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AN EXTENSION OF LIOUVILLE’S THEOREM ON INTEGRATION
IN FINITE TERMS*

M. F. SINGERTY, B. D. SAUNDERS} AND B. F. CAVINESS$

Abstract. In Part I of this paper, we give an extension of Liouville’s Theorem and give a number of
examples which show that integration with special functions involves some phenomena that do not occur
in integration with the elementary functions alone. Our main result generalizes Liouville’s Theorem by
allowing, in addition to the elementary functions, special functions such as the error function, Fresnel
integrals and the logarithmic integral (but not the dilogorithm or exponential integral) to appear in the
integral of an elementary function. The basic conclusion is that these functions, if they appear, appear
linearly. We give an algorithm which decides if an elementary function, built up using only exponential
functions and rational operations has an integral which can be expressed in terms of elementary functions
and error functions.
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Introduction. In 1969 Moses [MOSEG69] first raised the possibility of extending
the Risch decision procedure for indefinite integration to include a certain class of
special functions. Some of his ideas have been incorporated as heuristic methods in
MACSYMA and REDUCE. However, little progress has been made on the theory
necessary to extend the Risch algorithm. One step in this direction was the paper by
Moses and Zippel [MOZI179] in which a weak Liouville Theorem was given for special
functions (this result also appears in [SING77]).

In Part I of this paper, we give an extension of Liouville’s Theorem [RISC69, p.
169] and give a number of examples which show that integration with special functions
involves some phenomena that do not occur in integration with the elementary functions
alone. Our main result generalizes Liouville’s Theorem by allowing, in addition to the
elementary functions, special functions such as the error function, Fresnel integrals
and the logarithmic integral (but not the dilogorithm or exponential integral) to appear
in the integral of an elementary function. The basic conclusion is that these functions,
if they appear, appear linearly.

In Part II of this paper, we use the results of Part I to examine the question of
when the integral of an elementary function can be expressed in terms of elementary
functions and error functions. We give an algorithm which decides if an elementary
function, built up using only exponential functions and rational operations has an
integral which can be expressed in terms of elementary functions and error functions.

Some of the results of this paper have been announced in [SSC81]. We wish to
thank Barry Trager for drawing our attention to Example 2.1 in § 2.

Finally, all fields in this paper are assumed to be of characteristic 0. C, Q and Z
stand for the complex numbers, rational numbers, and integers respectively.

1. An extension of Liouville’s Theorem.
1. Statement and discussion of results. We begin by defining a generalization of
the elementary functions. Let F be a differential field of characteristic 0 with derivation
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and constants C. Let A and B be finite indexing sets and let
g = {Ga (exp Ra( Y))}cxeAa
F= {Hg(log Sﬁ( Y))}BEBa

be sets of expressions where:

(1) G., R,, Hg, Sg are in C(Y) for all «c A, Be B, i.e. they are all rational
functions with constant coeflicients;

(2) for all Be B, if Hg(Y)= Ps(Y)/Qp(Y) with Ps, Qg in C[Y], then deg Pz =
deg Qg+ 1.

We say that a differential extension E of F is an &%-elementary extension of F
if there exists a tower of fields F = Fyc F,c - - - F, = E such that F; = F;_,(6;) where
for each i, 1 =i=n, one of the following holds:

(i) 6; is algebraic over F,_;;
(ii) 6i=u'0; for some ue F,_,;
(iii) 0;=u'/u for some nonzero u € F,_,;
(1.1)  (iv) for some «a € A, there are u, ve F,_; such that
0'=u'G,(v) where v'=(R,(u))'v;
(v) for some B € B, there are u, v in F,_, such that
0;=u'Hg(v) where v'=(Sg(u))’/ Sg(u) and Sg(u)#0.

Informally, we could write (1.1) cases (ii)-(v) as

(ii") 0;=expu;

(iii") 6;=log u;

(iv') 6;=[u'G,(exp R,(u)) dx;

) 6,=] u'Hg(log Sg(u)) dx.

Cases (ii)-(iv) and (ii')-(iv') are not equivalent since, for example, (ii) determines
6; up to a multiplicative constant while (ii’) refers to a specific function, exp. Although
this distinction is not usually emphasized in the standard Liouville Theorem, it is not
a pedantry here. The distinction between (iv)-(v) and (iv')-(v’) is crucial to prevent
transcendental constants from being introduced by integration. This will be discussed
in detail in § 2.

The definition of &Z-elementary functions is broad enough to include such
functions as the error function, the Fresnel integrals and the logarithmic integral. Let
F =C(x), C the complex numbers. The error function is defined by

erf (u) = I u' e dx

where G, (exp R,(Y))=exp (- Y?) with G,(W)= W and R,(Y)=-Y>
The Fresnel integrals are defined by

S(u)= J u' sin [guz] dx,
C(u)=j u’ cos [_721“2] dx.

;i 2
[eur/2Y ]2___1
2ieiﬂ/2Y2

For S(u) we have that

Ga(exp R (Y)) =
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where G,(W)=(W?-1)/2iW and R,(Y)=imY?/2. For C(u) we have a similar
expression.
The logarithmic integral is defined by

1i(u)=j u dx

log u

&%-elementary functions do not include the dilogarithm (or Spence function)
defined by
u'logu
u—1

Liz(u)=—J dx

nor the exponential integral

Ei(u)=J “ue dx

since they both violate condition (1) of the definition. Of course, Ei (1) =1i ("), so
the exponential integral is implicitly covered by our analysis. One would like a theory
that explicitly includes these functions but this remains an open problem.

We can now state the generalization of Liouville’s Theorem.

THEOREM 1.1. Let F be a differential field of characteristic zero with an algebraically
closed subfield of constants C. Let y be in F and assume there exist an €£-elementary
extension E of F and an element y in E such that y'=y. Then there exist constants a;,
biss Cig in C, w; in F, and u;,, Uig, Vi, Uig, algebraic over F, such that

n W: ,
(1.2) y=wot ¥ a—+ ¥ ¥ buuinGu(vi)+ X X ciﬁuiBHB(viB)
i=1

Wi acAicl, BeB icly

where 1, and J; are finite sets of integers for all « and B and

r (Sﬂ(uig))'

Ve = (Ra(thig)) Vi Vig S, () s SB(“:’B)#O
B\Yip

forall a, B and i.

The proof of Theorem 1.1 will be given in § 3. Now some comments about the
hypotheses and conclusion of the theorem.

Condition (2) in the first paragraph of this section seems artificial, but the theorem
is false without it. Consider the following example.

Example 1.1. Let F = C(x, log x), where C is the field of complex numbers, € =
and &£ ={(log Y(Y +1))?}. In this case the index set B is a singleton and H = Y?. This
is excluded by condition (2) since deg (numerator of H)=2> deg (denominator of
H)+1.

Claim. (a) [logx/(x+1) lies in an #%-elementary extension of F but
(b) log x/(x+1)# wh+Y c;wi/wi+Y dujvi for any w, u, v; algebraic over F with
vi=(u;(u; +1))'/u;(u;+1) and constants ¢;, d; in C.

To verify (a), compute | (log x(x+1))* dx by parts. First we have that

J (log x)* dx = x(log x)* —2x log x +2x,

J (log (x+1))*dx = (x+1)(log (x+1))*=2(x+1) log (x+1) +2(x+1),
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and
j (log x)(log (x+1)) dx = x(log x) log (x +1)—(x+1) log (x +1)
—log x+2x+j log x X
x+1
Hence

J (log x(x+1))* dx = J (log x+1log (x+1))* dx

= J (log x)*+2 J (log x)(log (x+1)) dx+ I (log (x+1))* dx
= elementary function+2 J log x dx.
x+1

To verify (b) assume that log x/(x+1)=w){+Y |, c;wi/w,+Y 1, duiv; with w,
u;, v; algebraic over F and v}=(u;(u;+1))"/u;(u;+1). From the structure theorem
(IROCAT79, p.359]), we have foreach i, 1 = i = m, that u;(u, + 1) = ¢;x" for some rational
number r; and ¢;€ C. We can assume that neither ¢; nor r; is zero. We also have
v;=r;logx+k; for some k;e€C. Furthermore, each u; is algebraic over K=
C(x,log x, x, - - -, x™) and satisfies the irreducible equation u(u+1)—c¢x" =0. Let-
ting Tr be the trace function from K(u,, - - -, u,,) to K, we see from this equation that
Tr (u;) is an integer. Therefore, Tr (u}) = (Tr u;)' =0. Apply the trace to both sides of

log x wi 2
——=wh+Y ¢—+Y du'(r, +k;
x+1 WO zclwi deu (rl logx k:)
to obtain
log x (Nw;)'
= "+Y e
b+ (Trwo) +1 Nw;

where u is a positive integer and Nw; is the norm of w,. This contradicts the fact that
[log x/(x+1) is not elementary and hence (b) is verified.

