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Abstract. Let kiD] be the ring of differential operators with coefficients in a differen- 
tial field k. We say that an element L of kiD] is reducible if L = L 1 oL 2 for L l, 
L2ek[Dl, L 1,L2(~k. We show that for a certain class of differential operators 
(completely reducible operators) there exists a Berlekamp-style algorithm for factor- 
ization. Furthermore,  we show that operators outside this class can never be 
irreducible and give an algorithm to test if an operator belongs to the above class. 
This yields a new reducibility test for linear differential operators. We also give 
applications of our algorithm to the question of determining Galois groups of linear 
differential equations. 

Keywords: Linear differential operator, Factorization, Berlekamp algorithm, 
Differential Galois theory. 

1 Introduction 

Let k be an ordinary differential field of characteristic zero and let ~ = kiD] be the 
ring of linear differential operators over k, that is, the noncommutat ive polynomial 
ring in the variable D, where D. a - a- D = a' for all a~k. An element Le  ~ is said to be 
reducible i fL = L 1 'L 2 for some L1, L 2 ~ ,  L1, L 2 r In this case, L 1 and L 2 are called 
factors of L. This paper was motivated by the desire to answer the following 
question: 

Can one decide if a linear differential operator is reducible W I T H O U T  havin9 to 
find a factor? 

This question is in turn motivated by the following theorem (and its generaliz- 
ations, [431): Let k be a differential field with algebraic closed field of constants and let 
LED be a second order operator. The equation L(y)= 0 has non-zero liouvillian 
solutions over k if and only if L ~ is reducible in 9 .  Here, the operator  L | is the 
operator of order 7 whose solution space (in the Picard-Vessiot extension of 
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k corresponding to L) is spanned by all 6 th powers of solutions of L. The techniques 
and results of [43] show how one can reduce many questions concerning the Galois 
group of a differential equation to questions of factorizations of auxiliary operators. 

Each element of N can be expressed as a product of irreducible factors and, when 
k = ~(x), x ' =  1, Q the algebraic closure of the rational numbers, there exist 
algorithms to carry out such a factorization ([13], [38], [39]). Furthermore, in [14], 
Grigoriev gives a method (and complexity analysis) for testing reducibility of 
a system of linear operators but this method is equivalent to finding factors (in the 
case of a single operator). We present a method based on different ideas. In previous 
methods the question of deciding if a linear operator L factors is reduced to: 

1. Constructing auxiliary linear operators L whose associated Riccati equations 
have among their solutions all possible coefficients a~(x) of factors L 1 = 
D" + a m_ l(x)D m 1 + ... + ao(X ) of L. From L one can bound the degrees of 
the numerators and denominators of these coefficients (in fact, more informa- 
tion can be extracted from these auxiliary operators, [8]). 

2. Explicitly finding the coefficients of a factor of L. This involves, in general, 
solving large systems of polynomial equations for the coefficients of the a~(x) 
(or at least deciding if such a system has a solution). 

Techniques for solving 1. have been implemented by Bronstein in Axiom, [8]. 
Schwarz has implemented the full algorithm for equations of small order. Our aim is 
to give a method that avoids the need to actually find the coefficients of a factor. Our 
method will also yield two other benefits. First of all, it gives a method to decide if the 
Galois group is a reductive group (see Sect. 3.3.1). Secondly, if one knows in advance 
that the group is reductive (for example, if one knows that the group is finite, as 
happens in situations discussed in [43]) one can take advantage of this fact to 
simplify further the reducibility test. 

To understand our approach, let us first consider the question of factorization in 
other contexts. First, consider the commutative ring of polynomials ~q[X] of poly- 
nomials over the field ~:q with q elements and let f~Fq[x]. The approach of the 
Berlekamp algorithm for factorization is to form the ideal gZq[X].f and relate 
factorization properties of f to the structure of the quotient ring A = gcq[x]/~q[x] "f 
(c.f., [32], pp. 247-259). In particular, if f = f l " "  fm where the f i  are pairwise 
relatively prime irreducible polynomials of degree di, then A will be a direct sum 
of fields, A =  ~Zqd~| If ~b is the map Cb:x~-~xq-x, one has that 
dim~(Ker ~9) -- m. Therefore, computing the kernel of the map ~b gives a quick way 
of determining the number of factors of f and, in particular, of determining if f is 
irreducible. 

When one tries to generalize this idea to noncommutative polynomial rings one 
runs into various problems. For example, let K be a field and a a nontrivial 
automorphism of K and consider the ring K[x; a] of polynomials in x over K with 
the usual addition and multiplication defined by x.a = cr(a).x for all aEK. These 
rings were studied by Ore [343, Jacobson [18, 19], Macdonald [31] and Cohn [9]. 
Most recently, Giesbrecht [12] has given factorization algorithms when K is a finite 
field. One can begin to proceed as in the commutative case. Let f e K [ x ;  o-] and 
consider the left ideal K[x; ~] .f .  The quotient M = K[x; a]/K[x:  a] "f no longer 
has a canonical ring structure but is only a left K[x; a]-module. The key idea is to 
consider the ring g(M) of K[x; cr]-endomorphisms of M (also called the eigenring of 
K[x; ~] . f )  instead of the module M. Building on [19], Giesbrecht shows that f is 
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irreducible if and only if g(M) has no zero divisors (and so can be shown to be a field). 
Furthermore Giesbrecht shows how one can determine zero divisors of this ring. He 
is then able to give algorithms for finding the number of irreducible factors and 
finally for factorization. The key property that is used is that K[-x; o-] has a rich 
supply of two sided ideals (see [,,12] for details). 

When one considers the ring ~ one can begin to proceed as with the ring K[x; a] 
(in fact, in [,18], [19], [34] many results are developed in a context that includes both 
these rings). In contrast to K [x; o-], the ring ~ will in general have a very poor  supply 
of two sided ideals (for example, if k = @(x), @ has no non-trivial two sided ideals 
([6], p. 27)). Furthermore, it is easy to construct (see Example 2.8) operators L 1, 
L 2 a ~  such that L 1 is reducible and L 2 is irreducible, and End2(~/~'La) and 
End~(~/~.L2) are isomorphic. Therefore, one cannot completely rely on these rings 
to determine irreducibility. We therefore look beyond purely ring theoretic proper- 
ties to find criteria for irreducibility. For  us the key fact will be that to each linear 
operator L e D  one can associate a linear algebraic group G, its Galois group, and 
that the factorization properties of the operator are intimately connected to the 
structure and representation theory of G. The key is to distinguish the two cases: (1) 
G a reductive group, and (2) G a non-reductive group. When G is a reductive group, 
properties of End~(~/N.L) (already known to Ore) determine if Lis reducible. When 
G is not reductive, L must already be reducible. Our main contribution is to give 
a procedure to test if G is reductive. 

The rest of the paper is organized as follows. In Sect. 2, we will describe 
properties of the ring ~ and its modules and relate these properties to Galois groups 
of differential operators. The section ends with Corollary 2.19 which gives a criterion 
for the Galois group to be reductive, and Corollary 2.21 which gives us a criterion for 
irreducibility. Section 3 concerns itself with making this criterion effective, and 
giving examples and applications to determining Galois groups of linear differential 
equations. 

We would like to thank A. Fauntelroy and F. Ulmer for stimulating conversa- 
tions concerning the contents of this paper. 

2 Factorization in the Ring 

Let k be a differential field of characteristic 0 with algebraically closed field of 
constants cg. We shall assume that the reader is familliar with the basic facts of the 
Picard-Vessiot theory (see [21]). Most of the material in Sects. 2.1, and 2.2 is either 
classical or follows from simple considerations concerning ~-modules (see the 
remarks at the end of the section). Nonetheless we have included this material to 
offer the reader an elementary bridge between the old and the new, to bring out their 
group theoretic nature and to put these facts in a context suitable for use in the quest 
for algorithms. 

2.1 Generalities 

For  any L = a,D n + ... + ao~@ with a n ~ O, we define the order of L, ord(L) to be the 
integer n and we define ord(O) = - oo. The ring @ is both a left and right euclidean 
ring, that is, for any L 1 va O, L 2 ~  there exist unique Q,, R r, Qt, R~e~ with ord(Rr), 
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ord(R1) < ord(L1) such that L 2 = QrL1 + R,  and L 2 = L 1 Q  z + Rz. For k c K, we 
denote by Solnr(L ) the space of solutions of L(y) = 0 in K. 

Lemma 2.1 Let  LI ,  L 2 ~ D  and assume that ord(L1)= m, ord(L2)= n. Let K be 
a differential extension o f k  having the same constants cg. 

1. dim~SolnK(Lx) < m 
2. I f  dim~SolnK(L1)=m and any solution in K of  Ll(y)= 0 is a solution of  

Lz(y ) = 0, then L 1 divides L 2 on the right in D. 
3. l f  dim~SolnK(L 0 = m and L 2 divides L 1 on the right, then dim~Solnr~(L2) = n and 

SolnK(L2) c Solnr(L1). 

Proof. The first claim follows from a standard wronskian argument ([-213, p. 21). To 
prove the second claim, write L 2 = QL~ + R. Applying both sides of this expression 
to solutions of L~(y) = 0, we see that R(y) = 0 has a solution space of dimension at 
least m. Since its order is at most m -  1, we have that R = 0. To prove the final claim 
note that L 2 c a n  be applied to any element of SolnK(L1) and in this way maps this 
space to SolnK(Q) where L 1 = QL 2. The dimension of the image Im of this map is at 
most ord(Q) and the dimension of the kernel Ker  is at most ord(Lz). Since 
ord(L1) = dimeSolnK(L1) = dimeIm + dimeKer < ord(Q) + ord(L2) = ord(L1), we 
have that dimeSolnK(L2) = ord(L2) and SolnK(L2) ~ SOlnK(L O. [] 

When dimeSolnl((L ) = ord(L), we say that K contains a full  set of  solution o f  L. The 
main fact connecting the Galois group of a linear operator to factorization proper- 
ties of that operator is the following: 

Lemma 2.2 Let  K be a Picard-Vessiot extension of  k with Galois group G and let 
V ~ K be afinite dimension cg vector space. V is the solution space of  some homogene- 
ous linear differential equation L(y) = 0 with coefficients in k i f  and only if  V is left 
invariant by G. 

Proof. If V is the solution space of L(y) = O, then V is left invariant by G because the 
elements of G take solutions of this equation to other solutions of this equation. 
Conversely, assume V is G-invariant and let y t , . . . ,  Ym be a Cg-basis. Let 

L(y) = det(Wr(y, y ~ . . . . .  Ym) )/det( Wr(yl ,  . . . , ym) ), 

where Wr is the wronskian matrix. Note that o-~G, then o(det(Wr(y, y l  . . . . .  y,,))) = 
det( Wr(y , y x , . . . , y m)det( A~) and o( det( Wr(y ~ . . . . .  y,,))) = det( Wr(y 1 . . . . .  ym)det( A~), 
where A~ is the matrix of o with respect to the given basis. We then have that the 
coefficients of L(y) are left fixed by all elements of G. Therefore LeD. []  

We define an element L~D of positive order to be reducible if L = L I L  2 for 
operators L~, L 2 ~D of positive order. If L is not reducible, we say it is irreducible. 

Corollary 2.3 Let  L e D .  The following are equivalent: 

1. L is irreducible. 
2. The Galois group o f  L acts irreducibly on the solution space of  L in thePicard- 

Vessiot extension o f  k corresponding to L(y) = O. 
3. I f  K is any Picard-Vessiot extension of  k containin 9 the Picard-Vessiot 

extension o f  k corresponding to L (y )=  0, then the GaIois group o f  K acts 
irreducibly on the solution space of  L(y) = 0 in K.  
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Proof. This follows easily from Lemma 2.1 and Lemma 2.2. [] 

We say two operators L1, L 2 ~  are relatively prime if there is no operator of 
positive order dividing both on the right. 

