AAECC 7, 77-104.(1996) ———EC

Applicable Algebra in
Engineering, Communication
and Computing

© Springer-Verlag 1996

Testing Reducibility of Linear Differential Operators:
A Group Theoretic Perspective

Michael F. Singer*

North Carolina State University, Department of Mathematics, Box 8205, Raleigh, NC 27695-8205,
USA, e-mail: singer@math.ncsu.edu

Received January 4, 1995

Abstract. Let k[ D] be the ring of differential operators with coefficients in a differen-
tial field k. We say that an element L of k[D] is reducible if L=L,°L, for L,
L,ek[D], L, L,¢k. We show that for a certain class of differential operators
(completely reducible operators) there exists a Berlekamp-style algorithm for factor-
ization. Furthermore, we show that operators outside this class can never be
irreducible and give an algorithm to test if an operator belongs to the above class.
This yields a new reducibility test for linear differential operators. We also give
applications of our algorithm to the question of determining Galois groups of linear
differential equations.
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1 Introduction

Let k be an ordinary differential field of characteristic zero and let & = k[ D] be the
ring of linear differential operators over k, that is, the noncommutative polynomial
ringin the variable D, where D-a — a-D = a' for all ack. An element Le @ is said to be
reducibleif L= L, L, forsomeL,, L,e%,L,, L,¢k. Inthis case, L, and L, are called
factors of L. This paper was motivated by the desire to answer the following
question:

Can one decide if a linear differential operator is reducible WITHOUT having to
find a factor?

This question is in turn motivated by the following theorem (and its generaliz-
ations, [43]): Let k be a differential field with algebraic closed field of constants and let
Le% be a second order operator. The equation L(y)=0 has non-zero liouvillian
solutions over k if and only if I2° is reducible in . Here, the operator L% is the
operator of order 7 whose solution space (in the Picard-Vessiot extension of
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k corresponding to L) is spanned by all 6" powers of solutions of L. The techniques
and results of [437] show how one can reduce many questions concerning the Galois
group of a differential equation to questions of factorizations of auxillary operators.
Each element of & can be expressed as a product of irreducible factors and, when
k=Q(x), X =1, Q the algebraic closure of the rational numbers, there exist
algorithms to carry out such a factorization ([ 137, [ 381, [39]). Furthermore, in [ 14],
Grigoriev gives a method (and complexity analysis) for testing reducibility of
a system of linear operators but this method is equivalent to finding factors (in the
case of a single operator). We present a method based on different ideas. In previous
methods the question of deciding if a linear operator L factors is reduced to:

1. Constructing auxillary linear operators L whose associated Riccati equations
have among their solutions all possible coefficients a,(x) of factors L, =
D™ +a,,_(x)D™ ' + -+ + ay(x) of L. From L one can bound the degrees of
the numerators and denominators of these coefficients (in fact, more informa-
tion can be extracted from these auxillary operators, [8]).

2. Explicitly finding the coefficients of a factor of L. This involves, in general,
solving large systems of polynomial equations for the coefficients of the a{x)
(or at least deciding if such a system has a solution).

Techniques for solving 1. have been implemented by Bronstein in Axiom, [§].
Schwarz has implemented the full algorithm for equations of small order. Our aim is
to give a method that avoids the need to actually find the coefficients of a factor. Our
method will also yield two other benefits. First of all, it gives a method to decide if the
Galois group is a reductive group (see Sect. 3.3.1). Secondly, if one knows in advance
that the group is reductive (for example, if one knows that the group is finite, as
happens in situations discussed in [43]) one can take advantage of this fact to
simplify further the reducibility test.