Unlike the standard Liouville Theorem, the above theorem only guarantees that
there exist w;, U, Uig, Vi, Vig, algebraic over F such that (1.2) holds. One would have
hoped that these elements could be chosen to lie in F but this is not the case in general.

Example 1.2. Let F=C(x,exp x, exp (—exp x+x/2)), €={exp (-Y?)}, L=0.
Note that F is a purely transcendental extension of C.

Claim. (a) Iexp (—exp x+x/2) dx lies in an €%-elementary extension of F.
(b) exp (—exp x+x/2) # wo+Y ¢; wi/ w;+Y dujv, where v} = (—2uu!)v, for any w, u,
v;in F.

To verify (a), we see that

J exp (—exp x+-;-c> dx = J exp (—exp x) exp (-;f) dx == erf(exp g)

Note that exp (x/2) ¢ F.

To verify (b), assume such an expression existed. By the structure theorem in
[ROCA79], we have u; = r;(exp x+x/2) + six + a; where r; and s, are rational numbers
and aq; € C. Since F is a purely transcendental extension of C, this is only possible if
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ri=5;=0 and u; € C. Therefore we would have exp (—exp x+x/2)=wi+Y ¢; wi/w;,
contradicting the fact that the error function is not elementary.

2. The question of constants. In this section we will discuss the question of
transcendental constants appearing in our integral when we express this integral in
terms of €Z-elementary functions. We will rely heavily on the notion of a constrained
extension of a differential field and other concepts from differential algebra. We refer
the reader to [KOL73] as a general reference for differential algebra and explicitly to
page 142 for an exposition of the concept of constrained extension.

We quote two facts from [KOL73]: 1) Let F be a differential field of characteristic
0, P a differential ideal in the ring of differential polynomials F{y,, -, y.} and B a
differential polynomial in F{y,, -, y,} such that B¢ P. There exist elements
M, *,M, in some extension of F such that (n,,:--,7,) is a zero of P,
B(ny, -+, m,)#0and (n, -+, n,) is constrained over F; 2) Let F be as before. If
(M1, **, M) is constrained over F, then the constants of F(n,, - -, n,) are algebraic
over the constants of F.

PROPOSITION 2.1. Let F be a differential field of characteristic 0, I a differential
ideal in F{y,, -+, y.} and De F{y,,- - -, y,.} such that D¢ L. If there exist an €%-
elementary extension E of F and elements {,, - - -, {,, in E such that ({,,* -, ¢,) is a
zero of I with D(¢,, -+, Lm) #0, then there exists an €¥-elementary extension E of F,
whose constants are algebraic over the constants of F, and [, -+, () #O0.

Proof. Let E=F(6,,- -, 0,) where each 6, satisfies (i), (ii), (iii), (iv) or (v) of
(1.1). Each of these conditions defines 6; in terms of differential equations involving
elements of F(6,,- -, 6;,_;). These elements can be written as quotients of elements
in F[6,,---,6;_,]. Let C; be the product of the denominators of all elements of
F(6,,- - -, 6,_,) appearing in the definition of 6, Similarly each ¢; can be written as
§i=Ai(0y,--,0,)/Bi(0y,---,0,). Let G(y1," -+, yu) = D(H:n=1 Bi)(l'[.'Ll C;). We can
write F{6,,-- -, 0,} as F{y,, - - -, y,}/ P for some prime differential ideal P. Note that
G¢ P and I< P. Using 1) above, we can find 7, -, 7, constrained over F such
that (n,, -+, n,) is a zero of P and G(7,, -, n,) #0. One can easily check that
F(ny, -+, mn) is an EZ-elementary extension of F which, by fact 2) above, has
constants which are at worst algebraic over the constants of F. Furthermore, letting
Z,.=_A,~(n1, “+,ma)/Bi(my, " -, Ma), we have that ({y,---,Z,) is a zero of I and
D(¢y, -+, ¢m)#0. O

COROLLARY 2.2. Let F be a differential field of characteristic 0 and ye F. If y'=1y
has a solution in some E¥-elementary extension of F, then y' =y has a solution in some
&%-elementary extension of F whose constants are algebraic over the constants of F.

Proof. Let { be a solution of y'= vy lying in an €¥-elementary extension of F and
let F{¢}= F{y}/I for some prime differential ideal I. Let D =1 and apply Proposition
21. 0O

As mentioned in § 1, we took care to define €%-elementary functions in terms of
differential equations without explicitly mentioning the functions exp and log. This is
to prevent the appearance of constants that are generated transcendentally, e.g., as
values of exp or log. If we insist upon using the functions exp and log, i.e. those
functions satisfying y'=y, y(0)=1 and y'=1/x, y(1) =0 respectively, we are forced
to deal with this kind of constant as the following example shows.

Example 2.1. Let Q be the rational numbers and let F=Q(x,exp (—x*+1)),
€={exp (- Y%}, =0, and y=exp (—x*>+1).

Claim. (1) There exist u, v in F such that y=u'v where v'=(—u?)'v and so, a
fortiori, there is an €¥-elementary extension E of F, with the same constants as F,
and a y in E such that t'= 1.
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(2) ycannotbe writtenas y=wh+Y c;(wi/w;)+Y du! exp (—u?) for any elements
w;, U, exp (—u?) algebraic over F and constants c; d; algebraic over Q.

To prove claim (1), let u=x, v=exp (—x*+1). Then u’'=1 and v'=(-x*+1)'v=
(=x%)'v=(—u?)"v. Let 0 be defined by 6’ = u'v. One can show that 6 is transcendental
over F and that F(6) has the same field of constants as F. E = F(6) is then an
&< -elementary extension of F and y = 0 satisfies y'=y.

To prove claim (2), assume that we could write

(2.1) exp (—x*+1)=wh+ z c,-lvw—'.+.z du) exp (—u?),

i=1 i=1

with w,, u;, exp (—u;) algebraic over F and constants c, d; algebraic over Q, and m
as small as possible. Since u? and exp (—u?) are algebraic over Q(x, exp (—x*>+1)) we
have, by [ROS76, Thm. 2], each u; is algebraic over Q(x). We now apply an old
result of Liouville (see [RITT48, p. 49] or [ROS75, p. 295] for a modern proof): If
S5 S 81,0 ¢, & are algebraic functions, such that no two of the g; differ by a
constant, then f; exp (g,) +- - - + fi exp (g) is the derivative of an elementary function
if and only if each f; exp (g;) is. To apply this result rewrite (2.1) as

!

exp (—x>+1)+Y du!exp (—u})=wh+Y c,-%.

Since [exp (—x*+1) is not elementary, we have either: (i) —u? and —u? differ by a

constant for some i # j, or (ii) —x*+1 and —u? differ by a constant for some i. In case

(i), we see that the constant (which is algebraic over Q) must be 0, otherwise exp (—u?)

(exp (—u}))”" would be a transcendental constant lying in an algebraic extension of

F, a contradiction. We must therefore have —u} = —u} so u; ==+u; This implies that

we could combine terms in (2.1) to yield an expression with smaller m. In case (ii),

the constant again must be zero., Therefore —x*>+1=—u? for some i. Letting I =
{ij—ui=—x*+1} and J ={i|-u?# x*+1} we have

(1+ ¥ d,»uﬁ) exp (—x*+1)+ Y dulexp (—u)=w)+Y c;wl/w,
i ieJ

iel

Applying the result of Liouville and the previous argument, we must get J = and so

!

(1+ ¥ d,~u§> exp (—x*+1)=w)+Y ci-vY—'.

iel w;

Since [exp (—=x?+1) dx is not elementary we must have 1+Y du/=0. Since —u=

x’+1, we have Tr(u;)=0, where Tr is the trace with respect to the extension

Q(x, uy,* -, u,) of Q(x). Therefore, 0=Tr(1+Y du})=1+Y d(Tr(w;))' =1, a
contradition. [

3. Proof of Theorem 1.1. We will need the following three easy lemmas.

LeEMMA 3.1. Let k be a field containing the algebraic closure of the rationals and let
X and Y be indeterminants. Let A(Y) and B(Y) be relatively prime elements of k[ Y].
Furthermore, assume A/ B is not an nth power in k(Y) for any positive integer n. Then
the polynomial B(Y)X™ — A(Y) is irreducible in k(X)[ Y] for any positive integer m.

Proof. By Gauss’s Lemma B(Y)X™ — A(Y) factors in k(X)[ Y] if and only if it
factors in k[ X, Y] if and only if X™ — A(Y)/B(Y) factors in k(Y)[X]. Now apply
[LANGS6S5, Thm. 16, p. 221]. O
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LEMMA 3.2. Let k be a field, X and Y indeterminants, and A(Y) and B(Y) relatively
prime elements of k[ Y. If a and b are elements of k witha # 0, then A(Y) — (aX + b) B(Y)
is irreducible in k(X)[Y].

