
Let R(w) = 0 be a Rieatti equation and let K be a Liouvillian extension of k. If R(w) = 0 
has a solution in K, then R(w)= 0 has a solution algebraic over k. Replacing k by its 
algebraic closure and proceeding by induction on the transcendence degree of K over k, it 
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suffices to prove this when K is an algebraic extension of k(t) where t ' e  k or t'/t ~ k. We 
can expand any u e K in fractional powers of t -  1 as 

i 

tt = ~ o~i t -~  
i>~ p 

where ~p ~ 0. The integer p is called the order of u and is denoted by ord u. If t' s k we 
have 

- p  - 1  

(1) U' = ~, t - f f-+ terms involving higher powers of t-W. 

If t ' / t  ~ k, 
- -p  - 1  

(2) u ' =  (C~p-(p/rn)ap(t'/t))t--~-+ terms involving higher powers of t-7~-,. 

In either case, we have ord u' ~> ord u, so ord u (i~ I> ord u for all i >i 0. We now claim that if 
w satisfies R(w) = 0, then ord w = 0. If ord  w < 0, then ord (w") = n ord w while ord 
(f(w, w', . . . .  wC,,- 1~) t> ( n -  1) ord w contradicting the fact that 

R(w) = w" +f(w,  w', . . . .  w ~'-1~) = O. 

If ord  w > 0, then, recalling the fact that we are assuming f has a non-zero constant 
term, ordJ(w,  w', . . . .  w ~'-1)) = 0 .  Since ord (w") > 0 ,  we get a contradiction from 

1 

wn+f (w ,w ' ,  . . . .  w ° ' - ~ ) = 0 .  Therefore ord w = 0 .  Setting w = e o + c q t ; ~ + . . ,  and 
referring back to (1) and (2), we have that w ti~ = ~ )  + terms invoiving positive powers of 

1 1 

t-~,. Compar ing  coefficients of ( t - ; )°  in R(w) = 0, we see that R(c~ 0) = 0. So R(w) = 0 has 
a solution in k. 

(b) Let K be a Liouvillian extension of k containing a solution u of L(y)  = b, b ~ O. 
We shall first show that  u is algebraic over k. Using induction on the transcendence 
degree of K over k, we may assume that K is algebraic over ko(t), where k o is the 
algebraic closure of k and t' ~ ko or t'/t ~ k o. Expanding u in fractional powers of t -  1, we 
have 

i 

u = ~. ~tt--~, 
t>~p 

P 
where each ¢t~ e k0 and C~p ~ 0. I f  t '~ k, then as before, we have u '=  ~'pt-~+ higher powers 

1 p 1. 

of t -~ ,  u"= ct~t-~+higher  powers of t-~;, etc. Furthermore,  if p ~ 0, we can compare 
p 

coefficients of  t - ~  in L ( u ) =  b and deduce that L(~p)= 0, contradicting the fact that 
L(y) -- 0 has no non-zero Liouvillian solutions. If t ' / te  k, then 

P 
= (~p-(p/rn)~p(t / t)) t  + 

1 
terms involving higher powers of t - ~  

p 1 

= (~p t - ~ '  + terms involving higher powers of t -~ .  
1 p 

Similarly, u" = (O~pt-~)" terms involving higher powers of t -~.  Therefore, the t -~  term of 
P 

L(u) is of the form L ( ~ t - ~ ) .  If  p ~ 0, we would have a Liouvillian solution of L(y)  = 0, a 
contradiction. Therefore, in both cases, we have p = 0 and L(cto)= b. This implies that 
L(~o - -u)  = 0, so u = eo e ko. We now have that  u is algebraic over k and wish to show that 
u is in k. Let Tr  denote the trace function from k(u) to k. We then have that 
m b =  Tr(L(u) ) - -L(Tr (u ) )  for some integer m. Therefore u- (1 /m)Tr (u )  is a Liouvillian 
solution of L(y) = 0 and so u = (1/m)Tr(u) ~ k. 
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(c) The proof is identical to that of part (b) once one replaces all occurrences of the 
word Liouvillian with the word elementary. [] 

The following example, from Davenport (1986), shows that Theorem 1 cannot  be 
improved. 

EXAMPLE 1. Consider the equation y '+y  = 1Ix. This has a solution, 

that  is Liouvillian over C(x), C being the complex numbers. By degree arguments, one 
can show that neither y '+y  = 1Ix nor  y '+y  = 0 have non-zero solutions in C(x) (or, by 
elementary galois theory, do not have non-zero solutions algebraic over C(x)) but, of 
course, y '+  y = 0 has a solution u = exp ( - x )  such that u'/u E C(x). 

We now turn to the problem of deciding if L(y)= b has a Liouvillian solution and 
finding such a solution if it exists. When k is a finite algebraic extension of Q(x) and L(y) 
has coefficients in k, the second author showed how to find, in a finite number of steps, a 
basis for the vector space of Liouvillian solutions of L(y)= 0 (Singer, 1980). If, in 
addition, b is in k, this algorithm can be used to decide if L(y)= b has a Liouvillian 
solution. Since we shall present a better algorithm below, we will only give an outline. 
Define a new homogeneous linear differential equation LI(y)=Lo(L(y))  where 
Lo(y) =y ' - (b ' /b)y .  Any solution of L(y)= b will be a solution of L I ( y ) =  0. Using the 
algorithm of Singer (1980) we construct a basis Y l , . . . ,  Y,, for the vector space of 
Liouvillian solutions of Ll(y) = 0. Let z 1 = L(y~), z2 = L(y2) . . . . .  zm = L(y,r). We must 
now decide if b is a constant linear combination of zl . . . . .  z,,,. First, we find a maximal 
linearly independent subset of zl . . . . .  z,,. To do this we need only look at various 
Wronskian determinants W,(z h . . . . .  ztr) and decide which are 0 and which are not.  Say 
{z~ . . . . .  zs} form a maximal linearly independent set. We then decide if Wr(b, zl, • •., zs) is 
zero or not. If it is not zero, then L(y)= b does not have a Liouvillian solution. If 
Wr(b,z~ . . . . .  zs)=0,  then L ( y ) = b  will have a solution of the form c l y x + . . .  +cry, 
where the c~ are constants that can be determined from the minors of the Wronskian 
matrix of Wr(b, zi . . . . .  z~). 

This approach to the problem has several drawbacks. The first is that although we start 
with an nth order differential equation, we are immediately forced to find the Liouvillian 
solutions of an (n + 1)st order differential equation. Since the algorithm for finding such 
solutions increases greatly in difficulty as n increases, and, in fact, has not  been 
implemented beyond the case n = 2, we would hope to avoid this. Second, in this 
algorithm, we are forced to perform calculations in a (possibly complicated) Liouvillian 
extension of k. This again could make the calculations very difficult. The above 
considerations allow us to give an algorithm that avoids these pitfalls. We need the 
following two lemmas before we can give the algorithm. 

LEMMA 2. Let k be a finite algebraic extension of Q(x) and let k[D] be the ring o f  linear 
differential operators with coefficients in k. Let A be an n x n matrix with entries in kiD] and 
B an n x 1 matrix with entries in k. Then one can decide in afinite number of steps ifAY = B 
has a solution Y that is an n x 1 vector with entries in k and i f  so, find such a Y. 

PROOF. We may write k---Q(x,e) where ~ is aIgebraic over Q(x) of degree N. 
1, c~ . . . . .  c~N- 1 will form a Q(x) basis of k over Q(x). Define new vector valued variables 
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Y~, i = 0  . . . .  , N - - 1  and set Y = Y o + a Y t + . . . + a S - l Y • _ l .  We may also write 
A=Ao+c~A 1 + . . .  +ctn-XAN_l and B = B o + c t B l + . . .  q-~N-XBN_ a, where the Ai have 
entries in Q(x)[D] and the B~ have entries in Q(x). Substituting these expressions into 
AY = B, replacing derivatives of c~ by their known expressions in terms of 1, c~ . . . . .  an-1, 
multiplying out and again rewriting in terms of 1, ~ . . . . .  c~U-t we get 

AoYo+o~.~tYt + . . .  +cdv-l.~v_lYN_ 1 = Bo+~BI+. . . . -F0~N-  1BN_ 1, 

where the .~  have entries in Q(x)[D]. Comparing powers of c~, this latter equation is 
equivalent to ~,~" = B, where A is an nN × nN matrix and ~/" and B are nN × 1 matrix 

/ 
0 ' . 

-~N- i /  

given by 

- 1  

Solving AY = B over k is equivalent to solving . ~  = B  over Q(x). We therefore have 
reduced the problem to proving the lemma when k = Q(x). 