Corollary 2.4 Let  LI,  L 2 e ~ .  The following are equivalent: 

1. L 1 and L 2 are relatively prime. 
2. There exist  R, S ~  such that R L  1 + SL  z = 1. 
3. L 1 and L 2 have no common nonzero solution in any extension of  k. 

Proof. The equivalence of 1 and 2 follows from the existence of a euclidean 
algorithm. If L 1 and L 2 are not relatively prime then they have a common nonzero 
solution in the Picard-Vessiot extension corresponding to the common factor. 
Conversely, if there exist R, S e ~  such that R L  a + SL  2 = 1, then any common 
solution v of L 1 and L 2 satisfies 0 = RLI(v  ) + SL2(v ) = v. [] 

As we have already noted, that module ~ / ~ .  L is not a ring and one cannot apply 
Berlekamp techniques directly to this module. A substitute for this module is the 
ring E n d ~ ( ~ / ~ ' L ) .  We shall show that this ring arises in several settings. 

Let L~, L 2 ~  and denote by/~ the equivalence class of R in @/@.L 2 and define 

d~ L2) = { R ~ / ~ ' L 2 [ L 1 R  is divisible on the right by L2} 

One easily checks that this condition depends only on the equivalence class and not 
on the choice of representative. Note that g~(L1, L2) is closed under addition and 
multiplication by elements in ~f. If L1 = L 2 = L, one can define a multiplication on 
this vector space and the resulting ring is called the (left) eigenring of  L and is denoted 
by ~(L) .  The multiplication on N~(L) is defined in the following way: for R~, R2 ~ 6~, 
let R ~ . R 2 = R 1 R  2. To see that this is well defined, let S~ = R ~  + Q ~ L  and 
S 2 = R 2 -t- Q2 L. S1S 2 = R I R  2 -t- R1Q2L-b Q1LR2 -t- Q1LQ2L. Since /~2~ge(L), we 

have that L R  2 is divisible on the right by L. Therefore SIS  2 = R I R  2. This shows that 
Ce(L ) is a Cg-algebra. 

Lemma 2.5 Let  L1, L 2 ~ ,  let K be a Picard-Vessiot extension containing a full  set o f  
solutions o f  L~ and L 2, and let G be its Galois group. 

1. The following three C~-spaces are isomorphic: 

�9 E~(L  1, L2) 
�9 Hom~(@/~ 'L~ ,  ~@/~@'L2) 

�9 Homo(V2, 1/1), where V i is the solution space ofLi(y  ) = 0 in K for  i = 1, 2. 

Furthermore, i f  L 1 = Le, then these rings are isomorphic as ~-algebras. 
2. Assuming L 1 and L 2 have the same order, the isomorphisms of  these rings may be 

chosen in such a way as to induce bijections among the following sets: 

�9 o~e(L~, g 2 ) *  =- { / ~ f f ~ ( L 1 ,  L2)IR and L 2 have no common factors} 
�9 I som~(N/~ 'L~ ,  ~ / N . L 2 ) = { ~ e H o m e ( ~ / ~ . L ~ ,  ~/~.L2)l~b is an isomor- 

phism} 
�9 I soms(V  2, 1/1) = {OeHomG(V2, V~)[O is an isomorphism} 

Proof. We will first show that there is an isomorphism between ge(L1, L2) 
and H o m e ( N / ~ . L ~ ,  N/@'L2).  Let R ~ g e ( L I ,  L2) _. We define an element 
c f R ~ H o m e ( ~ / ~ . L a ,  ~ / ~ . L 2 )  by qSR(1 + ~ / N ' L ~ )  = R. One easily checks that this 
map is well defined and is a ~-homomorphism. The map q):/~-~b~ is clearly 
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a ~ -homomorph i sm.  If q5 R = 0, then R E ~ ' L  2 so /~  = 0. Therefore ~0 is injective. If  
(~sHom~(~/N'L1, ~ /~ 'L2) ,  l e t / ~ =  q~(1 + ~/@'LO. Since 0 = ~b(Ll(1 + @/~'L~)) = 

L~R, we have that  L1R is divisible on the right by L 2. Therefore, R~g~(L 1, L2) and 
q5 = qSR, so ~b is surjective. 

We now show that  ~b is a bijection on the corresponding sets ment ioned in 2. The 
Euclidean algori thm shows that  R and L 2 are relatively prime if and only if there 
exist P, Q ~  such that  PR + QL 2 = 1. L e t / ~ g ~  (L 1, L2) with R relatively prime to 
L 2. Then for any SeN,  SPR + SQL 2 = S. Therefore qSR(SP + @-L 0 = S, so ~b R is 
surjective. Since N/N'L1 and ~ / ~ . L  2 have the same dimension as vector spaces, 
this map must  be an isomorphism. Conversely_, assume that  q5 k is an isomorphism. 
Then for some P s ~ we have qSk(P + ~ .L1)  = 1. Therefore, there is a Q ~@ such that  
PR = 1 + QL 2, so R and L 2 are relatively prime. 

N o w  we show that there is an i somorphism between g~(L1,L2) and 
Homa(V2 ,  V1). L e t / ~ E ~ ( L  1, L2) and let vEV 2. We may  apply R to v. Since L1R is 
divisible on the right by L 2 we have that  R(v)e Vv Therefore the map  0R: vF--~R(v) is 
a linear map  of V 2 to V~ and this map  depends only on the equivalence class of R. 
One easily checks that, since the coefficients of  R lie in k, one has OR~Homo(V2, 1/1). 
Therefore the map  ~: /~--~OR is well defined and can be seen to be a C~-homomor- 
phism. If 0R = 0 then R(v) = 0 for all v~ V 2, so (by Lemma 2.1) L 2 divides R on the 
right. Therefore/~ = 0 and so T is injective. Let O~Homo(Va, VI) and let v l , . . . ,  v, 
be a basis of V 2. One  sees that  the entries of the matrix 
A = Wr(O(vl),..., O(v,))" Wr(vl . . . . .  v,)- 1 are left invariant  by G and so lie in k. If 
(a 0 . . . .  , a ,_  1) is the first row of  A, let R = a ,_ ~D"- ~ + ... + a 0. One  then checks that  
0 = 0R. Therefore T i s  surjective. 

We now show that  T i s  a bijection between the corresponding sets ment ioned in 
2. L e t / ~  N~(L 1, L2) with R relatively prime to L 2 (c.f., Lemma 2.1). If v~ V 2 satisfies 
0k(v) = 0, then R(y) = 0 and La(y ) = 0 have a c o m m o n  solution v contradict ing the 
fact that  these two operators  are relatively prime. Therefore OR is injective and so 
must  be an isomorphism. Conversely, assume that  R and L 2 have a c o m m o n  factor 
L 3. We may  write R = PL 3 and L 2 = QL~. By Lemma 2.13, La has a full set of  
solutions in K so the map v~-~La(v) has a nontrivial kernel. Therefore the map  
Ok: v~--~R(v) has a nontrivial kernel, so 0R is not  an isomorphism. 

We leave the statement concerning the case when L~ = L 2 = L to the reader. 
[ ]  

F r o m  part  2 of the above (and its proof),  we conclude: 

Corollary 2.6 Let L~, L 2 be monic operators in ~,  both of order n. The followin9 are 
equivalent: 

1. I f K is a Picard- Vessiot extension of k containin9 the Picard- Vessiot extensions 
of k correspondin9 to L~ and L2, then the solution spaces of Ll(y ) = 0 and 
L2(y ) = 0 are isomorphic G-modules, where G is the Galois 9roup of K. 

2. There exist u o . . . . .  u , _ l ~ k  such that for any Picard-Vessiot extension K of 
k containin9 the Picard-Vessiot extension of k correspondin9 to L~, the map 
y~--~ Nu y (~) is a vector space isomorphism of the solution space of L~ onto the 
solution space of Lz. 

3. There exists an operator g3,  with coefficients in k, relatively prime to L~ such 
that L z  ~ L 3 = L4o Li for some operator L~ with coefficients in k. 

4. ~/(~ ' -L1) ~' ~@/(~@'L2) as g-modules. 



A Group Theoretic Perspective 83 

Classically, two operators  of the same order are said to be of the same type if 
condit ions 2 or 3 hold. 

Corol lary2.7 Let L1, L2ff~. I f  L 1 and L 2 a r e  irreducible then 8~(L1, L2) has 
dimension 1 or O, depending on whether L 1 and L 2 are of the same type or not. In 
particular, i lL  is irreducible then E~(L) is isomorphic to (d. 

Proof. Let K be a Picard-Vessiot extension of k containing the Picard-Vessiot 
extensions of  L 1 and L2, let G be the Galois g roup  of L and let V~ be the solution 
space of Li(y ) = 0 in K, for i = 1, 2. Since each L i is irreducible, Corol lary  2.3 implies 
that  V i is an irreducible G-module. Schur's Lemma implies that  Hom~(V2, V1) has 
dimension 1 or 0 depending on whether V 1 and V2 are isomorphic  or not. No te  that  
for any L ~ ,  (d c $~(L) so dimC~(L)__> 1. Therefore when L is irreducible, we 
conclude from the first par t  that  #~(L) -~ (d. [ ]  

Example  2.8 The converse of  the last statement of the above corollary is not true. To see 
this, let k = C(x) and L = D 2 + ~ D - (1 + ~) = (D + (1 + ~)) (D - l). This has a fundamental 
set of  solutions Yl = eX, Y2 = ex f ~" The corresponding Picard-Vessiot extension is K = 

that commute with each of  the matrices in this group are the constant matrices. Since we 
can identify Homa(V, 10, V = Solnk(L), with ~ ( L ) ,  we see that ~ ( L )  is isomorphic to 
~,, while L is reducible. 

Let L~ have order m and L2 have order n. Note  that each element of C~(L~, La) 
has a unique representative in ~ of order at most  n - 1. Therefore, one may  identify 
#~(L1, L2) with a (d-subspace W of k" via the map  R = a ,  1 D n - l - [  - " "  + ao~--~ 
(a, a,-.. ,ao). Since dim~(Hom~(V 2, VO) <= nm, we have that  dim~W<= nm. Let R be 
a linear opera tor  with differential indeterminates d,_ a,.. ~, ~/o for coefficients. If we 
divide L~R on the right by L 2 we will get a remainder R where the coefficient 5~ 
of each D ~, 0 < i < n -  1, is a linear expression (with coefficients in k) in the dj 
and their derivatives. Therefore, there is an n x n matrix ~'L~,L~ with entries in 
@ such that  ~//~,L~'(a,-~ . . . .  ,~o) r = ( 5 "  ~ . . . . .  5o) r. This implies that  
R = a ,  i D ' - l + . . . + a o ~ ,  of order at most  n - l ,  represents an element of  
~ ( L I ,  L2) if and only if SCL~,L ~'(a._ a . . . . .  a0) T = 0. If  F is a differential field contain- 
ing k with the same constants as K, we denote by Solnr(~/L~,L:) the (d-space of 
solutions of  dL~,L ~ �9 8 = 0 with 8~F". We then have: 

Corollary 2.9 Let F be a differential extension field ofk with the same constants. Then 
the vector spaces ~ewl (L> L2) and S o l n e ( ~ , ~ )  are isomorphic. In particular, if 
L = L 1 = L 2 is irreducible in F[D], then Solnf(~Cr) has dimension one. 

Example2 .10  Let k =(d(x) and L = D  4. # ~ ( L ) =  { R ~ ) o r d ( R ) < 4  and D~R is 
divisible on the right by D4}. If  we let R = d3 D3 + 42 ~  ~- a i d  ~ ao, the condit ion 
tha t /~W~(L)  is that  the coefficients of D 3, D 2, D ~, and D O in D4R are all zero. This 
yields the following system ~ ) :  

~(~) = 0 

4c/(~ u) + 5~ ~) = 0 

6fi~i) q - 4Cl~ u) + Cl(d v) = 0 

4s o + 6a] '') + 4a~u)+ gt~~ 0 
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By inspection, one sees that all solutions (~3, ci2, ci~, ao) have polynomial entries 
and that the space of such solutions has dimension 16. Therefore, dim~g~(L) = 16. 
One can verify this by noting that the Galois group of L is trivial, so End~(V) is the 
ring of all 4 x 4 matrices. 