Proof. This again follows from two applications of Gauss’s Lemma and the fact
that aX +b—A(Y)/B(Y) is irreducible in k(Y)[X]. O

LemMA 3.3. Let k be a differential field with algebraically closed field of constants
C. For any S(Y) in C(Y), any u, v in k such that v'=(S(u))'/S(u) and for any a,
b e C, there exist wy,* -, w, ink, ¢y, *, ¢, in C such that u'(av+b) = wi+Y, ¢; wiw,

Proof. Itis enoughto show that u’(av + b) has an antiderivative in some elementary
extension of k and then apply Liouville’s Theorem. If we write S(Y)=B[[ (Y —a;)"™
where the a; are in C and n; are integers, then we can write v'=) n;(u—«;)'/(u —a;).
Thus v =Y n;v; for v; in some elementary extension of K such that v} = (u—a;)'/(u — ;).
One can then check that u'(av;+b) =(a(u—a;)(v;—1)+bu)’. 0O

Proof of Theorem 1.1. First of all, we may assume that for all B in B, Sg(Y) is
not an mth power for any positive integer m. If some Sg(Y)=(Sz(Y))™ then in the
definition of &£ and in condition (v) of (1.1) we could replace Ss(Y) by §B(Y) and
Hi(Y) by I-—IB( Y) = Hg(mY), so that Hyz(log S;(Y)) = Hs(log Sg(Y)). In this way we
get a new set &, prove our theorem for €%-elementary extensions and then switch back.

Furthermore, assuming the hypothesis of the theorem, Corollary 2.2 states that
we can assume that y’= vy has a solution in an €¥-elementary extension of F, with
no new constants.

We first assume F is algebraically closed. In this case, we proceed by induction
on the transcendence degree of E over F. When the transcendence degree is zero, the
result is trivial. When it is positive we apply induction and the problem is reduced to
showing:

Let E be an algebraic extension of F(6#) where 6 is transcendental over F and
satisfies conditions (ii), (iii), (iv) or (v) of (1.1). Let y € F and assume that E has no
new constants and that there exist w;, i, U, Vi, Ujg in E and constants a;, by, cig
such that

wi , ,
(3.1) y=woty a,~;+ZZbiau,~aGa(v,-a)+Zz ¢t Hp (035),
where
(Sﬁ(uiﬁ)),
vga: Ra Uin ,via and Ug e e
(Ra(tia)) 5 =75, ()

Then there exist W, @, g, Diay Us in F and constants @, by, &, in F such that

¥ =Wyt T A+ 3 T bl Ga(82) + L X Gaitia Ha(55),
where

_ (Sﬁ(ﬁip))/

5;0( = Ra aia '51‘01 and v: =T o = -

(R (i) = e
We shall deal with each of the cases (ii)-(v) separately. The main idea is to take

the trace of both sides of (3.1) to force everything to belong to F(6). We then will

equate terms in the partial fraction decomposition with respect to § and show that the

term not depending on 6 on the right-hand side can be put in the prescribed form.
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Case (ii). 8'=u'0 for some u in F.

For each a, B, i we have v, = (R,(ti,)) Vs, and (Sg(uig))’ = vigSp(uig), then by
[ROS76, Theorem 2] we have that

Vi =.f;a0rma
Sg(uig )=fig0"®,

for some rational numbers r,,, r;z and elements f,,, fj of F. Furthermore we have

(3.2)

Ra(ul'a) =il + 8ias
(3.3)

Uig = rigl + 8,
with g, and g, in F. Note that we can arrange that r,, and r;z are actually ix_1tegers.
To see this, let r;, = 5i,/n and rig = 5;3/ n, where s,,, s;g and n are integers. Let 6 = 0" 'i
We then have 6'=1/nu'6 and Fc< E < E(6). If we replace E by F(O) and 6 by 6,
we still have fields of the appropriate form and furthermore, v;, = f,0%=, and Sg(u;) =

fiﬁl?w, where s;, and s;3 are integers. We shall use the old notation but from now on
assume that r;, and r;z are integers.

We want to take the trace of both sides of (3.1) over F(8). Note that from (3.2)
and (3.3), the v, and Sg(u;z) are in F(8) and the R,(u;,) and vy are in F (which
implies that u,, is in F). The only elements which may give us trouble when we take
the trace are the u;z which, a priori, are only algebraic over F(9).

To calculate the trace of the u;,, write
As(Y)

By(Y)

where Az and By are relatively prime polynomials. Then uz satisfies
Ag(Y)—fig0"#Bg(Y) =0

which, by Lemma 3.1, is irreducible over F(0). Therefore the trace of u, can be
calculated from the coefficients of this polynomial. The coefficients are all of the form
8(fig0"#)+ € where & and ¢ are constants. Dividing by the leading coefficient, we get

B S(f,-BO"B)-Fs)
Tr uiﬁ - m(u(ﬁgorw)'*_ v

where m is an integer and 6, €, u, v are constants. We then have

SB(Y)=

ov— is Tfigrigu') 0
(Tr ug) = m 2= I o i)
(u(fig0"2) +v)
Note that the coefficient of 6° in the partial fraction decomposition of this expression
is 0, assuming that r,z # 0.
We are now ready to take traces in equation (3.1). Doing this we get
(Nw,)'

(3.4) My=(Trwy)'+) ai—-ﬁ;’JrZ IR EN T EDIDH Cig (Tr uiﬂ),HB(viB)

where M is some integer and, abusing notation, the a;, b, c;z are possibly different
constants. Let us collect the coefficient of 6° on the right-hand side of this equation.

If we write Tr wo=Y. " (a;/(6 — w;)’) + P(0), the standard calculations (as in [RISC69,
p. 169]) show that the coefficient of 6° in (Tr w,)’ is

(3.5) Wo
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where W, is the coefficient of 8° in P(8). Considering the next expression in (3.4), we

write
(Nw;)' _ l’ (0+p,,)’>
Zi Nw, Wi zz ( ’](0 /'Lj)

where Nw; = [I1(8 — u;)"s for some I, u; in F and integers n;. The coefficient of 6°
here is

(3.6) Y a,~%+z Z angu'.

Next we consider the expression
Z Z biau:aGa(via) =ZZ biau;aG (faeria)
=YX biatia Go(fiab")+ L Z biattia Ga( fia)-

ria %0

rl(!

The coefficient of 8° in the expression corresponding to the sum over those i, a with
i #0is Y. Y biod, ul, where d,, is the coefficient of Y°in G,(Y), which is a constant.
The expression corresponding to the sum over i, @ with r,, =0 has no occurrence of
0, so the coefficient of 8° in ¥ ¥ b,,u;, G.(vy,) is of the form

(3'7) v/+z Z biau;a Ga(via)
where v, u,, v, are in F and v}, = (R, (1)) v, Finally, we consider the expression
(3.8) D) ciﬂ(Tr uiB)'Hﬂ(viﬁ)
=) Z C;;s(Tr utB) HB(Uzﬂ)"' > 2;.) CIB(Tr utB) Hg(l’.p)
r,B—

where rg is defined in (3.2). Note that by (3.3) Hg(v;s) is in F and that if r;g =0 then
u;g is in F so that Tr u,s is in F. Therefore the sum corresponding to ri;g =0 has no
occurrence of 6. If r,z # 0, we showed that the coefficient of 6° in (Tr u;g)' is zero, so
the coefficient of 6° in the term corresponding to r,z # 0 is 0. Therefore the coefficient
of 0°in Y Y cig(Tr ug) Hp(vyg) is

) % Cig (Tr uiﬁ),Hﬂ(viB)
rig=
where vig = (Sg(uig))'/ Spg(ug) and ug, v;g € F. Combining (3.5), (3.6), (3.7) and (3.8),
we see that the coefficient of 8° on the right-hand side of (3.4) is of the prescribed
form and, since, for i #0, 6' does not occur on the left hand side, we have that My
equals this prescribed form.
Case (iii). 0'=u'/u for some u e F. Again [ROS76, Thm. 2] implies that

(3.9) R, (i) = dia0 + gias Vg = digh + gig,

for some constants d;,, dig and elements g, g in F and that the v,, and the Sp(uig)
are in F. So in particular, we have that the v, Vg, and the u;z are in F(6). We only
know that the u,, are algebraic over F(6) and so must calculate their trace.

Let
AY)
B,(Y)
where A and B are relatively prime polynomials with constant coefficients. Each u;,

satisfies A,(Uip) —(dia0 + 8ia) Bo(u,) =0. By Lemma 3.2, the polynomial A,(Y)-—
(din0+ gia)B.(Y) is irreducible over F(8) so the trace can be read off from its

R.(Y)=
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coefficients. As before, we see that
Tr uy, = m( 8(dib+gia)+ 5)
/‘L(diae + gia) +v
where 8, €, u, v are constants. Therefore
element of F
(u(dia0+ gia) + V)Z.

