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AN EXTENSION OF LIOUVILLE’S THEOREM ON INTEGRATION
IN FINITE TERMS*

M. F. SINGER, B. D. SAUNDERS AND B. F. CAVINESS

Abstract. In Part of this paper, we give an extension of Liouville’s Theorem and give a number of
examples which show that integration with special functions involves some phenomena that do not occur
in integration with the elementary functions alone. Our main result generalizes Liouville’s Theorem by
allowing, in addition to the elementary functions, special functions such as the error function, Fresnel
integrals and the logarithmic integral (but not the dilogorithm or exponential integral) to appear in the
integral of an elementary function. The basic conclusion is that these functions, if they appear, appear
linearly. We give an algorithm which decides if an elementary function, built up using only exponential
functions and rational operations has an integral which can be expressed in terms of elementary functions
and error functions.
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Introduction. In 1969 Moses [MOSE69] first raised the possibility of extending
the Risch decision procedure for indefinite integration to include a certain class of
special functions. Some of his ideas have been incorporated as heuristic methods in
MACSYMA and REDUCE. However, little progress has been made on the theory
necessary to extend the Risch algorithm. One step in this direction was the paper by
Moses and Zippel [MOZI79] in which a weak Liouville Theorem was given for special
functions (this result also appears in [SING77]).

In Part I of this paper, we give an extension of Liouville’s Theorem [RISC69, p.
169] and give a number of examples which show that integration with special functions
involves some phenomena that do not occur in integration with the elementary functions
alone. Our main result generalizes Liouville’s Theorem by allowing, in addition to the
elementary functions, special functions such as the error function, Fresnel integrals
and the logarithmic integral (but not the dilogorithm or exponential integral) to appear
in the integral of an elementary function. The basic conclusion is that these functions,
if they appear, appear linearly.

In Part II of this paper, we use the results of Part I to examine the question of
when the integral of an elementary function can be expressed in terms of elementary
functions and error functions. We give an algorithm which decides if an elementary
function, built up using only exponential functions and rational operations has an
integral which can be expressed in terms of elementary functions and error functions.

Some of the results of this paper have been announced in [SSC81]. We wish to
thank Barry Trager for drawing our attention to Example 2.1 in 2.

Finally, all fields in this paper are assumed to be of characteristic 0. C, Q and Z
stand for the complex numbers, rational numbers, and integers respectively.

I. An extension of Liouville’s Theorem.
1. Statement and discussion of results. We begin by defining a generalization of

the elementary functions. Let F be a differential field of characteristic 0 with derivation

* Received by the editors March 19, 1982, and in final revised form July 5, 1984.

f Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.

$ Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12181. The

work of this author was supported in part by the National Science Foundation under grant MCS79-09158.
Department of Computer and Information Sciences, University of Delaware, Newark, Delaware

19711. The work of this author was supported in part by the National Science Foundation under grant

MCS79-09158.

966



INTEGRATION IN FINITE TERMS 967

and constants C. Let A and B be finite indexing sets and let

{G (exp R,,( r))},eA,

= {Ht(Iog S( Y))}z,
be sets of expressions where"

(1) G, R, H, St are in C(Y) for all a A, fl e B, i.e. they are all rational
functions with constant coefficients;

(2) for all fl B, if H(Y) P( Y)/Q(Y) with P, Q in C[, then deg P
deg Q + 1.

We say that a differential extension E of F is an -elementary extension of F
if there exists a tower of fields F Fo F = F, E such that F F_(0) where
for each i, 1 n, one of the following holds:

(i) Oi is algebraic over Fi_;
(ii) 0 u’0 for some u F_;
(iii) 0[ u’/u for some nonzero u F_;

(1.1) (iv) for some a A, there are u, v F_ such that
0’ u’G(v) where v’= (R(u))’v;

(v) for some fl B, there are u, v in F_ such that
O=u’H,(v) where v’=(S,(u))’/S,(u) and S(u)O.

Informally, we could write (1.1) cases (ii)-(v) as
(ii’) 0 exp u;
(iii’) Oi log u;
(iv’) 0 u’G(exp R(u)) dx;
(v’) Oi u’H(log S(u)) dx.
Cases (ii)-(iv) and (ii’)-(iv’) are not equivalent since, for example, (ii) determines

0 up to a multiplicative constant while (ii’) refers to a specific function, exp. Although
this distinction is not usually emphasized in the standard Liouville Theorem, it is not
a pedantry here. The distinction between (iv)-(v) and (iv’)-(v’) is crucial to prevent
transcendental constants from being introduced by integration. This will be discussed
in detail in 2.

The definition of -elementary functions is broad enough to include such
functions as the error function, the Fresnel integrals and the logarithmic integral. Let
F C(x), C the complex numbers. The error function is defined by

erf(u)= u’ e dx

where G(exp R(g)) exp (- g) with G(W) W and R(Y) Y.
The Fresnel integrals are defined by

For S(u) we have that

G(exp R(Y))
eir/2 Y2]2 1

i’tr 2 y22ie
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where G(W) (W2-1)/2iW and R,(Y) i,n’y2/2. For C(u) we have a similar
expression.

The logarithmic integral is defined by

u’. dxli(u)=
logu

with Ht(W) 1/W and St (Y) Y.
$-elementary functions do not include the dilogarithm (or Spence function)

defined by

Li2 (u) / u’ log u
dx

u-1

nor the exponential integral

u,e
Ei (u) dx

since they both violate condition (1) of the definition. Of course, Ei (u)= li (eU), so
the exponential integral is implicitly covered by our analysis. One would like a theory
that explicitly includes these functions but this remains an open problem.

We can now state the generalization of Liouville’s Theorem.
THEOREM 1.1. Let F be a differentialfield of characteristic zero with an algebraically

closed subfield of constants C. Let y be in F and assume there exist an -elementary
extension E of F and an element y in E such that y’= y. Then there exist constants ai,

bi,,, cit3 in C, wi in F, and ui,,, uit3, vi,, vit3, algebraic over F, such that

(1.2) y=W’o+ ai--+ 2 Y biu’iG(vi)+ c,t3uitHt3(vt3)
i=1 Wi ot6A ial flB iJo

where I,, and J are finite sets of integers for all a and fl and

(S(u,))’
l) :a Ra tli )t l)ia’ l)ti ---(’i S tli 0

for all a, fl and i.
The proof of Theorem 1.1 will be given in 3. Now some comments about the

hypotheses and conclusion of the theorem.
Condition (2) in the first paragraph of this section seems artificial, but the theorem

is false without it. Consider the following example.
Example 1.1. Let F C(x, log x), where C is the field of complex numbers,

and {(log Y( Y+ 1))2}. In this case the index set B is a singleton and H y2. This
is excluded by condition (2) since deg (numerator of H)= 2> deg (denominator of
H)+I.

Claim. (a) log x/ (x + l lies in an -elementary extension of F but
(b) logx/(x+ l) w+ ciw’i/wi+ diuiv2 for any wi, ui, v algebraic over F with

v (u(ui + 1))’/ui(ui + 1) and constants ci, di in C.
To verify (a), compute (log x(x/ 1))2 dx by parts. First we have that

log x)2 dx x(log x)2- 2x log x + 2x,

(log (x + l)) dx=(x+l)(log(x+l))E-2(x+l)log(x+l)+2(x+l),
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and

Hence

log x)(log (x + )) clx x(og x) og (x + 1)-(x + ) log (x + )

log x
log x + 2x + /

x+l

(log x(x+ 1))z dx= I (lg x+lg (x+ 1))2 dx

to obtain

wlog x_ W’o+, ci---t’+ diu’(ri log x+ ki)2
x+l w

log x Nwi)’
/Zx / i (Tr Wo)’+ E c, Nw"--,

where/z is a positive integer and Nw is the norm of w. This contradicts the fact that
log x/(x + 1) is not elementary and hence (b) is verified.

Unlike the standard Liouville Theorem, the above theorem only guarantees that
there exist w, ui, uo, vi,, rio, algebraic over F such that (1.2) holds. One would have
hoped that these elements could be chosen to lie in F but this is not the case in general.