In Sect. 3.1, we will discuss how one determines, in general, the dimension of 
SOInF(~L) and show how this result gives an effective sufficient condition for 
reducibility. 

We close this subsection by stating the theorem of unique factorization for linear 
operators. One cannot hope to claim that the operators appearing in a factorization 
into irreducible operators are unique. For  example, D 2 = D.D = (D + ~)1 (D - ~).1 

Proposition 2.11 For only L ~ N  of  positive order, we may write L = rL1. . .Lm where 
r~k  and each L i e n  is monic and irreducible. I f  L = F L 1 . . . L  ~ is another such 
factorization, then r = f, m = rh, and there exists a permutation ~ such that Li and L~(i~ 
are of  the same type. 

Proof. Let G be the Galois group ofL. A factorization o fL  = rL~.. .  L m corresponds 
to a normal series in the solution space V = V1 -- "- Vm ~_ {0} where each V~ is the 
solution space of LiL i _ 1"'" Lm(Y) = 0. Note  that each Vi/V i_ 1 is G-isomorphic to the 
solution space of L~(y) = 0 and so is an irreducible G-module. The Jordan-HiSlder 
Theorem ([17], Ch.VII. 1; [44], Sect. 46) implies that any two such normal series are 
equivalent, that is, there is a permutation such that VIVa_ ~ and VIVa_ 1 are G- 
isomorphic. Lemma 2.6 implies that the corresponding operators would be of the 
same type. [] 

We note that a proof  could also proceed by applying the Jordan-HNder  
Theorem directly to the N-module N / N '  L. 

2.2 Reducibility o f  Completely Reducible Operators 

We have seen above that the structure of C~(L) does not determine, in general, 
whether or not L is reducible. In this section we describe a class of operators where 
the structure of this ring does determine the factorization properties of L. 

Given two operators L1, L 2 ~N one can define the least common left multiple ofL~ 
and L 2. ILl ,  La] ~ to be the monic nonzero operator of smallest order such that both 
L 1 and L a divide this operator on the right. To see that this definition uniquely 
defines [L1, L2]~, note that is S and T are two such operators, then they must be of 
the same order. Writing S = Q T  + R with ord(R) < ord(T), one sees that L 1 and L z 
divide R on the right. Therefore, R = 0 and so comparing orders and leading 
coefficients, one has S = T. One can clearly define the least common left multiple 
[L 1 . . . .  , L,,]l of any finite set of operators {L1,.. . ,  Lm}. We say that a linear operator 
is completely reducible if it is a/c-left multiple of the least common left multiple of a set 
of irreducible operators. In Lemma 2.13, we shall give a group theoretic characteriz- 
ation of this notion. 

Lemma2.12  Let  L , L  1 . . . . .  L,~E@ and let K be a Picard-Vessiot extension of  k 
containing a full  set o f  solutions of  each of  L(y)=O, Ll(y  ) = 0  . . . . .  Lm(y)=O. 
L = a l L  1 . . . . .  Lm]l, for  some aEk if  and only if  the solution spaces V i o f  Li(y ) = 0 
generate the solution space V o f  L(y) = O. 
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Proof. Let W be the vector space spanned by the Vi and let G be the Galois group of 
K. Clearly W is G-invariant, so it is the solution space of some monic L ~ .  Since 
V i ~ W, L i divides L on the right. I f / , ~  and for each i, Li divides Z,, then L, vanishes 
on W, so L divides s on the right. Therefore 2D = [L 1 . . . . .  L] l and so L = aL if and 
only i f V = W .  []  

Let G be a linear algebraic group. Given a G-module W and a submodule W1, we 
say W 1 has a complementary submodule if there is a submodule W 2 of W such that 
W = W a | W 2. A finite dimensional G-module V is said to be completely reducible if 
every submodule has a complementary invariant submodule. This is equivalent to 
V being the direct sum of irreducible submodules. Recall that the unipotent radical 
G, of a group is the largest normal unipotent subgroup (see [16] for a definition of 
these and related notions). Note that G u coincides with the unipotent radical of the 
connected component of the identity. The group G is said to be reductive if its 
unipotent radical is trivial. When the field is algebraically closed and of characteris- 
tic zero, it is well known that G is reductive if and only if it has a faithful completely 
reducible G-module. In this case, all G-modules will be completely reducible [7]. 

Lemma 2.13 Let L ~ .  Let K be a Picard-Vessiot extension of k corresponding to 
L(y) = O, and let G be the Galois group of K. The following are equivalent: 

1. L is completely reducible. 
2. The solution space of L(y) = 0 in K is a completely reducible G-submodule. 
3. The Galois group of L is a reductive group. 

Proof. Assume 1 is true and let L = IL l , . . . ,  L,,]~ be a minimal representation of L as 
a least common left multiple of irreducible operators. By minimality, we have that Lz 
does not divide I L l , . . .  , L~ . . . .  , Lm] z. For  each i, we may write L = Lr By Lemma 
2.1, L~ has a full set of solutions in K. Furthermore, since each L~ is irreducible, each 
Vz is an irreducible G-module. From the condition that L k does not divide 
ILl . . . . .  L i . . . .  , LJ~ on the right, we have that V i u) V 1 -1-. . .  + V i @ , , ,  -~ V m = {0}, 
Lemma 2.12 implies that V is the direct sum of the V~. Therefore V is a completely 
reducible G-module. 

Assume 2 is true and write V = V 1 G- '"  | V~ where the V~ are irreducible G- 
modules. By Lemma 2.2, each V i is the solution space of an irreducible operator L i 
and by Lemma 2.12, we have that 1 is true. 

The equivalence of 2 and 3 follows from the discussion preceding the lemma. 
[] 

One can easily describe g~(L) when L is completely reducible. Given any ring ~ ,  
any completely reducible ~-module  d/d may be written in the form 
Jg = id~ ~ . . .  Q where the///d~ are non-isomorphic irreducible J/d-modules, 
each repeated n~-times in the direct sum. It is a well known extension of Schur's 
Lemma (c.f., [23], Chap. XVII, Sect. 1, Proposition 1.2) that End~(///d) is isomorphic 
to Mat,  l(End~(Jgl))O... | where Mat,~(Ende(J/di)) is the ring 
n~ x ng matrices with entries in End~(/d[~). If L is a completely reducible operator, we 
can apply this result to the qf[G]-module V, where Vis the solution space of L in the 
associated Picard-Vessiot extension of k and (giG] is the group algebra of G. Note 
that since (g is algebraically closed we have (by Schur's Lemma) that any Endeta~(V~) 
is isomorphic to (g. Therefore, using the isomorphisms of Lemma 2.5, we have the 
following: 
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Lemma 2.14 I f  L be a completely reducible linear operator, then g~(L) is isomorphic 
to Mat ,  l(cd)0 "" @ Mat,,(cd) for some integers n i. In this case, L is irreducible if and 
only if g~(L) is isomorphic to cal. 

Recalling the notation of the previous section, we have: 

Corollary2.15 A completely reducible operator L is reducible if and only if 
dim~Solnk(~L) > l. This happens if and only if ~r r" dT = o for some 
gl = (a,_ 1,..., ao)~k" with either a i r O for some i > 0 or aor 

Proof. The first part  of the corollary follows from the fact that g~(L) is isomorphic 
to Solnk(SJL) as Cg-vector spaces. Recall that EndG(V ) always contains the endo- 
morphisms induced by constant multiplication. Such an endomorphism corre- 
sponds to an element R = O D " - I + . . . O D + a ~ g ~ ( L ) ,  aECd and so is given by 
(0,. . . ,  O, a)~ Solnk(XUCL). Therefore dim~SoInk(~CL) > 1 if and only if this space contains 
elements not of this form. []  

2.3 Reducibility of General Operators 

In this section we give a criterion for a linear operator to be completely reducible. If 
L is an operator that is not completely reducible, then it cannot be irreducible. 
Therefore, this criterion together with the results of the previous section will yield 
a criterion for an operator  to be reducible. 

An operator is not completely reducible if and only if its Galois group G is a non- 
reductive group. This happens if and only if the solution space (in the associated 
Picard-Vessiot extension) is not a completely reducible G-module. We begin by 
considering a modification of the notion of completely reducible. We say that W is 
1-reductive if every 1-dimensional G-submodule has a complementary submodule. 

Lemma 2.16 Let G be a linear algebraic group over an algebraically closed field, 
V a G-module and W 1 be the sum of all one dimensional submodules of V. The following 
are equivalent: 

I. V is 1-reductive. 
2. W 1 has a complementary submodule in V. 
3. I f  W is a submodule of W 1, then W has a complementary submodule in V. 

Proof. Assume 2 holds. Since W 1 is the sum of irreducible modules it is completely 
reducible. Therefore, for any submodule W c W1, W has a complementary sub- 
module in W 1. Since W1 has a complementary submodule in V, W will have 
a complementary submodule in V. Therefore 3 holds. 

Assume 3 holds. Any 1-dimensional submodule V~ of Vis a submodule of W~, so 
V~ has a complementary submodule in V. Therefore 1 holds. 

Assume 1 holds. Let W o be a submodule of Wt, maximal with respect to the 
property of having a complementary submodule in V and write V = W o | 17V o. If 
W o v a W 1, then there is a one dimensional submodule V1 ~ W1,V1 r Wo. Using 1, 
we may write V = V 1 | V1. Let ~ be the projection of V onto W o with kernel W o. 
Since V~ is one dimensional and V 1 n W o = (0), we have that ~(V1) # (0). Writing 
ITVo = ~(V0 | ~(V1), we have that (W o | u(V1) ) | 7~(V1) = V. Therefore W o �9 ~(V1) is 
strictly larger than W o and has a complementary submodule in V, contradicting the 
maximality of W o. Therefore, W o = W 1 and 2 holds. []  
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F o r  a non- reduc t ive  g roup  G, we have tha t  the un ipo ten t  rad ica l  Gu # (0) so we 
begin by  s tudying  un ipo ten t  groups.  The  fol lowing conta ins  the facts we will need 
concern ing  un ipo ten t  groups.  

L e m m a  2.17 Le t  U be a nontrivial unipotent  group defined over an algebraically 
closed f ield c~ and let V be a fa i th fu l  U-module o f  dimension n. 

1. V o = { r e  V[ cr(v) = v f o r  all cre U} is a nonzero invariant U-submodule o f  V o f  
dimension at most  n -  1. 

2. I f  dim V o = i then AiVo is a one-dimensional submodule o f  A i V  that  has no 
complementary  submodule and so /x ~V is not  1-reductive. 

Proof .  V o is nonzero  by  ([-16], T h m  17.5). If  its d imens ion  is n, then the g roup  would  
be trivial,  since the modu le  is a faithful module .  