We now make a further reduction. As noted by Poole (1960, pp. 33-41) we can find 
n x n matrices U and V with entries in Q(x)[D] such that C = UAV is a diagonal matrix. 
Furthermore,  U will have a left inverse U -  1 and g will have a right inverse V -  1. y is then 
a solution of AY = B if and only if W = V - t Y  is a solution of CW = UB. If we write 
W = (wl . . . . .  w,) r and UB = (f ,  . . . .  ,f,)T, then CW = UB can be written as 

Ll(wl) =A 
L2(w2) =A 

L . ( w . )  = f , , ,  

where the L~ are linear differential operators with coefficients in Q(x). Therefore, to prove 
the lemma, it is enough to be able to decide if L(y) = f h a s  a solution y in Q(x), where L is 
a differential operator with coefficients in Q(x) a n d f i s  in Q(x). An algorithm for this is 
given by Singer (1981, p. 667). [] 

The  following is an example of the method described in Lemma 2. 

EXAMPLE 2. Let  k = Q(x, v/x) and 11 = 1. We wish to decide if 

y '  = (D = 1 + 
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has a solution in k and, if so, find such a solution. Letting y --- ¥o + Yt-v/~, we have 

(D Yo + x Y1) +(Yo + (D +(1/2x)) Y1) = x + x,v/~ 

or in matrix notation 

• 

This is the equation A-Y = B. We now perform elementary row column operations on ,K to 
reduce it to a diagonal matrix. These are done in the following order: ( t)  Subtract 
(D+(1/2x)) times the first column from the second column (this corresponds to 
multiplying on the right by V~ below). (2) Subtract D times the second row from the first 
(this corresponds to multiplying by U~ on the left). (3) Interchange the first and second 
row (this corresponds to multiplying by U2 on the left). We then have 

where 

0 ) 
i 1 ' 

- - D Z - ~ x D + ~ x 2  +X 

I°+11) 
10)' V l =  l " 

We denote U2Ut by U and Vl by V. We must now solve CW -- UB, that is 

-D2-~ 
This corresponds to the two linear equations W 0 = x and 

W~'+ (1/2x) W~ - (l /2x 2) W~ -xW1 = O. 

The only solution in Q(x) of the second equation is 0 as can be seen by expanding I4'1 in 
partial fractions and comparing degrees. Computing ~g = VW, we see that Yo = x, I"1 = 0. 

So y = x is a solution of y ' + v , ~ y  = 1 +x x /~ .  

LEMMA 3. Let E c F be differential fields with C(E)= C(F) and let a , ,_ l , . . . ,  ao and b be 
elements of E. Let 0 ~ F be transcendental over E and satisfy 0'/0 ~ E. i f  

L(y) = ytn)+an_lyC"-1)+ . . .  +aoy = bO 

has a solution in E(0), then it has a solution of the form BO with B~ E. Furthermore, B will 
satisfy a linear differential equation Lo(y ) --b where the coefficients of  Lo(y) lie in E and 
can be determined from a,_ 1 . . . .  , a o and 0'/0 and any solution B of Lo(y) = b will determine 
a solution BO ofL(y)  = bO. 

PROOF. Let u eE(O) be a solution of L(y)=bO. We claim that the only irreducible 
polynomial p in 0 that could possibly divide the denominator of u is p = 0. To see this 
assume that p ¢ 0 is an irreducible polynomial dividing the denominator of u, Since p' 
does not divide p, we can apply L to the partial fraction decomposition of u and conclude 
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that p divides the denominator  of L(u). Since p does not divide the denominator  of bO, we 
have a contradiction. Therefore, 

u = B _ , O - ' + . . .  + B o + B ~ O +  . . .  +B~O s. 

For  each i, L(B~O ~) is a monomial  in 0 of degree i. Therefore, comparing powers of 0 in 
L(u) = bO, we have L(B1 O) = bO. Since 0'/0 e E, we can write L(B~ O) = Lo(B~)O where L0 is 
a l inear opera tor  whose coefficients lie in E and can be determined from a,_ 1 . . . . .  a0 
and 0'/0. [] 

We now present our algorithm based on Theorem 1. In fact we shall prove a stronger 
result below. 

PROPOSITION 1. Let  k be a finite algebraic extension o f  Q(x) and let an_ 1 . . . . .  ao, b and u be 
in k. Le t  tl satisfy ~?'/~l = u and assume C(k(tl)) = C(k). Furthermore, i f  ~l is algebraic over k, 
assume that we are given the minimum polynomial o f  tl over k. One can then decide, in a 

f ini te number o f  steps, i f  

L(y) = ytn) + a,_ t yr, - i~ + . . .  + ao y = bt 1 

has a Liouvillian solution, and i f  it does, produce such a solution. 

PROOF. We shall proceed by induction on n. For  n = 1, L ( y ) =  y ' + a o y  = brl always has a 
Liouvillian solution 

y = e x p ( - f a o )  f b l e x p ( f a o ) .  

Now assume that  the proposit ion is true for equations of order <n.  If L(y)  = btl has a 
Liouvillian solution, then Theorem 1 implies that either L(y)  = b~ has a solution in k(t/) 
or L ( y ) =  0 has a solution w such that w'/w is algebraic over k. Let us first decide if 
L(y)  = b~ has a solution in k(r/). If  r/is algebraic over k, Lemma 2 allows us to decide if 
L(y)  = bt 1 has a solution in k(r/) (a finite algebraic extension of k) and find one if it does. If 
17 is t ranscendental  over k, Lemma 3 implies that if L(y) = b~l has a solution in k(r/), it has 
one of  the form Br/, where B is in k and satisfies a differential equation of the form 
Lo(y)  = b whose coefficients can be computed from a,_ 1 . . . . .  ao and u. We use Lemma 2 
to decide if Lo(y)  = b has a solution and find one if it does. If  B is such a solution, then Br 1 
satisfies L(y) = bit. Therefore we can assume that  L(y)  = brl has no solution in k(~/). Let us 
now decide if L(y)  = 0 has a solution w such that w'/w is algebraic over k. Theorem 4.1 of 
Singer (1980) allows us to decide this question. If L ( y ) = 0  has no such solution, 
Theorem 1 implies that  L ( y ) =  b has no Liouvillian solution. If L ( y ) =  0 has such a 
solution, then Theorem 4.1 of Singer (1980) allows us to find a v, algebraic over k such 
that any element ff satisfying if'/( = v also satisfies L(y)  = 0. For  any such ~, we can define 
a new variable Yl by Y = f Y l .  We then have L ( ( y l ) = ( L l ( y ' a ) ) (  where L1 is a new 
differential opera tor  of order n - 1  whose coefficients lie. in k(v) and can be determined 
from the coefficients of L and v. Furthermore,  if y satisfies L(y)  = bq, then y'~ will satisfy 
LI(y'I)  = bqff- ' (where Yl = Y(-  1). Note  that  0 = t / ( -  1 satisfies 0'/0 = u - v. Conversely, if 
z is a Liouvillian solution of Ll(z )  = bO where 0 is any solution of 0'/0 = u -  v and ~ is any 
element satisfying ~'/~ =-v, then y = (Sz is a Liouvillian solution of L ( y ) =  brl. Using 
techniques of  Risch (1970) or Baldassarri & Dwork  (1979, pp. 68-71), we can determine if 
0'/0 = u - v  has an algebraic solution and find one if it does (by finding 0 we mean we 
have determined its minimal equation). If this latter equation has an algebraic solution, 
denote  this by 0. If it does not have an algebraic solution, we can formally adjoin a 
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transcendental solution, which we also refer to as O. Note that C(k(v, 0)) is at worst 
algebraic over C(k). Let ko be the algebraic closure of k in k(v, 0), ~o = bO and 
Uo = u-v+b' /b .  We then apply the induction hypothesis to decide if Lx(z)=qo has a 
Liouvillian solution and produce one if it does. By the above discussion, this is enough to 
determine if L(y)= btl has a Liouvillian solution. [] 

N o t e  that our procedure does not increase the order of the differential equation and 
that all calculations can be performed in algebraic extensions of Q(x). 

The following example illustrates the method described in Proposition 1. 

EXAMPLE 3. Let k = Q(x), H = exp (x 2) and consider the equation 

y"-2y '+y  = ( 2 x -  1) e ~2. 

The first step in the algorithm is to determine if this equation has a solution in k(r/). If  it 
does, the solution will be of the form B~/where B e k and B satisfies 

B" + 2 ( x -  1)B'+(3 +4xZ)B = 2 x -  1. 