Note that if ud,, #0, then the coefficient of 6° in this expression is 0. If u =0 and
di, #0, then

(Tr u,)' =

! é
(Tr uia), =m(6(dlai+g:a)) = —mRa(uia),
14 u 14
Now let us take the trace of both sides of (3.1):

(Nwy)’

My =(Tr wp)' +Y a;
Y (I'WQ) zal NW,'

XY bia(Tr ) Go(vi) L X ciBu;ﬁHB(viB)
and let us consider each of the terms on the right separately.
Recalling from (3.9), that each v,z = dig0 + g,z We can write the last sum as

(3.10) LY ciguigHg(vig) = Z Z cigigHg(vig) + Z Z Cigig Hg(vig)

dig=0
The sum corresponding to dig =0 has u;z and v,z in F and is of the desired form. To
deal with the sum corresponding to d;z #0, recall that we have assumed that

deg (numerator Hg) = deg (denominator Hy)+ 1 so the partial fraction decomposition
of Hg is

L 5t Pe(Y)

(Y)

where Pg is a polynomial of degree =1. We can therefore write

X C-BunﬁHB(v:ﬂ) XY ciguig(Hg(vig) — Pg(vip)) + 2 Y cigltig Pg(vig).

dig#0
The first term is a proper rational function of 6 (i.e. the degree of the numerator is
less than the degree of the denominator). By Lemma 3.3, the second term is of the
form v'+Y d; vi/v. Therefore we can write (3.10) as

rx CiﬁufBHB(UiB)
=an expression whose 0° termis Y Y cuis Hg(vig),
ip=0
(3.11) with no terms containing 6' for i>0
'
+an expression of the form vg+), d,ﬁl
where u;3 and v are in F, v; are in F(6) and the d; and ¢, are constants. We shall
deal with the 6° term of v'+Y d,v!/ v, later.
We now look at the next term which we write as
Z z bla(Tr um) Ga(vza) my Z Z bxauxaG (vxa)+ ZZ bta(Tr ura) G (vta)

=0 d; 0

Note that if d,, =0, then u,, and v,, are in F so Tr u, is an integer multiple of wu,,.
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This integer is designated by m. If d;, # 0 we have shown that the 6° term of (Tr u;,)’
is zero or a constant times R(u;,)". Therefore the 6° term of the sum corresponding to
di, #0 is of the form

Vg v;
——Ga(via) = 06+Z di_
Via v

Z E eiaR(uia),Ga(via) = Z z €in

dig#0 dia #0
where e;, and d; are constants and the v; are in F(8). This last equality follows from
the fact that G,(v4)/v. is a rational function of v,, with constant coefficients.
Therefore, we have

Z z bia (Tr uia),Ga(via)

=an expression whose 6° term is Y Y b ul Go(via),
(3.12) ha=0
with no terms containing 6° for i>0

r

+an expression of the form vy+Y, di%
where u;, and v, are in F, v; are in F(0) and the b,, and d; are constants.
From (3.11) and (3.12) we can conclude that

i

Vi . . .
y=v§+Y d—+an expression whose 6° term is a constant multiple of
U.

(3.13) LY bigttia Go(vig) + Y. Y ciguigHp(vig) and with no terms

diy =0 dig=0
containing ' for i>0

where u;,, Uig, Uiy, U are in F, v; are in F(6) and b, c,, d; are constants. We now
want to calculate the 8° term of v)+Y d; v/ v, If we write v;=¢& [] i (0= )", i#0,
where &, u; are in F, then the 6° term of v//v; is £}/ ¢, Letting Uo=2,l~=o k6" +terms of
degree <0 in 6, we have that the 6° term of v} is kj+k,u’/u. If I>1 or k, is not a
constant, we would have that the right-hand side of (3.13) would contain an expression
of the form ' with i = 1. Therefore we have that [ =1, k, is a constant and the 6° term
of vy+Y div}/v; is of the form uy+Y a;u}/u; with the u;€ F and a; constants. This
and (3.13) shows that vy has the correct form.

Case (iv) and (v). 6'=u'G,(v) or 6'=u'Hg(v) where v'=(R,(u))'v or v'=
(Sg(v))'/Sp(v) with u, ve F.

In this case we can assume that 6 is not elementary over F, otherwise the problem
could be reduced to the above considerations. Since 6’'€ F, we have that the S(uy)
and v, are in F and that R(u,,) = d;,0 + g, and vz = d;g0 + g;3 With the d,,, d;g constants
and g, gz in F. We must have d,, =d;z =0, otherwise § would be elementary over
F. Therefore, we can write (3.1) as

Ii
(3.14) Y=L ¥ bt Gulv) =L X cigttls Hy(vg) = up+ ¥ ar*
with all terms on the left in F. Liouville’s Theorem now applies and tells us that the
expression on the right must equal d4+Y 4;u)/d; for some 4;€ F and constants 4.
This completes the proof of Theorem 1.1 in the case that F is algebraically closed.
Now we remove the assumption that F is algebraically closed. The above argument
shows that (1.2) holds with a;, by, ¢;g in C and w;, u,, Uig, Vi, Uig algebraic over F.
Let K be a finite normal extension of F containing w;, u;,, Uig, Ui, Vg and let o be an
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element of the Galois group of K over F. Then

#(3) = 7= (0w +3 a4 T b (1) Guloa) +3 5 i () Hal )

where (0v;,) = (R, (0U;,)) 00, and (ovig) = (Sg(ouig))'/ Seloug), Sg(oug) #0.
Summing over all o in the Galois group of K over F yields, for some M in Z,

(Nw,)'

= 4
My=(Trwy)' +) a— Nw,

+Z Y Y biao(Uia) Ga(00ia)

+Xr Y Ciaa'(“us) HB(O'viB)'

Since Tr w, and the norms Nw, are in F, this yields the final conclusion of the
theorem. 0O

II. The error function.

4. Statement and discussion of results. In this section we shall specialize the results
of the previous sections to the case when & ={exp (—Y?)} and ¥ =, that is, to
integration in terms of error functions and elementary functions. To be more explicit,
we say that a differential field E is an erf-elementary extension of F if there exists a
tower of fields F= F,c - - - < F, = E such that F,= F,_,(6;) where foreach i, 1=i=n,
one of the following holds:

(i) 6; is algebraic over F;_;

(i) 0/=u!6; for some u; in F,_;;

(iii) 6!=u!/u; for some u; #0 in F,_;;

(iv) 0.=ulv; for some u; v; in F,_, with v} = (—u?)'v; = —2uu’v,.

Recall that a differential field F is a Liouvillian extension of a differential field k
if there exists a tower k =k, - - - k,, = F such that k; = k;_,(&) where for each i,
1=i=n, we have either:

(i) & is algebraic over k;_,, or

(ii) &€k, or

(iii) €&i/&eki .

We then have the following result.

THEOREM 4.1. Let F be a Liouvillian extension of its field of constants C. Assume
C is of characteristic zero and algebraically closed and let y be an element of F. If y has
an antiderivative in some erf-elementary extension of F, then there exist constants a; and
b; in C, elements w; in F, and elements u; and v; algebraic over F such that

(1) y=wot L a+3 bui,
where v = (—u?)'v; and u?, v’ and ulv; are in F.

Proof. By Theorem 1.1, we know that there exist constants a; and b; in C and
elements w; in F, u; and v; algebraic over F satisfying (4.1). We want to show that
these can be chosen such that u?, v? and u/v; are in F. The lemma of [ROSI77, p. 338]
implies that each u? is in F and some power of v; is in F. Let E be a normal extension
of F containing all the w;, u; and v; and let o be an automorphism of E over F. We
then have ou; = +u; and ov; = {,;v; where {,; is a root of unity. Therefore,

y =y =(ow) +2a( +>:b(iga,)u 0,
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If we sum over all automorphisms of E over F we get:
w!
my=mwytmy a,—+Y bi<2ﬂ: goi)“:'vi
i Wi o

for some integer m. In the expression ), b;(}  + {,;)uiv; we shall implicitly assume
that we are only summing over those i for which Y+ {,; # 0. For such an i, we have

-1
wn=(22.) T otuivi)
so ujv; is left fixed by all automorphisms of E over F and so must lie in F. Furthermore,
(u’)2 H((u))?/u?, so (u})*e F. Since v? = (ulv;)*/(u!)* we have vie F. 0

The example at the end of § 1 shows that the u; and v; cannot be guaranteed to
lie in F. Despite this fact we are able to obtain a decision procedure (presented in § 7)
when v is built up using only exponential functions and rational operations.