To prove 2, note that  A iV o is clearly one-dimensional  and U-invariant .  Apply ing  
1 to the modu le  V/Vo, we see tha t  there  is an e lement  we V, wq~ V o such tha t  for any  
o-e U, there exists a w~e V o such that  a(w) = co + w~. Fur the rmore ,  for some o-e U, we 
mus t  have w~ # 0, o therwise  w would  lie in V o. F ix  such a o-. N o w  assume tha t  A~Vo 
has a c o m p l e m e n t a r y  submodu le  W and  write /VV= AiVo �9 W. Let  v 1 = w . . . . .  , v~ 
be a basis of  Vo, so v I /x  v 2/x . . . /x  v i is a basis of AiVo . Therefore  o-(w) = w + v I. W e  
m a y  write w/x  v 2 A . . . / x  vi = w o + by 1/x v2/x . . . / x  v~, for some woe W. Therefore  we 
have 

6 ( W  A V 2 A " "  A Vi) = W A V 2 A . . .  A V i Jr- V 1 A V 2 A . . .  A V i 

= w o + ( 1  + b ) v  1 A V 2 A ... A V i 

and  

~r(w A v2 A "" A Vi) = ~r(w o + by 1 A v 2 A "" A V~) = a(Wo) + bv 1 A V 2 A ... a v i 

C o m p a r i n g  the final expressions in these two formulas  we see 

Wo - a(Wo) = vl A v2 A ... A v i 

Since Wo -- a(Wo) is in W and  W and  A iV o are complemen ta ry ,  we mus t  have 
v 1 A V2 A "- A V~ = 0 a cont rad ic t ion .  [ ]  

Proposi t ion  2.18 Le t  G be a linear algebraic group defined over an algebraically 
closed f ield c~ and let V be a fa i th fu l  G-module o f  dimension n. Then  G is reductive i f  and 
only i f  f o r  every i, 1 <_ i < n - 1, AIV is 1-reduetive. 

Proof .  If  G is reduct ive  then any submodu le  of a modu le  has a c o m p l e m e n t a r y  
submodule .  N o w  assume tha t  G is no t  reduct ive  and so G, r (0). In  the no ta t ions  of  
L e m m a  2.17.1, V o # (0). Since G, is n o r m a l  in G and the elements  of V o are the only  
e lements  of  V left fixed by  G,, V o is a G- invar ian t  subspace  of V. AiVo is therefore 
a one d imens iona l  G-submodu le  of  A iVand  by L e m m a  2.17.2, it does  not  have a G,- 
complement ,  so it canno t  have a G-complement .  [ ]  

Let  L o e N  and  let K o be the P icard-Vess io t  extension of  k assoc ia ted  to L o with 
Ga lo i s  g roup  G o. W e  say tha t  L o is 1-reductive if the so lu t ion  space of L o is 
1-reductive as a G o module .  If  K is any  P icard-Vess io t  extens ion of k, with Ga lo i s  
g roup  G having a full set of so lu t ions  of  Lo(y ) = 0, then we can e m b e d d  Ko into K. 
The  ac t ion  of G on K o factors t h rough  the ac t ion  of G o on K o. Therefore  L o is 
1-reductive if and  only  i f  f o r  any Picard-Vess io t  extension of k with Ga lo i s  g roup  G, 
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having a full set of solutions of Lo(y ) = O, the solution space of Lo(y ) = 0 in K is 
1-reductive as a G module. Also note that L o is 1-reductive if and only if for each first 
order r ightfactor  L 1 e@ of L o, there exists an L 1 ~@, relative prime to L 1 such that 
Lo = [LD L~]v We shall show in the next section how the following gives an effective 
method to test if a linear operator  is completely reducible. 

Corollary 2.19 Let  L ~  and let K be the associated Picard-Vessiot extension with 
Galois group G. Let  L ^ i be an operator whose solution space is G-isomorphic to AiV, 
where V is the solution space of  L in K.  L is a completely reducible operator if  and only i f  
L A i is 1-reductivefor each i =  1 . . . . .  n - 1 .  

Proof. This follows from the previous lemma by noting that L is completely 
reducible if and only if its Galois group is reductive. [] 

Proposition 2.20 Let  G be a linear algebraic group defined over an algebraically 
closed field c~ and let V be a faithful G-module of  dimension n. Then V is an irreducible 
G-module if  and only if: 

I. For each i, 1 <_ i <_ n - 1, Aig, is 1-reductive, and 
2. End6(V ) = cg. 

Proof. If V is irreducible then the second condition holds by Schur's Lemma. 
Furthermore, in this case G is reductive, so any submodule of a module will have 
a complement. 

If V is not irreducible and G is reductive then EndG(V ) r cg by the discussion 
preceeding Lemma 2.14. Assume V is not irreducible and G is not reductive. Then 
Proposition 2.18 implies that the first condition cannot hold. [] 

Corollary 2.21 Let  L e g  and let K be the associated Picard-Vessiot extension with 
Galois group G. Let L ^ ~ be an operator whose solution space is G-isomorphic to A iV, 
where V is the solution space of  L in K. L is irreducible if  and only if  all o f  the following 
hold: 

I. For each i, 1 <_ i <_ n - 1, L ^i is 1-reductive. 
2. d im ,So lnk (dL)= 1 

Proof. This is just a restatement of Proposition 2.20. [] 

Corollary 2.21 is the basis of our reducibility tests. Condition 2 can be restated in 
several ways using Lemma 2.5 and we will show in Sect. 3.1 how each of these 
equivalent statements can be used to develop algorithms to test reducibility. 
Condition 1 appears to require that one check a possibly infinite number of 
possibilities. We shall show in Sect. 3.2 that this is not the case and give an algorithm 
that decides if condition 1 holds. 

2.4 Remarks  

A good guide to the nineteenth century literature concerning linear differential 
equations is [15]. We will give a brief indication of the sources of the results in 
Sects. 2.1 and 2.2. Lemma 2.1.2 already occurs in [11]. In this paper, Frobenius also 
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determines necessary and sufficient conditions for a Fuchsian equation with three 
singular points to be reducible. The connection between reducibility of the equation 
and reducibility of the group was made by Jordan in [20] for Fuchsian equations 
and by Beke in [4] for general equations. In Beke's paper, one can also find 
a decision procedure for determining if a linear differential equation with rational 
coefficients is reducible or not (a related procedure is described in [38]). Unique 
factorization of linear differential operators is discussed in [22]. In this paper, 
Landau proves the uniqueness of the number of irreducible factors and their sets of 
orders. At the end of the paper, Landau notes the similarity of his techniques with 
those used by Jordan to prove his theorem concerning composition series for finite 
groups. In [24], Loewy gives the complete factorization theorem (although the 
notion of linear equations of the same type goes back to (at least) Poincar6 [36]). In 
a subsequent series of papers [25, 26, 27, 28], Loewy examined the notion of 
completely reducible operators, factorization into completely reducible operators, 
and what properties carry over to operators of the same type. In [29, 30] Loewy 
considers systems of linear differential equations and proves results analogous to the 
results in the above papers. These results follow easilly from either the group 
theoretic or N-module approach. In [33], Ore considers the ring of linear differential 
operators from a ring theoretic perspective. In the second part of this sequence, he 
defines the eigenring of an operator and shows that it is a finite dimensional algebra 
corresponding to solutions of a certain system of differential equations (our sJL). He 
also discusses various kinds of factorizations. In [34], Ore generalizes many of these 
results to skew polynomial rings F[T] where for some derivation D of F and 
automorphism cr o fF  we have T.v = a(v)T + Dr, for all v~F. Jacobson [18] (see also 
[19]) develops a theory of finite dimensional modules over such a ring. This theory 
applies to the situation when V is a finite dimension N-module (let a = identity, so 
F[T] is isomorphic to F[D]). In the general situation, Jacobson shows that such 
a vector space can be decomposed into cyclic subspaces. Furthermore he shows that 
when V is completely reducible, the eigenring is a sum of matrix rings (with entries in 
a division algebra). For the special case of N-modules, Jacobson shows that all finite 
dimensional ~-modules are cyclic (see [3] for references to other proofs and effective 
methods). Jacobson ends his paper by noting that when T is irreducible, the 
eigenring is a division algebra over cg (here we do not assume that cg is algebraically 
closed) and that this observation may be used to construct interesting division 
algebras. Amitsur further develops this idea in [1]. He recapitulates the results of 
Ore and Jacobson in more modern language and then uses these ideas to classify all 
central division algebras over a field cg that are split by k where k is a transcendental 
extension of cg. Some of the results of Ore, Jacobson and Amitsur are contained in 
Chapter 0 of [9]. 

The results of Sect. 2.3 seem new. 
Finally we note that the classical factorization algorithms can be considered 

in this light. Given L e ~  let V = Sonlk(L ) and let W be a G-invariant subspace of 
V, where G is the Galois group of L. If W is nontrivial, it will be the solu- 
tion space of some factor L 1 of L. We can think of L 1 as a surjective element of 
HomG(V, V/W). Therefore, to decide if L is reducible, we only need to decide if there 
exists a surjective G-morphism of V onto a nontrivial G-module of smaller dimen- 
sion. This is the philosophy behind the algorithm in [14], where the question of 
reducibility of systems is examined. This approach seems to be equivalent to 
factoring. 
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3 Algorithmic Considerations 

Let L ~ ,  K the associated Picard-Vessiot extension of k with Galois group G and 
V the space of solutions of L(y) -- 0 in K. Proposition 2.20 states that to test if L is 
irreducible in ~ it is necessary and sufficient to: 

1. Show that Enda(V)  = rg, and 
2. Show that for each i, 1 _< i _< n - 1, A ~V is 1-reductive, i.e., each one-dimen- 

sional submodule V~ of A ~V, has a complementary submodule. 

In the next two subsections we will describe techniques for performing these 
tasks. In the third subsection we will describe an applications to computing Galois 
groups and some directions for further investigations. 

Since the goal of this paper is to describe reducibility tests for linear differential 
equations (scalar equations) and not systems, we tailor our strategies to handle 
single n th order equations (although some of these strategies can be clearly modified 
to handle systems). Regretably, some of the strategies require one to convert to 
systems. We review this process now. Recall that the companion matrix of a scalar 
equation L(y) = y(") -- a n_ ly  ("- 1) . . . . .  a o is 

0 1 0  
0 0 1 

A 
~ . . . . .  

0 0 0 ... 

an- i an-2 an-3 "'" ao 

The system Y' = A Y is equivalent to the equation L(y) = 0. This means one of the 
following equivalent statements: 

�9 The ~ modules ~ / N ' L  and k n (where the action is defined by 
D ' ( v  1 . . . . .  I)n) T = (V'  1 . . . . .  V;) T + A(Vl, . . .  , Vn) T for v~k") are @-isomorphic, 

�9 The solution spaces of L(y)  = 0 and Y' = A Y (in the Picard-Vessiot extension 
of L) are G-isomorphic. 

Using the second characterization, one sees that the space of solutions of L(y)  = 0 in 
k and the space of solutions of Y'  = A Y in k n are isomorphic since these are just the 
G-fixed points of the solution spaces of these respective equations. 

We shall also need the notion of the adjoint of a differential equation (see [35]). If  
L is as above, the adjoint  L* of L is defined to be the equation 
L*(y) = ( - 1)ny (n) -- ( -- 1) n- l(a n_ ly) (n- 2) . . . . .  aoy. One can show that 

�9 The ~ modules ~ / ~ .  L*, H o m k ( ~ / ~ .  L,  k) and k n (where the action is defined 
by D ' ( v l , .  . ., v,) r = (v' z . . . .  , V'n) T -- AT(v1 . . . . .  Vn) T for v~k") are N-isomorphic, 

�9 The solution spaces of L * ( y ) =  0 and Y ' =  - A T y  (in the Picard-Vessiot 
extension of L) are G-isomorphic. 

3.1 Calculat ing dim~EndG(V ) 

Let L be a linear differential operator with coefficients in ~(x), K the associated 
Picar-Vessiot extension, G the Galois group and V the space of solutions ofL(y) = 0 
in K. In this subsection, we shall present three algorithms for calculating 
dimcEndG(V ) and discuss their relative merits. 
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Algorithm 1: We shall use the fact that EndG(V ) is isomorphic to g~(L). In the 
discussion preceding Corollary 2.9, we noted that this space is precisely the set of 
solutions in k of a system of linear differential equations ~4L(Y) = 0 and we described 
how, using the division algorithm, one could effectively calculate this system (an 
alternate method is described in [33] II, p. 237). One then is confronted with 
calculating the dimension of the space of solutions in k". Occasionally, one is lucky 
and one can easily read off this dimension (see the example below). At present, the 
only general technique we know is to convert this system to a single scalar equation 
(of order/12) using a cyclic vector computat ion (see the bibliography of [3]) or to an 
equivalent system in companion block diagonal form as in [33. This reduces the 
problem to finding solutions (in k) of one or several scalar equations. When k = Cg(x), 
this latter problem was solved in the nineteenth century. For  recent algorithms, that 
also consider other fields k, see [8, 41]. An open problem is the problem of finding 
the dimension of the space of solutions in k" of this system without having to convert 
to scalar equations. 