Example 1.2. Let F C(x, exp x, exp (-exp x + x/2)), g’ {exp (- y2)},
Note that F is a purely transcendental extension of C.

Claim. (a) exp(-expx+x/2)dx lies in an g-elementary extension of F.
(b) exp (-exp x + x/2) W’o + Y ci w/ wi + diu’ivi, where v’ (-2uiu’i)vi, for any w,
vi in F.

To verify (a), we see that

f exp (-exp x+) dx=Iexp(-expx) exp(-) dx =x/--- erf(exp ).
Note that exp (x/2) F.

To verify (b), assume such an expression existed. By the structure theorem in
ri(exp x + x/2) + six + a where ri and si are rational numbers[ROCA79], we have ui

and ai C. Since F is a purely transcendental extension of C, this is only possible if

To verify (b) assume that logx/(x+ 1)= w+Yi= ci w’i/wi+Z,= diu’ivi with wi,

u, v algebraic over F and vl (ui(u + 1))’/ui(ui + 1). From the structure theorem
([ROCA79, p. 359]), we have for each i, 1 -< -< m, that u(u,,+ 1) cix r, for some rational
number ri and c C. We can assume that neither c nor ri is zero. We also have
vi=rilogx+ki for some kC. Furthermore, each ui is algebraic over K=
C(x, log x, xr, , x r,.) and satisfies the irreducible equation u(u + 1) cx, =0. Let-
ting Tr be the trace function from K(ul," , u,,) to K, we see from this equation that
Tr (ui) is an integer. Therefore, Tr (u’i)= (Tr ui)’= 0. Apply the trace to both sides of

=f (logx)2+2 f (logx)(log(x+l)) dx+ I (log(x+l))2 dx

x
elementary function + 2 - dx.
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ri=si=0 and uiC. Therefore we would have exp(-expx+x/2)=W’o+
contradicting the fact that the error function is not elementary.

Ci Wti/Wi,

2. The question of constants. In this section we will discuss the question of
transcendental constants appearing in our integral when we express this integral in
terms of ’-elementary functions. We will rely heavily on the notion of a constrained
extension of a differential field and other concepts from differential algebra. We refer
the reader to [KOL73] as a general reference for differential algebra and explicitly to
page 142 for an exposition of the concept of constrained extension.

We quote two facts from [KOL73]: 1) Let F be a differential field of characteristic
0, P a differential ideal in the ring of differential polynomials F{yl,’’’, Yn} and B a
differential polynomial in F{yl,... ,y,} such that B C=P. There exist elements
r/,..., r/n in some extension of F such that (r/l,’", r/,) is a zero of P,
B(r/1," , r/,) 0 and (r/l," , r/,) is constrained over F; 2) Let F be as before. If
(r/, .., r/n) is constrained over F, then the constants of F(r/1, , r/,) are algebraic
over the constants of F.

PROPOSITION 2.1. Let F be a differential field of characteristic O, I a differential
ideal in F{y,..., y,,} and De F{y,..., y,} such that D I. If there exist an .-
elementary extension E of F and elements ,..., , in E such that (,..., ,) is a
zero of I with D(, ,) O, then there exists an ;-elementary extension E of F,
whose constants are algebraic over the constants of F, and , -) O.

Proof Let E F(O1,..., 0,) where each 0 satisfies (i), (ii), (iii), (iv) or (v) of
(1.1). Each of these conditions defines 0i in terms of differential equations involving
elements of F(0,. ., 0-1). These elements can be written as quotients of elements
in F[O1,’’’, 0_]. Let Ci be the product of the denominators of all elements of
F(01,- ", 0_1) appearing in the definition of 0i. Similarly each ’ can be written as
i--Ai(O," ", On)/Bi(O1," ", On). Let G(yl," ", Yn): D(I-Ii=I Bi)(1-Ii=l Ci). We can
write F{01,. ", 0n} as F{y,. ., Yn}/P for some prime differential ideal P. Note that
G P and I P. Using 1) above, we can find r/,..., r/,, constrained over F such
that (r/,..., r/,) is a zero of P and G(r/,..., r/,) 0. One can easily check that
F(r/1,..’, r/,) is an -elementary extension of F which, by fact 2) above, has
constants which are at worst algebraic over the constants of F. Furthermore, letting
’=A(r/l,..., rln)/Bi(rl,’’’, ft,), we have that (’,..., st,,) is a zero of I and
D(,, ., m) O. [’

COROLLARY 2.2. Let F be a differential field of characteristic 0 and
has a solution in some ;-elementary extension of F, then y’= 3" has a solution in some
-elementary extension of F whose constants are algebraic over the constants of F.

Proof. Let " be a solution of y’= 3’ lying in an -elementary extension of F and
let F{r} F{y}/! for some prime differential ideal/. Let D 1 and apply Proposition
2.1.

As mentioned in 1, we took care to define -elementary functions in terms of
differential equations without explicitly mentioning the functions exp and log. This is
to prevent the appearance of constants that are generated transcendentally, e.g., as
values of exp or log. If we insist upon using the functions exp and log, i.e. those
functions satisfying y’=y, y(0)= and y’= l/x, y(1)=0 respectively, we are forced
to deal with this kind of constant as the following example shows.

Example 2.1. Let Q be the rational numbers and let F=Q(x, exp (-x2+ 1)),
{exp (- y2)}, , and 3’ exp (-x2 -[- 1).
Claim. (1) There exist u, v in F such that 3’ u’v where v’= (-u2)’v and so, a

fortiori, there is an -elementary extension E of F, with the same constants as F,
and a y in E such that t’= 3’.
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2(2) 3’ cannot be written as 7 w+., ci(w[/wi).-- E diui exp (-u,) for any elements
w, u, exp (-u,2.) algebraic over F and constants c, d algebraic over 0.

To prove claim (1), let u x, v exp (-x2 + 1). Then u’= 1 and v’ (-x:+ 1)’v
(-x:)’v (-uZ)’v. Let 0 be defined by 0’= u’v. One can show that 0 is transcendental
over F and that F(O) has the same field of constants as F. E F(O) is then an
-elementary extension of F and y 0 satisfies y’=y.

To prove claim (2), assume that we could write

W
exp (-x2 + 1) Wo+ c;--2’+ Z d,u’ exp (- u),

i=1 Wi i=1

with w, ui, exp (-u) algebraic over F and constants ci, d algebraic over Q, and m
2as small as possible. Since u and exp (-u) are algebraic over Q(x, exp (-x2+ 1)) we

have, by [ROS76, Thm. 2], each ui is algebraic over Q(x). We now apply an old
result of Liouville (see [RITT48, p. 49-1 or [ROS75, p. 295] for a modern proof): If
fl,"" ,fk, gl,’’’, gk are algebraic functions, such that no two of the g differ by a
constant, then f exp (g)+. +fk exp (gk) is the derivative of an elementary function
if and only if each f exp (g) is. To apply this result rewrite (2.1) as

exp (-x2+ 1)+Y diu: exp (-u)= w+Y.
Wi

Since exp (--X2" 1) is not elementary, we have either: (i) -u2 and :-u differ by a
constant for some j, or (ii) -x:+ 1 and -u differ by a constant for some i. In case
(i), we see that the constant (which is algebraic over Q) must be 0, otherwise exp (-u)
(exp (-u})) -a would be a transcendental constant lying in an algebraic extension of

2 2F, a contradiction. We must therefore have -u =-u so u +/-ug. This implies that
we could combine terms in (2.1) to yield an expression with smaller rn. In case (ii),

2the constant again must be zero., Therefore -x+l =-ui for some i. Letting I
2
X

2 2
X
2{ u -- 1 } and J { il- U " 1 } we have

’) exp (-x:1 + Y diui + 1) + L d,u’, exp (-u) W’o + E c,w;/w,.
iI iJ

Applying the result of Liouville and the previous argument, we must get J and so

( ) Wi1+ du exp(-x:+l)=w+c.
i W

2Since exp (-x+ 1)dx is not elementary we must have 1 +Y ditli--O. Since -u
x:+l, we have Tr(ui)=0, where Tr is the trace with respect to the extension
Q(x,u,...,u,,) of Q(x). Therefore, 0=Tr(l+ d,u)=l+., d(Tr(u))’=l, a
contradition.