Let F and k be differential fields of characteristic zero. We say that F is a purely
exponential extension of k if F=k(6,, - -,6,) where 6; is transcendental over
k(6,,---,6,_,) and 6! =u'6; for some u; in k(8,, -+, 6;,_;). The main result of § 7 is
the following. Here, we use the term computable field to mean a field in which one
can effectively carry out the field theoretic operations and over which one can effectively
factor polynomials. Any finitely generated extension of Q is computable as is the
algebraic closure of Q.

THEOREM 4.2. Let C be a computable field, C(x) a differential field with derivation
" defined by x'=1 and ¢'=0 for all c in C, and let F be a purely exponential extension
of C(x). Given vy in F, one can decide in a finite number of steps if y has an antiderivative
in an erf-elementary extension of F and if so find a;, b;, u;, v, and w; satisfying (4.1).

The rest of this paper is devoted to proving this result.

5. Purely exponential extensions. In practice, when we are asked to integrate a
function vy, we are not given a differential field F containing 7. In this section we shall
show how to make a good choice for a field of definition containing 7. This field will
be chosen so that the exponentials appearing in this field satisfy as few relations as
possible and so that the u; and v; which could possibly appear in (4.1) are already in
F. To do this we need some facts about purely exponential extensions.

Let F be a purely exponential extention of k. When we refer to such a field, we

shall always consider it as being given by a fixed set of generators 6,, - - -, 6, over k,
so F=k(6,,--,0,). Renumbering the 6, we may write k= F,c - - -< F,= F where
Fi=F,_ (6, -, 0;)fori=1,--- randwherethe 6;’s are algebraically independent

over k and satisfy 0}, = u};0; for some u; in F,_, with u; not in F,_,. Note that, one
can always uniquely arrange the 6,’s in groups to satisfy the above. We define the

rank of F=k(6,,- - -, 6,) over k to be the r-tuple (m, - - -, m;) and we designate this
by rank,F.

Let us consider two examples.

Example 5.1. Let k=C(x), F=k(exp x, exp (exp x?), exp (exp (x*)+x)). k=
C(x) = Fyc F, = Fy(exp (x%)) © F,= F,(exp (exp x°), exp (exp (x*>)+x)). We have
rank, F=(2,1).

Example 5.2. Let k be as above and F = k(exp x°, expx exp (exp x?)). We can
write k= F,c F, = Fo(exp x°, exp x) < F, = F,(exp (exp x?)) = F. We have rank, F =
(1,2).

Note that F=F; only the generating sets are different. This underlines the
important fact that the rank depends on the particular 6,, - - -, 8, we chose to generate
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F over k. Note that if rank, F=(m,, - - -, m;) then m,+- - -+ m, is the transcendence
degree of F over k.

We can also define the tank of an exponential in F. Let F be a purely exponential
extension of k and let F,, - - -, F, be as above. Let u, v be elements of F such that
v'=u'v. We define the rank of v (rank, v) to be the smallest i such that v € F.. Note
that if rank, v = i, then u € F,_,. Also note that in Example 5.1, rank, exp (x) =2 while
in Example 5.2 rank, exp (x)=1.

Given two sequences (m,, - - -, ml) and (m,---,m) we say (my, -, m)<
(mg, -+, my)ifr<sorif r=sand (m, -, m,) is less than (r,, - - -, m,) in the usual
lex1cographlcal ordering. We say that a purely exponential extension F of k is of
minimal rank over k if for any algebraic extension F of F, where F is also a purely
exponential extension of k, we have rank, F =rank, F. For example C(x, exp (x°),
exp (exp x?), exp (exp x2+x)) is not of minimal rank over C(x), since it is contained
in (in fact equal to) C(x, exp (x?), exp (x), exp (exp x*)) which is of smaller rank. We
will show later that C(x, exp (x?), exp (x), exp (exp x?)) is of minimal rank over C(x).

We will need the following technical lemma in Proposition 5.2.

LEMMA 5.1. Let E=F(0,,- - -,0,,) where 0:=u'0; with u; in F(6,,--,0,_).
Assume that E and F have the same field of constants and that 6,, - - - , 0,, are algebraically
independent over F. If { is an element of E such that {' is in F, then { is in F.

Proof. Proceeding by induction on m, we an assume that m = 1. In this case write
E = F(0) where 6'/0 ¢ F. Since 0 and { are algebraically dependent over F, we have,
by [ROS76, Thm. 2], that ¢ is algebraic over F. Since F(0) is a transcendental extension
of F, we must have {e F. [

PROPOSITION 5.2. Let F be a purely exponential extension of k = C(x), where x' =1
and ¢'=0 forallcin C, and letk=Fyc - --< F,= F where F,=F,_1(0;, - *, 0in,) with
0= uj;0; for some u; € F,_, u; £ F,_,. Then F is of minimal rank over k if and only if,
foreach i=2,- - - r the following holds:

(5.1) Z nju; € F;_, for some integers n; implies n; =0 for all n;.
j=1
Proof. Assume that F is of minimal rank over k and that for some i, there exist
ny,* -+, n,, not all zero, such that Z;"='1 nju; € F;_,. Without loss of generality, we can
assume n; #0. Let

m,

6= I] 67/™ and n—’ i

We then have 6'=v'6. Let

F0= FO,

F1_= Fi,

F}—.2= F_,,

Fi-l_—' F,_,(0),

Fi=F_1(63™, -, 00",

E-i:lz E Fiiy,

Fr‘= Fr—l ) Fr,

where F, - F,,, is the compositum of these two fields. Note that F, is an algebraic
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extension of F, The rank of F, is (m, -+, my, mi—1, mi_;+1,-- -, m,) which is
smaller than rank, F,=(m,, - - -, my, m;_,, - -, m;). This contradicts the fact that F, = F
is of minimal rank over k and so (5.1) must hold.

Now assume that (5.1) holds. We wish to show that F is of minimal rank over k.
Let F be a purely exponentlal extension, algebraic over F, such that rank, F=
(ms, cee,m)=(m, - ml)—rankkF Let k= FOC Fic---cF,=F where F,=

F;_ 1((9,1, SN ,,,,) where 0,, u,,o,, for some #; € F,_, and u,,E F,_,. We will show that
for each i, F; is algebraic over F; and therefore that m; = m; for each i and s = r. Since
tr. deg, F =tr. deg, F, we have Y_,m=Y,_, m; and so m;=rm; for each i. Therefore
rank, F =rank, F.

To prove that F; is algebraic over F, we proceed by induction on i If i=0,
F,=k=F, so we are done. Now assume that F is algebraic over F; for j <i. Since F
is algebraic over F, we have that 6,,, - - -, 0,,,,,_ are algebraic over F By the lemma of
[ROSI77, p. 338], we have that 8} € F for some nonzero integer N. Furthermore,

0
( —Nu eF ﬂF=F,»_1

']

since by induction F;_, is algebraic over F;_, and F,_, is relatively algebraically closed
in F. If we write F=C(x)(611," ", 0ymy """, 0,1, "+, 6,,n) Where 0= uj;6; then by
[ROCA79, Thm. 3.1] we have that

- __ 1
U= ) ropUgtc

for some rational numbers r’, and constant c. Since @j;€ F;_,, we have by Lemma 5.1

that ;=) rab Uy tce Fi_y. If some rJ, #0 with a>i, we would contradict (5.1).
Therefore r2, =0 if a>i and

g,=d 11 Tl 0
a=1b=1

This implies that 8; is algebraic over F; and so F; is algebraic over F. O

Using Proposition 5.2, we now can show that C(x, exp x?, exp x, exp (exp x?)) is
of minimal rank over C(x). Here Fy=C(x)< F,=Fy(expx expx’)c F,=
F, (exp (exp x7)). We must check if n,exp x> F, has a nonzero solution n, in the
integers (which it clearly does not). Similarly we can reaffirm that
C(x, exp (x?), exp (expx ), exp (exp x> +x)) is not of minimal rank. Here F,=
C(x)< F, = Fy(exp x*) = F2 F,(exp (exp x?), exp (x+exp x )) Here 6,,=exp x7,
Uy =x>, 05 =exp (exp x7), uy; =exp x>, 0,, =exp (x+exp x?), uyp=x+exp x>. Note
that u,, —u,, =—x€ F,.

ProposITION 5.3. Let C be a computable field and F a purely exponential extension
of C(x). We can construct an algebraic extension F of F such that F is a purely exponential
extension of C(x) and such that F is of minimal rank over C(x).

Proof. We will use the criterion (5.1) of proposition 5.2. Let C(x) = Fyc -+ < F, =
F with F;=F,_;(6;,, - -, 6;,) as before. For each i, we check if there exist n;, not all
zero such that Z;":", n;u; € F,_,. If, for some i, such a set of n; exists, say with n; # 0, let

m,
0= H G?jij/nil.
j=1
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Let
w=Fforj<i-1,

F_,= i—l(0)>
Fi=F_ (64", -, 8im®),

F,=F- F, forj>i.