We also note that if one has found an element R e g , ( L ) ,  R of order greater than 
or equal to 1, then one can produce a non-trivial factor of L. To do this, let REg~(L),  
ord(R) > 1. We then have that LR is divisible on the right by L. Therefore, if z is 
a solution of L(y) = 0, we have that R(z) is again a solution of L(y) = 0. This implies 
that z~--~R(z) is a linear map of the solution space of L(y) = 0 into itself. If  c is an 
eigenvalue of this map, then (R - c) (y) = 0 and L(y) = 0 have a common solution. 
Since 0 < ord(R - c) < n, GCRD(R  - c, L) will be a non-trivial factor of L. Therefore 
g i v e n / ~ d ~ ( L ) ,  the condition GCRD(R - c, L) v e 1, defines a nonempty set of at 
most n constants and for each of these GCRD(R - c, L) will be a non-trivial factor 
of L. 

Example 3.1 In Example 2.10 we determined ~L using the above method. One can 
also find factors as described above. For  example, d o = - 4, 41 = x, 42 = 0, 43 = 0 is 
a solution of the system, so R = x D - 4 e g ( D 4 ) .  We then have that GCRD(D 4, 
xD -- 4 - c) v a 1 if and only if c = - 1, - 2, - 3, - 4. One can see this by performing 
the euclidean algorithm or more simply (in this case) by noting that GCRD(D 4, 
xD - 4 - c) ~ 1 if and only if xD - 4 - c divides D 4 which happens if and only if 
y = x 4 +c is a solution of D4(y) = 0. [] 

Algorithm2: This strategy is based on the fact that EndG(V ) is G-isomorphic 
to (V* |  V) G, the G-invariant elements of the tensor product of V and its dual 
V*. We shall construct an operator  whose solution space is G-isomorphic to 
this latter G-module. Let A be the companion matrix of L and let 
B = - A T | 1 7 4  where I is the n x n  identity matrix. It is known ([10], 
Sec. 1.2.7) that the solution space of Y ' =  B Y  is (V* |  V) ~. We are now again 
confronted with finding the dimension of the space of rational solutions of a system 
of differential equations. The advantage of this approach over the previous one is 
that the system Y' = B Y  is easy to compute and that it is a first order system. On the 
other hand, one has lost whatever special properties the system Y' = alLY pos- 
sesses. Again, one can occassionally be lucky and avoid a cyclic vector computa-  
tion. (Note that the system Y' -- B Y  can be rewritten in a more classical way using 
matrix notation. If we represent an element of E n d ~ ( ~ / ~ L )  as a map X~--~ZX, Z an 
n x n  matrix, for which X ' = A X  and ( Z X ) ' = A ( Z X ) ,  then Z will satisfy 
Z'  = A Z  -- ZA.)  
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Example 3.2 Let k = off(x) and L = D 4. The associated companion matrix is the 4 x 4 
zero matrix, so the matrix B = - A t |  I + I | A is the 16 x 16 zero matrix. Clearly 
the space of solutions of Y' = B Y  in k 16 has dimension 16. []  

Algorithm 3: The disadvantage of the previous two strategies is that they convert 
a question about  a scalar equation to a question about  a system of equations and 
that to answer the latter question one must (at present) convert back to scalar 
equations. We will give two algorithms that avoid this and discuss nondeterministic 
versions of these as well. Given a linear operator L we wish to construct, as directly 
as possible an operator L whose solution space is G-isomorphic to V @ V*. It  is not 
hard to find an equation whose solution space is V* - this is just the adjoint. The 
question is therefore: given to operators L 1 and L 2 with solution spaces V1 and V2, 
construct an equation whose solution space is V 1 @ I72. We shall do this below. The 
basic philosophy motivating this algorithm is that tensor products  o f  generic cyclic 
vectors  are again cyclic. 

Given two operators L1, L 2 ~  there exists an operator L a |  having the 
following property: If K is a differential extension of k containing a full set of 
solutions {u 1 . . . .  , u,l } ofLa(y ) = 0 and {Vl,..., v,~} ofLz(y ) = 0, then K contains a full 
set of solutions of L a @ L z ( y  ) = 0 and the solution space of this latter equation is 
spanned by { u l v l , . . . , u ,  l v l , . . . , u , l v , ~  } (see [40, 43] where a method is given to 
compute this operator). When L 1 = L 2 we write L @2 for L Q L .  Note that the 
solution space of La |  = 0 is a homomorphic  image of V~ @ 172 where Vi is the 
solution space of L~(y) = O. 

Example 3.3 Let L = D 4 and k = Cg(x). The solution space V of L(y) = 0 is the set of 
polynomials of degree at most  3. Therefore the solution space of  L| --- 0 is the set 
of polynomials of degree at most 6, s o  L | : 0 7. This latter space has dimension 
7 while V | V has dimension 16. [] 

Despite this example, we will want to use the construction of L I @ L 2 ( y  ) = 0 to 
find an operator whose solution space is isomorphic to V 1 | V 2. To do this we will 
have to replace L 2 by an operator of the same type. The following lemma gives two 
ways that this can be done. Before we state this lemma, we describe an ancillary 
construction. Given L e ~ ,  ord(L) = n and (bo,.. . ,  b,_ a)6k", we denote by L (b~ 

the monic operator whose solution space is {z] z = boy + bay' + ... + b,  l y  ("- 1) for 
y satisfying L(y) = 0}. One can effectively construct L ~b ...... b,-1) from L by letting z and 
y be indeterminates and differentiating z = boy + b~y' + .. .  + b ,_  ay ("- i) n times. 
Using L(y)  = 0 to replace all y(i), i > n by k-linear combinations of y(0, i < n, we are 
left with n + 1 k-linear equations in the n quantities y , . . . ,  y(" 1). Therefore, there will 
be a relation c , z  (") + . . .  + CoZ = 0. Such a relation of smallest order will give 
L (b~176176 Note that L (b ...... b~ will have order n if and only if L ( y ) =  0 and 
R(y)  = boy + ... + b n_ ay ("- 1)_= 0 have no common solutions. In this case, L and 
L(bo,...,b~ 1) will be of the same type. 

Lemma 3.4 L e t  k = Cg(x) and let L 1, L 2 ~ @  , ord(L1) = n, ord(L2) = m. 

I .  For  all but a f in i te  number o f  c~Cg, ord(Ll|  (a'(x-~)'~176176 = ran. 
2. There  ex i s t  polynomials  b o . . . . .  bin- 1 wi th  cons tant  coef f icients  and o f  degree at 

mos t  mn - 1 such that  o r d ( L a @ L  ~ ...... b~ 1)) = ran. 

Proof .  To prove 1, first consider the operators La@L2,  L I @ L  (~176176 
L ~r(o,0,o ..... ~ Each has order at most mn and only a finite number  of singular 1M~' ~ 2  
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points. Let  c be a regular  point  of all of these operators .  The  s tandard  existence and 
uniqueness theorem implies that  if y is any  solut ion of one of these such that  y and all 
of its derivatives up to order  mn vanish at c, they y is identically zero. Let  {ul . . . . .  u,} 
and ( v l , . . . ,  Vm} be fundamenta l  set of solutions o fL l (y  ) = 0 and L2(y ) = 0 respective- 
ly and let z~ = v~ + (x-c)""v'~ + (x-c)Z""v ' i  ' + . . .  + ( x - c )  ""(""-  1)v}m- 1) for 1 < i < m. 
We claim tha t  the elements {u~vj[ 1 < i < n, 1 < j < m} are linearly independent .  This 
suffices to prove  1. To  prove  the claim, assume that  for some c~jscg, 0 = S~,ic~ju~z J. 
We then have that  

m ~ l (  t o = = Z - c) 
i,j t = O  \ i , j  / 

Each Z~,jc~,ju~v~ t) is either zero or vanishes to order  at mos t  mn - 1 at c. C o m p a r i n g  
powers  of  x - c in the above  expression we can therefore conclude that  for each t, 
Y~,jc~ju~v~ t)= O. Since the matr ix  (v~ k)) is invertible, we have tha t  for each j, 
Z~,jc~ju i = 0. Since the u i are linearly independent ,  we have c~,j = 0 for all i, j. 

To  prove  2, let Bo , . . . ,  B~_ 1 be differential indeterminates,  let {u 1 . . . . .  Urn} and 
(v l , . . . ,  v,,} be as above and let z i = Boy i + BlV' i + ... + B,, lvl" 1). Consider  the 
differential po lynomia l  R(B  o . . . . .  B, ,_  1) = de t (Wr(UlZ l , . . . ,U lZ  . . . . . .  u,zm) ). This 
po lynomia l  is not  identically zero (the follows f rom 1) and has order  at mos t  m n -  1 
in each variable B~. Therefore,  a result of  Ritt  (E37], p. 35) implies that  there exist 
po lynomia ls  bo, . . .  , bin_ 1 of degree at mos t  r a n -  1 such that  R(b o . . . .  ,bm l) ~ O. 
These polynomials  satisfy the conclusion of 2. [ ]  

ExampLe 3.5 This illustrates s ta tement  1 of the above lemma.  Let  L = D 4. We then 
have that  L ~1'x~6'~ '~) = 

480x14(364x 15 + 577536x 45 + 8336640x 6~ + 3 + 37748736x 75 + 21387x 3~ 
D 4 D 3 

228128x4~+5824x3~176176 

480x13(-- 1339xlS+6983424x45+ 164465664x6~ 1063256064xVS+79696x3~ z 
+ 

228128x45+5824x3~176 

(4399992668160xVS+214477701120x6~176 12 
D 

228128x 45 + 5824x 3~ + 96x 1 s + 4620288x6O + 53354496x v5 + 201326592x 9~ + 1 

If  one calculates L @ L  (l'xl~ 1 2 one gets an opera to r  of order  16 with 
enormous  coefficients. F o r  example  the coefficient o fD  8 is a quot ient  of polynomials  
of  degree 150 with 48 digit coefficients. [ ]  

Example  3.6 This illustrates s ta tement  2 of the above  lemma.  We again let L = D 4. 
We then have that  L(X'~'x~ = 

884736+48x3~176176 s 
0 4 D a 

10 5 30 x(--24xZS+384x2~ -57984x +49152+x  ) 

30 25 20 15 10 936x - 17664x +213624x -1617792x +5643648x --10520064x s+5455872 
+ D 2 

10 5 30 xZ(-24x 25+384x2~ 15+19968x -57984x +49152+x  ) 

15 10 5 8736x3~ 25+ 1383264xZ~ +21523968x -26855424x +11354112 
D 

(--24x25+384x2~176176 

360x(39232xS--14336--24704xl~ 2~ 
+ 

25 20 15 10 --24x +384x --3992x +19968x --57984xS+49152+x 3~ 
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Note that the degrees of the numerators and denominators of the coefficients are 
considerably smaller than in the previous example. If one calculates L@ L (xl~'x"'x"'l) 
one again gets an operator of order 16 but with better coefficients. For  example the 
coefficient of D 8 is a quotient of polynomials of degree 35 with 13 digit coeffi- 
cients. [] 

We now give two procedures to calculate the dimension of End~(V). 

Algorithm 3A: This uses Lemma 3.4.1. Select c ~ ~ and form 
L *@ L ( l ' (x -  c)'L(x- c)~'L''''(x- c)("- l)"~)" I f  ord L*@L (l'(x c)'L(x-c)z"~'"(x- c)("- l)"~)) = n2, 

then we have found an operator whose solution space is G-isomorphic to V* | V. 
One then proceeds as in the other algorithms to find the dimension of the space of 
rational solutions of this operator. 

