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Abstract

D-finite (or holonomic) functions satisfy linear di↵erential equations with polynomial coe�-
cients. They form a large class of functions that appear in many applications in Mathematics
or Physics. It is well-known that these functions are closed under certain operations and these
closure properties can be executed algorithmically. Recently, the notion of D-finite functions
has been generalized to di↵erentially definable or Dn-finite functions. Also these functions
are closed under operations such as forming (anti)derivative, addition or multiplication and,
again, these can be implemented. In this paper we investigate how Dn-finite functions behave
under composition and how they are related to algebraic and di↵erentially algebraic functions.
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1. Introduction

A formal power series f(x) =
P

k�0 akx
k is called D-finite, if it satisfies a linear di↵er-

ential equation with polynomial coe�cients [11, 19, 20]. The most commonly used special
functions [1, 4, 17] are of this type as well as many generating functions of combinatorial
sequences. D-finite functions are not only closed under certain operations, but these closure
properties can be executed algorithmically. A key is the finite description of D-finite functions
in terms of the polynomial coe�cients and su�ciently many initial values. Given such D-
finite representations, the defining di↵erential equation for the antiderivative, the derivative,
addition, multiplication, algebraic substitution, etc. as well as su�ciently many initial values
can be computed algorithmically. This has been implemented in several computer algebra
systems [2, 10, 13, 15, 18]. These implementations can be used to automatically prove and
derive results on holonomic functions [9].

Given a di↵erential ring R, the set of di↵erentially definable functions over R, denoted
by D(R), is defined as those (formal) power series satisfying linear di↵erential equations with
coe�cients in R. In this notation, the classical D-finite functions are D(K[x]) (for some
field K of characteristic zero). It has been shown [6, 7] that these functions are also closed
under forming antiderivative, derivative, addition, and multiplication and that also these
results are algorithmic. Since D(K[x]) is again a di↵erential ring, the construction can be
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iterated, giving rise to DD-finite functions D(D(K[x])) = D2(K[x]) or more generally Dn-
finite functions D(Dn�1(K[x])) = Dn(K[x]). Simple examples of DD-finite functions are the
tangent or the iterated exponentials, neither of which is D-finite. Once more, these functions
can be represented by the coe�cients of the defining di↵erential equation plus initial values.

It is well-known that algebraic functions are D-finite and that the composition of D-finite
with algebraic functions is again D-finite. In this paper, we prove the analogous results
for Dn-finite functions. In general, the composition of two D-finite functions is not D-finite.
However, having a whole scale of di↵erentially definable functions at our disposal, it is possible
to consider the composition of Dn-finite with Dm-finite functions. Furthermore, we show that
the Dn-finite functions form an increasing set that does not exceed the di↵erentially algebraic
functions. All results presented are algorithmic and have been implemented in the open source
computer algebra software SAGE [21] in the package dd functions [5].

2. Composition of Dn-finite functions

Before we introduce new properties of di↵erentially definable functions, we recall the
concepts and some results developed in [6]. From now on, we fix the following notation: K
is a field of characteristic zero, K[[x]] denotes the ring of formal power series over K, @ the
standard derivation in K[[x]] and hSiK the K-vector space generated by the set S. We also
frequently use the notations f 0 = @(f) and f (i) = @i(f) for higher order derivatives.

Definition 1. Let R be a non-trivial di↵erential subring of K[[x]] and R[@] the ring of linear
di↵erential operators over R. We call f 2 K[[x]] di↵erentially definable over R if there is a
non-zero operator A 2 R[@] that annihilates f , i.e., A · f = 0. By D(R) we denote the set of
all f 2 K[[x]] that are di↵erentially definable over R. We define the order of f w.r.t. R as
the minimal order of the operators that annihilate f (i.e., the minimal @-degree of A 2 R[@]
such that A · f = 0).

Note that R ⇢ R[@] and hence for non-trivial subrings of K[[x]] the set of di↵erentially de-
finable functions is never empty. In our notation, the classical D-finite functions are D(K[x]).
It is well known [11] that D(K[x]) is closed under derivation, addition, and multiplication,
i.e., they form a di↵erential subring of K[[x]]. Hence D(D(K[x])) = D2(K[x]) is well defined
and we refer to it as the set of DD-finite functions.

Example 2. c0(x) = exp(x) 2 K[[x]] is D-finite satisfying the linear di↵erential equation
c00(x)� c0(x) = 0, c0(0) = 1, and so is the constant function c1(x) = 1 2 K[[x]]. Hence f(x) =
exp(exp(x) � 1) 2 K[[x]] is DD-finite as solution to c1(x)f 0(x) � c0(x)f(x) = 0, f(0) = 1.
The coe�cients in the defining di↵erential equation for f(x) can be represented in turn using
their respective defining (in)homogeneous di↵erential equations.

In analogy to D-finite functions, di↵erentially definable functions have equivalent characteri-
zations in terms of inhomogeneous di↵erential equations or finite dimensional vector spaces.

Theorem 3. Let R be a di↵erential subring of K[[x]], R[@] the ring of linear di↵erential

operators over R, and F = Q(R) be the field of fractions of R. Let f 2 K[[x]]. Then the

following are equivalent:

1. f 2 D(R)
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2. 9A 2 R[@] 9 g 2 D(R) : A · f = g

3. dim
�
hf (i) | i 2 NiF

�
< 1

Proof. See [6].

Several closure properties satisfied by D-finite functions have been shown to hold also for
di↵erentially definable functions. The proofs are very similar to the classical case and they
are also constructive and have been implemented in the open source computer algebra system
SAGE [5, 7]. Next we recall some of these closure properties.

Theorem 4. Let R be a non-trivial di↵erential subring of K[[x]] and f(x), g(x) 2 D(R) with
orders d1 and d2, respectively, and r(x) 2 R. Then:

1. f 0(x) 2 D(R) with order at most d1.

2. Any antiderivative of f(x) is in D(R) with order at most d1 + 1.

3. f(x) + g(x) 2 D(R) with order at most d1 + d2.

4. f(x)g(x) 2 D(R) with order at most d1d2.

5. If r(0) 6= 0, then its multiplicative inverse 1/r(x) in K[[x]] is in D(R) with order 1.

Proof. See [6].

By Theorem 4 we have that given a di↵erential subring R of K[[x]], D(R) is again a
di↵erential subring of K[[x]]. Hence the construction can be iterated with closure properties
holding at each level. As we refer to D2(K[x]) as DD-finite functions, we call Dn(K[x]) the
set of Dn-finite functions.

Another property that has an immediate generalization from D-finite to Dn-finite is the
structural relation that any function algebraic over the quotient field K(x) is D-finite [11].
We first recall the classical result and its proof.

Theorem 5. Let a(x) 2 K[[x]] be algebraic over K(x). Then a(x) is D-finite.

Proof. Let a(x) be algebraic over K(x) and m(x, y) 2 K(x)[y] be its (monic, irreducible)
minimal polynomial. Then we have that m(x, a(x)) = 0 and di↵erentiating this equality gives

a0(x)@y(m)(x, a(x)) + @(m)(x, a(x)) = 0, (1)

where @ denotes the coe�cient-wise derivation over K(x)[y] and @y the standard derivation
with respect to y in K(x)[y].

Then for the polynomial @y(m), clearly degy(@y(m)) < degy(m) and by the irreducibility
of the minimal polynomial, m and its derivative are coprime. Hence there exist polynomials
r(x, y), s(x, y) 2 K(x)[y] such that

r(x, y)m(x, y) + s(x, y)@y(m)(x, y) = 1.