We then have that F, is a purely exponential extension of k, algebraic over F and
of smaller rank than F over k. We claim that if we continue this process, it will end
after at most N° steps where N =tr. deg, F. This is because each time we repeat this
process we decrease one of the integers in (m,, - - -, m,;) by one and increase its neighbor
to the right by one. This can be done at most rm, +(r —1)m,_;+- - -+ m,=rN=N>. 0

ProPosITION 5.4. Let C be an algebraically closed field and F a purely exponential
extension of C(x), where x'=1 and ¢'=0 for all ¢ in C. One can construct a purely
exponential extension F* of C(x), containing F, which has the following property:

If u and v satisfy v' = u'v and u and v are algebraic over F with v* in F, then

(5.2) u and v are in F*,
Proof. Let F=C(x, 6,,- - -, 0,) where 0] =u}6; with y; in C(x, 6,,- -+, 6,_,) and
let F*=C(x, 6}/%, -+, 0Y?). One can easily show that F* is a purely exponential

extension of C(x) containing F. Since u and v are algebraic over F, we have by
[ROCA79 Thm. 3.1], that v=d [[}_, 8} where d is in C and the r; are in Q. Since
v’=d*[[]_, 67" is in F and F is a purely transcendental extension of C, we have that
2r; is an mteger for each i. Therefore v is in F* and so u is in F*. 0O

6. Squares in purely transcendental extensions. In our decision procedure, we will
be called upon to decide when certain elements of a field are squares. We discuss this
algebraic question in this section. Let K be a field and K (xl, -++,Xx,) a purely
transcendental extension of K. Let P be an element of K(xy, - -, x, ) w1th P not in
K and let K be the algebraic closure of K. We wish to show that the set of a in K
such that P+ a = Q for some Q in K(x,, - - -, x,,) is finite (or empty) and computable
if K is a computable field. We first prove the following ancillary lemma.

LEMMA 6.1. Let fand g be elements of K[x,, " -+, X,,] with no common factors and
assume that eztherfor g is not in K. Then the set ofa in K such that f>+ ag®=h? for
some h in K[x,,- -, -, X,] is a finite set and can be constructed if K is a computable
field.

Proof. Let f and g be of degree =k, let N be the dimension of the vector space
of all such polynomials and let P" be the projective space of dimension N over K.
Let S be the subset of K xP" consisting of all (a, (cl,- , cn, d)) such that d*(f*+
ag?)=h? where h is a polynomial with coefficients ¢, - - -, ¢n. S is a Zariski-closed
subset of K xP" and if we let p: K xPN > K be the projection map, then p(S) is the
set mentioned in the lemma. By classical elimination theory ([MUM76 p. 33] or
[VDWS50, p. 6]), we know that p(S) is a Zariski closed subset of K and so is either
finite or all of K. Furthermore, we know that if K is constructible, we can find the
defining equations of p(S). We need only check that p(S) # K.

Assume that p(S) = K and that af/dx, # 0 (since either f or g is not in K we may
assume one of them, say f, depends on some x, say x,). Let u be any element in K"
such that g(u) # 0 and let @, be a nonzero element in K such that f(u)*+ a,g(u)*=0.
Since we are assuming that p(S) = K, there is some polynomial h, such that f*+ a,g° =
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h2. Note that h,(u)=0. Differentiating h>, we get

oh? ah, of og
=2hu =2 — +2au .
ax3 ax, fax, gax1

We therefore have the following identities

fu) - f(u)+a,g(u) - g(u)=0,
w) -g;(um.,g(u) -ff—lw) ~o.

From this we can conclude that

72 @)~ gL (w =0
X, 0%,

Since this holds for all u in the open set where g(u) # 0, we have that

ég of
f ax; gax, 0.
Since f and g have no common factors, we have that f divides 9f/dx,, a contradiction.
Therefore p(S) # K and so must be finite. O

ProPoSITION 6.2. Let Pe K(x,, -, x,) with PZ K. Then there exist only a finite
number of values « in K such that P+ o = Q? for some Qe K(x,, - - -, x,,). Furthermore,
if K is computable, we can find these a.

_Proof. As before, we can show that the set of such « is a Zariski closed subset
of K, whose defining equations can be calculated if K is computable. To show that
this set is finite, it is enough to show that it is not all of K. Assuming that it is, we
would have 0 being an element of this set and so P would be a square. Write P = f*/ g*
where f and g have no common factors. For each «, we could find relatively prime
fs ga such that

2 2 2 2
i;+a=£—§ or f2+ag2=f——;2g.

From this we see that g, is a constant multiple of g so f°+ ag” = cf> for some constant
¢. Now apply the preceding lemma to get a contradiction. 0O

7. The decision procedure. In this section we shall prove Theorem 4.2. Let C be
a computable field, F a purely exponential extension of C(x) and y € F. Extend F to
F* as in Proposition 5.4 and use Proposition 5.3 to extend to a field E which is of
minimal rank over C(x). We may assume that C is algebraically closed since the
algebraic closure of a computable field is still computable. Using Theorem 4.1 and
Proposition 5.4, we see that we want to decide if there exist ¢; and d; in C and w;, u,
v; in E such that

!
(7.1) y=wh+Y e+ Y dulv, where v} =(—u2)v,

i iel
We can assume that if ), ; diuiv; has an elementary antiderivative for some subset
J < I and constants d;, then d; = 0 for all i in J. This just means that all of the elementary
part of the antiderivative of vy is contained in wy+Y, ¢;(w!/w;). The idea behind the
procedure is to first determine the possible expressions of the form ujv, with u;, v;€ E
and v} = (—u?)'v, which could appear in (7.1). This is done as follows.
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Let C(x)=E,<---<E,=E where E;=E; (6, -, 0im,) and uj;=u};6; with
u;€ E;_, and u; 2 E;_,. Let v and u be elements of E such that v'= (=u?)'v and let v

have rank s (i.e. ve E; but v¢ E,_;). The Structure Theorem of [ROCA79] permits us
to write

(7.2) v=d [] 6;"%

1=j=m;

1=is=s
with n; € Z, d € C. For notational convenience, our n; are the negatives of those in
[ROCA79]. Note that i ranges from 1 to s but no further since E is of minimal rank

and that n; € Z and not just in Q since E is a purely transcendental extension of C.
We also have

(7.3) u=( Y n,-ju,~j+c>l/2

1=sj=m;

1=siss
where ce C. We need one more piece of notation. Given any 6;, we can write vy in its
partial fraction decomposition with respect to 6; over the field C (x)
(611, -+, 045, 60m). (Where over an element means this element is omitted). Let

—A G et Agl 4y Lav(8y)
Y A_mﬁij + +Ap+ +A,0U+‘§)Qb(0ij)nab
where Q, is an irreducible polynomial in 6; not equal to 6;. We define o;(y)=
max (m, I). We claim that given v of rank s appearing in (7.1), we have |ng|= o ()
for 1=j=m, We are saying that if v is of rank s, those 6;’s which are also of rank s
appear to a power of absolute value less than oy;(v) in (7.2). This claim will be proven
below, so let us assume it for a moment. We still must bound the other exponents
appearing in (7.2). It would be natural to conjecture that |n;| = 0;(y), but this is not
true, as the following example illustrates.

Example 7.1. Let E = C(x, exp x, exp (—exp (2x)+x)). This is of minimal rank
over C(x). Letting y =exp (—exp (2x)+x), 6; =exp x and 6, =exp (—exp (2x) + x) we
have y =u'v where u=exp x=6,, v=exp (—exp (2x)) = 6,07 and v'=(—u’)'v. Note
that both v and 6, are of rank 2 and that the exponent of 62 in v is bounded by (in
fact equal to) 0,(y). Here 6, does not appear in v, yet it does appear in v, ui.e. n, = —1
while o0,(y)=0.

We will bound the n; for i <s using the results of § 6. Rewrite (7.3) as

1/2
u= <nslus1 i N Usm, + Z niu;; t C) .

1=sj=m;
1=si<s
Let
P=nguy+- - +ng,u,, and a= ) ngu;tc
1=j=m;
1=i<s

Note that since E is of minimal rank over C(x), we have that Pe E,_,, P¢ E,_,, and
a € E;_,. This is precisely where the notion of minimal rank is crucial. If welet K = E,_,,
we can apply Proposition 6.2 and find, for each choice of (ny, - -, n,, ) satisfying
|ng| = o4(7y), all @€ E,_, such that P+ a = Q* for some Q in E,_,. Each such a can
be written in at most one way as Y, nu; + ¢ since if Y, nu; +c =Y Au;+ ¢ we would
have Y, (n; —fi;)u; € C, so the 6; would be algebraically dependent over C unless
n; = it and ¢ = ¢. The a’s which can be written as such a sum will give us the exponents
for the 6,’s of lower rank. Therefore, using our claim and Proposition 6.2, we can
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determine for each s, I=s=r, all u and v in E which may appear in (7.1) such that

v'=(—u?)'v and v is of rank s. We now wish to decide if there exist a;, b, in C and
w; in E such that

7—(2 a.-uﬁv.-) = wo+Y b,
Wi

A procedure to decide this is presented in [MACKT76]. Since this paper has never been

published we have included in the Appendix a proof of the relevant theorem.