3. Proof of Theorem 1.1. We will need the following three easy lemmas.
LEMMA 3.1. Let k be a field containing the algebraic closure of the rationals and let

X and Y be indeterminants. Let A(Y) and B(Y) be relatively prime elements of k[ Y].
Furthermore, assume A/B is not an nth power in k(Y) for any positive integer n. Then
the polynomial B( Y)X A(Y) is irreducible in k(X)[ Y] for any positive integer m.

Proof. By Gauss’s Lemma B( Y)X A(Y) factors in k(X)[ Y] if and only if it
factors in k[X, Y] if and only if X"- A(Y)/B(Y) factors in k(Y)[X]. Now apply
[LANG65, Thm. 16, p. 221].
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LEMMA 3.2. Let k be afield, X and Yindeterminants, and A(Y) and B(Y) relatively
prime elements ofk[ Y]. Ifa and b are elements ofk with a O, then A(Y) aX + b)B(Y)
is irreducible in k(X)[ Y].

Proof. This again follows from two applications of Gauss’s Lemma and the fact
that aX + b-A(Y)/B(Y) is irreducible in k(Y)[X]. [3

LEMMA 3.3. Let k be a differential field with algebraically closed field of constants
C. For any S(Y) in C(Y), any u, v in k such that v’=(S(u))’/S(u) and for any a,
be C, there exist Wo," ", w, in k, Cl," ", c, in C such that u’(av/b)= W’o+ ciwiwi.

Proof. It is enough to show that u’(av / b) has an antiderivative in some elementary
extension of k and then apply Liouville’s Theorem. If we write S(Y) =/3 I] (Y-ci) n’

where the ai are in C and ni are integers, then we can write v’= n(u- ai)’/(u- ce).
Thus v rlil for v in some elementary extension of K such that v’ (u oi)t/(//-- Oi),
One can then check that u’(avi+b)=(a(u-ai)(vi-1)+bu)’. 1-1

Proof of Theorem 1.1. First of all, we may assume that for all /3 in B, S0(Y) is
not an mth power for any positive integer m. If some So(Y)= (So( y))m then in the
definition of and in condition (v) of (1.1) we could replace S0(Y) by S0(Y) and
H(Y) by H(Y) H(mY), so that H(log So(Y)) H(log So(Y)). In this way we
get a new set , prove our theorem for g-elementary extensions and then switch back.

Furthermore, assuming the hypothesis of the theorem, Corollary 2.2 states that
we can assume that y’=y has a solution in an g-elementary extension of F, with
no new constants.

We first assume F is algebraically closed. In this case, we proceed by induction
on the transcendence degree of E over F. When the transcendence degree is zero, the
result is trivial. When it is positive we apply induction and the problem is reduced to
showing:

Let E be an algebraic extension of F(O) where 0 is transcendental over F and
satisfies conditions (ii), (iii), (iv) or (v) of (1.1). Let 2’ F and assume that E has no
new constants and that there exist w, u, uo, v, vo in E and constants a, bi, co
such that

(3.1)
w’,

3/= w)WZ ai--/E Z bi,uG(vi)+ Z ciu’iH(vi),
wi

where

(s(,))’v (R,,(ui))’vi, and v’i S(ui)

Then there exist ff, a, tTi, 3i, 3 in F and constants ai, b, in F such that

where

and

We shall deal with each of the cases (ii)-(v) separately. The main idea is to take
the trace of both sides of (3.1) to force everything to belong to F(O). We then will
equate terms in the partial fraction decomposition with respect to 0 and show that the
term not depending on 0 on the right-hand side can be put in the prescribed form.
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Case (ii). 0’= u’O for some u in F.
For each a,/3, we have v’i=(R(ui))’vi, and (S(u,))’= v’iS(u,), then by

[ROS76, Theorem 2] we have that

(3.)

for some rational numbers ri ri, and elements f, f, of F. Fuhermore we have

R(ui) riu + gi,,
(3.3)

i riu + gi,

with gia and go in F. Note that we can arrange that r and ro are actually integers.
To see this, let r, si/n and ro so/n, where si,, s, and n are integers. Let ff 0 /".
We then have 0’= 1/n u’O and F E E(0). If we replace E by E(0) and 0 by 0,
we still have fields of the appropriate form and fuhermore, v =f0% and So(uo)=
fO*,,, where s and so are integers. We shall use the old notation but from now on
assume that r and ro are integers.

We want to take the trace of both sides of (3.1) over F(O). Note that from (3.2)
and (3.3), the vi and So(uo) are in F(O) and the R(ui) and vo are in F (which
implies that u, is in F). The only elements which may give us trouble when we take
the trace are the uo which, a priori, are only algebraic over F(O).

To calculate the trace of the ui, write

S, (Y) A(Y)

n(Y)

where Ao and Bo are relatively prime polynomials. Then u satisfies

A,( Y) -,O,B,( Y) 0

which, by Lemma 3.1, is irreducible over F(O). Therefore the trace of uo can be
calculated from the coefficients of this polynomial. The coefficients are all of the form
6(f,O,,) + e where and e are constants. Dividing by the leading coefficient, we get

Tr

where m is an integer and , e, , are constants. We then have

(Tr ui,)’ m
((0,,) + )

Note that the coefficient of 0 in the paial fraction decomposition of this expression
is 0, assuming that ri, O.

We are now ready to take traces in equation (3.1). Doing this we get

(Nwi)’
(3.4) Mr (Tr Wo)’+E

Nw
where M is some integer and, abusing notation, the a, b, c, are possibly different
constants. Let us collect the coefficient of 0 on the right-hand side of this equation.
If we write Tr Wo (a0/(0 )) + P(O), the standard calculations (as in [RISC69,
p. 169]) show that the coefficient of 0 in (Tr Wo)’ is

(3.)
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where fro is the coefficient of 0 in P(0). Considering the next expression in (3.4), we
write

ai Nwi =i ai\li+ni(O--)]
where Nwi
here is

(3.6) Z a,-+ ainiju’.

Next we consider the expression

Z Z b,au’,aOa(faOr’) + Z Z b,aulaOa(fa).
ria 0 ria 0

The coefficient of 0 in the expression corresponding to the sum over those i,

1II(0-/xj)"q for some li, /x; in F and integers n. The coefficient of 0

a with
ria -: 0 is Y Y bdao u,, where dao is the coefficient of yO in Ga (Y), which is a constant.
The expression corresponding to the sum over i, c with ria 0 has no occurrence of
O, so the coefficient of 0 in Y biau’Ga(va) is of the form

(3.7) v’+EE biuaGa(v,a)

where v, uia, v,, are in F and v’a (Ra (Ua))’Via. Finally, we consider the expression

Y Y ci3 Tr ui H3 vq3
(3.8)

Y Y @3 (Tr ui )’H3 Vi + Z E Ci (Tr ui )’H (vi)
0 ri 0

where r9 is defined in (3.2). Note that by (3.3) H(v) is in F and that if r =0 then
u is in F so that Tr u is in E Therefore the sum corresponding to r 0 has no
occurrence of 0. If r 0, we showed that the coecient of 0 in (Tr u)’ is zero, so
the coecient of 0 in the term corresponding to r 0 is 0. Therefore the coecient
of 0 in c, (Tr ui)’H (vi) is

E E ci (Tr ui)’H (vi)
ri 0

where v=(S(ui))’/S(ui) and ui, v F. Combining (3.5), (3.6), (3.7) and (3.8),
we see that the coefficient of 0 on the right-hand side of (3.4) is of the prescribed
form and, since, for i# 0, 0 does not occur on the left hand side, we have that My
equals this prescribed form.

Case (iii). 0’= u’/u for some u F. Again [ROS76, Thm. 2] implies that

(3.9) R Uia diaO + gia, Vi dO + gig,

for some constants di,, do and elements gi, g in F and that the vi and the So(uo)
are in E So in paaicular, we have that the vi, v, and the ui are in F(0). We only
know that the u are algebraic over F(0) and so must calculate their trace.