Plugging in y = a(x) gives the equality s(x, a(x))@y(m)(x, a(x)) = 1. Multiplying (1) by
s(x, a(x)) and using this identity, we obtain a polynomial expression for a0(x),

a0(x) = �s(x, a(x))@(m)(x, a(x)).
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Hence for any polynomial p(x, y) 2 K(x)[y], the derivative of p(x, a(x)) can be expressed
again as a polynomial in a(x), i.e.,

@(p(x, a(x))) = a0(x)@y(p)(x, a(x)) + @(p)(x, a(x))

=
�
@(p)� s@y(p)@(m)

�
(x, a(x))

Then by induction it follows that

dimK(x)(ha(x), a0(x), a00(x), . . . i)  dimK(x)(h1, a(x), a2(x), . . . i) = degy(m),

where dimK(x) is the dimension as a K(x)-vector space. Thus, by Theorem 3, a(x) is D-finite

with order at most degy(m). Therefore there is a linear relation among a(x), . . . , a(m�1)(x)
amd so a(x) is D-finite of order at most degy(m).

Note, that in this proof, the fact that a(x) is algebraic over K(x) in particular has never
been used. If instead, we consider a di↵erential integral domain R and its field of fractions,
the proof carries over immediately to the following generalization.

Proposition 6. Let R be a di↵erential subring of K[[x]] and F its field of fractions. If

a(x) 2 K[[x]] is algebraic over F then a(x) 2 D(R).

This means in particular that functions that are algebraic over the ring Dk(R), are in the
next level in the hierarchy, i.e., in Dk+1(R). The proof of Theorem 5 is constructive and gives
a way to compute a Dn+1-finite equation given an algebraic equation with Dn-finite function
coe�cients as we illustrate in the next example for n = 1. For more details how the procedure
is currently implemented in SAGE [5] we refer to the appendix.

Example 7. Let a(x) be given by the algebraic equation

1
2 cos(x)a(x)

2 � 2a(x) + cos2(x) = 0

with D-finite coe�cients. Then we have for the defining polynomial ' and its derivative
w.r.t. y,

'(x, y) = 1
2 cos(x)y

2 � 2y + cos2(x), and 'y(x, y) = cos(x)y � 2.

Applying the extended Euclidean algorithm gives

r(x, y)'(x, y) + s(x, y)'y(x, y) = t(x)

with
r(x, y) = 2 cos(x), s(x, y) = 2� y cos(x), t(x) = 2 cos3(x)� 4.

With this we obtain the following non-homogeneous DD-finite linear di↵erential equation for
a(x),

2 cos(x)
�
cos3(x)� 2

�
a0(x) + sin(x)

�
cos3(x) + 4

�
a(x)� 6 sin(x) cos2(x) = 0.

Another important classical closure property states that the composition of D-finite functions
with algebraic functions (if well defined) is again D-finite [11]. Also this result extends to the
more general setting. Here, and in the following, we denote by Fn(x) the field of fractions of
Dn(K[x]).
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Theorem 8. Let f 2 Dn(K[x]) for some n � 1 and a(x) be algebraic over Fm(x) for some

m � 0 with a(0) = 0. Then g(x) = (f � a)(x) is in Dn+m(K[x]).

Proof. Let f 2 Dn(K[x]) be of order d and a(x) be algebraic of degree p over Fm(x).
We proceed by induction on n. The base case n = 1 (i.e., f is D-finite) can be proven

using the same ideas as in [19, Theorem 2.7], which corresponds to the case m = 0. Using
the chain rule, we can write g(k)(x) as a linear combination of f (l)(a(x)) with coe�cients in
K[a, a0, a00, . . .]. Since a(x) is algebraic over Fm(x), this can be rewritten as

g(k)(x) =
kX

l=1

Qk,l(x, a(x))f
(l)(a)(x)),

where Qk,l(x, a(x)) 2 Fm(x)(a) = Fm(x)[a, a2, . . . , ap�1].
On the other hand, since f is D-finite, there are polynomials p0(x), . . . , pd(x) 2 K[x] such

that
pd(x)f

(d)(x) + . . .+ p0(x)f(x) = 0.

Composing this equality with a(x) gives

dim
�
hf(a(x)), f 0(a(x)), f 00(a(x)), . . .iFm(x)(a)

�
 d.

Altogether, we have

hg(x), g0(x), . . .iFm(x) ⇢ hf(a(x)), f 0(a(x)), . . . , f (d�1)(a)(x))iFm(x)(a).

As Fm(x)(a) is finite over Fm(x), the vector space spanned by g(x) and its derivatives over
Fm(x) has finite dimension (in fact, at most dp). Hence, g(x) 2 Dm+1(K[x]).

Now let n > 1. Since f(x) 2 Dn(K[x]), there are r0(x), . . . , rd(x) 2 Dn�1(K[x]) such that

rd(x)f
(d)(x) + . . .+ r0(x)f(x) = 0.

By the induction hypothesis, we have that (rd � a)(x) 2 Dn+m�1. Thus

dim
�
hf(a(x)), f 0(a(x)), f 00(a(x)), . . .iFn+m�1(x)

�
 d.

On the other hand, since n > 1, we have that n+m� 1 > m. Hence

dim
�
h1, a(x), a(x)2, . . .iFn+m�1(x)

�
 p.

Analogously to the base case n = 1, using the chain rule and the algebraicity of a(x) over
Fm(x), we can express g(i)(x) as a linear combination of products of f (j)(a(x)) and a(x)l,
showing that

dim
�
hg(x), g0(x), g00(x), . . .iFn+m�1(x)

�
 dp,

yielding g(x) 2 Dn+m(K[x]).

Let us give a simple example of algebraic substitution in a DD-finite function by composing
the double exponential, see Example 2, and the square root. How the Theorem is realized in
the current version of the SAGE-implementation [5] is described in the appendix below.
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Example 9. Let f(x) = exp(exp(x)� 1), which is DD-finite satisfying the di↵erential equa-
tion f 0(x)�exp(x)f(x) = 0, and let a(x) be the algebraic function such that a(x)2+2a(x)�x =
0 with a(0) = 0. Using the classical embedding Theorem 5, we find that 2(x+1)a0(x)�a(x) =
1.

Let h(x) = f(a(x)). Since the order of f is d = 1 and the degree of the algebraic equation
for a is p = 2, we get as an upper bound for the DD-finite equation dp = 2. By the chain rule
we have that

h0(x) = f 0(a(x))a0(x), and h00(x) = f 00(a(x))a0(x)2 + f 0(a(x))a00(x).

The iterated di↵erential equations for a(x) and f(x), respectively, can be plugged into these
equations and, using elimination, we find that

2(x+ 1)h0(x)� exp(a(x))(a(x) + 1)h(x) = 0.

The coe�cients in this equation are obviously D-finite.

In the classical setting of holonomic functions, there is no general result about composition
of D-finite functions. The next result shows that the composition of two Dn-finite functions (if
well-defined) stays within the chain of rings K[x] ⇢ D(K[x]) ⇢ D2(K[x]) ⇢ . . . ⇢ Dn(K[x]) ⇢
. . . .

Theorem 10. Let f(x) 2 Dn(K[x]) of order d and g(x) 2 Dm(K[x]) with g(0) = 0, then

(f � g)(x) 2 Dn+m(K[x]) with order at most d.

Proof. We proceed by induction on n. For the base case n = 0, i.e., f 2 K[x], we have
that (f � g)(x) = f(g(x)) 2 Dm(K[x]) by the closure properties addition and multiplication
(Theorem 4), even when g(0) 6= 0.

Now, suppose that n > 0 and assume that for any k < n, if h(x) 2 Dk(K[x]) then
(h � g)(x) 2 Dk+m(K[x]).

In order to show (f � g) 2 Dn+m(K[x]) we need to prove that the vector space generated
by (f � g), (f � g)0, . . . over Fn+m�1(x), the field of fractions of Dn+m�1(K[x]), has finite
dimension. Let Vn+m�1(f � g) denote this vector space.

Again using the chain rule, we have that,

(f � g)(k)(x) =
kX

l=1

(f (l) � g)(x)Bk,l(g
0(x), . . . , g(k�l+1)(x)).