All that remains to be done is to prove that for v of rank s appearing in (7.1),
|ng| = o,(7y). The proof of this claim follows closely Risch’s proof of [RISC69, Main
Theorem] and will yield a proof of Theorem 4.2 independent of [MACK76].

We will proceed by induction on the number of generators of E over C(x). If
we write E=E,=E, ,(6,, -, 0,,) as before, let 6§ =exp (u) denote one of the 6,
and write E=K(0), where K=E,_(0,,," -, (3,,~, “++,6,,). Expanding vy in partial
fractions with respect to 6, and assuming that vy satisfies (7.1) we have

y=Ab +  +AO+A+A_ O+ +A_LO

A A A A
+__L1‘l+. NIt 3 R .+_‘:(k5+. Lot
pl1 D ps". ps
(7.4) Bo'+---+B,0+B,+B 6 '+ -+B_0"
+j Y d,»uﬁv,.+‘|’ Y, duiv;+Y cilog D;
ied ieJ
B
=< + klf‘l-}- . .+§£+Jﬁ
)2% P Py
oot
B B
+ k“’i‘l.;.. . .+_-“+J‘ﬁ‘
Ps’ Ps Ps

where the A’s, B’s and D’s are in K, the p;’s are irreducible polynomials in K[6],
Bio/pi =Y. ¢;(q;/ q;) where p;=]] gq; in K[6]. v/ =(—u?)v, and & is the set of i such
that v, € k while 7 is the set of i such that v; € K. Note that [ROS76, Thm. 2] implies
that in either case u; in K. Some justification is required for our implicit assumption
that p;' appears to a power of at most k; — 1 in the second expression. This follows
from the fact that for ie &, v; =£.6" for some f;€ K (again by [ROS 76, Theorem 2])
and so when differentiating the second expression we get no cancellation in this
expression. Note that for i € ¥ we can write v; = ¢;8™ [] 6}/ where n; # 0. We shall first
prove our claim for v; with i€ &, that is, that |n;| = max (k, m). Assume not and let
n=max;. ¥ (n;). We then have

(B.0") + Y duiv;=0
B

where &' is the set of i such that n; = n. This implies that Y. . dujv; has an elementary
antiderivative, contrary to our assumptions. This proves our claim for the v; with i€ &.

Furthermore, we see by comparing powers of 6 in our two expressions that t =k and
I=m.
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We now proceed to determine those v; with i € ¥ which may appear in (7.4). We
do this using the results of § 6 as above. Let

Y duivi= Y Cjej
ie¥ Jj#0
-m=j=k
where C; is of the form }, d,C; with C; known elements of K and d; constants to be
determined. Equating powers of 6 in (7.4) we get

Ak.= B;( + ku'Bk + Z dicik,

A1.= Bi+u'B,+} d.C,
A_" = Bl_l - u,B_l +Z diC,-,_l.

A_jm = Bl_m - mu,B_m +Z d,'C,',_m.
For each j we must determine if there exist constants d; and elements B; such that
B}’ +ju,Bj = A} _2 diC,-j.

This can be done using [RISC69, Main Theorem, part (b)]. Note that a solution is
uniquely determined if it exists. In this way determine the B;’s and d,’s (for ie &).
Proceeding as in [RISC69, p. 183], we can determine the B;,_,, - - -, B;, until we get
down to an equation of the form

hd Ai S B,’

Y 4 A;=Y =+ By+ Y dulv,+ (T ¢ log D).

i=1 Di i

Di i=1 Di ieT

Again we proceed as in [RISC69] and reduce the problem to deciding if

Ag—u'Y m,~c,~j=(BO+chlog I)j+j Y. diuiv,»>.

ied

This is equivalent to deciding if

!
Ay= (BO+Z ¢ log D’+J Y d,«uﬁvi>
ied
for some B,, D;, u;, v; in K. Note that 0;(A,) = 0;(y) so by the induction hypothesis
we have

ol](vl)§ OU(AO)é ()U(»y)
for all v; appearing in (7.1). O

Appendix. In this section, we present a proof of the result of Carola Mack alluded
to in § 7. We must first recall some definitions from [ROCA79]. Let kCK be differential
fields. For t€ K with t'€ k, we say that t is simple logarithmic over k if there exist
u, -, u, in k(m=1) such that for some constant c, t+ce k(log u,, - - -, log u,,).
We say it is nonsimple over k if it is not simple logarithmic over k. K is a regular
log-explicit extension of k if K and k have the same subfield of constants and there
exists a tower k= K,C- - - CK, = K such that K; = K;_,(6;) where 6; is transcendental
over K;_, and either

(i) 6;€ K;_, and 6, is nonsimple over K;_,, or

(ii) 0= u}/u; for some u; € K;_,, or

(iii) 0!=u!6; for some u; € K;_,.
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We shall use the following fact several times in the proof of Theorem Al below.
Given a system L, of linear equations over a field K in n+m variables

(%1, , Xm V1, " " *» Vm), there exists a system L, of linear equations over K in n
variables (x,, - - -, x,,) such that (a,, - - -, a,) € K" satisfies L, if and only if there exists
(by,- -+, b,)e K™ such that (a,, -, a,, by, - -,b,) satisfies L,. This follows from

the fact that the projection to K" of an affine subspace in K"™™ is still an affine
subspace. We will refer to L, as the projection of L, onto the first n variables.

. THeorReM Al. Let K be a finitely generated extension of Q and let F=
K(z, 0,, -, 6,) be a regular log-explicit extensiori of K(z), where z'=1 and ¢'=0 for
all ¢ in K.

(a) Let fy, f1, -+, fn be elements of F. Then one can determine in a finite number
of steps a system L of linear equations in N variables with coefficients in K so that
fotdfi+- - -+dnfn has an integral in an elementary extension of K for d,,- - -, dy in
K (the algebraic closure of K) if and only if (d,,---,dy) satisfies L. For each
(dy, - +,dy) in KN satisfying L, we can find vyc F, v,e KF for i=1, -+, m and
¢, "+, ¢ in K such that

Sotdifit- - tdyfy=vo+ _Zl Civ;/v"

(b) Letf, g, i=1, -+, m be elements of F. Then one can find, in a finite number
of steps hy, - - -, h,in F and a set L of linear equations in m + r variables with coefficients
in K, such that y'+fy=3" cg holds for ye F and c, in K if and only if y=Y"_, y:h;
where y; are elements of K and c,, -+, ¢, Y1, * * *, y, satisfy L.

Proof. We shall mimic the proof of [RISC69, Main Theorem] (and assume that
the reader is familiar with that paper) and so proceed by induction on n. If n =0, then
F=K(z) so we may take L={0, 0}, since any element in K(z) has an elementary
integral. The proof of part (b) is the same as in [RISC69]. To proceed with the induction
step, let D=K(z,6,,--+,0,_,) and F= D(0) where 6 =20,.

(a) Case 1. 6'e D. Let f=f,+d,fi+- - +dnfn. We can write

([ AB* + -+ A B, 6""'+-- -+ B, +Y e, log D)’
+_A_'kk_l+...+é_l B By J‘_B'_O
r={ pol=y et RN I
‘A, A "B\ B, (B
+__“kk‘ e _+__"l +—‘kk‘7"+. .. +.;'+ J’_‘_o
\ Ps ps) \ Ps’ Ps Ps )

Here the A’s are linear polynomials in d,, - - -, dy with coefficients in
are to be determined. Equating powers of 6, we have

0= B},

D and the B’s

so B,,,€ K, and
Ak = (k+ I)Bk+|9’+ B;(

We can write A, =a,otda,,+ - +dna,n With a; in D for i=0,
last equation can be written as

(A1)

-+ +, N, so this

Bi=aotdag,+ - -+dyagn—(k+1)By,, 0.

Using the induction hypothesis for (b), we conclude that there exist hy,, -, h,, in
D and L,, a system of linear equations in N +r, +1 variables with coefficients in K
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such that (A.1) has a solution B, in D if and only if B, =Y ¥, yuhs where y; € K and
(dy, "+, dn, Bisr, Yiko * * * 5 Yr) satisfies L. Notice that for each choice of d,,- - -, dn
in K there is at most one choice of By, in K for which there exist y;x, * * *, Y, in K

such that (dy, * - -, dns Bis1, ik * * * » Vi) satisfies L. Now let B, =Y % | yuhy where
the hy are indeterminants. We then have

Tk
-1 =kBk0,+ B‘C—l = k( -gl yikhik>0,+ B;c-—l
We can write Ay_; = g0t d1Gx_1 1+ - -+ dnax_y N, 5O
T
(A.2) Bi =aqptdiag_ + 0t dnai_ vt ;1 Vi (khy8'").