Let
A(r)

n(r)=
n(r)

where A and B are relatively prime polynomials with constant coefficients. Each ui
satisfies A(u) (dO + g)B(ui) 0. By Lemma 3.2, the polynomial A(Y)
(dO+g)B(Y) is irreducible over F(O) so the trace can be read off from its
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coefficients. As before, we see that

( (dio,O+gio,)+ _v)Tr uio, m
Ix(didO+

where , e, Ix, v are constants. Therefore

element of F
(Tr uio, )’

(Ix (d,o,O + g,o, + v)2"

Note that if/zdi 0, then the coefficient of 0 in this expression is 0. If Ix =0 and
di, 0, then

(Tr u,)’ =--m 5 d--+ g’, mR, (u,

Now let us take the trace of both sides of (3.1)"

(Nwi)’+Z E bi,(Tr Uio,)’Go,(vio,)+., ., citu’i,oHt3(vi,)M/= (Tr Wo)’+ ., ai
Nwi

and let us consider each of the terms on the right separately.
Recalling from (3.9), that each vi di30+ gi3 we can write the last sum as

(3.0) E E c,uH(vi)= Z c,uH(v,)+ c,uH(v)
di 0 di 0

The sum corresponding to d 0 has u and v in F and is of the desired form. To
deal with the sum corresponding to d 0, recall that we have assumed that
deg (numerator H) deg (denominator H) + 1 so the paial fraction decomposition
of H is

y_ a)j
+ P( Y)

where Pe is a polynomial of degree 1. We can therefore write

E E c,uH(v,)= L c,u’,(H(v,)-P(v,))+ E c,uP(v,).
di 0

The first term is a proper rational function of 0 (i.e. the degree of the numerator is
less than the degree of the denominator). By Lemma 3.3, the second term is of the
form v’+ dv/v. Therefore we can write (3.10) as

an expression whose 0 term is cuH(v),
di 0

(3.11) with no terms containing 0 for > 0

+ an expression of the form v+ d
v

where ui and v are in F, v are in F(0) and the d and c are constants. We shall
deal with the 0 term of v’+ dv/v later.

We now look at the next term which we write as

E bi(Tr ui)’G(vi)= ma E biuG(vi)+ E bi(Tr ui)’G(vi,).
dia 0 di 0

Note that if d 0, then u and v are in F so Tr u is an integer multiple of u.
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This integer is designated by m. If dis 0 we have shown that the 0 term of (Tr uis)’
is zero or a constant times R(uia)’. Therefore the 0 term of the sum corresponding to
dis 0 is of the form

VaeisR(uis)’Gs(vis) eiaGs(vis)= V’o+ di
vi

dia 0 die, 0 Vis Vi

where eis and di are constants and the vi are in F(O). This last equality follows from
the fact that Gs(via)/Vis is a rational function of vis with constant coefficients.
Therefore, we have

(3.12)

bis(Tr uis)’Gs(vis)

an expression whose 0 term is Y Y bisu’isGs(vis),
die 0

with no terms containing 0 for i> 0

+ an expression of the form v6+ di-’
Vi

where uia and via are in F, vi are in F(0) and the bia and di are constants.
From (3.11) and (3.12) we can conclude that

(3.13)

y= v+Y di’+an expression whose 0 term is a constant multiple of
Vi , bisu’is Gs (via) + , cit3u t3 He (vie) and with no terms

dia =0 di =0

containing 0 for > 0

where Uioz, Uie Via Vie are in F, vi are in F(O) and bis Cis di are constants. We now
want to calculate the 0 term of V’o+Y di v’i/vi. If we write vi i 1]/j (0-/zj) n’j, iS 0,
where i, u are in F, then the 0 term of v’i/vi is ’i/. Letting Vo Y=o kiOi + terms of
degree <0 in 0, we have that the 0 term of v is k’o+klu’/u. If l> 1 or k is not a
constant, we would have that the right-hand side of (3.13) would contain an expression
of the form 0 with i=> 1. Therefore we have that 1, kl is a constant and the 0 term
of v+ div/v is of the form Uo+Y ai u/u with the U F and ai constants. This
and (3.13) shows that has the correct form.

Case (iv) and (v). O’=u’Gs(v) or O’=u’He(v) where v’=(Rs(u))’v or v’=
(Se(v))’/Se(v) with u, ve F.

In this case we can assume that 0 is not elementary over F, otherwise the problem
could be reduced to the above considerations. Since 0’ F, we have that the S(Uie)
and vis are in F and that R ui disO + gis and Vie die 0 + gie with the dia, die constants
and gis, gu in F. We must have dis die 0, otherwise 0 would be elementary over
F. Therefore, we can write (3.1) as

U
(3.14) "y-,, b,,u’iaGs(v,s)-Y cit3u’it3He(v,t3)= U’o+ a,--

U

with all terms on the left in F. Liouville’s Theorem now applies and tells us that the
expression on the right must equal g+Y di g I/gi for some ti F and constants di.
This completes the proof of Theorem 1.1 in the case that F is algebraically closed.

Now we remove the assumption that F is algebraically closed. The above argument
shows that (1.2) holds with ai, bis, cie in C and wi, uis, uie, vs, ve algebraic over F.
Let K be a finite normal extension of F containing wi, uis, uie, vis, vit and let o- be an
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element of the Galois group of K over F. Then

+E Z biao’( uio )tGa ’via - Z Z ci[3o’( ,li[3 )tH[3 ’vii3

where (trvi)’ R o’ui )’crvi and (trvit)’ So rui )’/ St o’ui ), So truit # O.
Summing over all tr in the Galois group of K over F yields, for some M in Z,

(Nwi)’
My (Tr Wo)’ +Z ai

Nwi
+ ’, Z ’. bitr( uia )’G (ovi)

+Z Z Z cit3tr( uit )’Ht3 (trvio).

Since Tr Wo and the norms Nwi, are in F, this yields the final conclusion of the
theorem. [3

II. The error function.
4. Statement and discussion of results. In this section we shall specialize the results

of the previous sections to the case when {exp (_y2)} and =, that is, to
integration in terms of error functions and elementary functions. To be more explicit,
we say that a differential field E is an erf-elernentary extension of F if there exists a
tower of fields F Fo c. c F, E such that Fi Fi-l(0i) where for each i, 1 <_- -<_ n,
one of the following holds:

(i) 0i is algebraic over F-I;
(ii) O’i=ui’Oi for some ui in Fi-1
(iii) 01 u’/u for some u s 0 in Fi_l;

2UiUti(iv) 0i= uivi for some ui, v in F_ with v’ /’/t2" Vi Vi"
Recall that a differential field F is a Liouvillian extension of a differential field k

if there exists a tower k ko ... km--F such that ki k_(:i) where for each
1 <_- <- n, we have either:

(i) : is algebraic over k_, or
(ii) :’ k_, or

(iii) ’/ k,_.
We then have the following result.

THEOREM 4.1. Let F be a Liouvillian extension of its field of constants C. Assume
C is of characteristic zero and algebraically closed and let y be an element of F. If has
an antiderivative in some erf-elementary extension of F, then there exist constants a and
bi in C, elements w in F, and elements u and vi algebraic over F such that

W
(4.1) y= w+Z ai----’+Z biu’ivi

Wi

_. 2where v (-u;)’vi and u2, v and u ivi are in F.
Proof By Theorem 1.1, we know that there exist constants a and bi in C and

elements w in F, u and vi algebraic over F satisfying (4.1). We want to show that
these can be chosen such that u2, v2 and uv are in F. The lemma of [ROSI77, p. 338]
implies that each u 2i is in F and some power of v is in F. Let E be a normal extension
of F containing all the wi, ui and v and let tr be an automorphism of E over F. We
then have trui +u and o’v ,ivi where sri is a root of unity. Therefore,

O.Wi)
T trT (t:rWo)’ +Z ai h-Z

O’Wi
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If we sum over all automorphisms of E over F we get"

W

for some integer m. In the expression Yi bi(Y+G)uv we shall implicitly assume
that we are only summing over those for which + ’ 0. For such an i, we have

u’ ’vi)

so ul vi is left fixed by all automorphisms of E over F and so must lie in F. Furthermore,
’)= 1/4((u,)’)/ I) (u’(u, u,, so (u F. Since v,=(u,v,)2/ )2 2we have viF. [3

The example at the end of 1 shows that the ui and v cannot be guaranteed to
lie in F. Despite this fact we are able to obtain a decision procedure (presented in 7)
when 3’ is built up using only exponential functions and rational operations.