As n > 0, also n+m� 1 � m and so g(j)(x) 2 Fn+m�1(x) for any j 2 N. Hence,

Vn+m�1(f � g) ⇢
⌦
f � g, f 0 � g, f 00 � g, . . .

↵
Fn+m�1(x)

.

Since f has order d in Dn, using Theorem 3 it follows that for any p � d there are elements
rp,i(x) 2 Dn�1(K[x]), for i = 0, . . . , d such that,

rp,d(x)f
(p)(x) = rp,0(x)f(x) + . . .+ rp,d�1(x)f

(d�1)(x).

By the induction hypothesis, the composition (rp,i � g) 2 Dn+m�1(K[x]) for any i = 0, . . . , d,
hence

rp,d(g(x))f
(p)(g(x)) = rp,0(g(x))f(g(x)) + . . .+ rp,d�1(g(x))f

(d�1)(g(x)).
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Thus, we may conclude that

dim(Vn+m�1(f � g))  dim(hf � g, f 0 � g, f 00 � g, . . .iFn+m�1(x))  d.

Next we give some simple examples for this result. In the appendix we describe how
this closure property can be implemented and provide computational details on the following
examples.

Example 11. Let f(x) = exp(x) and g(x) = sin(x). Both are D-finite functions with an-
nihilating operators @ � 1 and @2 + 1, respectively. Their composition h(x) = (f � g)(x) =
exp(sin(x)) is DD-finite satisfying the linear di↵erential equation h0(x)� cos(x)h(x) = 0 with
D-finite function coe�cients.

Example 12. Let f(x) = log(x + 1) and g(x) = exp(x) � 1. Both are D-finite functions
with annihilating operators (x+1)@2 + @ and @2 � @, respectively. Their composition h(x) =
(f�g)(x) = log(exp(x)) is DD-finite. The execution of the procedure described in the appendix
yields the di↵erential equation h00(x) = 0 with initial values h(0) = 0, h0(0) = 1. In this case
it is possible to find that h(x) = x, i.e., that it is even polynomial. This is not always the
case in general.

Example 13. Let f(x) = sin(x) which is D-finite with annihilating operator @2 + 1. Then
g(x) = (f � f)(x) = sin(sin(x)) is DD-finite satisfying the linear di↵erential equation

cos(x)g00(x) + sin(x)g0(x) + cos3(x)g(x) = 0.

We can continue this example by iterating the composition with the sine once more and thus
obtain a D3-finite function.

Example 14. Let f(x) = sin(x) and g(x) = f(f(x)) = sin(sin(x)) as in the previous exam-
ple. Then h(x) = (f � g)(x) = sin(sin(sin(x))) is D3�finite satisfying the linear di↵erential
equation

g0(x)h00(x)� g00(x)h0(x) + g0(x)3h(x) = 0.

Note that even though in this example (f � g)(x) = (g � f)(x), computationally it makes a
di↵erence on how the annihilating operator for h(x) is computed, see also Appendix A.

By Theorem 6, we have that any function a(x) algebraic over K(x) is D-finite, hence for
f 2 Dn(K[x]), (f � a)(x) 2 Dn+1(K[x]) (if a(0) = 0). However, by Theorem 8 for m = 0,
even (f � a)(x) 2 Dn(K[x]) holds. The following lemma underlines that the condition on
algebraicity is essential for this reduction in layers.

Lemma 15. Let g(x) 2 Dn(K[x]), n � 1, of order 1 and consider the power series f(x) =
exp(g(x)� g(0)). If f(x) 2 Dn(K[x]), then g(x) is algebraic over Fn�1(x).

Proof. Let f(x) 2 Dn(K[x]) and A 2 Dn�1(K[x])[@] be an operator that annihilates f , i.e.,
A · f = 0, written as A = rd(x)@d + . . .+ r0(x). By the chain rule, we have for any k > 0,

f (k)(x) =
kX

l=1

exp(l)(g(x)� g(0))Bk,l(g
0(x), g00(x), . . . , g(k�l+1)(x)).
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Since exp0(x) = exp(x) and g(x) is in Dn(K[x]) with order 1, this can be reduced to,

f (k)(x) = f(x)qk(g(x)),

for some polynomials qk(y) 2 Fn�1(x)[y]. Hence,

(A · f)(x) = 0 ,
dX

k=0

rk(x)qk(g(x)) = 0,

i.e., g(x) is algebraic over Fn�1(x).

3. Iterated exponentials

Theorem 10 provides an upper bound on where the composition of two formal power
series may belong depending on their respective positions in the Dn–hierarchy. We have
shown earlier that additional properties (such as, e.g., algebraicity) can reduce this upper
bound.

Naturally the question arises: is the bound provided by Theorem 10 tight, i.e., are
there examples of Dn-finite and Dm-finite functions such that their composition belongs to
Dn+m(K[x]) but not to Dn+m�1(K[x])? In this section we give an a�rmative answer to this
question by showing that the iterated exponentials are functions of this type. In order to
do so we need to recall some background on Di↵erential Galois Theory that we detail be-
low. We recall now the basic definitions of Di↵erential Algebra. For further reading we refer
to [3, 14, 22].

Recall that for a field K, a mapping @ : K ! K is called a derivation, if @(f + g) =
@(f)+@(g) and @(fg) = @(f)g+f@(g) for all f, g 2 K. The pair (K, @) is called a di↵erential
field and we denote the field of constants by CK = {f 2 K : @(f) = 0}. Moreover, if E � K
is a field extension and (E, @̃) is a di↵erential field such that @̃|K ⌘ @ we say that (E, @̃) is
a di↵erential extension of (K, @). If it is clear from the context, we use @ also to refer to the
derivation in a di↵erential extension and the shorthand notation f 0 = @(f).

Lemma 16. Let (K, @) be a di↵erential field and L 2 K[@] a linear di↵erential operator. Let

E be a di↵erential field extension of K, CE denote the set of constants, and SL(E) be the set

of all solutions to Ly = 0 in E. Then SL(E) is a CE-vector space.

Proof. As L is a linear di↵erential operator, we have that L(f + g) = L(f) + L(g), hence if
f, g 2 SL(E), clearly f+g 2 SL(E). Moreover, if c 2 CE , then (cf)0 = cf 0 for all f 2 E. Hence
L(cf) = cL(f), yielding that, if f 2 SL(E), then for any constant c 2 CE , cf 2 SL(E).

Based on this idea, a type of field extension can be defined that includes all the linearly
independent solutions but does not add any constants.

Definition 17. [3, 22] Let (K, @) be a di↵erential field of characteristic zero with field of
constants CK and let L 2 K[@] be of order n. We call E a Picard-Vessiot extension of K for
L, if there are n elements y1, . . . , yn that are C-linearly independent such that L(yi) = 0 and

E = K(y1, y01, . . . , y
(n�1)
1 , y2, y02, . . . , y

(n�1)
n ) and CE = CK .

Proposition 18. Let (K, @) be a di↵erential field with algebraically closed field of constants

C of characteristic zero and let L 2 K[@] be of order n. Then:
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• There exists a Picard-Vessiot extension E for L.

• The field E is unique up to K-@-isomorphisms.

These Picard-Vessiot extensions (also denoted as PV-extensions) are the basic ones con-
sidered for di↵erential Galois theory. They are equivalent to algebraic extensions, where all
solutions to a given polynomial equation are added to the original field. In the di↵erential
case, it is necessary to keep the field of constants fixed. Following the same idea as for building
a Galois group for a field extension, the di↵erential group for a di↵erential field extension can
be defined as those automorphisms that fix the small field and commute with the derivation,

G[E:K] = {� | � is a K-automorphism of E and �(z0) = (�(z))0 for all z 2 E}.

This Galois group is particularly interesting when considering PV-extensions. If the action
of the elements of the Galois group is restricted to the solution space of the linear di↵erential
equation defining the PV-extension, it is a linear action.