To understand our approach, let us first consider the question of factorization in
other contexts. First, consider the commutative ring of polynomials F [x] of poly-
nomials over the field F, with g elements and let fel,[x]. The approach of the
Berlekamp algorithm for factorization is to form the ideal F [x]-/ and relate
factorization properties of f to the structure of the quotient ring A = F,[x]/F [x]- f
(cf, [32], pp. 247-259). In particular, if f = f,--- f,, Where the f; are pairwise
relatively prime irreducible polynomials of degree d;, then A4 will be a direct sum
of fields, A= Foa.® - ®Fp,. If @is the map @: x+>x%?—x, one has that
dim; (Ker @) =m. Thercfore, computing the kernel of the map @ gives a quick way
of determining the number of factors of f and, in particular, of determining if f is
irreducible.

When one tries to generalize this idea to noncommutative polynomial rings one
runs into various problems. For example, let K be a field and ¢ a nontrivial
automorphism of K and consider the ring K[x; o] of polynomials in x over K with
the usual addition and multiplication defined by x-a = o(a)-x for all acK. These
rings were studied by Ore [34], Jacobson [ 18, 19], Macdonald [31] and Cohn [9].
Most recently, Giesbrecht [ 12] has given factorization algorithms when K is a finite
field. One can begin to proceed as in the commutative case. Let feK{x;o] and
consider the left ideal K{x;0]" f. The quotient M = K[x; o]/ K[x:¢]- f no longer
has a canonical ring structure but is only a left K[x;g]-module. The key idea is to
consider the ring &(M) of K[ x; o ]-endomorphisms of M (also called the eigenring of
K[x; 0] f)instead of the module M. Building on [19], Giesbrecht shows that f is
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irreducibleif and only if &(M) has no zero divisors (and so can be shown to be a field).
Furthermore Giesbrecht shows how one can determine zero divisors of this ring. He
is then able to give algorithms for finding the number of irreducible factors and
finally for factorization. The key property that is used is that K[x; o] has a rich
supply of two sided ideals (see [12] for details).

When one considers the ring & one can begin to proceed as with the ring K [x; o]
(infact,in [18],[19], [34] many results are developed in a context that includes both
these rings). In contrast to K[ x; o], the ring & willin general have a very poor supply
of two sided ideals (for example, if k = Q(x), 2 has no non-trivial two sided ideals
([6], p. 27)). Furthermore, it is easy to construct (see Example 2.8) operators L,
L,e% such that L; is reducible and L, is irreducible, and End,(2/% L) and
End,(2/9-L,) areisomorphic. Therefore, one cannot completely rely on these rings
to determine irreducibility. We therefore look beyond purely ring theoretic proper-
ties to find criteria for irreducibility. For us the key fact will be that to each linear
operator LeZ one can associate a linear algebraic group G, its Galois group, and
that the factorization properties of the operator are intimately connected to the
structure and representation theory of G. The key is to distinguish the two cases: (1)
G areductive group, and (2) G a non-reductive group. When G is a reductive group,
properties of End(2/%- L) (already known to Ore) determine if Lis reducible. When
G is not reductive, L must already be reducible. Our main contribution is to give
a procedure to test if G is reductive.

The rest of the paper is organized as follows. In Sect. 2, we will describe
properties of the ring & and its modules and relate these properties to Galois groups
of differential operators. The section ends with Corollary 2.19 which gives a criterion
for the Galois group to be reductive, and Corollary 2.21 which gives us a criterion for
irreducibility. Section 3 concerns itself with making this criterion effective, and
giving examples and applications to determining Galois groups of linear differential
equations.

We would like to thank A. Fauntelroy and F. Ulmer for stimulating conversa-
tions concerning the contents of this paper.

2 Factorization in the Ring &

Let k be a differential field of characteristic 0 with algebraically closed field of
constants €. We shall assume that the reader is familliar with the basic facts of the
Picard-Vessiot theory (see [21]). Most of the material in Sects. 2.1, and 2.2 is either
classical or follows from simple considerations concerning Z-modules (see the
remarks at the end of the section). Nonetheless we have included this material to
offer the reader an elementary bridge between the old and the new, to bring out their
group theoretic nature and to put these facts in a context suitable for use in the quest
for algorithms.