Let F and k be differential fields of characteristic zero. We say that F is a purely
exponential extension of k if F=k(01,.’’, 0,) where 0 is transcendental over
k(01,..., 0_1) and 0= u’O for some u in k(01,..., 0_). The main result of 7 is
the following. Here, we use the term computable field to mean a field in which one
can effectively carry out the field theoretic operations and over which one can effectively
factor polynomials. Any finitely generated extension of Q is computable as is the
algebraic closure of Q.

TI-IZORZM 4.2. Let C be a computable field, C(x) a differentialfield with derivation
defined by x’= and c’= 0 for all c in C, and let F be a purely exponential extension

ofC(x). Given y in F, one can decide in a finite number ofsteps ify has an antiderivative
in an erf-elementary extension of F and if so find a, bi, u, vi, and w satisfying (4.1).

The rest of this paper is devoted to proving this result.

5. Purely exponential extensions. In practice, when we are asked to integrate a
function 3’, we are not given a differential field F containing 3’. In this section we shall
show how to make a good choice for a field of definition containing 3’. This field will
be chosen so that the exponentials appearing in this field satisfy as few relations as
possible and so that the ui and v which could possibly appear in (4.1) are already in
F. To do this we need some facts about purely exponential extensions.

Let F be a purely exponential extention of k. When we refer to such a field, we
shall always consider it as being given by a fixed set of generators 0,. ., 0, over k,
so F k(01,. , 0,). Renumbering the Oi, we may write k Fo c... c F --F where
F F_(O, , 0,,,) for 1, , r and where the 0j’s are algebraically independent
over k and satisfy 0’i ujO for some u in F_ with u not in Fi_2. Note that, one
can always uniquely arrange the 0’s in groups to satisfy the above. We define the
rank off k(O,..., 0,) over k to be the r-tuple (m, ..-, ml) and we designate this
by rankkF.

Let us consider two examples.
Example 5.1. Let k C(x), F k(exp x, exp (exp x), exp (exp (x2) + x)). k

C(x) Fo c F1 Fo(exp (x2)) c F2 F(exp (exp x), exp (exp (x2) + x)). We have
rankk F (2, 1).

Example 5.2. Let k be as above and k(exp x2, exp x, exp (exp x2)). We can
write k =/o/ o(exp x2, exp x) 2 =/l(exp (exp x2))=/. We have rankk/=
(1,2).

Note that F-F; only the generating sets are different. This underlines the
important fact that the rank depends on the particular 01," , 0, we chose to generate
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F over k. Note that if rankk F (m, , ml) then ml +" + mr is the transcendence
degree of F over k.

We can also define the tank of an exponential in F. Let F be a purely exponential
extension of k and let Fo,’’’, Fr be as above Let u, v be elements of F such that
v’= u’v. We define the rank ofv (rankk v) to be the smallest such that v Fi. Note
that if rankk v i, then u Fi_l. Also note that in Example 5.1, rankk exp (x) 2 while
in Example 5.2 rankk exp (x)= 1.

Given two sequences (m,...,m) and (rhs,’",r) we say (m,...,ml)<
(rs, , r) if r < s or if r s and (m. , m) is less than (r, , rl) in the usual
lexicographical ordering. We say that a purely exponential extension F of k is of
minimal rank over k if for any algebraic extension F of F, where F is also a purely
exponential extension of k, we have rankk F=<rankk/. For example C(x, exp (x2),
exp (exp x2), exp (exp x2 + x)) is not of minimal rank over C(x), since it is contained
in (in fact equal to) C(x, exp (x), exp (x), exp (exp x2)) which is of smaller rank. We
will show later that C(x, exp (x2), exp (x), exp (exp x2)) is of minimal rank over C(x).

We will need the following technical lemma in Proposition 5.2.
LEMMA 5.1 Let E F(O,. 0,,,) where 0’= liO with ui in F(01, ", Oi_l).

Assume that E andFhave the samefield ofconstants and that 0, , Or are algebraically
independent over F. If is an element of E such that ’ is in F, then is in F.

Proof Proceeding by induction on m, we an assume that m 1. In this case write
E F(0) where 0’/0 F. Since 0 and " are algebraically dependent over F, we have,
by [ROS76, Thm. 2], that sr is algebraic over F. Since F(0) is a transcendental extension
of F, we must have

PROPOSITION 5.2. Let F be a purely exponential extension ofk C(x), where x’ 1
and c’= 0 for all c in C, and let k Fo Fr F where Fi Fi-l( Oil, , 0,,) with

O uOi for some ui Fi_, ui : Fi_2. Then F is of minimal rank over k if and only if,
for each 2, , r the following holds:

(5.1) nuo F_: for some integers n implies n 0 for all n.
j=l

Proof Assume that F is of minimal rank over k and that for some i, there exist
n,. ., nr,, not all zero, such that Y"=’ nu F_:. Without loss of generality, we can
assume n 0. Let

0= 0/n and v= ’, nJuj.
j=l j=l nl

We then have 0’= v’0. Let

F= F,

F,_I F,_I( O),

..,0,,,

F,+l Fi"

where Fk" Fk/ is the compositum of these two fields. Note that Fr is an algebraic
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extension of F. The rank of Fr is (m,..., mi+l, mi-1, mi-l+ 1,..., ml) which is
smaller than rankk Fr (m, , m, m_l, , ml). This contradicts the fact that Fr F
is of minimal rank over k and so (5.1) must hold.

Now assume that (5.1) holds. We wish to show that F is of minimal rank over k.
Let F be a purely exponential extension, algebraic over F, such that rankkF=
(if/s," ", if/l) (m," , ml) rankk F. Let k Fo c F c. c Fs F where F
F_I(Oi, ,0,) where 0 0’ tTij0i for some e F_l and F_. We will show that
for each i, F is algebraic over F and therefore that N m for each and s N r. Since
tr. degk F tr. degk F, we have i= m =1 m and so m for each i. Therefore
rankk F rankk F.

To prove that F is algebraic over F, we proceed by induction on i. If i=0,
F k F, so we are done. Now assume that is algebraic over for j i. Since F
is algebraic over F, we have that 01," ", 0, are algebraic over F. By the lemma of

--N[ROSI77, p. 338], we have that 0 F for some nonzero integer N. Fuhermore,

0) N’ OF= Fij Fi_
_

-N0
since by induction F_ is algebraic over F_ and F_ is relatively algebraically closed
in E Ifwewrite F=C(x)(0I 01, 0,... Om) where 0=u’00thenbyij

[ROCA79, Thm. 3.1] we have that

Fabab C
lbm
lar

for some rational numbers 0 and constant c. Since tT’tab ijE Fi_l, we have by Lemma 5.1
that t70 ’. 0 0 0 with a > i, we would contradict (5.1)Fab Uab dr_ C Fi_1. If some tab
Therefore riJab 0 if a > and

a=l b=l

This implies that 0 is algebraic over Fi and so F is algebraic over F.
Using Proposition 5.2, we now can show that C(x, exp x2, exp x, exp (exp x2)) is

of minimal rank over C(x). Here Fo =C(x) CF=Fo(expx,expx2) F2=
F1 (exp (exp xZ)). We must check if no exp x2 Fo has a nonzero solution no in the
integers (which it clearly does not). Similarly we can reaffirm that
C(x, exp (x2), exp (exp x2), exp (exp x2+x)) is not of minimal rank. Here Fo=
C(x)F=Fo(expx2)F=F(exp(expx),exp(x+expx)). Here 01=expx,
ul x2, 0 exp (exp x2), u21 exp x2, 022 exp (x + exp x2), u22 x + exp x2. Note
that u2- u22 -x F0"

PROPOSITION 5.3. Let C be a computable field and F a purely exponential extension

ofC(x). We can construct an algebraic extension Foffsuch that F is a purely exponential
extension of C(x) and such that F is of minimal rank over C (x).