Lemma 19. Let (K, @) be a di↵erential field with field of constants C and let E be a PV-

extension of K for an operator L 2 K[@]. Let G be the di↵erential Galois group of E over

K. Then for any � 2 G:

• �(SL(E)) ⇢ SL(E),

• �|SL(E) is a C-linear map.

Proof. Let 0 = L(y) = any(n) + · · · + a1y0 + a0y for some y 2 E. Then � can be applied to
both sides. Using the fact that � fixes K and commutes with the derivation, we have

0 = �(any
(n) + · · ·+ a1y

0 + a0y) = an�(y)
(n) + · · ·+ a1�(y)

0 + a0�(y) = L(�(y)).

Hence �(SL(E)) ⇢ SL(E). In addition, since C ⇢ K and � fixes K, we have that � is a
C-linear map over E, so in particular it is C-linear over SL(E).

Moreover, as � is an automorphism, �|SL(E) is a linear bijection. Additionally, as PV-
extensions have finite dimensional solution spaces for L (in fact, dimC(SL(F )) = deg(L),
see [22, Lemma 1.7]), one can associate each element of the Galois group to an invertible
square matrix of size deg(L), having an embedding to the group GLdeg(L)(C).

In particular, if we consider first order di↵erential equations (i.e., y0 = ay for a 2 K), then
the PV-extension is of the form K(z) for some z and the Galois group is included in C⇤. If
�c is the mapping associated with the constant c 6= 0, then �c(z) = cz . The next lemma
summarizes the results for the Galois group of this type of PV-extensions. The three cases
correspond to characterizing behaviors of the Galois groups.

Lemma 20. Let (K, @) be a di↵erential field with algebraically closed field of constants C,

E = K(z) its PV-extension for the equation y0 = ay and G the di↵erential Galois group of E
over K. Then

• z 2 K if and only if G = {�1 = idK}.

• z is algebraic over K if and only if there is n 2 N such that

G = {�↵ | ↵n = 1}.

In this case zn 2 K.
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• z is transcendental over K if and only if G = {�c | c 2 C⇤}.

Proof. For a solution z satisfying z0 = az we have

• z 2 K: in this case E = K(z) = K, hence the only element in G is the identity
map G = {�1}.

• z is transcendental over K: in this case it easy to see that

�c : K(z) ! K(z), �c|K ⌘ idK , �c(z) = cz

is an automorphism if and only if c 6= 0. As di↵erent constants yield di↵erent mappings,
G = {�c | c 2 C⇤}.

• z is algebraic over K: since any automorphism of K(z) is determined by the image of z
and these are all roots of the same polynomial, G must be finite. The finite subgroups
of C⇤ are all of the form {c | cn = 1}. If this is the Galois group then zn is fixed by this
group and so, by the usual Galois correspondence must lie in K.

The analogies with the algebraic case do not end here. There is also a di↵erential closure
of a field using linear di↵erential equations and it is called Picard-Vessiot closure. To define
it properly, we need a small result of skew-polynomials.

Lemma 21. Let (K, @) be a di↵erential field and K[@] its ring of linear di↵erential operators.

Let I be a left ideal and J be a right ideal. Then there are L1, L2 2 K[@] such that

I = K[@]L1, J = L2K[@].

The proof of this lemma can be found in [22], and it is based on the Euclidean division of
skew-polynomials. This Lemma allows to define the concept of greatest common right-divisor
and least common left-multiple.

Definition 22. Let (K, @) be a di↵erential field and K[@] its ring of linear di↵erential oper-
ators. Let L1, L2 2 K[@] be two operators.

• We define their least common left-multiple (LCLM) as the generator of the following
ideal K[@]L1 \ K[@]L2.

• We define their greatest common right-divisor (GCRD) as the generator of the ideal
K[@]L1 +K[@]L2.

These two objects have nice properties regarding the solution spaces of the given operators.

• If L1(a) = 0 or L2(a) = 0, then LCLM(L1, L2)(a) = 0. So it captures the union of the
solutions.

• If GCRD(L1, L2)(a) = 0, then L1(a) = L2(a) = 0. So it captures the common solutions.

Let K be a di↵erential field and denote by KL the PV-extension for L 2 K[@]. Then,

• if L1 is a left-multiple of L2, then KL2 ⇢ KL1 ;
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• given KL1 ,KL2 let L3 = LCLM(L1, L2), then KL1 ,KL2 ⇢ KL3 .

Hence, since all PV-extensions form a directed system w.r.t. the inclusion, we can define
their direct limit. This direct limit is a di↵erential field extension of K with the same field
of constants C, where all linear di↵erential equations with coe�cients in K have as many
C-linearly independent solutions as the order of the equation. We denote this direct limit

by K
@
.

Setting K0 = K, and Ki+1 = Ki
@
yields a chain of di↵erential extensions. We define the

Picard-Vessiot closure as the limit of those fields, i.e.,

KPV =
1[

i=0

Ki.

This PV-closure has some important properties that are the analogues to the properties
that the algebraic closure of a field have, but in the di↵erential context.

Lemma 23. Let (K, @) be a di↵erential field with an algebraically closed field of constants

C and KPV its PV-closure. Then the field of constants of KPV is again C and for any

L 2 KPV [@], SL(KPV ) is a C-vector space of dimension deg(L).

Proof. Let L = r0 + r1@ + . . . + rd@d 2 KPV [@], then there is M such that ri 2 KM for
all i = 0, . . . , d. Hence SL(KM+1) is a C-vector space of dimension deg(L). Since that is
the highest dimension the solution space can get, we have SL(KPV ) is a C-vector space of
dimension deg(L).

Before answering the main question of this section, we need one more result of di↵erential
algebra that translates some di↵erential properties of hyperexponential elements to algebraic
properties.

Proposition 24. Let (K, @) be a di↵erential field with algebraically closed field of constants

C. Let E be a PV-extension of K. Let u, v 2 E \ {0} such that:

u0

u
= a 2 K,

v0

v
= u,

then u is algebraic over K.

Proof. Assume that u is transcendental over K. As u0/u 2 K, we have that K(u) is the
PV-extension of K associated with an equation of the form u0 � au = 0. Using Lemma 20
we then have that the di↵erential Galois group of K(u) over K is G = {�c | c 2 C⇤}, where
�c|K = idK and �c(u) = cu. For any extension of �c to E, we have,

�c(v)0

�c(v)
=

�c(v0)

�c(v)
= �c

�v0

v

�
= cu.

Since E is a PV-extension of K it is finitely generated. In particular, it has a finite transcen-
dence degree m. Let c0, . . . , cm be m+ 1 Q-linearly independent constants and consider the
elements vi = �ci(v). Then they must be algebraically dependent over K(u).

Using a consequence of the Kolchin-Ostrowsky Theorem [12, Ch.VI, §5, Ex. 4], we have
that there are integers n0, . . . , nm (not all zero) such that,

z :=
mY

i=0

vni
i 2 K(u).

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



It is easy to see then that for � = (
Pm

i=0 nici)u we have z0 = �z. We have that z is not
algebraic over K since otherwise u = z0/((

Pm
i=0 nici) z) would be algebraic over K. We may

factor the numerator and denominator of z as

z = �ur0
tY

j=1

(u� ↵j)
rj ,

where �,↵i 2 K, the algebraic closure of K, ↵j 6= 0 for j > 0, and the ri are (positive or
negative) integers. For the logarithmic derivative of z we obtain,

z0

z
=

�0

�
+ r0a+

tX

j=1

rj
u0 � ↵0

j

u� ↵j
.

Expanding the quotients in the sum, we find that (u0�↵0
j)/(u�↵j) = a+(a↵j�↵0

j)/(u�↵j).
But we know that z0 = �z, hence

 
mX

i=0

nici

!
u = � =

�0

�
+ a

tX

j=0

rj +
tX

j=1

rj
a↵j � ↵0

j

u� ↵j
.