If B = p/q where p and q are relatively prime elements of Q[x], q monic, one sees (using 
partial fractions) that q = 1. Therefore B E Q[x]. Comparing degrees we see that no such B 
can exist. 

We  now must determine if y" -2y '+y  = 0 has a solution ( such that ~'/[ is algebraic 
over  Q(x). An algorithm for this is outlined by Singer (1981). We shall only test to see if 
y" -2y '  + y  = 0 has a solution ¢ such that ¢'/{ is in Q(x) and use the simpler algorithm 
referred to in Lemma 3.4 of Singer (1981) (since y"-2y '+ y = 0 has constant coefficients 
we immediately see that e ~ is such a solution, but using this algorithm will be instructive). 
Write ( = exp (SR) where R e Q(x) to be determined. Since 

( " - 2 ~ ' + ~  = ( R ' + R 2 - 2 R +  1)~ = 0, 

R satisfies R ' + R Z - 2 R +  1 = 0. If eEQ is a zero of the denominator of R, we may  write 

c~-n c ~ - n + l  
R ( x -  c)" 4 ( x -  c)"- 1 + . . . .  

Substituting the expression in R'+R2--2R+ 1 = 0 and equating coefficients, we see that 
n = 1 and ~2_1-~ 1 = 0 or ~-1 = 1. This implies that 

1 1 
R = - - + . . . 4  - -  + p ( x )  

(x-el) (x-c.,) 

for some p(x)~ Q[x] (of course, we have not yet determined the c~ or even how many of 
them there are). We now determine the order of R at infinity. Let 

R = c%x"+c~n_lx"-x+ . . .  +~0+c~_ lx -1  + . . . .  

Substituting this expression in R ' + R Z - 2 R + I  we see that n = 0 ,  so p(x)=c~Q.  
Fur thermore ,  the x ° term in R' + R 2 - 2 R +  1 is c 2 - 2 c +  1 so e = 1. Therefore 

= exp (x ~ c 1-~ + " "  + ( x -  cm----~ + 1 

= f ( x )  e ~, 

where f (x)  = ( x - c ~ ) . . .  (x-era). Substituting this expression for ~ into y " - 2 y ' + y  = 0 
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yields ~ / " - 2 r / ' + r / = f " e ~ = 0 ,  so f ( x ) = c o + C l X .  Any ( will serve our purposes, so let 
c o=  1, ci = 0 and ~ = e L  

Proceeding as described in Proposition 1, we let y = eXy~. We then have 

y" - -- 2y' + y = eXyl = (2x - 1) e x~. 

Therefore y'£ = ( 2 x -  1) e ~-~.  Rewriting this as (Y'l)' = ( 2 x -  1) e ~ -x ,  we have Y'l = e~-~ 
SO 

e x [ eX:-x. Y 
J 

3. Elementary Solutions of Linear Differential Equations 

Although our aim is to prove Theorem 2, a statement about elementary solutions of 
differential equations, we will first have to take a closer look at Liouvillian solutions. We 
shall need some facts fi'om the Galois theory of differential equations. Let k be a 
differential field of characteristic 0 with algebraically closed subfield of constants. Let 

L(y) = yO,) + a,,_ 1 yt,, - 1) + . . .  + ao y = 0 

be a linear differential equation with coefficients in k. We say E is the Picard-Vessiot 
(P.V.) extension of  k corresponding to L ( y ) = 0  if: (1) E = k ( y l  . . . . .  y,> (i.e. E is 
generated over k by Yt . . . . .  y,, and all their derivatives) where Yt . . . . .  y, are solutions of 
L(y) = 0, linearly independent over C(k), and (2) C(k) = C(E). It is known that given k 
and L(y) as above, the corresponding P.V. extension exists and is unique up to 
isomorphism (Kolchin, 1973, p. 412). Let E = k ( y l , . . . ,  y,,) be a P.V. extension of k 
corresponding to L ( y ) =  0 and let ~r be a differential k-automorphism of E. Since a(y~) 
satisfies L(y) = 0, we have that 

cr(y3 = ~ ctjyj 
j = t  

for some constants c o . From this fact, we can deduce that the group of differential 
k-automorphisms of E is isomorphic to a group of invertible n x n matrices with entries in 
C(k) via the map identifying cr with (co). The group of differential k-automorphisms of E 
over k is called the Galois group of E over k and is denoted by G(E/k). It is known that 
an element u e E  is actually in k if and only if au = u for all cr in G(E/k) (Kolchin, 1973, 
p. 398). 

A differential field K is said to be a primitive (logarithmic) extension of k if K is a 
Liouvillian (elementary) extension of k and the elements used in building the tower from k 
to K are either algebraic or integrals of elements in the previous field (logarithms of 
elements in the previous field), u is said to be primitive (logarithmic) over k if u lies in a 
primitive (logarithmic) extension of k. 

LEMMA 4. Let  k be a differential field of  characteristic 0 with an algebraically closed.field of  
constants. Let  a,,_ 1 . . . . .  a o be in k and let E be the P.V. extension of  k corresponding to 

L(y) = y(,,) + a,_ i yO,- 1) + . . .  + aoy = O. 

(a) I f  u is a solution of  L ( y ) =  0 and C(k(u>)= C(k) then there is a differential 
k-isomorphism of  k(u> into E. 

(b) I f  L(y)---0 has a non-zero Liouvillian (elementary, primitive, logarithmic) solution, 
then for some r, 1 <~ r <<. n, L ( y ) =  L . . . .  (Lr(y)), where L , - ,  and L, are linear differential 
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operators o f  order n - r  and I" respectively with coefficients in k and the P.V.  extension o f  k 
corresponding to Lr(y) = 0 lies in a Liouvillian (elementary, primitive, logarithmic) extension 
~¢'k. 

PROOF. (a) Let E be a P.V. extension of k associated with L ( y ) =  0 and let 
k ( u ) ( z ~  . . . . .  z,,) be the P.V. extension of k ( u )  associated with L(y) = 0. Since zi . . . . .  z, 
form a basis for the set of solutions of L ( y ) =  0, we have that 

U -~- ~ Ci2 i 
[=1 

for some c ~ s C ( k e u ) ) = C ( k ) .  Therefore u e k ( z l  . . . . .  z , ) .  Since P.V. extensions are 
unique, there exists a k-isomorphism cr mapping k ( z l  . . . .  , z , )  onto E. ~r restricts to an 
isomorphism of k e u )  into E. 

(b) We shall prove this in the Liouvillian case, the other case following in a similar 
manner .  Let E be the P.V. extension of k corresponding to L ( y ) =  0. If L ( y ) =  0 has a 
Liouvillian solution then, by part  (a), we can assume L(y)  = 0 has a Liouvillian solution 
in E. Let V be the C(k)-vector space of such solutions and let y~ . . . . .  yr be a basis for this 
space. Let 

Wr(y, Yl . . . . .  Yr) 
Lr(y) = 

Wr(yt  . . . . .  y,) ' 

where W r ( y ~ , . . . ,  Yr) is the Wronskian determinant. We claim that L,(y)  has coefficients 
in k. First note that any a s  G(E/k)  will leave V invariant. Therefore a restricted to V can 
be represented by an r x r  matrix (cij) with entries from C(k). If we apply a to the 
coefficients of Lr(y) and denote this by U,(y), we have 

Wr(y,  ayl . . . . .  eyr) 
L~, (y )  = 

Wr(cryt, . . ., ay,) 

det (e;i) . Wr(y,  yt . . . . .  Yr) 

det (cij)" Wr(y t  . . . . .  yr) 

= L,(y) .  

Therefore, the coefficients of L,(y)  are left fixed by all a in G(E/k)  and so lie in k. We can 
find b,_~_ t . . . . .  bo in k so that the operator 

Ls(y) = L(y)  - (Lr(y)) ~"-r)-  b,,_,_ l(Lr(y)) ° ' - ' -  ~ -  . . .  - bo(L,(y)) 

= L ( y ) -  L, ,_r(L,(y))  

has order  equal to s < r. L~(y) = 0 will have r linearly independent solutions y~ . . . . .  y, so 
it mus t  be identically zero. Therefore L ( y ) = L , _ , ( L , ( y ) ) .  The P.V. extension of k 
corresponding to L,(y)  = 0 is isomorphic to k(y~ . . . . .  y,). Since each y~ is Liouvillian, this 
P.V. extension lies in a Liouvillian extension of k. [] 

LEMMA 5. Let  k be a differential field o f  characteristic 0 and let a,,_ 1 . . . . .  a o be elements o f  
k. I f  

L(y)  = y°')+a,,_~yt"-l) + . . .  +aoy  = 0 

has a non-zero elementary solution, then L(y) = 0 has a non-zero solution u such that 

u'lu = u'o + ~ c j ,  lu, 

where the ui are algebraic over k and the c~ are constants algebraic over k. 
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PP, OOF. We may  assume that k has an algebraically closed field of  constants. By part  (b) of 
L e m m a  4, we may  write L(y) = L,_~(L,(y)) for some r, 1 ~< r ~< n, where L,,_~ and Lr are 
linear operators with coefficients in k and where the P.V. extensions E of k associated 
with L~(y) = 0 lies in an elementary extension of k. By part  (a) of Lemma 1, L~(y) = 0 has 
a solution u such that u'/u is algebraic over k and by part (a) of Lemma 4, we may assume 
u e E .  Therefore u is elementary and so ~u'/u = log u is elementary. By Liouville's theorem 
(Theorem 3 of Rosenlicht (1976), we have that  u'/u = u'o+~, ciu'i/ui for some ui algebraic 
over k and constants c~ algebraic over k. 