Proof We will use the criterion (5.1) of proposition 5.2. Let C(x) Fo F
F with Fi F_I(0," ., 0,,) as before. For each i, we check if there exist no, not all
zero such that Y, nouo F_. If, for some i, such a set of n exists, say with ni 0, let

j=l
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Let

F F forj < i- 1,

F,_, F,_,( O),

#, L-,( ’),

F F Fi forj > i.

We then have that Fr is a purely exponential extension of k, algebraic over F and
of smaller rank than F over k. We claim that if we continue this process, it will end
after at most N2 steps where N tr. degk F. This is because each time we repeat this
process we decrease one of the integers in (m, , ml) by one and increase its neighbor
totherightbyone. Thiscanbedoneatmostrmr+(r-1)m_+. .+m<=rN<=N2. [3

PROr’OSITON 5.4. Let C be an algebraically closed field and F a purely exponential
extension of C(x), where x’= 1 and c’= 0 for all c in C. One can construct a purely
exponential extension F* of C(x), containing F, which has the following property:

If u and v satisfy v’= u’v and u and v are algebraic over F with v2 in F, then
(5.2) u and v are in F*.

Proof Let F C(x, 01 0,) where 01 u’,’" iOi with U in C(x, 0, ", 0i-1) and
let F*= C(x, 0/2, 0/). One can easily show that F* is a purely exponential
extension of C(x) containing F. Since u and v are algebraic over F, we have by
[ROCA79, Thm. 3.1], that v= d I-Ii=l 0i’ where d is in C and the rg are in Q. Since
v= da [I___1 0,2’ is in F and F is a purely transcendental extension of C, we have that
2r is an integer, for each i. Therefore v is in F* and so u is in F*.

6. Squares in purely transcendental extensions. In our decision procedure, we will
be called upon to decide when certain elements of a field are squares. We discuss this
algebraic question in this section. Let K be a field and K(xl,’’’ ,x,) a purely
transcendental extension of K. Let P be an element of K(xl,.’’, x,) with P not in
K and let K be the algebraic closure of K. We wish to show that the set of a in K
such that P + a Q2 for some Q in/ (xl, , x,) is finite (or empty) and computable
if K is a computable field. We first prove the following ancillary lemma.

LEMMA 6.1. Letf and g be elements of K[xl, x,] with no common factors and
assume that either f or g is not in K. Then the set of a in I such that f2 + ag2 h for
some h in K[xl,’’’, x,] is a finite set and can be constructed if K is a computable
field.

Proof Let f and g be of degree <=k, let N be the dimension of the vector space
of all such polynomials.and let pN be the projective space of dimension N over K.
Let S be the subset of K PN consisting of all (a, (cl," , on, d)) such that d:(f+
og2) h2 where h is a polynomial with coefficients cl,’’ ", on. S is a Zariski-closed
subset of/ Pu and if we let p"/ Pn/ be the projection map, then p(S) is the
set mentioned in the lemma. By classical elimination theory ([MUM76, p. 33] or

[VDW50, p. 6]), we know that p(S) is a Zariski closed subset of K and so is either
finite or all of K. Furthermore, we know that if K is constructible, we can find the
defining equations of p(S). We need only check that p(S) K.

Assume that p(S) K and that Of/Oxl 0 (since either f or g is not in K we may
assume one of them, say f, depends on some xi, say x). Let u be any element in
such that g(u)30 and let au be a nonzero element in K such that f(u)2+ oug(U)2--O.
Since we are assuming that p(S) =/, there is some polynomial h, such thatf+ ceug2
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h2,. Note that hu(u)=0. Differentiating h2, we get

Ohm_2h
Ohu 2foO_fx 2aug

g__g
Ox ’ +

OXl OXI

We therefore have the following identities

f(u)" f(u)+ aug(U)" g(u)=0,

f(u)" Of(u)+ aug(U)" O.___g
0X1 0X1

(/,/) --0.

From this we can conclude that

f(u) O___g of
ox, (u)-g(u)(u)ox, =0.

Since this holds for all u in the open set where g(u) O, we have that

Of=o"gox
Since f and g have no common factors, we have that f divides Of/Ox, a contradiction.
Therefore p(S) K and so must be finite. [-1

PROPOSrrION 6.2. Let Pc K(x,. ., xn) with PC_K. Then there exist only a finite
number of values a in 2 such that P + a Q2 for some Q e K(x, , xn). Furthermore,
if K is computable, we can find these a.

Proof. As before, we can show that the set of such a is a Zariski closed subset
of K, whose defining equations can be calculated if K is c.omputable. To show that
this set is finite, it is enough to show that it is not all of K. Assuming that it is, we
would have 0 being an element of this set and so P would be a square. Write P =f-/g2
where f and g have no common factors. For each a, we could find relatively prime
f, g, such that

S2 S2 S2g2

g-+=g2 or S+g- 2

From this we see that g is a constant multiple of g so f2 + ag2 cf2 for some constant
c. Now apply the preceding lemma to get a contradiction.

7. The decision procedure. In this section we shall prove Theorem 4.2. Let C be
a computable field, F a purely exponential extension of C(x) and y F. Extend F to
F* as in Proposition 5.4 and use Proposition 5.3 to extend to a field E which is of
minimal rank over C(x). We may assume that C is algebraically closed since the
algebraic closure of a computable field is still computable. Using Theorem 4.1 and
Proposition 5.4, we see that we want to decide if there exist c and d in C and w, u,
vi in E such that

(7.1) y= W’o+Y c,--+ Y diu’ivi where v’i=(-u2i)’vi.
Wi i

We can assume that if -’iJ v has an elementary antiderivative for some subset
J c I and constants d, then di 0 for all in J. This just means that all of the elementary
part of the antiderivative of y is contained in W’o+., c(w’/w). The idea behind the
procedure is to first determine the possible expressions of the form u’v, with u, v e E
and vi (_ 2,’= Ui) V, which could appear in (7.1). This is done as folJows.
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Let C(x)= Eo c c Er- E where Ei Ei_I(OI, Om.), and u’ij u’o0i with
uo e E_ and u
have rank s (i.e. v e E but v E,_). The Structure Theorem of [ROCA79] permits us
to write

(7.2) v d
NjN
lis

with n0 Z, d C. For notational convenience, our n are the negatives of those in
[ROCA79]. Note that ranges from 1 to s but no fuher since E is of minimal rank
and that n0 Z and not just in Q since E is a purely transcendental extension of C.
We also have

(7.3) u= 2 nou+c
lNiNs

where c e C. We need one more piece of notation. Given any 00, we can write in its
paial fraction decomposition with respect to 0 over the field C(x)
(0,. ., 00,. ., 0). (Where over an element means this element is omitted). Let

P.b( O)=A_O +...+Ao+...+AOo+
,b b 0)

where Qb is an irreducible polynomial in 00. not equal to 0. We define o0()
max (m, l). We claim that given v of rank s appearing in (7.1), we have ln N o()
for 1 Nj N m. We are saying that if v is of rank s, those 00’s which are also of rank s

appear to a power of absolute value less than o(v) in (7.2). This claim will be proven
below, so let us assume it for a moment. We still must bound the other exponents
appearing in (7.2). It would be natural to conjecture that n01 o(), but this is not
true, as the following example illustrates.

Example 7.1. Let C(x, exp x, exp (-exp (2x) + x)). This is of minimal rank
over C(x). Letting exp (-exp (2x) + x), 0 exp x and 0 exp (-exp (2x) + x) we
have = u’v where u =exp x= 0, v=exp (-exp (2x)) 00 and v’=(-u)’v. Note
that both v and 0 are of rank 2 and that the exponent of 02 in v is bounded by (in
fact equal to) o(). Here 0 does not appear in % yet it does appear in v, ui.e. n -1
while o() 0.