If ord L*@L (1'(x-c)" '(x c)2,~...,(~_~)(,-~),~))< n2 ' select another value for c and 
recalculate. Since there are only a finite number of bad values for c, we will 
eventually find one that works. In Example 3.5, this strategy was used. The proof  of 
Lemma 3.4 gives a way of finding a value ofc that works. An alternative approach is 

to form L*@ L (1'(x-~)"~'(~-~)2"~''''(~-c)"~("~-~) for an indeterminate c with c ' =  0. The 
condition that this operator have order n 2 will be equivalent to p(c) ~ 0 for some 
polynomial p that will be found in the process of forming the operator. We also note 
that the size of the set of "bad points" can be bounded in terms of the coefficients of 
L using the generalization of Fuchs' relation ([5, 42]). 

Algorithm 3B: This is based on Lemma 3.4.2 and was used in Example 3.6. Let 
Bo,. . . ,  B,_ ~ by polynomials of degree r t  2 - -  ] with indeterminate coefficients. The 
condition that L*@ L (B ...... B,_ ~) is of order n z - 1 gives a non-empty (by Lemma 3.4.2) 
Zariski open set of coefficients in (g. The defining equations can be constructed and 
a element of this set can be found. One then proceeds as above to find the dimension 
of the space of rational solutions. 

In practice (and in Example 3.6) one should select arbitrary polynomials 
b0 , . . . , b ,_ l  with constant coefficients and of degree at most n 2 - 1  and form 
L*@ L (b ...... b, ~. If this operator has order n 2, proceed as above to find the dimension 
of the space of rational solutions. If the order is less than n 2, select another choice of 
bo,. . . ,  b, _ ~. We know from Lemma 3.4 that some choice will work. It  would be of 
interest to understand the probabilistic aspects of this approach. 

3.2 Deciding if A iV is 1-Reductive 

To decide if, for 1 _< i _< n -- 1,/~ i V is 1-reductive, we proceed in two steps. Firstly, we 
shall show how to find an operator L A i whose solution space is G-isomorphic to 
AiV. Secondly, we shall produce an algorithm that, given a linear operator, decides if 
this operator  is 1-reductive. 

3.2.1 An operator  whose solution space is AiV 

We shall present two algorithms. 

Algorithm 4: Let A be the n x n companion matrix of L. One can construct an 

( ~ )  x ( ~ ) f i r s t  order system whose solution space is G-isomorphic to A iV. This is 
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done in 1-14] in the following way. Let Yl . . . .  ,y,  be indeterminates and let 
y = (y . . . . .  y,)r. Let 5Pi be the set of all i-tuples J = (Jl,-.-,Ji), 1 <J l  < "'" <Ji < n. For  
each JeSPi, let z s = yj~/x . . . /x  yj .  Formally differentiating, we have 

! ! t t z s = yj~/x . . . /x  yj~ + ... + yj~ A ... A yj. Using Y' = A Y, we may rewritte each yj as 
a linear combination of the Ya . . . . .  y, and so have Zs=Z~s~Cj,r~zi~ for some 
elements cs,H~k. Ordering the i-tuples in 5Pl in some manner, we have Z '  = A A i Z 

/ \ 

where Z = ( z z , . . . , z j ) ,  r = (  n ]  and A^i=(cj ,L,) .  We refer the reader to [14] for 
\ J i  ' 

a proof  that the solution space of this system is G-isomorphic to A iV. Construction 

of a cyclic vector (for the dual system) will yield an operator L^ i of order ( ~ )  whose 

solution space is G-isomorphic to A iV. 

Algorithm 5: We now give an algorithm that avoids the conversion from scalar equa- 
tion to matrix system and back. This relies on the following definitions and lemmas. 

We first define the ?h Associated Operator L. Let K be the Picard-Vessiot 
extension of k associated to L(y)= 0 and let y~ . . . . .  y, be a fundamental set of 
solutions ofL(y) = 0 in K. We define U ~(~ to be the monic operator of smallest order 
whose solution set is spanned by {detWr(yj~,. . . ,  Yj,)I(Jl . . . . .  ji)G~i}. One sees that 
the vector space V a~r(i) spanned by these elements is left invariant under the action of 
the Galois group G and so this operator has coefficients in k. If V is the solution 
space ofL(y) = 0, one sees that the map sending yj~/x ... A yj~ to detWr(yj~,. . . ,  y j,) is 
a G-homomorphism of A iV onto V det(i). Therefore, the solution space of L a"t(~ is 
a homomorphic  image of A iV and is an isomorphic image if and only if the order of 

gdet(i) i s ( ~ )  r. 

One can calculate L a*~(~ directly from L by setting w = de tWr(y l , . . . ,  Yi) differenti- 

a t i n g t h i s v = ( ~ ) t i m e s ,  u s i n g t h e r e l a t i o n L ( y j ) = O t o e l i m i n a t e d e r i v a t i v e s o f y j o f  

order larger than n -  1, and then finding a linear dependence among the resulting 
v + 1 expressions for z, z ' , . . . ,  z ~. If there is more than one such dependence, one takes 
one where the maximum z (j) is as small as possible. 

Example 3,7 Let L = D 4 and i=  2. If we use Yi = xi, i =  0, 1, 2, 3 as a basis for the 
solution space, the set {detWr(yj~, . . . ,  Yj.) I (Jl . . . . .  ji)~SPl} is {1, 2x, 3x 2, x 2, 2x 3, xa}. 
Therefore, Uet(z)= D 5, so the solution space of L det(2) is not A 2 V ~  which has 
dimension 6. []  

Example 3.8 Let L = D 4 - 4xD - (x 4 + 2). Calculating; one finds that 

Ldet(2) = D 6 _ 1D5 + 4 x 4 D  2 + 20x3D 
x 

Therefore in this case the solution space of U ~t(2) is A 2 V. 7-1 

1 In [38], Sect. 167, Schlesinger also defines an associated operator.  Schlesinger only defines this 

~perat~rwhenthes~ceVae~i)hasdimensi~n(~).Inthiscase,~urith~ss~ciate~perat~w~u~e 
called the (n - i) te associirte Differentialgleichung in his terminology. 
2 In [2], Appell  works out most  of  the relations for L d~t~2), when L is a fourth order  opera tor  
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Since we want  an opera tor  whose solution space is G-isomorphic to /x iV, we 
wish to guarantee that  L de~(i) has the correct order. This will be done with the aid of 
the following two lemmas. Again, we shall follow the phi losophy that  the tensor 
product  of  generic cyclic vectors is cyclic. 

Let K be a differential field with constants  cg and y t , . . . , y n 6 K ,  linearly 
independent  over cg. Let B o , . . . , B , _  1 be differential indeterminates and, for 
i = 1 . . . . .  n, let z i = Boy i + Bly'  i + ... + B, lYI"- 1). Note  that  the differential field 
K ( B  o . . . .  , B,_ 1 ) has the same constants as K. Fo r  each J = (Jl,-. .  ,Ji)sSPi let Wj = 
det Wr(zjl,.. ., z j,) ~ K ( B o . . . .  , B,_ 1 ) .  

L e m m a  3.9 For each i, 1 < i < n, {Ws]JeSei}  forms a linear independent set over cg. 

Proof. The p roof  proceeds by induction on i. Fo r  i = 1 this is just a restatement of 
the fact that  Yl . . . .  ,Yn are linearly independent  over ~g. N o w  assume that  the 
statement is true for i - 1 .  For  each J = (jl . . . . .  j i )eYi,  we have that  W~, = Zi~= 1 
( - 1 )  r+ lz}ir-1)W(J ...... L,...,J,) (expand by minors using the last row). No te  that  the 
order  of each Bt, 0 _< t _< n - 1 in Wcj ...... ) ...... j~)is at most  i -  2. Fur thermore,  note that  
z}i- 1)= B~-1)yjr + . . .  + B~iZ~)y~-1) + R(Bo . . . . .  B,_ 1, Yj~) where R is a differential 

polynomial  with rational coefficients and of order at most  i -  2 in each Bj. Therefore 

i n-1 

= Z ( - 1 1  i -  . - 1 )  1 B t yj, W~j ...... ) ...... j , ) + R  s 
r = l  t = O  

where Rj  has order  at mos t  i - 2  in each B r N o w  assume that  Yj~s~csWj = 0 for 
some CsECg. If  we write Yj~so c jWj  as a polynomial  in the B~ ~- 1), t = 0 , . . . ,  n - 1 we 
see that  for each t the coefficient of B} i-  1) is 

i 

J = O'~,...,Jl)~5~ r = 1 

and that  this must  equal 0. Rewriting this last expression, we get, for t = 0 . . . . .  n -  1 

-~) y, +cjWjl~=O 
j = 1 JeY'iJ 

J - { J e S P i ] i  appears in J} and J[j is the ( i -1 ) - tnp le  obtained from where 5 ~ i -  
J by deleting j. Since the matrix (,,r176 ...... - ~ is invertible, we have for each j, t . y j  J j =  1 . . . . .  n 

that  

+ = o 

By induction, { W j I j [ J ~ }  is a linearly independent  set, so all cs = 0. [ ]  

L e m m a  3.10 Let k = C6(x) and L s ~ .  For each i, 1 < i <_ n-- 1, there exist polynomials 
/ \  

of degree at most i +  ( : ) - 2  such that the i th associated Po P n - 1  operator o f  

I2 . . . . . . . .  has order . . Furthermore, one can select Po . . . . .  P,-  1 of  degree at most 
l 

{ ( ) } such that for all i n = l , . . . , n - 1 ,  the order of the i th m a X o < i < n  a i +  - - 2  

associatedoperator of L (" ...... ~  
\ l /  
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Proof. Fix i and let ~##i be the determinant of the wronskian matrix of the 
{ Wj[ J~Se~}. By the previous lemma, we know that ~Ki is non-zero. This differential 

/ ", / \ 

polynomial has order at most i - l + ( ~ ) - l = i + ( n . ) - 2  in the variables 

Po . . . . .  P,_~. Therefore, the result of Ritt ([37, p. 35) implies that there exist 
/ \ 

. . . . .  P, 1 ofdegree at most i + ( : )  - 2 such that ~ ( p o  . . . . .  p ,_1)40.  polynomials p o 
\ - - /  

Thisguaranteesthat theorderofLa~t<i) is(7) .Set t ing~lK=I~-~lKi ,  theresultof  

Ritt implies that there are polynomials Po . . . . .  P,-~ of degree at most 

{ ( n ) -  2 } such that ~g'(po . . . . .  p, _ ~) r 0. This gives the final result. max2<_i<n_ 1 i t  i 

[] 

We can now state the algorithm. Let Po, . - . , /~ , -~  be polynomials of degree 

i + ( : )  _ 2 with indeterminates for coefficients. The condition that (D~ ...... ~_~))i 

( 7 )  defines a non-empty Zariski open set of constants whose defining have order 

equations can be found. Furthermore one can find a point in this set. Using this as 
coefficients in the -fro . . . .  , / 3_  1, we can get polynomials Po . . . .  ,p,_ ~ such that 

/ X 

(L(p ...... pn t))aet(i) has order ( : ) .  
\ - - /  

In practice, we keep selecting arbitrary Po . . . .  , P,-1 and form (L (p ...... p,_~))a~t(~) 
until we find one of the prescribed order. 