LEMMA 6. Let  k be a differential field of characteristic 0 and let a,_ 1 . . . . .  a o, b be elements 
ink.  I f  

L(y) = yt,,I + a,,_ 1 Y{~- 1) + . . .  + aoy = b 

has a non-zero solution in a primitive extension of k, then either: 

(i) L(y) = 0 has a non-zero solution in an algebraic extension of k, or 
(ii) L(y) = b has a solution in k. 

PROOF. Note  that we do not exclude the case b = 0. Let K be a primitive extension of k 
that  contains an element w such that L(w)= b. We proceed by induction on the 
transcendence degree of K over k. 

Assume that  the transcendence degree of K over k is 0. If b = 0, we are done. If b ¢ 0, 
let T r  denote the trace function from K to k. We then have L (Tr (w) )=  Nb for some 
integer N. Therefore L ( ( 1 / N ) T r ( w ) - w ) =  0. Either (1/N)Tr(w)--w = 0, in which case w is 
in k, or ( 1 / N ) T r ( w ) - w  v~ O, in which case L(y) ---0 has a non-zero solution in an algebraic 
extension of k. 

We now assume that K is algebraic over F(O) where 0 ' e  F and where the transcendence 
degree of F over k is less than the transcendence degree of K over k. We again treat  
separately the cases b # 0 and b = 0. 

If  b va 0, we expand w in fractional powers of 0 -  t and write 

l 

P 
with the at algebraic over F. Since O'~F, we have w'= c~'v0-~,+terms involving higher 

1 p 
powers of 0-~.  i f  p ~ 0, we compare  coefficients of 0 - ~  in L(w)= b to conclude that  
L(c~p) = 0. Therefore L(y )=  0 has a non-zero solution algebraic over F and by induction, 
this equat ion will have a non-zero solution algebraic over k. If  p = 0, we have L(a~) = b 
and so, again by induction, we can conclude that L(y) = b has a solution in k or L(y) = 0 
has a solution algebraic over k. 

If  b = 0, we may assume k is algebraically closed and use part (b) of  Lemma 4 to 
conclude tha t  L(y)= L,_,(L,(y)) where L,,_, and Lr are linear operators with coeffÉcients 
in k and where the P.V. extension E of k corresponding to Lr(y) = 0 lies in a primitive 
extension of k. Parts (a) of Lemmas  1 and 4 imply that Lr(y)= 0 has a solution u in E 
where u'/u is in k. Therefore L(y )=  0 has a solution u in an extension k(Ot . . . . .  0,,) of k, 
having the same constants as k, where (i) u'/u is in over k and (ii) for each i, 1 ~i~< m, 
either 0i is algebraic over  k(01 . . . . .  01- l) or 01 is in k(01 . . . . .  0i- x). Since 0~, and u'/u are in 
k(Ox . . . . .  0,,_ ~), Theorem 2 of Rosenlicht (1976) allows us to conclude that u is algebraic 
over k(O~ . . . . .  0,,, _ ~). Repeating this argument for 0,,,_ 1 . . . . .  01 we finally conclude that  u 
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is algebraic over  (and therefore a number  of) k. Since u is a non-zero solution of Lr(y) = 0, 
we have L(u)=O.  [] 

Parts  of the next  l emma appear  implicitly in Ost rowski ' s  1946 paper.  Given  a 
differential field k of  characteristic 0 and an element u e k, u # 0, either there is an element 
v e k such tha t  v' = u'/u or C(k(t)) = C(k), where t is t ranscendental  over  k and t '  = u'/u 
(Risch, 1969, p. 172). Using this fact, we can construct a field, denoted by k(log), t ha t  has 
the following properties:  

(i) C(k( log) )=  C(k). 
(ii) k(log) is a purely t ranscendental  extension of  k generated by a set of algebraically 

independent  elements {h}, where for each i, there exists a u~ e k such that  t', = u'Jui, 
(iii) If  u e k, u # 0, there exists a t e k(log) such that  t' = u'/u. 

We let k[log] denote  the differential ring generated over k by  the tz. If t ek ( log )  and 
satisfies t ' e k ,  then the Kolch in -Os t rowsk i  theorem (Corol lary of Rosenlicht  (1976)) 
implies that  t = Y' c~t~+v where each c~ is a constant,  the sum is finite and v e k .  In 
particular,  if {T~} is some other set of  elements satisfying (ii), then k[{T~}] = k[{tt}]. We 
shall fix, once and for all, a set {ti} satisfying (ii). 

LEMMA 7. Let  k be a d!fferential fietd o f  characteristic zero and let k(log) be as above. Let  b 
be an element of  k[log] that is a polynomial in the t t o f  total degree at most n and let a~k .  

(a) I f  y ' =  b has an elementary solution, then it has a solution g in k[log],  where g is a 
polynomial in the t I o f  total degree at most n + 1. Furthermore, the terms o f  degree n + 1 in g 
have constant coefficients. 

(b) I f  y' + ay = b has a solution in k(log), then it has a solution g in k[log],  where g is a 
polynomial in the t~ o f  total degree at most n + 1. 

PROOF. The proof  is by induction on r, the number  of t i that appear  in b. 

(i) r = 0. Note  tha t  in this case b has total degree 0 in the tl. 

(a) F rom Liouville 's theorem we can conclude that  y ' =  b has a solution of the form 
y = Uo + ~', ei log u~ + d where the e t, d are constant,  ut e k and the log ul are in k(log). As 
already noted, the Ko lch in -Os t rowsk i  theorem implies that  each log u~ may  be wri t ten as 
a linear polynomial  in the t~, so y' = b. 

(b) Let w s k(log) be a solution of y' + ay = b. I f  y' + ay = 0 has a solution u in k, let 
w = uv. v satisfies (uv) '+auv = b so v ' =  b/u. Since v is elementary,  Liouville 's  t heo rem 
implies that  v is a polynomial  of degree at  most  1 in the t~, so w = uu satisfies the 
conclusion of the Lemma .  Therefore we can assume that  y'  + ay  = 0 has no solut ion in k. 
We now claim that  y'  + ay = 0 has no solution in k(log). If u e k(log) were a solut ion of 
y ' + a y = O ,  then u ~ k ( t l  . . . . .  t,) for some n. Since u ' / u e k  and t i c k  for i =  1 , . . . ,  n, the 
Corol lary  in Rosenlicht (1976) implies that u would be algebraic over k. Since k( t l  . . . .  , t,) 
is a purely t ranscendental  extension of k, we would have u e k, a contradiction.  N o w ,  let 
w ~ k ( t l  . . . . .  t,,) for some n. We  shall now show by induction on n tha t  w s k  (an even 
stronger  conclusion than our Lemma) .  If n = 0, we are done. Let  K = k ( t l , . . . ,  t,,_ 1) and 
let t = t,,. We first claim that w e K [ t ] .  If not,  then some irreducible polynomia l  p in t 
divides the denomina to r  of w and we may write 

A~ A~_ 1 
w = - - +  + pe ~ . . . .  
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Substituting this expression into y' + ay = b we have 

- ctp'A______~ aA~ 
p~,+l + . . . + - - ~ - - +  . . . .  b. 

Since pXp'A~, we have a contradiction. Therefore w e K [ t ]  and we may write 
w = A , , t m + . . .  +A0. Substituting into y ' + a y  = b, we have 

A ' ~ t " + ( m A m t ' + A ~ _  1)t m- ~ + . . .  + a A m W +  . . . .  b. 

If m > 0, we have A~ + aAm = 0, contradicting the fact that y '+ ay = 0 has no solutions in 
k(log). Therefore, w e K and by induction w ~ k. 