We will bound the n0 for < s using the results of 6. Rewrite (7.3) as

U slsl + + SmsUSms + ijij + C
lNjN
lNi<s

Let
P ns t’ls -t- -t- lSmslsm and a= nuo+c.

lNj=
li<s

Note that since E is of minimal rank over C(x), we have that P Es_l, P
_
Es-2, and

a Es-2. This is precisely where the notion of minimal rank is crucial. Ifwe let K E_2,
we can apply Proposition 6.2 and find, for each choice of (nl,"" ", n,s) satisfying
In,j[-<_ os(y), all a E_ such that P+ a Q for some Q in E_. Each such a can
be written in at most one way as noui + c since if nuj / c u+ we would
have (no- o)uo C, so the 00 would be algebraically dependent over C unless
n0 ti and c g. The a’s which can be written as such a sum will give us the exponents
for the 00’s of lower rank. Therefore, using our claim and Proposition 6.2, we can
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determine for each s, 1 <-s-<_ r, all u and v in E which may appear in (7.1) such that
v’= (-u2)’v and v is of .rank s. We now wish to decide if there exist ai, bi in C and
w in E such that

"/- 2 auv Wo + b--.

A procedure to decide this is presented in [MACK76]. Since this paper has never been
published we have included in the Appendix a proof of the relevant theorem.

All that remains to be done is to prove that for v of rank s appearing in (7.1),
In,jl-< Oj(Y). The proof of this claim follows closely Risch’s proof of [RISC69, Main
Theorem] and will yield a proof of Theorem 4.2 independent of [MACK76].

We will proceed by induction on the number of generators of E over C(x). If
we write E Er Er_l(Orl,’’’ Ormr) as before,^let 0-exp (u) denote one of the Ori
and write E K (0), where K Er_(0rt, ,,0r,, -, 0,,r). Expanding 3/ in partial
fractions with respect to 0, and assuming that y satisfies (7.1) we have

y AgO g
+" + AiO + Ao+ A_ 0- +. + A_,,,O-"

(7.4) B,O’ +" + B10-t- Bo + B_ 0- +. + B_!O-!

diu’ fv + d,u v, + c log D, 27

Blk’l B f Blo
"k
p k -+- +-k-

P P

Bg B 1" Bo

where the A’s, B’s and D’s are in K, the pi’s are irreducible polynomials in K[0],
Bo/pi=Y co(qo/q) where pa=H q in/[0], v’i-(-u2)’v and ow is the set of such
that v k while ff is the set of such that v K. Note that [ROS76, Thm. 2] implies
that in either case u in K. Some justification is required for our implicit assumption
that p- appears to a power of at most ki- in the second expression. This follows
from the fact that for , vi =fO", for some f/ K (again by [ROS 76, Theorem 2])
and so when differentiating the second expression we get no cancellation in this

expression. Note that for ow we can write v cO ’ 1-I 0 !/., where n - 0. We shall first

prove our claim for v with i 5e, that is, that nl <--max (k, m). Assume not and let

n--maxib (n). We then have

B.O" )’ + Z d,u’i v, 0
y,

where ’ is the set of such that n n. This implies that Y,, du’v has an elementary
antiderivative, contrary to our assumptions. This proves our claim for the v with ow.
Furthermore, we see by comparing powers of 0 in our two expressions that k and
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We now proceed to determine those vi with 9 which may appear in (7.4). We
do this using the results of 6 as above. Let

E d,ulv,= E CO
i9 j#O

-rnjk

where C is of the form diCo with Cij known elements of K and di constants to be
determined. Equating powers of 0 in (7.4) we get

A B’ + ku’B, + diCi,,

A1 B + u’B q-- diCil,

A-1 B’_I u’B_I + ., dC._l.
A B[ mu’B_ + difi,-m.

For each j we must determine if there exist constants d and elements B such that

Bj +ju’B A E d,Co.
This can be done using [RISC69, Main Theorem, pa (b)]. Note that a solution is
uniquely determined if it exists. In this way determine the Bj’s and d’s (for i ).
Proceeding as in [RISC69, p. 183], we can determine the B.k-," ", B. until we get
down to an equation of the form

A,, B,o++ao= B+ Z a,u’,v,+(Z og D)’

Again we proceed as in [RISC69] and reduce the problem to deciding if

Ao u’ 2 mc Bo+ c log D + du’v

This is equivalent to deciding if

Ao= Bo+glogD+ du’

for some Bo, D, u, v in K. Note that oo(Ao N o() so by the induction hypothesis
we have

o(v) o(o) o()
for all v appearing in (7.1). S

Aei. In this section, we present a proof of the result of Carola Mack alluded
to in 7. We must first recall some definitions from [ROCA79]. Let kCK be differential
fields. For K with t’ k, we say that is simple logarithmic over k if there exist
u, , u in k(m 1) such that for some constant c, +c k(log u, , log u).
We say it is nonsimple over k if it is not simple logarithmic over k. K is a regular
log-explicit extension of k if K and k have the same subfield of constants and there
exists a tower k KoC" CK K such that K K_(0) where 0 is transcendental
over K_ and either

(i) 0 e Ki-1 and 0 is nonsimple over K_, or
(ii) 0’= u’/u for some.u e K_, or
(iii) 0 u’0 for some u e K_.
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We shall use the following fact several times in the proof of Theorem A1 below.
Given a system L1 of linear equations over a field K in n+m variables
(xl,’’’,x,,yl,’’’,y,,), there exists a system L2 of linear equations over K in n
variables (Xl, , x,) such that (al, , a,) K" satisfies L2 if and only if there exists
(b,..., b,,) K" such that (a,..., an, b,.’., b,,) satisfies L. This follows from
the fact that .the projection to K of an affine subspace in K n+" is still an affine
subspace. We will refer to L2 as the projection of L1 onto the first n variables.

THEOREM A1. Let K be a finitely generated extension of Q and let F-
K(z, 01,’", 0,) be a regular log-explicit extension of K (z), where z’- and c’-0 for
all c in K.

(a) Let fo, fl,""" ,f be elements of F. Then one can determine in a finite number
of steps a system L of linear equations in N variables with coefficients in K so that
fo + df +. + dsfs has an integral in an elementary extension of K for d, ., ds in
K (the algebraic closure of K) if and only if (dl,’’’, dN) satisfies L. For each
(dl,"" ", dN) in t satisfying L, we can find Vo F, vi gF for i- 1,..., m and
cl," ", C,n in K such that

fo + dlf +" + dNft V’o + c,v’/’.
i=l

(b) Let f, gi, 1, , rn be elements of F. Then one can find, in a finite number
of steps h, , hr in F and a set L of linear equations in rn + r variables with coefficients
in K, such that y’ +fy =1 cg holds for y F and c in K if and only if y Y= yih
where y are elements of K and cl, , c,,,, Yl, ", Yr satisfy L.

Proof. We shall mimic the proof of [RISC69, Main Theorem] (and assume that
the reader is familiar with that paper) and so proceed by induction on n. If n --0, then
F--K(z) so we may take L {0, 0}, since any element in K(z) has an elementary
integral. The proof of part (b) is the same as in [RISC69]. To proceed with the induction
step, let D= K(z, 0,..., 0,,_) and F= D(O) where 0= 0,.

(a) Case 1. O’ D. Let f =f+ dlf +" + dufu. We can write

AkO +" + Ao
A! k, All+ +...+
Pl" Pl

A,k.,. A+ p.,. +’"+
Ps

0 k+lBk+! +’’’+Bo +ej logDj

Bi kl-!

Bs k-I
k.-I

B1 [" B o+... +-+
P P

B i Bo+... + +
P P

Here the A’s are linear polynomials in d,. ., dN with coefficients in D and the B’s
are to be determined. Equating powers of 0, we have

0= B,+

so Bk + K, and

Ak =(k+ l)Bk+O’+ B’.
We can write Ak=ak,o+dak,+’’’+dNak,N with ak, in D for i=0,-.., N, so this
last equation can be written as

0’(A.1) B’ ak,o+ da,, +...+ dNak, N -(k + 1)Bk+

Using the induction hypothesis for (b), we conclude that there exist h,..-, h,.a in
D and L, a system of linear equations in N+ r +1 variables with coefficients in K
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such that (A. 1) has a solution Bk in D if and only if Bk rk Yikhik where Yik E K andi=1

(dl, dN, Bk+I, Yk, Yrkk) satisfies Lk. Notice that for each choice of dl," , dN
in K there is at most one choice of Bk+ in K for which there exist Ylk, Yrkk in K
such that (dl, dN, Bk+I, Ylk,’’" Yrkk) satisfies Lk. NOW let Bk _.rgi=l Yikhik where
the hik are indeterminants. We then have

A_I =kBO’+ B’_ k yh 0’+ B_.