Using the induction hypothesis for (b) allows us to conclude that there exist
Ryg-1s* "5 hy_ k—1in D and L;_,, a system of linear equations in N + .+ ric_, variables
with coefficients in K such that (A.2) has a solution B,_, in D if and only if
B =Y Vikehik—t where Vik—1€ K and (d, "5 A Yido " " 7 s Yrgks
Yik—1"""» yr,M,k 1) satisfies L,_;. Again, for each choice of d,, - - -, dn, there is at
most one choice of (y, * * * , ¥r) for which there exists (¥ k-1, * * » Vr,_,.k—1) Satisying
L,_,. We continue in this way, getting linear systems L;_,, - -, L, whose solutions
guarantee the existence of B_,, - - *, B,. Finally, we have Ao= B,6'+ B;+}. e;(log D;)".
If we set Ag=ag+d,a,0+ +*+dnano and B, =YL yi h;; we get

(A.3) Aot diai ot -+ dnano— 2 hi,l(yi,lo’) =By+) €; (log D;)'
i=1

Using the induction hypothesis for part (a), we see that there exists a linear system
L* in N-+r, variables such that an equation of this form holds for some
(dy, "+, dn, hyy, * by satisfying L*.

Now consider

kl A kl—l B B
" LB [ B
j=1 Pi j=1 Pl P
We can find unique R, S, linearind,, - - -, dyin D[6, d,, - - -, dn], with dego,R <deg, p;
and deg, S <deg, p, such that
Rp,+ Spy= Ay,
Let —(k—1)B, ;_, =S, substitute into (A.4), and obtain a new relation
kglﬁz[kzsz,_‘_J’ Bl()] .
-1 Pi =1 Pl n

Continuing in this manner, we determine B, _,, - -, By, all linear in d;, - - -, dn.
We are left with an equation of the form

Age [ [ Bu]
Pq nl
Here B, o/p,= Z] y ©191;/ 44 where p, = ]’L | qy; is a factorization of p, into monic
irreducible factors over KD. We must determine if c; exist in K such that the equation
holds. Let

( *...) t
AT _ 0

)4 _j=1 qij
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where Q; is linear in d,,- -+, dy and let L¥* be the system of linear equations in
dy, - ,dn ¢, 0, G, gOtten by equating terms in the partial fraction decomposition
of
Qi‘ qt
Moy oAU
g qij
Similarly we get L¥*, - - -, L¥* for p,, - -, p. We now get L by projecting L, U+ - -U
L,UL*UL¥*U- - -UL¥* onto the first N variables (see the remark preceding the
statement of the Theorem 5.

Case 2. 6 =exp (. Let

)

A5+ +A0 1 ( Bb*+--- +B6 )
+A_, 0"+ +A_ 0T+ A +B_ 0"+ --+B_,07'+B,+Y ¢ log D,
3 A”‘l+ +éll Blkkl S +B_“.+ J’h &
f= P 14 =9 p D P
A A B _ B, B,
+_‘k"s+.~. 401 +__..:S_ll+... it l O JJ
J 25 Ps ) L Ds® Ds Do )

where the A’s are linear polynomials in d,, - - -, dn. We have
A,' = Bi + ig,Bk

forall i, —-m=i=k,i#0. Setting A, = a;o+ a;;d, +- - -+ a;ndn We get foreach i, —-m=
i=k i#0,

(A.5) B!+ i{'B;=a;,+ a;,d;++ - -+ a;ndn.

Using the induction hypothesis for (b), there exists T; in D and linear systems L; such
that B; =Y y;T; is a solution of (A.5) for y; in U 1f and only if the d;, -+, dy and
vy satisfy L
Determine Bix—1>* " s Bits Byo1,t 0 Bays ot 3 By, t + ¢, By as before until

we obtain

s A(** *)

y +A0—Z—+B0+(ZelogD)’

i=1 i i=1 Vi
The A{¥* " and A, are linear polynomials in d,, - - -, dx. Let p; =] g;; be the factoriz-
ation of p; into monic irreducible factors over KD and let degree q; = n. We then
have for each i

A 4 (Y c,-j)pi:_l_?ﬂ=Z q;
pi n =Yy
For each i, we get a linear system L¥ in the ¢; and d,, - - -, dy by equating terms in
the partial fraction decomposition. We finally must check to see that

=Y nic;=(Byt Y e log D))

Using the induction hypothesis for part (a), this gives a linear system L**in d,, - - -, dn
and the c;. We now get L by projecting L_,,U---UL,UL¥U---UL¥U L** onto the
first N variables d,, - - -, dn.

(b) Case 1. 0'e D. For y=A/p7' - - - pp* we proceed as in [RISC69, p. 184] to
determine bounds for the ;. Using these bounds we canset y = Y/p{t - - - pik, substitute
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in y'+fy =Y ¢gq, clear denominators and get
(A.6) RY'+SY=Y ¢T.
We set

Y= yaoa +ya—10a—l +e +y0’

R=rg0P+- - +rp,

S=5,0"+"--+s,,

YaTi=1:6°+ -+,
with y, 7, s; in D and ¢ linear in the ¢; with coeflicients in D. Substituting these
expressions in (A.6) and comparing powers of 6, we get: (1) when y/, # 0, either (a)
a+B=6+1or(b) a+y=d+1lor(c) a+B=a+y>8+1; (2) when y, =0, either
(a)a+B—1=8or(b)at+y=dor(c)a+B—-1=a+vy>8 Case(la), (1b), (2a), and
(2b) yield bounds for a.

Case (lc) occurs when rgy,+s,y,=0 and rgy,_1+S8ye1trs 1 yo+t
(ab'rs+5,-1)y, =0. Letting y,_, = vy, with ve D we have

rgYal + (rgy e+ 8,9.)0+ 11y +(ab'rg+s,_1)y, =0,

V' =15 1Sa/ T+ 5, 1/15+ab' =0,

rB_ls.y_ rﬁs.y_,
(o) apme
s

We now deal with the cases when 0 is nonsimple over D and when 6 =log 1 for some
m in D (this is the only place where the hypothesis of a log-explicit extension comes
into play). If 0 is nonsimple over D, then using the induction hypothesis we find a
linear system L in one indeterminate « such that a satisfies L if and only if

rB_ls,y - rﬁsy_l
(I—-—-—————z —af
s

is elementary over D. Furthermore, there is at most one a in K satisfying L, since
the existence of two such values would imply 6 is simple. Therefore we can bound «

in this case. if 6 =log n for some n in D, we use the original Risch Algorithm to
determine « such that

rg_18,—IgS,_
J-————————-ﬁ =y Pl p+alogy
s
for some v in D. If such an « exists it must be unique, otherwise log » would be in
D. This allows us to again bound a.

To bound « in Case (2c), note that this case occurs when rg(y,—;+ a@0'y,) + sy, =

0, or
( j fz)me:M.
rﬁ Yo

Treating the nonsimple and logarithmic cases separately as in Case (1c) above yields
the bound for a. The rest of the proof is the same as [RISC69, pp. 185-186]. 0

We can deduce the following corollary from Theorem A.1. By a regular Liouvillian
extension we mean a Liouvillian extension (see the definition in § 4) where each 6
used in building up the tower is transcendental over the preceding field.
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CoroLLARY A.2. Let K be a finitely generated extension of Q and let F=
U(z, 0y, ,06,) be a regular Liouvillian extension of K(z), where z'=1 and ¢' =0 for
all cin U. Let f,, f, * -, fn be elements of F. Then one can determine in a finite number
of steps a system of linear equations in N variables with coefficients in K so that
fotdifi+- - -+dnfy has an elementary integral for d,,- - -, dy in K if and only if
(dy, - -, dn) satisfies L. For each (d,, - - -, dy) in K~ satisfying L, we can find vy€ F,
v,eKF fori=1,--+-,mandc,, -+ ,c,in K such that

!

m
U;
fotdifit- - +dyfn=vot Z Ci’l';-

i=1 i

Proof. This follows from Theorem A.1 and the fact, shown in [ROCA79], that
one can effectively embed a regular Liouvillian extension of K(z) into a regular
log-explicit extension of K(z). 0O

Since any purely exponential extension of K(z) is a regular log-explicit extension
of K(z), Theorem A.1 gives the result needed in § 7. A result similar to Theorem A.1,
for regular elementary extensions of K(z) was stated and proven in [MACK?76].
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