(ii) r > 0. Let t be one of the tt appearing in b and let b = b,,t"+ . . .  +be where the bt 
are polynomials in r - 1  of the tg, say t~ . . . . .  tr_ t, of degree at most  n - - i .  Let 
K = k( t l  . . . . .  tr-  t). 

(a) If y' = b has a solution in an elementary extension of k, then b = W'o + ~  clw~/w~ for 
some w~eK( t )  and constants c~. Let 

B u 
wo = Bmt" + . . . + Bo + ~ ~ - ~  

be the partial fraction decomposition of we where the p~ ~ K i t ]  are menlo and irreducible 
and let w~ = d~ I-[ P~J, d i s k  and nj natural numbers. We then have 

b,,t" + . . .  + be = B',,, t" + roB,, t " -  ~ (u'/u) + . . .  + B'o 

J +_C'd. 
where t' = u'/u. Comparing degrees we have that m = n + 1 and B',, = O. Fur thermore ,  

' = o  s ' B u ~  = 0  and Y' .ct~ P, 

Therefore, the B i and d~ satisfy 

B',,+I = 0 

b,, = (n+ 1)B,,+ t(u'/u) + B'. 
b,,_l = ne.(u' /u) + B'. _ ,  

: 

b, = + B5 
, 4  ¢ 

be = B,(u'/u) + B'o + c, 

Since B,+~ is a constant and B, satisfies B ; = b , - ( n + l ) B , , + l ( u ' / u ) ,  the induction 
hypothesis implies that/3,  is a polynomial of degree at most 1 in k [ t ~ , . . . ,  t~_ 1], with the 
terms of degree 1 having constant coefficients. Since B,,_ 1 satisfies B',,_ ~ = b,_ t - nB,,(u'/u), 
B,,_ ~ is a polynomial of degree at most 2 in k[t~ . . . . .  t~_ ~] with terms of  degree 2 having 
constant coefficients. In this way, we have for i = 1 . . . . . .  n, B~ is a polynomial of degree at 
most n - i +  1 in k[t~ . . . . .  t , - l ]  with terms of degree n - i +  1 having constant coefficients. 
B 0 + ~ q l o g  d~ satisfies Y = b o + B ~ ( u ' / u ) .  Therefore, by the induction hypothesis,  this 
latter equation has a solution B that is a polynomial in k[log] of degree at most  n + 1 with 
the terms of degree n + l  having constant coefficients. Furthermore,  we have 
B 0 + ~  c~ log d~ = B +  c where c is a constant. We would be done if we knew that  the d~ 
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were in k (at this poin t  we only know they are in K). We have 

~" ctd'i +(B e - B ) '  = O. 

Using  a s tandard trick (Rosenlicht, 1976) we m a y  assume that  the c t are linearly 
independen t  over the rationals.  Since Bo, B and the d~ are in k(log), we m a y  apply  
T h e o r e m  2 of Rosenlicht (1976) to conclude that  the d i are algebraic over k. Since k(log) is 
a pure ly  t ranscendental  extension of k, we have that  the d~ are in k. Therefore 
Bo = B - - ~ c t l o g d ~ + e .  As noted  before, the Ko lch in -Os t rowsk i  theorem implies that  
each log d~ is a linear po lynomia l  in the tl with constant  coefficients, so the r ight-hand side 
is a po lynomia l  of degree at mos t  n + 1 in the t~, whose terms of  degree n + 1 have constant  
coefficients. 

(b) Le t  w ~ k(log) be a solution of y' + ay = b. I f  y' + ay = 0 has a solution u in k, let 
w = uv. v satisfies (uv)' + auv = b, so v' = b/u. Since b/u is a polynomial  of degree n in the t~, 
pa r t  (a) implies tha t  v is a po lynomia l  of degree at  most  n +  1 in the t~. So w = uv will 
satisfy the conclusion of the Lemma.  Therefore, we may assume y ' + a y = O  has no 
so lu t ion  in k. This implies as before, that y ' +  ay = 0 has no solution in k(log). We now 
will show that  w 6 K [ t ] .  If not ,  some irreducible polynomial  p in t divides the 
d e n o m i n a t o r  of w and we may  write 

A~ 
p~ 

Subst i tu t ing  into y' + ay = b, we have 

- c~p'A~ 
p~+ 1 t- . 

a ~  1 
+ ~-z-F + . . . .  

aA~ 
. . + ~ +  . . . .  b. p~ 

Since p Xp'A~ and b e K [ t ] ,  we would have a contradiction.  Therefore, we have 
w = B,, t"  + . . .  + B o. Substituting, we have 

! t/I B,, t + (roB,,, g + B'm- 1) t m- ~ + •. • + aBm t m + . . . .  b, t" + . . . .  

Since y' + ay = 0 has no solut ion in k(log), we have m = n and B', + aB, = b,. Since we can 
have  a t  mos t  one solut ion of y' + ay = b, in k(log), we can app ly  the induction hypothesis 
to conc lude  that  B,, is a polynomial  in the t~ of degree at mos t  1. Fur thermore ,  since 
B , , e k [ t x , . . . ,  t , _ l ]  we conclude that  B, is a polynomial  in tl . . . . .  t , -1  of  degree at  most  1. 
B,,-1 satisfies y ' + a y = b , _ l - n B ,  t'. Since the r ight-hand side of this equation is a 
p o l y n o m i a l  of  degree at mos t  1 in tl . . . . .  tr-1 we can again apply the induct ion 
hypothes i s  to conclude that/3, ,_ 1 is a polynomial  in tl . . . . .  t r -  1 of  degree at most  2. In 
this w a y  we see that  each B~ is a polynomial  of degree at mos t  n - i + l  in tl . . . . .  t,,_l. 
Therefore ,  w is a po lynomia l  of degree at most  n +  1 in t~ . . . . .  t,. [] 

T h e  next  l emma  shows that  the space of elementary solutions of a homogeneous  linear 
differential  equat ion has a basis of a very special form. 

LEMMA 8. Let  k be an algebraically closed differential .field o f  characteristic 0 and let 
L (y )  = 0 be an nth order homogeneous linear differential equation with coefficients in k. 
T h e n  there exists a differential field K such that C ( K ) = C ( k )  and elements 
ul, 0~, i = 1 , . . . ,  m, in K such that 

(i) Each ui ~k[ log]  is a polynomial o f  degree at most n - 1 .  
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(ii) Each 0 i satisfies 

O'dO~ V'~o + ~ v'~j Cij - -  
Di d 

for some v o e k and constants £ij" 

(iii) (u~ O~ . . . . .  u,,,O,,,} forms a basis Jbr the space of  elementary solutions o f  L(y)  = O. 

PROOF. Note we do not conclude that the 0~ are transcendental over k. The proof  proceeds 
by induction on n. By Lemma 5, if L(y )=  0 has an elementary solution, it has a solution 
0 ~a 0 such that  0'/0 = v'o + Y, ci(v~/v~) for some v~ e k and constants c~. If n = 1, then {0} is 
the  desired basis. Now assume the lemma true for equations of order less than n. Let 
y = 0 Y and substitute into L(y) = 0. We then have that y satisfies L(y) = 0 if and only if Y 
satisfies L ( Y ' ) =  0, where f, is a linear operator of order n - 1  with coefficients in k. 
Therefore, the map rk(y) = (y/O)' is a linear map of the space of elementary solutions of 
L(y) = 0  onto the space of elementary solutions w of L ( y ) = 0  such that w has an 
elementary anti-derivative. We wish to construct a good basis for the image of ¢.  To do 
this, let {ut 01 . . . . .  u,,O,,,} be a basis for the space V of all elementary solutions of L(y) = 0 
where the us, 0~ satisfy (i) and (ii) above. Let S be the set of elements z of V satisfying (a) 
z = uv where u e k[log] is a polynomial of degree at most n - 2  and v'/v = w'o + ~ c~(wl/wi) 
for some w~ E k and constants ct and (b) z has an elementary anti-derivative. We claim that 
S spans the image of ¢. Let w be in the image of ¢, i.e. w is a solution of L(y) = 0 and w 
has an elementary anti-derivative. We may write w = ~ c~u~O~. By combining terms where 
Ot/O~k for i~aj, we may write w =Y '  ziOi where each z ~  kl'log] is a polynomial of  degree 
at most  n - 2  and 0~ are as before and satisfy O~/Oj~k for i~aj. Since 0d0j satisfies 
(O~/Oj)'/(O~/O;)~k and O,/OjCk, repeated application of Theorem 2 of Rosenlicht (1976) 
shows that Oi/Ojq~k(log). Since w has an elementary anti-derivative, T h e o r e m 2  of 
Rosenlicht (1975) implies that each zlOt has an elementary anti-derivative and so is in S. 
Therefore S spans the image of ¢. Let {u~ v~ . . . . .  UrV~} be a maximal linearly independent 
subset of S. We then have that O, 0 ~ u~ v~ . . . . .  0 ~ u~v, is a basis for the space of elementary 
solutions of L(y)  = 0. We will show that it is of the desired form. For  each v~ that  is not 
algebraic over k(log), Theorem 2 of Rosenlicht (1975) implies that u~v~ will have an anti- 
derivative of the form Uzvl for some U~ in k(log). Since Ui sa~'isfies y'+ (v'i/vt)y = ul, part 
(b) of Lemma 7 implies that U~ may be chosen to be in k[log] and to be a polynomial  of 
degree at most n -  1. For  each v~ that is algebraic over k(log), we again have that v~ must 
be in k. Therefore, u~v~e k[log] is a polynomial of degree at most n - 2 ,  so by par t  (a) of 
Lemma 7, ~ u~v~e k[log] is a polynomial of degree at most n - 1 .  [] 