We can write A_ a_,o+ da_, +. + da_,, so

(A.2) B_I ak-l,0 + dlak-l,1 +" "+ dNak-l,N + yik(khikO’).
i=1

Using the induction hypothesis for (b) allows us to conclude that there exist

h,k-1, hrk_,k--1 in D and Lk-, a system of linear equations in N + rk + rk- variables
with coecients in K such that (A.2) has a solution Bk_ in D if and only if

Bk_ rk-1
i= Yi,k-hi,k-a where Yi,k-1 K and (dl, ds, Y,k, Yr,,k,

Yl,k-,’’’, yr_,k-1) satisfies L_. Again, for each choice of d,..., d, there is at

most one choice of (Yk, ", Yrk) for which there exists (Y,k-, ", Yr_,k-1) satisying

Lk-. We continue in this way, getting linear systems Lk-2,’’’, L2 whose solutions

guarantee the existence of Bk-2, , B2. Finally, we have Ao B 0’ + B+ e(log D)’.
If we set Ao aoo + d al,o +" "+ das,o and B1 r= Y, h, we get

(A.3) aoo+ daa,o+"" "+ aa,o- E hi,(y,,O’)= n+E e 0og O)’.
i=1

Using the induction hypothesis for pa (a), we see that there exists a linear system
L* in N+r variables such that an equation of this form holds for some

(d, d, h, hrl) satisfying L*.
Now consider

(A.4) 2 ....
We can find unique R, S, linear in d, , d in D[ O, d, , dN], with degoR < degop
and dego S < degop such that

Rp + Sp ,
Let -(k-1)B,k_ S, substitute into (A.4), and obtain a new relation

Continuing in this manner, we determine B _,..., B,,, all linear in d,..., d.
We are left with an equation of the form

11

P P A

Here B o/P 21 cuqu/qj where p jL q is a factorization of p into monic
irreducible factors over D. We must determine if c exist in such that the equation
holds. Let

(**---

p =1 q
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where Qij is linear in dl,’", dN and let L** be the system of linear equations in
dl," dN, 1,’’’, sl gotten by equating terms in the partial fraction decomposition
of

Q._L= _, cijq.
Similarly we get L**, , L** for P2, ",Ps. We now get L by projecting Lk ]

L2 L* L**""" Ls** onto the first N variables (see the remark preceding the
statement of the Theorem 5.

Case 2. 0 exp sr. Let

AkOk d- A- AoO
+ A_,O-" +" + A_I 0-1 + A

Alk, +..
f= +pk, Pl

Askew.. As
+P) Ps

BkOg d-" + B 0

+ B_,O +" "+ B_IO- + Bo+_, ej log Dj

+Blk-1+. +BI+ f Blo
pk,- Pl J. Pl

B_, + +Bs [ Bso++ P- P J Po

where the A’s are linear polynomials in dl," ", dn. We have

Ai B’+i i’Bk
for all i, -m -<_ -<_ k, 0. Setting A-- ao/ aId +. .+ andn we get for each i, -m -<_

i<=k,iO,

(A.5) B’i / i’Bi all + ail dl +" + aisds.

Using the induction hypothesis for (b), there exists Tj in D and linear systems Li such
that B- y,jTo is a solution of (A.5) for yj in U if and only if the dl,’’ ", dn and

y,j satisfy L,.
Determine Blk,_, ", B; B2k,_," B2,; "; Bsk-," Bsi as before until

we obtain

t(**’)’, +Ao
B,o

)’.+B+ (2 e log D
=: p i= Pi

The A** and Ao are linear polynomials in all, , d. Let p 1-[ q0 be the factoriz-
ation of p into monic irreducible factors over KD and let degree q0 n. We then
have for each

A * + n [ ’Y’, c,.i p Bi.._.o ,,
Pi Pi q.

For each i, we get a linear system L* in the cj and d,. ., ds by equating terms in
the partial fraction decomposition. We finally must check to see that

Ao ’ ’ nco (Bo+ ,, e. log D)’.

Using the induction hypothesis for part (a), this gives a linear system L** in d, , dn
and the c. We now get L by projecting L_,,, Lk L* L* L** onto the
first N variables d,..., dn.

(b) Case 1. 0’ D. For y=A/pT,.., p we proceed as in [RISC69, p. 184] to
determine bounds for the a. Using these bounds we can set y Y/p, p, substitute
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in y’ +fy Y ciqi, clear denominators and get

(A.6) RY’ + SY Z ciTi.

We set

Y yO +y_0t-1 --" "4- YO,

R rO +. + to,

S svOV+... +So,

ciTi tO +" + to,

with yj, r, sj in D and t linear in the c with coefficients in D. Substituting these
expressions in (A.6) and comparing powers of 0, we get: (1) when y’ 0, either (a)
a+/3=<+l or (b) a+y-<+l or (c) a+/3=a+3,>8+l; (2) when y’ =0, either
(a) a +/3 1 <_- or (b) a + 3’ <-- or (c) a +/3 1 a + 3, > & Case (la), (lb), (2a), and
(2b) yield bounds for a.

Case (1 c) occurs when ry’ + svy 0 and ry’,,_l + s,y_l + r-ly’ +
(.aO’r + sv_)y, 0. Letting y_ vy with v D we have

r3y,v’ + ry + s.y v + r_,y’ + aO’r + s/_l)y, O,

v’- r_s,/ r2 + s_/r + 0’ O,

(f r-’sv-rzsv-’)-aO=v.
We now deal with the cases when 0 is nonsimple over D and when 0 log r/for some
r/ in D (this is the only place where the hypothesis of a log-explicit extension comes
into play). If 0 is nonsimple over D, then using the induction hypothesis we find a
linear system L in one indeterminate a such that a satisfies L if and only if

(f r-s’-rs’-l) -aO
is elementary over D. Furthermore, there is at most one a in K satisfying L, since
the existence of two such values would imply 0 is simple. Therefore we can bound a

in this case. if 0 log 7 for some r/ in D, we use the original Risch Algorithm to
determine a such that

r_ sr rs_
r v + a log r/

for some v in D. If such an a exists it must be unique, otherwise log r/ would be in
D. This allows us to again bound a.

To bound a in Case (2c), note that this case occurs when r(y’_ + aO’y)+ sy
0, or

+aO-
Y,

Treating the nonsimple and logarithmic cases separately as in Case (lc) above yields
the bound for a. The rest of the proof is the same as [RISC69, pp. 185-186]. l-]

We can deduce the following corollary from Theorem A.1. By a regular Liouvillian
extension we mean a Liouvillian extension (see the definition in 4) where each 0
used in building up the tower is transcendental over the preceding field.
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COROLLARY A.2. Let K be a finitely generated extension of Q and let F=
U(z, 01, ", On) be a regular Liouvillian extension of K(z), where z’= 1 and c’=0 for
all c in U. Let fo, fl, "’, fry be elements of F. Then one can determine in a finite number
of steps a system of linear equations in N variables with coefficients in K so that
fo+ dlf+" "+ dvfv has an elementary integral for d,..., ds in K if and only if
d, dv) satisfies L. For each dl, dN) in v satisfying L, we can find Vo F,
vi KFfor i- 1,. ., m and c, ., cm in K such that

fo + dlfl +’’" + dsfs V’o +
i=

Proof. This follows from Theorem A.1 and the fact, shown in [ROCA79], that
one can effectively embed a regular Liouvillian extension of K(z) into a regular
log-explicit extension of K(z).

Since any purely exponential extension of K (z) is a regular log-explicit extension
of K(z), Theorem A.1 gives the result needed in 7. A result similar to Theorem A.1,
for regular elementary extensions of K(z) was stated and proven in [MACK76].
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