If a↵j � ↵0
j = 0 then (↵j/u)0 = 0 so ↵j = cu for some non-zero constant c contradicting the

fact that u is transcendental over K. Therefore each ri = 0 for j > 0. We then have
 

mX

i=0

nici

!
u =

�0

�
+ r0a

again contradicting the fact that u is assumed to be transcendental over K. Therefore this
assumption is incorrect and u is algebraic over K.

Now we can finally address the main question of this section. Consider an algebraically
closed field C and the di↵erential ring C[x], where C is the field of constants and x0 = 1. Let
F0 = K0 = C(x) and we start building the di↵erentially definable functions over C[x]. We
define Fi = Fr(Di(C[x])), the field of fractions of Di(C[x]), and Ki as the ith step in the
PV-closure of C(x). We then have the following inclusions:

C[x] ⇢ D(C[x]) ⇢ . . . ⇢ Dn(C[x]) ⇢ . . . ⇢ C[[x]]

\ \ . . . \ . . .

F0 ⇢ F1 ⇢ . . . ⇢ Fn ⇢ . . . ⇢ C((x))

\ \ . . . \ . . .

K0 ⇢ K1 ⇢ . . . ⇢ Kn ⇢ . . . ⇢ KPV

Next we introduce the following set of recursively defined functions:

• e0 = 1 2 C[x].

• For i � 0, assume ei 2 Di(C[x]). Let êi be the antiderivative of ei with êi(0) = 0. By
closure properties, êi is again in Di(C[x]). Define ei+1 = exp(êi).

Clearly, e0i+1 � eiei+1 = 0 and, as êi(0) = 0, also ei+1 2 C[[x]]. Hence ei+1 2 Di+1(C[x]) but,
as we show in the remainder of this section, ei+1 /2 Di(C[x]). To do so, we are going to prove
an even stronger statement.
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Proposition 25. Let c 2 C⇤
and n 2 N \ {0}. Then ecn = exp(cên�1) /2 Kn�1.

Proof. The proof proceeds by induction on n. For the base case n = 1, we need to show that
ecx /2 C(x) for any constant c 6= 0. But it is a well known result that the exponential is not
algebraic over C(x), so, in particular, is not a rational function.

Now let n > 1 and assume the hypothesis holds for all 1  i < n. Suppose there
exists a c 2 C⇤ such that ecn 2 Kn�1. By the construction of the field Kn�1 and since
en�1 2 Dn�1(C[x]) ⇢ Kn�1, there is a PV-extension E of Kn�2 where both ecn and en�1 lie.

Let u = cen�1 and v = ecn. Then from Proposition 24 follows directly that cen�1 is
algebraic over Kn�2. Hence, by Lemma 20, there is a non-zero m such that (cen�1)m 2 Kn�2,
and so in particular, emn�1 2 Kn�2 which is a contradiction to the induction hypothesis (as
m 2 Z ⇢ C⇤). Thus ecn /2 Kn�1 for any c 2 C⇤.

Corollary 26. For any n 2 N \ {0}, en /2 Dn�1(C[x]).

As a consequence, we obtain that the iterated exponentials are an instance of functions
f 2 Dn(C[x]) and g 2 Dm(C[x]) with the property that (f �g) 2 Dn+m(C[x])\Dn+m�1(C[x]).

4. Relation to di↵erentially algebraic functions

Throughout this paper, the chain of di↵erential rings constructed with linear di↵erential
equations over the polynomial ring is considered. We have shown how composition and
algebraic substitution of functions move along the chain,

K[x] ⇢ D(K[x]) ⇢ D2(K[x]) ⇢ · · · ⇢ Dn(K[x]) ⇢ · · · .

We define the limit ring as the union

D1(K[x]) =
[

n�0

Dn(K[x]).

As simple consequence of the properties of di↵erentially definable functions shown earlier,
this limit ring is closed under division and composition, i.e.,

• If f 2 D1(K[x]) and f(0) 6= 0 then 1/f 2 D1(K[x]).

• If f, g 2 D1(K[x]) and g(0) = 0, then (f � g) 2 D1(K[x]).

The question remains, how big this limit ring is. In this section we show that indeed it does
not exceed the di↵erentially algebraic functions. Let us recall their definition.

Definition 27. Let f(x) 2 K[[x]] and R ⇢ K[[x]]. We say that f is di↵erentially algebraic

over R if there are n 2 N and a polynomial P (y0, . . . , yn) 2 R[y0, . . . , yn] in n + 1 variables
such that f satisfies:

P (f(x), f 0(x), . . . , f (n)(x)) = 0.

Clearly, any D-finite function f 2 D(K[x]) is di↵erentially algebraic over K[x] with a linear
polynomial P . Now let f 2 D2(K[x]) be of order d satisfying

r0(x)f(x) + · · ·+ rd(x)f
(d)(x) = 0, (2)
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with ri 2 D(K[x]) of orders si. Let S =
Pd

i=0 si. Let us see that f is di↵erentially algebraic
over K[x] with a polynomial P (y0, . . . , yS+d�1) of total degree at most S. First note that,
with (2), also any derivative of the left hand side vanishes entirely, yielding

@n

 
dX

i=0

ri(x)f
(i)(x)

!
=

dX

i=0

nX

k=0

✓
n

k

◆
r(k)i (x)f (n�k+i)(x) = 0, n � 0.

As all the ri are D-finite, their defining equations can be used to reduce the derivatives above
to

dX

i=0

si�1X

k=0

0

@
nX

j=0

pi,k,j(x)f
(j+i)(x)

1

A r(k)i (x) = 0,

for some polynomials pi,k,j(x). This can be rewritten in terms of a matrix-vector multiplication

M · (r0, . . . , r(sd�1)
d )T = 0. Hence the right nullspace of M is not trivial and, as M is a square

matrix of size S, we have that det(M) = 0. This determinant is a polynomial in f and its
derivatives up to order S+d of total degree at most S and with coe�cients in K(x). In order
to obtain an algebraic di↵erential equation, we can clear the denominators of x.

A similar argument can be used to derive the following result leading to the main conclu-
sion that any Dn-finite function is di↵erentially algebraic.

Theorem 28. Let f(x) 2 K[[x]] be di↵erentially algebraic over Dn(K[x]). Then f is di↵er-

entially algebraic over Dn�1(K[x]).

Proof. Let f be di↵erentially algebraic over Dn(K[x]). Then there exists a polynomial

P (y0, . . . , ym) =
X

↵2⇤
p↵(x)(y0, . . . , ym)↵,

with coe�cients p↵(x) in Dn(K[x]) for ↵ 2 ⇤ ⇢ Nm+1, such that

P (f(x), f 0(x), . . . , f (m)(x)) = 0. (3)

Also any derivative of the left hand side of (3) vanishes. Hence, using the notation f(x) =
(f(x), f 0(x), . . . , f (m)(x)), we have

@nP (f(x)) =
X

↵2⇤

nX

k=0

✓
n

k

◆
p(k)↵ (x)@n�kf(x)↵ = 0

Since the coe�cients p↵(x) are in Dn(K[x]), each of them satisfies a linear di↵erential equation
of order d↵ with coe�cients in Dn�1(K[x]) for ↵ 2 ⇤. These can be used to reduce the
equation above to

X

↵2⇤

d↵�1X

j=0

 
nX

k=0

r↵,k,j(x)@
kf(x)↵

!
p(j)↵ = 0,

for some r↵,k,j 2 Dn�1(K[x]). Let S =
P

↵2⇤ d↵. With p(x) = (p(j)↵ (x) | ↵ 2 ⇤ ^ 0  j  d↵)
this can be rewritten as a matrix-vector multiplication M · p(x)T = 0, where M is an S ⇥ S
matrix. Hence the matrix M has zero determinant. This determinant is a polynomial in
f and its derivatives up to order at most m + S with coe�cients in Dn�1(K[x]). It also
has maximal degree S deg(p). This concludes the proof that f is di↵erentially algebraic
over Dn�1(K[x]).
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Note that Definition 27 is equivalent to the statement that the transcendence degree
tr. deg.F (F (f(x), f 0(x), . . . , f (n), . . .)) is finite, where F is the quotient field of R. Theo-
rem 28 then follows from the fact that if K0 ⇢ K1 ⇢ K2 are fields then tr. deg.K0

(K2) =
tr. deg.K0

(K1) + tr. deg.K1
(K2).