LEMMA 9. Let  k be an algebraically closed differential field of  characteristic 0 and let 
a,,_ 1, • •., ao, b be elements of k. Let 0 satisfy 0'/0 ~ k and C(k(O)) = C(k). I f  

L(y) = y~'°+a,,_lyt"-l~ + . . .  +aoy = bO 

has a solution elementary over k, then L (y )=  bO has a solution of the form BO, where 
B s k[log] is a polynomial in the t i of  degree at most n. 

PROOF. We proceed by induction on n. Let w be an elementary solution of L(y) = bO. If 
n = 0, then w = (b/ao)O. Now assume that the result is true for equations of order  less than 
n. If L(y) = 0 has no elementary solution, then part (c) of Lemma 1 implies w ~ k(O). If 0 is 
in k, we may write w=(wO-1)O to satisfy the conclusion of the Lemma. If 0 is 
transcendental over k, then Lemma 3 implies that L(y) = bO has a solution of the form BO 
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with B in k, so we again can satisfy the conclusion of the lemma. Therefore we may 
assume that L ( y ) =  0 has an elementary solution. Lemma 5 implies that L ( y ) =  0 has a 
solution of the form t/ with ~f/tl=W'o+Y'.ct(w']wi), where the wtek and the c~ are 
constants. Since k is algebraically closed, we may select such an r/ that also satisfies 
C(k(O, tl) ) = C(k) (cf. Risch, 1969). Letting w = t/v we see that v satisfies L,_~(v') = btlO -~ 
where L,,_, is an operator of order n -  1 with coefficients in k. Since v is elementary, we 
may apply the induction hypothesis and conclude that L,  _ 1(y) = bOtl- ~ has a solution of 
the form BOil- ' where B E k[log] is a polynomial in the h of degree at most n -  1. Since v' 
and BOtl-~ satisfy the same inhomogeneous linear differential equation, we have that 
v' = BOt l- ~ + ~ ui Oi where {ui0~} forms a basis for the elementary solutions of L,,_ 1 (Y) = 0 
as in Lemma 8. Letting 0o = Or/- 1 and combining terms, we may write v' = uo Oo + ~ u~O~ 
where O~/Ojq~k for i vsj. Since v is elementary, we may apply Theorem 2 of Rosenlicht 
(1975) and conclude that each u~0~ has an elementary anti-derivative. If 0~ is 
transcendental over k, then uiO l will have an anti-derivative of the form U~O~ where U s 
satisfies U'z+(O'~/O~)U~ = u~, so by part (b) of Lemma 7, Ut may be taken to be a 
polynomial in k[log] of degree at most n. If 0~ is algebraic over k (and therefore in k), then 
uiO t is a polynomial in k[log-I of degree at most n -  1. Part (a) of  Lemma 7 implies that it 
has an anti-derivative in k[log] of degree at most n. This polynomial may be written as 
Ui0~ where U~ is a polynomial of degree at most n. Since v=UoOo+~utOl ,  we have 
y = vrl = UoOotl+ ~ u~O~tl. Since if' UiOi~ is a solution of L(y) = 0 and 0o = Or/-~ we have 
that UoO is a solution of L(y) = bO of the desired form. [] 

We can finally give the 

PROOF OF THEOREM 2. If we let 0 = 1 in Lemma 9, we get the first part of the conclusion of 
Theorem 2. Now assume ao = 0. If L(y) = b has an elementary solution w, w' satisfies 

L, _ 1 (Y) = y0, - l) + a,,_ 1 yC,- 2) + . . .  + a 1 y = b. 

Using the first part of Theorem 2, we can conclude that L , - I ( y ) =  b has a solution 
P oe  k[log] that is a polynomial of degree at most n -  1 in the t~. Since w' and Po satisfy 
the same inhomogeneous linear equation, we may write w'= Po +Y', eiulOl, where {u~0~} is 
a basis for the elementary solutions of L,,-I(Y)= 0 as in Lemma 8. Combining terms if 
necessary, we may write w'=woOo+~,wiOi where 0o= 1, Oi/Oj(Ek(log) for i # j  and each 
w ~ k [ l o g ]  is a polynomial of degree ~ n - 1  in the t;. Since w is elementary each wiO~ will 
have an elementary anti-derivative. In particular, Lemma 7 implies that woOo = Wo has an 
elementary anti-derivative P~ k[log] that is a polynomial in the ti of degree at most  n, 
whose terms of degree n have constant coefficients. Since S ~ wiOi is a solution of L(y)  = 0, 
we have L ( P ) = b .  [] 

The  following lemma shows that the P above may be of degree n and that when ao ~ 0, 
the coefficient of the highest degree term need not be constant. 

LEMMA 10. I f  m and n are integers, with n >t O, and c is a constant, then y = (c/x ")l log" x 
satisfies a linear differential equation of  order n with coefficients in Q(x). 

PROOF. We proceed by induction on n. When n = 0, y satisfies y = c/x ' .  For  n > 0, let 
z = x ' y .  We then have z' = (nc/x) log" - 1 x, so by induction, z' satisfies a linear differential 
equat ion of order n - 1 .  Therefore z satisfies an nth order linear differential equation 
L(z)  = b. If we replace z by x"y  and rearrange terms, we see that y satisfies a linear 
differential equation of order n. [] 
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Liouville's theorem on integration in finite terms, Theorem 3 of Rosenlicht (1976) says 
that if an element v of a differential field k has an elementary anti-derivative, then 
v = u'o + ~, ci(u'i/u~), where each u s e k and each cf is constant. If we apply our T h e o r e m  2 to 
the differential equation y' = v, we may conclude that v has an anti-derivative of the form 
Vo + ~  d~ log v~, where the d~ are constant and the v~ are only algebraic over k. We need an 
additional argument to show that  the v~ are actually in k. We may write v = v'o + ~ c~(v'Jv~) 
with the v~e ko an algebraic extension of k. Letting Tr  denote the trace function from k0 to 
k, we have nv = T r v  = (Tr re ) '+  ~ c~(Nv~)'/Nvi, where No i is the norm of v t and n is some 
integer. Letting Uo=(1/n)Trvo,  U i = N v  ~ and c~=(1/n)dt, gives the conclusion of 
Liouville's theorem. This raises the question of whether or not we can improve 
Theorem 2 to conclude that the u~ are actually in k. The following example shows that  we 
cannot .  

EXAMPLE 4. Let  t = e2*+ 1 and consider the differential field k = C(x, t). The differential 
equat ion 

Y ' +  Y = \ t ( t-  1)) 
has an elementary solution. In fact, all solutions are of the form 

y = 2 + - -~  log \ - ~ - ~ }  -~ X/~, 

where c is a constant. We claim that we cannot write any such y as y = ~2 u~ log vl+ w 
where u t, v,. and w are in k. Assuming the claim, we can conclude that the first part  of 
Theorem 2 cannot  be improved. To prove the claim assume y = '~, u~ log v~ + w as above. 
We then have that 

and the log u~ are algebraically dependent over k(w/~ ). The Kolchin-Ostrowski theorem 
implies that there are constants c~ and a, b in k such that 

0 + ~ c~ log vi = a + b,v/~. 
Differentiating, we have 

t ( t _ l )  x / / t + E  c.- '  = a' + . 

Note  that b ¢ 0, since x / ~  k. Since t' = 2 ( t -  1), we have 

t' 2 b , + l t '  
t ( t -  1) t 2 t b. 