Example 3.11 Let L = D 4. We have seen that L d~t(2) has order 5. When we consider 
L (~'~'~176 we get L (1'~'~176 = 

D4 - (72x 2+12+72x)  D3 , (72+144x) ~z 144 
36xZ + 24x3 + 1 + 1 2 x  + 36x2 + 24x3 + l +12x t) 36xZ + 24x3 + l +12x D 

and that (L( l"x2"~176 det(2) = 

(145152xS+580608xT+852768xd+54475Z~5+125064x4-13392x  3 1 0 3 3 2 x 2 - - 1 4 4 0 x - 5 4 )  

D 6 + -  D 5 
9 8 6 $ r 2 12096x  + 5 4 4 3 2 x  + 9 4 1 7 6 x V + 7 7 5 4 4 x  + 3 0 0 2 4 x  + 3 8 5 2 x  7 5 6 x 3 - 2 8 8 x  - 3 0 x - 1  

(6967296x l~  5 3 3 6 3 1 2 0 x 4 - 1 4 3 8 5 6 0 x ~ - 2 5 2 7 2 0 x Z - 1 9 8 0 0 x - 5 0 4 )  

+ "D* 
12 9 s 6 5 2 2 9 0 3 0 4 x  + 1 7 4 1 8 2 4 x l l + 4 3 6 4 9 2 8 x l ~  + 4 6 9 6 7 0 4 x  + 2 1 9 8 0 1 6 x V + 5 5 8 3 6 0 x  + 4 2 1 2 0 x  - 1 6 3 0 8 x  4 5 3 1 6 x 3 - 6 8 4 x  - 4 2 x - 1  

~ 5 ~ 7 8 7 5 2 x ~ + 6 9 6 7 2 9 6 x 9 - ~ 5 2 3 5 2 x 3 + 5 3 7 4 7 7 ~ 2 x ~ + 6 8 4 2 8 8 x ~ + 4 3 ~ 4 7 2 3 6 x 6 - 2 8 5 ~ 2 x + 3 ~ 3 5 2 8 3 2 x ~ - 7 9 2 - 2 9 2 8 9 6 x  ~) 

.D 3 
iz  l 9 8 6 s 290304x  + 1 7 4 1 8 2 4 x  l + 4 3 6 4 9 2 8 x l ~  + 4 6 9 6 7 0 4 x  + 2 1 9 8 0 1 6 x V + 5 5 8 3 6 0 x  + 4 2 1 2 0 x  - 1 6 3 0 8 x 4 - 5 3 1 6 x 3 - 6 8 4 x 2 - 4 2 x - 1  

(15552xZ + 2592 +15552x)(336x~ + 6 7 2 x  + 288xZ + 32x + l) 
+ -D 2 

1 9 8 6 5 3 2 290304x lZ+1741824x l t+4364928x  ~  + 4 6 9 6 7 0 4 x  + 2 1 9 8 0 1 6 x T + 5 5 8 3 6 0 x  + 4 2 1 2 0 x  1 6 3 0 8 x 4 - 5 3 1 6 x  - 6 8 4 x  - 4 2 x - 1  

(15552  + 31104x) (336x  4 + 6 7 2 x  3 + 2 2 8 x  2 + 3 2 x  + 1 ) 

D 
o 9 7 3 290304x lZ+1741824x l l+4364928x  I + 6 9 1 6 6 7 2 x  + 4 6 9 6 7 0 4 x Z + 2 1 9 8 0 1 6 x  + 5 5 8 3 6 0 x d + 4 2 1 2 0 x  5 1 6 3 0 8 x 4 - - 5 3 1 6 x  - -684xZ- -42x - -1  

10450944x4+20901888x3+8957952xZ+995328x+31104  
+ [] 

2 0 S 6 S 290304X 1 +1741824XII+4364928xIO+6916672X + 4 6 9 6 7 0 4 X  + 2 [ 9 8 0 1 6 X ~ + 5 5 8 3 6 0 X  + 4 2 1 2 0 X  - - 1 6 3 0 8 X 4 - - 5 3 1 6 X  3 6 8 4 X 2 - - 4 2 X - - I  
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3.3.2 Deciding if an Operator  is 1-Reductive 

We will show that the algorithm 1-reduetive, below, decides if an operator L is 
1-reductive. We shall assume that our differential field k (with algebraically closed 
constants) comes equiped with two ancillary algorithms. The first is an algorithm to 
decide if, given a differential operator  L e ~ ,  L(y) = 0 has a nonzero solution in k and, 
if so, produces such a solution. The second is an algorithm to decide if, given 
a differential operator  L ~ ,  L(y) = 0 has a solution y such that y'/y = uek,  and, if 
such a solution exists, produces such an element u e k. This is equivalent to deciding if 
the associated Riccati equation has a solution u in k and is also equivalent to 
deciding i lL  has a first order right factor of the form D - u  for some uek. As we have 
already noted, such algorithms exist for Q(x), as well as for any finite purely 
transcendental liouvillian extension of Q(x) or for any elementary extension of r 
In the following, i fL D L2eN, Quotient(L 1, L2) will denote the unique operator A e ~  
such that L 1 = A L  2 + B for some B e N  with ord(R) < ord(L1) and L~' will denote the 
adjoint of L r 

Recall that an operator R is 1-reductive if, for any first order right factor S of 
R there exists an S, relatively prime to S, such that R = IS, S]~. We first will presentan 
effective criterion (Lemma 3.12) to decide if, given such an S, whether or not an S as 
above exists. We will then show that one does not need to check this for all right 
factors S (a possibly infinite set) and that it is enough to check this for a suitably 
defined sequence of pairs of operators (R i, S~), where S~ has order 1 and is a right 
divisor of R~. In the following lemma, we have occasion to take an operator L and an 
element h e k  and form the new operator e~hoLoe -Ih. Note that is nothing more that 
the operator gotten from L by replacing D by D - h. 

Lemma 3.12 Let  S, R e N ,  S = D - h, R r 0 and assume that S is a right divisor of  R. 
The following are equivalent: 

1. There exists and S e ~ ,  relatively prime to S, such that R = IS, TJ] 1. 
2. There exists an R o e g ~  (S, R) r 0 such that S does not divide R o on the right. 

~h o * o ~h 3. For T :=e  R e , T (y )=O has a nonzero solution gek,  such that for 
R o -- (Quotient(R*, - g -  1D + g -  2g, _ g -  lh)). ' S does not divide R o on the 
right. 

Proof. Let K be thePicard-Vessiot extension ofk corresponding to R and let G be its 
Galois group. Assume that 1 is true. We then have that Soln~(R)= SolnK(S)| 
SolnK(S ) as G-modules. Let q5 be the projection of SolnK(R) onto SolnK(S ). Using the 
correspondence given in Lemma 2.5, this implies that there exists an Roeg~(S,  R) 
such that Ro(Y ) = y for all yeSolnr(S ) ~ SolnK(R ). In particular S does not divide R o 
on the right, so 2 holds. 

Now assume, that 2 holds. Using the correspondence given in Lemma 2.5, 
/~o corresponds to a homomorphism dpeHomG(SolnK(R ), SolnK(S)). Since S 
does not divide R o on the right, ~b induces an isomorphism on SolnK(S). Therefore, 
we may write Solnr(R)= SolnK(S)OKer(c~). Since Ker(4) is a G-submodule of 
SolnK(R), there exists an operator S such that Solnr(S ) = Ker(c~). Therefore, 1 
holds. 

Assume that 2 is true and let/~o eg~(S, R) with R o ~ 0 and ord(Ro) < ord(R). We 
then have that SR o = A R  for some A ~ .  Comparing orders, we see that ord(A) = 0 
so A = gek,  g r O. Taking adjoints of both sides of the equation R = g-1SRo 
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we have 

R* = R~S* g -  1 

= R*(- -  D - h)g- 1 

= R * ( - g -  1D + g-2g,  _ g -  lh) 

= R ~ ( _ g - 1 ) ( D  _ g - l g , +  h) 

Therefore y = ge Sh is a solution of R*(y )=  0 and so g is a solution of T. 
Fur thermore,  R* = Quotient(R*, - g -  1D + g-2g,  _ g -  lh) so R 0 = (Quotient(R*, 

_ g - 1D + g -  2g, _ g -  lh)).  and 3 holds. 
N o w  assume that  T has a non-zero solution g~k. This implies that  y = ge -~h is 

a solution of R*(y) = 0. Therefore, for s o m e / ~ ,  we have 

R* = R ( D - g - l g ' + h )  

= ~ ( _ g ) ( _ g - 1 D  + g-2g,  _ g-~h) 

= R ~ ( - - g -  aD + g -  2g,g- lh) 

where R o = ( /~(-  g))*. Therefore, R -- ( -  g -  1D + g -  2g, _ g -  lh) .Ro = g -  I(D _ h)Ro" 
Rewriting this as gR = (D - h)R o, we see Roeg2(S ,  R). Therefore, 3 holds. [ ]  

We now show that  the problem of deciding if an operator  is 1-reductive can be 
reduced to applying the above criterion to a suitably defined sequence of pairs of 
operators.  We will need the following definition. Let L ~  and m > 1. A test set 3-  m of  
length m for  L is a set of two sequences {(R1,...,Rm), (S 1 . . . . .  S~ 1)} of nonzero  
operators  Ri, S i ~  such that  

1. R I = L ,  
2. ord(Si) = 1 and S i divides R i on the right for i = 1 . . . . .  m - 1. 
3. ord(R i + 1) < ~ Ri + 1 ~E~(Si, Ri) and S i does not  divide Ri+ 1 on the right 

f o r i =  1 . . . .  , m - 1 .  

The only test set of  length 1 for L is the set {R 1 = L}. Note  that  the condit ions 
R 1 = L and ord(Ri+ 0 < ord(Ri) i m p l y t h a t  any test set for L has length at mos t  
ord(L). We say that  a test set J ~ -  {(R1,. . . ,R~),  ( $ 1 , . . . , S ~ - 0 }  extends a test set 
J ~  = {(R a . . . . .  R~), (Sa . . . . .  S~_1) } if n3__> m, R ~ = R  i for i =  1 . . . . .  m and S;=S~ for 
i = 1  . . . . .  m - 1 .  

L e m m a  3.13 Let  L E ~  and let K be the Picard-Vessiot extension o f k  corresponding 
to L(y) = O. Let  J-~ be a test set o f  length m for  L. Then for  i = 2 . . . . .  m, Ri(y ) = 0 and 
Si(y ) = 0 have complete sets o f  solutions in K and 

Soln~(L) = SolnK(Ri) �9 SolnK(Si 1) @ " " @ SolnK(S O 

Proof. Note  that SolnK(L ) = SolnK(R 0 so to prove the lemma it is enough to show 
that  SolnK(Ri)= SolnK(Ri+ 1 ) � 9  Soln~(Si) (Lemma 2.1 will yield the statement con- 
cerning complete sets of solutions). Since Ri + l ~ E~(Si, Ri) we have SiR i + 1 = TRI for 
some T~@. Compar ing  orders, we see that  ord(T)=O.  Therefore Ri+ , maps  
solutions of Ri onto  the solution space of S~. The solution space of R~+I is the 
kernel of this map. Fur thermore,  the condit ion that  S~ does not  divide R i + 1 on the 
right insures that SolnK(R ~+ 1) c~ Soln~(Si) = (0) so SolnK(Ri) = SolnK(R ~+ 1) Q SolnK(Si). 