The inclusion in the set of di↵erentially algebraic functions is a simple consequence of this
theorem.

Corollary 29. Let f(x) 2 Dn(K[x]). Then f is di↵erentially algebraic over K(x).

Proof. Let f 2 Dn(K[x]). Clearly it is di↵erentially algebraic over Dn�1(K[x]) with a linear
polynomial P . Repeated application of Theorem 28 yields the result.

The implementation of these results is described in Appendix A including more details
on the computation of the following examples that conclude this section.

Example 30. Let f(x) = exp(exp(x) � 1), which is DD-finite with annihilating operator
@ � exp(x). Using Corollary 29 we get that f(x) satisfies the non-linear equation

f 00(x)f(x)� f 0(x)2 � f 0(x)f(x) = 0.

Example 31. Let g(x) = e3(x) = exp(
R x
0 f(x)dx) for f(x) as in the previous example. We

know that g(x) is D3-finite with annihilating operator @ � f . Then, repeated application of
Theorem 28 shows that g(x) satisfies the non-linear equation

g000(x)g0(x)g(x)2 � g00(x)2g(x)2 � g00(x)g0(x)2g(x)

�g00(x)g0(x)g(x)2 + g0(x)4 + g0(x)3g(x) = 0.

Example 32. Let the power series f(x) be defined by

f(x) = cos (x/2)2 etan(x/2).

Although f(x) seems to be D3-finite (since tan(x) is D2-finite), it can be easily checked that
f(x) is actually D2-finite satisfying the linear di↵erential equation

(cos(x) + 1)f 0(x) + (sin(x)� 1)f(x) = 0.

By Corollary 29 we get that f(x) satisfies the non-linear di↵erential equation

f 000(x)f 0(x)f(x) + f 000(x)f(x)2 � 2f 00(x)2f(x) + f 00(x)f 0(x)2�
6f 00(x)f 0(x)f(x) + 3f 00(x)f(x)2 + 6f 0(x)3 � 4f 0(x)2f(x)+

f 0(x)f(x)2 � f(x)3 = 0.

5. Conclusions

In this paper, we have added more structural information on Dn-finite functions and with
these results also enlarged the existing tool-box [5]. Among the open problems on a more
practical side, is the speeding-up of the implementation. Having to work with di↵erential
equations whose coe�cients are defined recursively makes the computations very costly.
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A non-trivial example of a family of DD-finite functions are Mathieu’s functions that also
have been discussed in [7]. Mathieu’s equation in its standard form is given by [4, 16]

w00 + (a� 2q cos(2x))w = 0, (4)

for some parameters a and q. It is well known that the composition of w(x) with arcsin(x)
satisfies the D-finite di↵erential equation

(1� x2)h00(x)� xh0(x) + (a� 2q(1� x2))h(x) = 0. (5)

Since the arcsine is D-finite, we know that h(x) = w(arcsin(x)) is D3-finite and the computa-
tions in the appendix, Example 39, yield

arcsin(x)0h00(x)� arcsin(x)00h0(x) + (arcsin(x)0)3(a� 2q cos(2 arcsin(x)))h(x) = 0.

It is not obvious how to reduce this to the D-finite equation (5). It would be interesting to
find a way to simplify di↵erential equations or even to find substitutions (if existent) that
allow to move to a lower level in the hierarchy.

Another open question is how to derive (or guess [8]) a Dn-finite equation for a given dif-
ferentially algebraic function - even if not necessarily the optimal one. Besides these questions
related to Dn-finite functions, it will also be interesting to study the analogous extension to
holonomic sequences as well as the properties of coe�cient sequences of Dn-finite functions.

Acknowledgments. We thank the referees for spotting numerous errors and valuable sug-
gestions that helped improving the quality of the paper.
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Appendix A. Implementation of the closure properties

Lastly, we want to address the issues related to implementing the operations described in
this paper. The proofs of the closure properties all rely on the Characterization Theorem 3
which provides a bound on the order of the resulting operator. Given this bound, an ansatz
for the homogeneous equation is set up. Equating the coe�cients of the basis elements to
zero yields a linear system. A nontrivial element of the nullspace for the system matrix can
be computed. The implementation is along the lines described in [7] for the closure properties
stated in Theorem 4 and we follow the same notation. For this, we first recall some basic
results of di↵erential algebra.

Definition 33. [12, 22] Let (K, @) be a di↵erential field of characteristic zero and V a K-
vector space. A map ~@ : V ! V is a derivation over V w.r.t. @ if it satisfies

1. ~@(v + w) = ~@(v) + ~@(w) for all v, w 2 V .

2. ~@(cv) = @(c)v + c~@(v) for all c 2 K and v 2 V .

Then (V, ~@) is a di↵erential vector space over (K, @) and we denote by �@(V ) the set of all
derivations over V w.r.t. @.

Given a vector of generators �, a derivation ~@ 2 �@(V ) can be represented by a matrix.
This matrix is uniquely defined if � is a basis. Since we do not need uniqueness and later it is
computationally simpler to work with a vector of generators rather than having to determine
a basis, we stick to this more general setting.

Definition 34. Let (K, @) be a di↵erential field, (V, ~@) be a di↵erential vector space over
(K, @), and � = (�1, . . . ,�n) be a vector of generators of V . We define a derivation matrix

of ~@ w.r.t. � as a matrix M = (mij)ni,j=1 satisfying

~@(�j) = m1j�1 + · · ·+mnj�n, for all j = 1, . . . , n.

In this setting, for any v = v1�1 + · · ·+ vn�n 2 V we have

~@(v) = @(v1)�1 + v1~@(�1) + · · ·+ @(vn)�n + vn~@(�n)

=
nX

i=1

0

@
nX

j=1

mijvj + @(vi)

1

A�i.

In matrix-vector notation the coe�cients in the representation of ~@(v) = v̂1�1 + · · · + v̂n�n

can thus be computed as 0

BBB@

v̂1
v̂2
...
v̂n

1

CCCA
= M

0

BBB@

v1
v2
...
vn

1

CCCA
+

0

BBB@

@(v1)
@(v2)

...
@(vn)

1

CCCA
.

Summarizing, whenever there is a proof based on the Characterization Theorem 3, the algo-
rithm follows these steps [7]:

1. Determine a finite dimensional vector space W containing the desired vector space.

2. Determine a vector of generators � for W and let n denote the number of generators.

18

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3. Compute a derivation matrix C of W w.r.t. �.
4. Compute a vector v that represents the given function in W w.r.t. �.
5. Compute a matrix M = (v|~@(v)| . . . |~@n(v)).
6. Compute a non-trivial vector on the right nullspace of M .

The final steps 5 and 6 do not depend on the particular operation we are considering. In
the following, we give the choices for the larger vector space W , the vector of generators �,
the definition of the derivation matrix M , and the vector v for the implementation of the
di↵erent properties discussed in Section 2.