If  we write b = p/q where p, q e C(x)[e2X], p and q relatively prime and q monic,  then 
comparing the partial fraction expansions of both sides of the last equation allows us to 
conclude that q = 1.We therefore have 

2 = (e 2~ + 1)b' + e2Xb, 

where b = b , , ( e 2 ~ ) " + . . . + b o ,  b~eC(x). Comparing highest powers of e 2x we get 
0 - b m  + (2m + 1)b,,,. This yields a contradiction, since this latter equation has no non-zero  
solution in C(x). 
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We can also show that the second part of Theorem 2 cannot be improved. The function 
y above has an elementary integral given by 

Therefore  all solutions of 

Y"+ ~ = \ t ( t -  1)} + 1 
are of the form 

2x+ :log t~/+c, logtviT+l)+% 
where c x and cz are constants. 

To  show that the second part of Theorem 2 cannot be improved, we must show that 
such an element cannot be written as w + ~  ui log vi with w, u t, vt algebraic over k. If it 
could,  we would then have 

0 2 = w+Y' uiIog v~. 

We may  assume that the log v~ that appear with non-zero coefficients in this latter 
expression are algebraically independent over k. The Kolchin-Ostrowski theorem allows 
us to conclude that 0 = ~ c~ log v~ for some constants c~. Substituting this expression in 
the above  formula and using the fact that the log v~ are algebraically independent over k, 
we have that all the u~ and e~ are 0. This implies that 0 is algebraic over k. The Kolchin-  

Ostrowski theorem implies that 0 would then be an element of k(q/t), i.e. 0 = a + bw/t for 
some a, b ~ k. The discussion in the preceding paragraph shows that this is impossible. 

We now come to the 

PROOF OF THEOREM 3. By Theorem 2, L(y )=  b has a solution in k[log]. By Lemma 6, 
either L(y)  = 0 has a solution algebraic over k or L(y) = b has a solution in k. [] 

The following example from Davenport (1986) shows that Theorem 3 cannot be 
improved.  

EXAMPLE 5. The equation 

has the elementary solution 

Y' + Y x ( x -  1~ 

jx 
Using part ia l  fraction decompositions, one can show that y'+y/2x --- (x + 1)/x(x- l )  nor 

y'+y/2x---0 have solutions in C(x), yet y'+y/2x = 0 does have the solution y = 1/~/fx, 
which is algebraic over C(x). 

We end this section with a discussion of the problem of deciding if L(y) = b has an 
elementary solution. In what follows, Q will denote the algebraic closure of the rationals. 

LEMMA 1 1. Let k be an algebraic extension of ~2(x) and L ( y ) =  0 a linear differential 
equation with coefficients in k with clssoeiated Picard-Vessiot extension K. One can 
effectively find elements u 1 . . . . .  u,,,, algebraic over k such that Yl = e x p ( ~ t q )  . . . . .  
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Ym = exp (~ urn) satisfy L ( y ) =  0 and any z in K that satisfies L ( y ) =  0 with z ' / z  algebraic 
over k lies in the Q. span o f  y t . . . . .  y,,. 

PROOF. In 1981 Singer gave a procedure to decide if L(y) = 0 has a solution Yl such that 
Y't/Yt = ul is algebraic over k and to find such an element if one exists. If no such element 
exists we are done. Otherwise, let y = Yl Y and substitute in L(y)  = O. Y' will then satisfy a 
homogeneous linear differential equation L ( y ) = 0  of order lower than L ( y ) =  0. By 
induction, find vt . . . . .  v r, algebraic over k such that z 1 = exp (~ vl) . . . . .  Zr = e x p  (~vr) 
satisfies the conclusion of the lemma for L(y). Since k is algebraically closed, z 1, . . . ,  zr 
can furthermore be chosen so that C(k(zl  . . . . .  z,, vl . . . . .  vr)) = C(k). One easily sees that 
any solution z of L ( y ) = O  with z'/z algebraic over k, lies in the (2 span of wl =y l ,  
w2 = Yl S z~ . . . . .  wr+ 1 = Yt ~Zr. If each of the w~ had algebraic logarithmic derivative we 
would be done. In general, we must find a maximal linearly independent set of vectors 
(el . . . . .  e,+t) in (Q)~+t such that e l w 1 + . . .  +e,+lwr+l has logarithmic derivative 
algebraic over k. Let c 1 w 1 + . . .  + er+ ~ wr+ ~ have logarithmic derivative algebraic over k. 
Dividing by yj and differentiating, we see that z = c 2 z l + . . .  +c ,+lz ,  has an anti- 
derivative whose logarithmic derivative is algebraic over k. Combining those zr such that 
z~/zj are algebraic over k and renumbering, we have z =p~z l  + . . .  +p,,,z,,, where z~/z: is 
not  algebraic over k and each p~ is of the form ~ cjhtj where h~j is algebraic over k. 
Theorem 1 of Rosenlicht (1975) implies that z = p~z~ for some i. (To effectively test if z,/zj 
is algebraic, note that (zt/zj)'/(zi/zj) = v~- vj. w'/w -- v~ - v: has a solution w algebraic over k 
with C(k(w)) = C(k) if and only if all solutions w of this equation with C(k(w))  = C(k) are 
algebraic over k (Risch, 1969). The techniques of Risch (1970) allow one to effectively 
decide this question.) Therefore, for each i, we must find a maximal linearly independent 
set of (e 2 . . . . .  e,+ 1) such that ( ~  ejh~j)zl has an anti-derivative z with z'/z is algebraic over 
k or not.  Ifz~ is not algebraic over k and if (~  ejh~j)z~ has an anti-derivative z such that z'/z 
is algebraic over k, then Theorem 2 of Rosenlicht (1975) implies that it has an anti- 
derivative of the form az l for some a in k({h,j}, v~). Furthermore,  a satisfies 
a'+v~a = ~  elh~j. Using the Main Theorem of Risch (1968, p. 7), we can find a maximal 
linearly independent set of (c2, • . . ,  e,+~) such that this equation has such a solution a. 
(An alternative approach would be to generalise the techniques developed in Lemma 2 tO 
handle the case where B contains parameters.) Now assume z~ is algebraic over k. If 
(~, cjhfj)z~ has an anti-derivative z such that z'/z is also algebraic over k, then z is algebraic 
over k (Rosenlicht, 1975). In this case a ' =  (~ejh~j)z~ has a solution algebraic over 
k({hij}, z~) and so, by taking traces, must have a solution in this latter field. We can again 
use the Main Theorem of Risch (1970) to find a maximal linearly independent set of 
(c2 . . . .  , c,+~) such that this equation has a solution a. [] 

The following is an example of the method described in Lemma 11. 

EXAMPLE 6. Let  k = 0~(x) and 

L(y)  = y"  -- (4x + 3)y" + (4x 2 + 8x + 1)y' - ( 4 x  2 -t- 4x - 1)y = 0. 

We must  determine if this equation has a solution y such that y'/y is algebraic over k. We 
use the algorithm of Lemma 3.4 of Singer (1981) (as in Example 3) to determine if 
L(y)  = 0 has a solution y such that y'/y is in k and find that y = e x is such a solution. 
Letting y = e-~Y, we see that Y' satisfies 

L(y) = y"--4xy '  + (4x 2 - 2)y = O. 
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Inductively (and omitting the details) we find that 

zl = exp (x a) = exp (Sx/2) and z2 = x exp (x 2) = exp (~ (x/2)+(1/x)) 

satisfy the conclusion of the lemma for I(y) = O. 
We must  now check to see if z2/zl~k. Since (z2/zl) '/(z2/zl)= 1Ix, we must decide if 

w'/w = 1/x has a solution algebraic over k. We shall only test to see if this equation has a 
solution in k (since it does). Partial fractions and a degree argument allow us to conclude 
that w --- x is a solution. Therefore z2/zl ek. 

The algorithm now has us determine those constants Cl and c2 such that (c 1 +e2x)z l  
has an  anti-derivative whose logarithmic derivative is algebraic over k. Since zl is not  
algebraic over k (i.e. w ' - 2 x w  = 0 has no non-zero solutions algebraic over k), (ct + e2 x)z l  
will have such an anti-derivative if and only if it has one of the form az~ for some a~k.  
Therefore we must find those constants cl and c2 such that a ' + 2 x a = c l + c l x  has a 
solution a in k. We follow the procedure for this as given by Risch (1969). Let a = p/q 
with q monic and p and q relatively prime elements of Q['x]. A partial fraction argument  
shows that q =  1. Comparing degrees, one can show that  p eO.. We then have 
p ' + 2 x p  = 2xp = c~ +CEX, so cl = 0 and c2 is arbitrary. Therefore (ca +c2x)z  has an anti- 
derivative z such that z'/z is algebraic over k if and only if cl = 0. We can therefore 
conclude that 

= eX,  y 2  = e x z  1 = ½ 

satisfy the conclusion of Lemma 11. 