[] 
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Lemma 3.14 Let L e g .  The following are equivalent: 

1. L is 1-reductive. 
2. For any m,/f3--~ = {(R 1 . . . . .  R~), ($1,.. . ,  S,, 1)} is a test for L of  length m then 

either 

(a )  for any first order right factor Sm of R m there exists an R m + l e ~  such 
that 3--~+ 1 = {(R1,-.., Rm, Rm+ 1), ($1 . . . .  , S~_ 1, Sin)} is a test set, or 

(b )  R m has no flrst order right factor in 

3. For some m < n, there is a test set 3--,, for L of length m such that R m has no first 
order right factor in 9 .  

Proof. Let G be the Galois group of L. Assume 1 holds we wish to show that 2 holds. 
Let 3--,, be a test set for L of length m. I f R  m has no first order right factor, we are done. 
Let S m be a first order right factor. By Lemma 3.13, R m has a full set of solutions in 
K and SolnK(Rm) c SolnK(L ). By Lemma 2.1.3, S m will also have a full set of solutions 
in K and SolnK(Sm)c SolnK(R~, ) c SolnK(L ). Since L is 1-reductive, we may write 
SOlnK(L) = SolnK(Sm) | W for some G-module W. We then have 
SolnK(Rm) = SolnK(Sm) | ( W  c~ SOInK(R,,) ). Let ~z be the projection of SolnK(R~) onto 
SolnK(S,, ) with kernel (Wc~SolnK(Rm)). We have that Tc is a nonzero element of 
HOmG(Soln~(Rm), SolnK(Sm) ) and so, by Lemma 2.5, corresponds to a nonzero 
e l e m e n t / ~  + 1 of g~(S,,, R,,). We can select R,, + ~ so that ord(R~ + 1) < ord(Rm) and 
any such Rm+ 1 has no solutions in common with Sin, (otherwise it would not induce 
a projection onto this solution space). Therefore we have that S m does not divide 
R,,+I on the right and this gives an extension Y- to a larger test set. Therefore 
2 holds. 

Assume that 2 holds. By convention {L} is a test set. Let 9-~ be a maximal test set 
(with respect to extension). By 2 we have that R,, has no first order right factor. 
Therefore 3 holds. 

Assume that 3 holds. Lemma 3.13 allows us to write SolnK(L ) = Solnr~(R,,)O 
Soln~(Sm_l)|  .." O Soln~(S1). Since R m has no first order right factor, SolnK(Rm) 
has no one dimensional G-submodules. Therefore any one dimensional G-sub- 
module of SOlnK(L ) lies in SolnK(S m _ 1) @""  �9 SolnK(SO. This implies that this latter 
space is the sum of all one dimensional G-submodules of SolnK(L ). Since it clearly has 
a complementary submodule, Lemma 2.16 implies that L is 1-reductive so 
1 holds. [] 

Algorithm 1-reductive uses Lemma 3.12 to generate a test set and decide if 
condition 3 of the above lemma holds. We shall state this algorithm, give three 
examples and then prove its correctness. 

Algorithm 1-reduetive 

Input: A non-zero L e g  
Output: 'true' if L is 1-reductive; 'false' if L is not 1-reductive 
Status:= true; 
R := L; 
While R has a first order right factor and Status = 1-reductive do 

h:= a solution in k of the Riccati equation associated to R; 
T:= e~hoR * ~ 
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I f  T(y) = 0 has a non-zero  solution in k then 
g l , - . - ,  gt := a basis of the space of  solutions in k of T(y) = 0; 
g2 = Ca91 + "'" + ctgt for new variables c > . . . ,  c,; 
R(c a . . . . .  ct) := (Quotient(R*,  - g - aD + g - 29' - hg - 1)),; 

I f  there exist constants  d 1 . . . .  , d t such that  
D - h does not  divide/~(d 1 . . . .  , dr) on the right then 
R:=/~(d  1 . . . .  , dr); 

else Status  := false; 
else Status:= false; 

od; 
return(Status); 
end; 

In  the above algorithm, the phrase Q u o t i e n t ( R * , - 9  aD + 9 - 2 9  ' -  h9 1) de- 
notes the right quotient  in the ring k ( q , . . . ,  ct) [D] where each c~ = 0. Also note that  if 
L E D  where L = p(D) for some polynomial  p(D)ek[D] ,  then e~hoL o e S-h = p(D - h). 
This implies that  the opera tor  T defined in the algori thm has coefficients in k and 
also gives an efficient way of calculating T. We finally note that  the algori thm could 
be modified so that  the While loop is exited when the order  of R is at mos t  1. To see 
this note that  i fR = D - h (the case where R is not  monic  is similar, but  notat ional ly  
more  complex and is left to the reader), then T : =  D, 9 := q ,  and /~ :=  q .  Therefore e~ 
can always be chosen so that  D - h does not  divide/~(d . . . . .  d 0 on the right and one 
updates R := 1. Therefore the algori thm will end with Status  = true. 

Example 3.15 Let k = C and L = D 2. We begin by setting R = D 2. Clearly R has 
a right factor D, so we set h : = 0  and T = R * = D  2. The equat ion T ( y ) = 0  has 
a nonzero  solution y = 1 in k and this forms a basis for all solutions in k. We set 
9 :=  c a and /~ (q )  = Quotient(D 2, - c [aD)  = q D .  For  all values d 1 o f q  we have that  
D divides R(dl)  = d iD so the above equat ion is not  1-reductive. Note  that  the Galois 

1 I teC . []  

Example 3.16 Let k = C(x) and again let L = D 2. We again have that  R :=  D 2 has 
a right factor D. Let h:= 0 and T : =  R* = D 2. The equat ion T(y) = 0 is now satisfied 
by 1 and x and these two elements form a basis for the solution space of T(y) = 0 in k. 
Let 9 = c 1 " 1 + c  e-x and let c a = 0 ,  c 2 = 1 .  We then have that  
(Quotient(O 2, i 1 , - -~D + 7 ) )  = x D - - 1  and D does not  divide x D - 1  on the right. 

, a Therefore we update  R : =  xD -- 1. This has a first order  factor and we set h . -  7- We 
then have T :=  xD + 1 and @ forms a basis for the solution space of  T(y) = 0 in k. 
Setting g := c~ @ we get /~:= c~ so setting c I = 1 allows us to update R := 1. Since this 
has no first order right factor, we exit the algori thm and conclude that  the original 
opera tor  is 1-reductive. As we have already noted, we could have concluded this 
when we reached the stage that  R had order 1. Also note that  the Galois group is 
trivial. [ ]  

Example 3.17 Let k = C(x). The equat ion L det(2) = D O -- a s xD + 4x4D 2 + 20x3D was 
constructed in Example 3.8. We shall consider the equat ion gotten by clearing 
denominators .  We begin by setting R = x L  det(2) = x D  6 - -  D 5 + 4 x 5 D  2 + 20x4D = 
( x D S - - D ~ + 4 x S D + 2 O x g ) D  so R clearly has a right first order  factor D. 
We set h :=  0 and T : =  R* = x O  6 -[- 7D 5 + 4xSD 2 + 20x4D. The equat ion T(y) = 0 
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has a nonzero solution y = 1 in k, and this is a basis of the space of all solutions in k. 
Set g:= c 1 and redefine R(c0:= Quotient(xD 6 + 7D 5 + 4xSD 2 + 20x4D, - c~ 1D)* = 
c1( - -xD 5 - 7 D  4 -  4 x S D -  20x~) * = cl (xD ~ - 2D4+ 4xSD). For all values d 1 of C 1 we 
have that D divides/~(dl) on the right. Therefore Status changes to 'false'. 

This furthermore, implies that L de'(2) is not 1-reductive. As we have noted, L aet(2) 
is an operator whose solution space is A2V where V is the solution space of 
L = D 4 - 4xD - (x 4 + 2). Therefore, Corollary 2.21 implies that this latter operator 
is not completely reducible and, in particular, factors. One can easily show that it has 
no first or third order right factors (for the latter look at the adjoint), so this operator 
factors as the product of two second order operators. []  

Proof of correctness of Algorithm 1-Reductive: We shall show that the algorithm 
generates a maximal test set Ym and terminates with 'true' if R m has no first order 
right factor on 'false' ifR~ has a first order right factor. Lemma 3.14 implies that the 
algorithm is correct. 

Initially the algorithm sets R:= L. Assume, inductively, that at the beginning of 
the i th pass through the While statement, we have generated a test set 
~ =  {(R1,...,Ri), (SI,...,Si_I) } with R : = R  i. We shall show that the algorithm 
either extends this test set or concludes that it is maximal, in which case it halts with 
the correct output. Since there is an upper bound on the length of test sets, this will 
also show that the algorithm terminates. 

If R has no first order right factor then the test set is maximal and the algorithm 
will terminate with Status = true, which is the correct output by Lemma 3.14.3. 
Assume that R has a first order right factor. The algorithm will find a h~k  such that 
S i = D - h is a right factor of R. The algorithm then determines if T(y)  = 0 has a 
nonzero solution in k. If it does, Lemma 3.12.3 implies that the algorithm finds a 
nonzero Ri+ 1 with/~i+ 1 ~g~(S, R) and updates the value of R:= Ri+ 1. The algorithm 
therefore has generated a test set Y-~+a ={(R 1 . . . .  , R  i, Ri+l),  (S~ , . . . ,&_I ,S~)  } 
extending ~ and does not change Status. If the only solution of T(y) = 0 in k is 
y = 0, then Lemma 3.12.3 implies that g~(Si, R~) = (0). Therefore, R i has a first order 
right factor but ~-~ cannot be extended. Lemma 3.14 implies that Lis not 1-reductive. 
In this case the algorithm changes Status:= 'false' and halts with the correct out- 
put. [] 

3.3 Remarks  

1. In [43], the authors show how various properties of the Galois group of a linear 
differential equation L ( y ) =  0 can be determined by determining factorization 
properties of auxiliary operators. The above methods can be used to do this. In 
many instances, one does not need to apply the full irreducibility test, but in fact can 
just use the criterion for completely reducible operators (Corollary 2.15). 

Let us consider the result mentioned in the introduction: Let  k be a differential 
f ield with algebraic closed field o f  constants and let L ~  be a second order operator. 
The equation L ( y ) =  0 has non-zero liouvillian solutions over k i f  and only i f  L | is 
reducible in 9 .  If one knows that L is irreducible, then the Galois group G must be 
a reductive group. The solution space o f  L | is a G-module and so will be completely 
reducible. Therefore, L @6 will be a completely reducible operator (Lemma 2.13). 
Furthermore, it is reducible if and only if dim~S~(L | > 1. Let L 1 be an operator (of 
order 49) whose solution space is G-isomorphic to Hom~(SolnK(L| SolnK(L| 
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where K is the Picard-Vessiot extension corresponding to L. We can therefore restate 
the above theorem as: 

Theorem 3.18 Let k, L, and L 1 be as above. The equation L ( y ) =  0 has non-zero 
liouvillian solutions over k if and only if 

�9 The equation L(y) = 0 has a solution y ~ 0 such that y'/yek, or 
�9 The equation L~(y)= 0 has two solutions in k linearly independent over the 

constants. 

Proof. The opera tor  L is reducible if and only if the equat ion L(y) = 0 has a solution 
y # 0 such that  y'/y~k, in which case, L(y) = 0 has a liouvillian solution. If  the 
opera tor  L is irreducible, then the discussion preceeding this Theorem shows that  
the equat ion L(y) = 0 has non-zero liouvillian solutions over k if and only ifL~(y) = 0 
has two solutions in k linearly independent  over the constants. [ ]  

Similar results can be stated for third order operators  using the results of 1-43]. In 
general, once one knows that  an opera tor  L is irreducible (or, at worst, completely 
reducible), any opera tor  that  one constructs from L will be completely reducible and 
so special methods  for testing reducibility can be used. 

2. One  of the goals of this paper  was to develop reducibility tests that, starting with 
a linear differential operator ,  do  not  resort to systems and cyclic vector techniques to 
make  a determination. To do this, we replaced the original opera tor  L with an 
opera tor  of the form L (b ...... b, 1) before construct ing L*| In reality, this construc- 
tion allows one to go directly f rom a cyclic vector for L to a cyclic vector for the 
system d L ( Y  ) in Sect. 3.1. Algorithms 1, 2 and 4 require one to construct  a cyclic 
vector for a system. The reason for having to find a cyclic vector (or companion  
block diagonal  form) in Algori thms 1, 2, and 4 is that  we know of no direct me thod  of 
finding the dimension of the space of  solutions of a system Y' = A Y in k", even when 
k = <g(x). In there a direct method  for determining the dimension of this space of  
solutions? Given a single linear differential equation, is there a me thod  to find the 
dimension of  the space of solutions in k without having to find the solutions? 
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