We start by discussing an algorithm for the composition of di↵erentially definable func-
tions. Let f(x) 2 Dn(K[x]) of order d and g(x) 2 Dm(K[x]). Let h(x) = f(g(x)) and
Vh = hh(x), h0(x), . . . iFn+m�1(x). Then, using the results in Theorem 10, we have

1. W�(f, g) = h(f � g)(x), (f 0 � g)(x), . . . , (f (d�1) � g)(x)iFn+m�1(x)

2. ��(f, g) =
�
(f � g)(x), (f 0 � g)(x), . . . , (f (d�1) � g)(x)

�

3. A derivation matrix for W�(f, g) w.r.t. ��(f, g) is given by

M�(f, g) = g0Cf (g),

where Cf (g) is the companion matrix of f , i.e., the matrix associated with a di↵erential
operator that annihilates f , with all entries composed with g(x). This is the recursive

step of the algorithm.
4. v� = ed,1 = (1, 0, 0, . . . , 0)

Next we give the details for the examples 11–14 stated in Section 2.

Example 35. Let f(x) = exp(x) and g(x) = sin(x). Both are D-finite functions with anni-
hilating operators @ � 1 and @2 +1, respectively. Then their composition h(x) = (f � g)(x) =
exp(sin(x)) is DD-finite. To compute the di↵erential equation for h(x) we work on the vector
space W�(ex, sin(x)) = hesin(x)iF1 . We use the companion matrix of f(x), compose each entry
with g(x) and multiply it by g0(x), obtaining the derivation matrix

C =
�
g0(x)

�
.

Using this we compute the matrix M = (1 g0(x)). An element of the nullspace is the vector
(�g0(x), 1) so an operator that annihilates h(x) is

@ � g0(x) = @ � cos(x).

Example 36. Let f(x) = log(x + 1) and g(x) = exp(x) � 1. Both are D-finite functions
with annihilating operators (x+1)@2 + @ and @2 � @, respectively. Their composition h(x) =
(f � g)(x) = log(exp(x)) is DD-finite.

To compute a di↵erential equation for h(x) we work on the vector space

W�(log(x+ 1), ex � 1) = hlog(ex), 1

ex
iF1 = hx, 1

ex
iF1 .

We use the companion matrix of log(x+1), compose each entry with g(x) and then multiply
everything by g0(x). In this case we have

Clog(x+1) =

✓
0 0
1 � 1

1+x

◆
,
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then composing with g(x) = exp(x)� 1 and multiplying by g0(x) = exp(x) we obtain

C =

✓
0 0

g0(x) �1

◆
,

which leads to the matrix

M =

✓
1 0 0
0 g0(x) 0

◆
,

which has in its nullspace the vector (0, 0, 1). Hence, an annihilating operator for h(x) is @2.
This means that h(x) is a polynomial of degree at most 1, and computing the initial values
from f(x) and g(x) we can see that h(x) = x as it was expected.

Example 37. Let f(x) = sin(x) which is D-finite with annihilating operator @2 + 1. Then
h(x) = (f � f)(x) = sin(sin(x)) is DD-finite.

To compute the annihilating operator for h(x), we need to use the companion matrix of
f(x), compose each entry with f(x) and then multiply everything by f 0(x). In this case, since

Csin(x) =
✓
0 �1
1 0

◆
,

we obtain the derivation matrix

C =

✓
0 �f 0(x)

f 0(x) 0

◆
,

which leads to the matrix

M =

✓
1 0 �f 0(x)2

0 f 0(x) f 00(x)

◆
.

We find that (f 0(x)3,�f 00(x), f 0(x)) is in the right nullspace of M , hence the annihilating
operator for h(x) = sin(sin(x)) is:

f 0(x)@2 � f 00(x)@ + f 0(x)3 = cos(x)@2 + sin(x)@ + cos(x)3.

Example 38. Let f(x) = sin(x) and g(x) = f(f(x)) = sin(sin(x)) as in the previous exam-
ple. Then h(x) = (f � g)(x) = sin(sin(sin(x))) is D3�finite.

To compute the di↵erential equation for h(x) we need to use the companion matrix for
f(x), compose each entry with g(x) and then multiply everything by g0(x). These computa-
tions follow the same lines as in the previous example. Hence an annihilating operator for
h(x) is

g0(x)@2 � g00(x)@ + g0(x)3.

In this example we have that f(g(x)) = h(x) = g(f(x)) and the algorithm could be executed
either way. However, the most expensive step is the recursive call in step 3. While the
composition of the companion matrix of f(x) = sin(x) with g(x) is very cheap, it becomes
very costly if we reverse the order. In fact for any C-finite function f(x) the composition of
the companion matrix is trivial no matter what the complexity of g(x) is, while for h(x) =
(g � f)(x) the basic companion matrix is

Csin(sin(x)) =
 
0 �(sin(x)0)2

1 � sin(x)00

sin(x)0

!
=

 
0 � cos(x)2

1 sin(x)
cos(x)

!
,

making the composition step very time consuming.
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We conclude this set of examples with the Mathieu functions [4] that are also discussed in
Section 5.

Example 39 (Mathieu). Let f(x) be a Mathieu function for some parameters a, q, and
g(x) = arcsin(x). These two functions are annihilated by the di↵erential operators

@2 + (a� 2q cos(2x)), and (1� x2)@2 � x@,

respectively. From these equations we have that f(x) DD-finite and that g(x) is D-finite.
Hence h(x) = (f � g)(x) is D3-finite.

To compute the di↵erential equation for h(x) we need to use the companion matrix of the
Mathieu function f(x) and then compose every entry of it with g(x), and multiply them by
g0(x). This leads to the matrix

C =

✓
0 (2q cos(2 arcsin(x))� a) arcsin(x)0

arcsin(x)0 0

◆
.

which leads to the matrix

M =

✓
1 0 (2q cos(2 arcsin(x))� a) arcsin(x)02

0 arcsin(x)0 arcsin(x)00

◆
.

Computing an element in the right nullspace gives the following annihilating operator for h(x),

arcsin(x)0@2 � arcsin(x)00@ + (arcsin(x)0)3(a� 2q cos(2 arcsin(x))).

Next we discuss an algorithm for the results of Proposition 6 that any algebraic function is
di↵erentially definable. Let be f(x) algebraic over the fraction field F of a di↵erential ring R.
Let m(x, y) 2 F [y] the minimal polynomial of f(x), p = degy(m) and Vf = hf(x), f 0(x), . . . iF .
Then, following the proof of Theorem 5, we have

1. Wa(f) = h1, f(x), f(x)2, . . . , f(x)p�1iF
2. �a(f) =

�
1, f(x), f(x)2, . . . , f(x)p�1

�

3. Following the notation in Theorem 5, let q(y) = �s(x, y)@(m)(x, y). Then a derivation
matrix Ma(f) for Wa(f) w.r.t. �a(f) can be built with the formula

Ma(f) =
�
coe↵(jq(y)yj�1 mod m(x, y), yi)

�p�1

i,j=0
.

In this matrix the ith column is the representation of @(f(x)i) in �a(f). It can be
computed using only polynomial operations.

4. va = ep,1 = (1, 0, 0, . . . , 0)

We have seen that the composition with algebraic functions behaves nicer than the com-
position with arbitrary Dn-finite functions. Let Fn(x) be the field of fractions of Dn(K[x])
and f(x) 2 Dn(K[x]) be of order d and a(x) algebraic over Fm(x) for some m < n with
degree p. Let h(x) = f(a(x)) and Vh = hh(x), h0(x), . . . iFn+m�1(x). Then, using the results in
Theorem 8, we have

1. W (f, a) = W�(f, a)⌦Wa(a)

2. � = ��(f, a)⌦ �a(a)
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3. A derivation matrix for W (f, a) w.r.t. � is:

M = M�(f, a)⌦ Ip + Id ⌦Ma(a),

i.e., the Kronecker sum of the derivation matrices for composition and algebraic inclu-
sion.