LEMMA 12. Let k be an algebraic extension of ~2(x) and L ( y ) = 0  a linear differential 
equation with coefficients in k. 

(i) One can decide in a finite number of  steps if  L ( y )=  0 has a non-zero elementary 
solution and if  so find Vo . . . . .  v,, algebraic over k and cl . . . . .  c,, in Q such that any 
solution of  y'/y = v o + ~. c)v)/v i is a solution o f  L(y) = O. 

(ii) One can decide in a finite number of  steps if L ( y ) =  0 has a non-zero algebraic 
solution and, i f  so, find one. 

PROOF. (i) Let y~ . . . . .  y,, be as in the conclusion of Lemma 11. We claim that L(y) = 0 has 
a non-zero elementary solution if and only if, for some i, Yt is elementary over k. The  
sufficient condition is obvious. To prove the necessary condition, we note that if L(y)  = 0 
has a non-zero elementary solution, Lemma 5 implies that L(y)= 0 has a non-zero 
solution y, elementary over k, such that y'/y is algebraic over k. We may write, after 
possibly renumbering the yi's, y = d i y  i + . .  , +d,,,y,,, for some d i in Q with I I  d~ v ~ 0. If we 
differentiate this m - 1  times, we get 

Y~ = d l  Pj(~QYl + . . .  + d,,p~(u,,)ym 

for j = 0 . . . . .  m -  i ,  where each pj is a differential polynomial with constant coefficients. 
This gives a system of linear equations for the y~. The determinant of the coefficient 
matr ix  is 

(I-I d,)(I-I y , ) - lWr(yl  . . . . .  y~) ~ O. 

Therefore,  we can solve for the yi's in terms of the yCJ), 0 ~<j ~< s - 1 ,  and the pl(ut), 
0 ~<j < m -  1, 1 ~< i ~< m. Therefore, each y~, 1 ~< i ~< s is elementary. Note that y~ elementary 
implies that y;/y~ has the form described in the conclusion of this lemma. Therefore, to 
decide if L(y) = 0 has a non-zero elementary solution, we find u~ . . . . .  u,, as in Lemma  11 
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and, using the results of Risch (1970), decide if any of these has an elementary anti- 
derivative. 

(ii) Let Yt . . . . .  y,,, be as in Lemma 11. Note  that any algebraic solution of L(y )  = 0 
must lie in the Q span of these elements. Therefore the same proof  as in (i) shows that 
L(y) = 0 has a non-zero algebraic solution if and only if at least one of the y~ is algebraic. 
One can decide this using results from Risch (1970). [] 

Let  F be a differential field of characteristic 0 with constant subfield C. We say that  we 
can solve the problem o f  parameterised integration in fn i te  terms for F if: 

(a) For any elements fa . . . . .  f ,  of F, one can determine in a finite number of steps a 
system L of linear equations in N variables with coefficients in C such that 
dl f l  + • .. + dNfN has an integral in an elementary extension of F for dl . . . . .  dN in the 
algebraic closure C of C if and only if (da . . . . .  dN) satisfies L. For  each (d t . . . . .  dN) in O N 
satisfying L one can find, in a finite number of steps %, in F, v~ in CF and cl in C for 
i = 1 . . . . .  m such that 

dl f l  + . , .  +dNfN = V'o+CaV'l/va + . .  . +c,,,v~,,/v,,,. 

(b) Let f ,  g~, i =  1 . . . . .  m be elements of F. One can find, in a finite number of  steps, 
h a . . . . .  hr in F and a set L of linear equations in m + r variables with coefficients in C, 
such that y' + f y  = y.  cig~ holds for y in F and ci in C if and only if y = ~ y~h~ where the y~ 
are elements of C and (cl . . . . .  %,  Ya . . . . .  y,) satisfy L. 

In 1976, Mack showed that the problem of parameterised integration in finite terms can 
be solved in any purely transcendental elementary extension of C(x), C a finitely 
generated extension of Q. This result was extended in the appendix of Singer et al. (1986) 
to include regular log-explicit extensions of C(x). We need to use the fact that if we can 
solve the problem of parameterised integration in finite terms for a field F, then we can 
solve this problem for any purely transcendental elementary extension of F. The proofs 
appearing in Mack (1976) or Singer et al. (1986) immediately yield this result. 

PROPOSITION 2. Let k be an algebraic extension of  O~(x). Assume that one can solve the 
problem of parameterised integration in finite terms for all algebraic extensions o f  k. Let 
L(y) = b be a linear differential equation with coefficients in k. 

(i) One can find, in a finite number o f  steps, a basis Yl . . . . .  y,,,for the space o f  elementary 
solutions of L ( y ) =  O. Furthermore, these elements may be chosen to lie in a purely 
transcendental extension o f  an algebraic extension of  k. 

(ii) One can decide in a finite number of  steps i lL (y )  = b has an elementary solution and, 
i f  so,find one that lies in a purely transcendental elementary extension of  an algebraic 
extension of  k. 

PROOF. (i) Use Lemma 12 (i) to decide if L(y)  = 0 has an elementary solution and, if so, 
find one, say Ya, such that Y'~/Ya is algebraic over k. Substituting y = Yl Y into L(y) = 0, we 
get a homogeneous linear differential equation L(y) = 0 that is satisfied by Y'. Arguing by 
induction, we can find 5~1,..., Yr that lie in a purely transcendental elementary extension 
of an algebraic extension of k. Using the remarks immediately preceding this proposition, 
we can find a system L of linear equations with coefficients in (2 such that 
da,~l + •. • + dr.v, has an elementary anti-derivative if and only if (dl . . . .  , d,) satisfies L. 
From L we can find a basis Y2,...,Y,,, for the space of d ~ . ~ + . . .  +d,~r that have 
elementary anti-derivatives. These anti-derivatives can be chosen to lie in a purely 
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transcendental elementary extension of an algebraic extension of k. Therefore 
Y~, Y~ ~ Yz . . . . .  Yt ~ Ym, forms a basis of the desired type for L(y)  = O. 

(ii) Using (i) we could argue as we did in the Liouvillian case in the paragraph 
immediately following Example 1. This forces us to consider linear differential equations 
of order  one more than the equation we want to look at. Using Theorem 3 we can avoid 
this. To decide if L(y )  = b has an elementary solution, we first use Lemma 2 to decide if 
L ( y )  = b has a solution in k. If it does we are done. If not, use Lemma 11 (ii) to decide if 
L ( y )  = 0  has a non-zero algebraic solution. If not, then L ( y ) =  b does not have an 
elementary solution. Otherwise, let y~ be such a solution. Substituting y = y ~ Y  into 
L ( y )  = b, we see that Y' will satisfy a linear differential equation L(y) = b with coefficients 
algebraic over k and order one less than the order of L. Arguing inductively, we decide if 
f ,(y) = b has an elementary solution ~ of the prescribed form. If not, then the original 
equat ion will have no such solution. Otherwise we must decide if there exist constants 
d2 . . . . .  d,, in Q such that ~ +d2y2 + . . .  +dm~,, has an elementary anti-derivative where 
Y, Y2 . . . .  , ~,, forms a basis for the space of elementary solutions of L ( y ) =  0. If such 
constants exist, then y t [ . ( y ~ + d z ~ 2 + . . .  +d,,),,) is a non-zero elementary solution of 
L ( y )  = b. If not, then L ( y ) =  b has no such solution. 

4. Final Comments 

In Section 3 we reduced the problem of deciding if L(y)  = b has an elementary solution 
(where this equation has coefficients in an algebraic extension of Q(x)) to showing that the 
problem of parameterised integration in finite terms can be solved for algebraic extensions 
of Q(x).  We know that part (b) of this problem can be solved for such fields (cf. Risch, 
1968). We feel that a solution of this problem would be of independent interest (cf. 
Davenport ,  1984b, Problem 6). 

Another open problem is to extend the results of Singer (1981) to include equations 
L ( y )  =.0 that have coefficients in a given Liouvillian or elementary extension of Q(x). 
Even the following problem is open: Let K be an elementary extension of Q(x) and let 
L ( y )  = 0 be a homogeneous linear differential equation with coefficients in K. Decide if 
L ( y )  = 0 has a solution in K. When the order of L is one, Risch (1968, 1969, 1970) solved 
this problem. A solution of this problem for arbitrary n would be a starting point for 
generalising the results of Singer (1980) as well as being useful in giving a simplified 
presentation of the general Risch (1968) algorithm. 
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