4. v = v� ⌦ va = epd,1 = (1, 0, 0, . . . , 0)

The main result of Section 4 is that any Dn-finite function is di↵erentially algebraic
over K(x). This can be shown by the step-wise reduction given in Theorem 28. It states
that any function that is di↵erentially algebraic over Dn(K[x]) is di↵erentially algebraic
over Dn�1(K[x]). In this last part we discuss the implementation of this reduction step.
The algorithm follows essentially the proof of Theorem 28 and we use the same notation. Let
f(x) be di↵erentially algebraic over Dn(K[x]), i.e., there exists a polynomial

P (y, . . . , ym) =
X

↵2⇤
p↵(x)(y, . . . , ym)↵,

with coe�cients p↵(x) in Dn(K[x]) for ↵ 2 ⇤ ⇢ Nm+1, such that

P (f(x), f 0(x), . . . , f (m)(x)) = 0.

The basic idea of the proof can be restated as follows: if F is a di↵erential field and {v1, . . . , vn}
generates a F -vector space and E is an extension of F , then

dimE(hv1, . . . , vniE)  dimF (hv1, . . . , vniF ).

In the case of Theorem 28, we know that for each coe�cient p↵(x), its corresponding vector
space VFn�1(x)(p↵(x)) = hp↵(x), p0↵(x), . . . iFn�1(x) has finite dimension d↵. Hence, in particu-
lar, if we consider E = Fn�1(x){y} the field of fractions of the di↵erential polynomials over
Fn�1(x), we have that for all ↵ 2 ⇤, the dimension generated by p↵(x) in E is at most d↵.

We consider the di↵erential equation P (y, y0, . . . , y(m)) that f(x) satisfies as an element
of the vector space

V =
M

↵2⇤
VE(p↵(x)),

where VE(f) = hf, f 0, f 00, . . . iE . Then P and all its derivatives can be written in terms of a
matrix-vector multiplication as in the proof of Theorem 28.

Earlier we discussed that it su�ces to determine a vector of generators for the vector
space V and a derivation matrix to compute all the rows of the matrix M whose determinant
must vanish. The choice of these generators influences the size of the resulting di↵erential
equation quite drastically. The best option is choosing a basis {e1, . . . , ek} of V to end up
with the smallest possible matrix. Building this basis would require heavy computations
in Dn�1(K[x]) which is not feasible. In the current implementation, we employ some cheap
simplifications to reduce the number of generators. The main steps of the full algorithm are:

1. For each coe�cient p↵(x) and for each j = 0, . . . , d↵ � 1, compute all the deriva-

tives p(j)↵ (x). The set of these functions are generators of V . In the worst case when
dimE(V ) =

P
↵2⇤ d↵ =: S, all of them are needed.
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2. Let ⇤1 = ⇤. For some ordering on the multi-indices in ⇤2 compare pairwise for (↵,�)
if there is a linear relation

p↵(x) = c(↵,�)1 p(j)� (x) + c(↵,�)2 ,

where c(↵,�)1 , c(↵,�)2 2 K are constants. Every time a relation is found, replace p↵(x) by
it in P (y, ..., ym) and set ⇤1 = ⇤ \ {↵}.

3. For all coe�cients that are (detectably) in Dn�1(K[x]), we introduce the additional
index (�1, 0, . . . , 0). If such coe�cients exist, we update the support as

⇤1 = (⇤1 \ {↵ | p↵(x) 2 Dn�1(K[x])}) [ {(�1, 0, . . . , 0)}

and set d(�1,0,...,0) = 1. Then

V =
M

↵2⇤
VE(p↵(x)) =

M

↵2⇤1

VE(p↵(x)),

which is a better bound for the dimension of V and thus yields a smaller dimension
S1 =

P
↵2⇤1

d↵ for the matrix.

4. In the same way as described in [7] for the closure property addition, the derivation
matrix C for V w.r.t. the small group of generators is the direct sum of the companion
matrices of all the coe�cients p↵(x) for ↵ 2 ⇤1.

5. Set up a vector v that gives the representation of the di↵erential polynomial P w.r.t.
the vector of generators {p↵(x) | ↵ 2 ⇤1}. Using the derivation matrix C built in step 4,
compute S1 � 1 derivatives of v.

6. Let M = (v| . . . |~@S1�1v) and note that (p↵(x))↵2⇤1M = 0. Return the determinant
of M .

We close by giving more details for the computations of Examples 30–32.

Example 40. Let f(x) = exp(exp(x) � 1), which is DD-finite with annihilating operator
@ � exp(x). To obtain the non-linear equation we have to look into the coe�cients of that
operator, namely {1, exp(x)}. In this case, steps 1-3 make no simplification, so we represent
the di↵erential equation as a vector product:

0 = f 0(x)� exp(x)f(x) =
�
f 0(x) �f(x)

�✓ 1
exp(x)

◆
.

Computing the derivative of (y0,�y) w.r.t. (1, exp(x)), we end up with the matrix:

M =

✓
y0 y00

�y �y0 � y

◆
,

which leads to the determinant (y00y � y02 � y0y), showing that f(x) satisfies:

f 00(x)f(x)� f 0(x)2 � f 0(x)f(x) = 0.

Example 41. Let g(x) = e3(x) = exp(
R x
0 f(x)dx) for f(x) as in the previous example. We

know that g(x) is D3-finite with annihilating operator @ � f(x). To obtain the non-linear
equation with coe�cients over K(x) we need to apply twice the reduction algorithm.
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In the first application, we look into the coe�cients of the operator, namely {1, f(x)}. As
it happened with the previous example, steps 1-3 make no simplification, so we start with the
vector v = (y0,�y) and, computing the derivative w.r.t. (1, f(x)), we obtain the matrix

M =

✓
y0 y00

�y �y0 � exy

◆
,

which leads to the determinant (y00y � y02 � exy0y), showing that g(x) satisfies the equation

g00(x)g(x)� g0(x)2 � exg0(g)g(x) = 0.

If we apply the same algorithm to this new equation, we have to look into the new
coe�cients that in this case are (1, 1, exp(x)). Steps 1-3 now reduce this list of generators to
(1, exp(x)). We then have that v = (y00y� y02,�y0y) and, computing its derivative w.r.t. the
vector of generators, we obtain the matrix

M =

✓
y00y � y02 y000y � y00y0

�y0y �y00y � y02 � y0y

◆
,

which leads to the determinant (y000y0y2 � y002y2 � y00y02y � y00y0y2 + y04 + y03y), showing that
g(x) satisfies the non-linear equation

g000(x)g0(x)g(x)2 � g00(x)2g(x)2 � g00(x)g0(x)2g(x)

�g00(x)g0(x)g(x)2 + g0(x)4 + g0(x)3g(x) = 0.

Example 42. Let the power series h(x) be defined by

h(x) = cos (x/2)2 etan(x/2).

Although h(x) seems to be D3-finite (since tan(x) is D2-finite), it can be easily checked that
h(x) is D2-finite satisfying

(cos(x) + 1)h0(x) + (sin(x)� 1)h(x) = 0.

To compute a non-linear di↵erential equation we have to look into the coe�cients, namely
(cos(x) + 1, sin(x) � 1). As @3 + @ annihilates (cos(x) + 1) =: k(x), sin(x) � 1 = �k0(x) � 1
and k00(x) = �k(x)+1, steps 1-3 change the list of generators to (1, k(x), k0(x)). We compute
then the vector v = (�y, y0,�y) and computing its derivatives w.r.t. (1, k(x), k0(x)) leads to
the matrix

M =

0

@
�y �y0 � y �y00 � y0

y0 y00 + y y000 + y
�y 0 y00 + y

1

A ,

which determinant is (y000y0y+y000y2�2y002y+y00y02�3y00y2+2y02y+y0y2�y3), showing that
h(x) satisfies the di↵erential equation

h000(x)h0(x)h(x) + h000(x)h(x)2 � 2h00(x)2h(x) + h00(x)h0(x)2

�3h00(x)h(x)2 + 2h0(x)2h(x) + h0(x)h(x)2 � h(x)3 = 0.
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