2.1 Generalities
Forany L =a,D" + --- + age9 with a, # 0, we define the order of L, ord(L) to be the

integer n and we define ord(0) = — co. The ring % is both a left and right euclidean
ring, that is, for any L, # 0, L, €% there exist unique Q,, R,, Q,, R,e2 with ord(R,),
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ord(R)) < ord(L,) such that L,=Q,L, + R, and L,=L,Q,+ R, For kc K, we
denote by Solng(L) the space of solutions of L(y)=01in K.

Lemma 2.1 Let L,, L,c% and assume that ord(L,)=m, ord(L,)=n. Let K be
a differential extension of k having the same constants €.

1. dim,Solng(L) < m

2. If dim,Solng (L) =m and any solution in K of Li(y)=0 is a solution of
L,(y) =0, then L, divides L, on the right in 9.

3. Ifdim,Solng(L,) = mand L, divides L, on the right, then dim,Solng(L,) = nand
Solng(L,) = Solng(L,).

Proof. The first claim follows from a standard wronskian argument ([21], p. 21). To
prove the second claim, write L, = QL, + R. Applying both sides of this expression
to solutions of L,(y) = 0, we see that R(y) =0 has a solution space of dimension at
least m. Since its order is at most m— 1, we have that R = 0. To prove the final claim
note that L, can be applied to any element of Solng(L,) and in this way maps this
space to Solng(Q) where L, = QL,. The dimension of the image Im of this map is at
most ord(Q) and the dimension of the kernel Ker is at most ord(L,). Since
ord(L,) = dim,Soln (L) = dim,Im + dim Ker < ord(Q) + ord(L,) = ord(L,), we
have that dim,Solng(L,) = ord(L,) and Solng(L,) = Soln(L,). [

When dim,Solng{(L) = ord(L), we say that K contains a full set of solution of L. The
main fact connecting the Galois group of a linear operator to factorization propet-
ties of that operator is the following:

Lemma 2.2 Let K be a Picard-Vessiot extension of k with Galois group G and let
V < K be a finite dimension € vector space. V is the solution space of some homogene-
ous linear differential equation L(y) =0 with coefficients in k if and only if V is left
invariant by G.

Proof. If Vis the solution space of L(y) = 0, then V is left invariant by G because the
elements of G take solutions of this equation to other solutions of this equation.
Conversely, assume V is G-invariant and let y,,...,y,, be a ¥-basis. Let

L(y)=det(Wry, y1s- - yu))/detWr(yy, . . ., Vn))s

where Wr is the wronskian matrix. Note that ceG, then o(det(Wr(y, y(,.... V) =
det(Wr(y,y1,-- ., vdet(A,) and o(det(Wr(y,,...,yn))) =det(Wr(y,,...,y)det(A,),
where A, is the matrix of ¢ with respect to the given basis. We then have that the
coefficients of L(y) are Ieft fixed by all elements of G. Therefore Le2. [

We define an element LeZ of positive order to be reducible if L=L,L, for
operators L,, L,e% of positive order. If L is not reducible, we say it is irreducible.

Corollary 2.3 Let Le 2. The following are equivalent:

1. Lisirreducible.

2. The Galois group of L acts irreducibly on the solution space of L in thePicard-
Vessiot extension of k corresponding to L(y) = 0.

3. If K is any Picard-Vessiot extension of k containing the Picard-Vessiot
extension of k corresponding to L{(y)=0, then the Galois group of K acts
irreducibly on the solution space of L(y) =0 in K.
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Proof. This follows easily from Lemma 2.1 and Lemma 2.2. []

We say two operators L,, L,eZ are relatively prime if there is no operator of
positive order dividing both on the right.

Corollary 2.4 Let L, L,eZ. The following are equivalent:

1. L, and L, are relatively prime.
2. There exist R, Se2 such that RL; + SL, = 1.
3. L, and L, have no common nonzero solution in any extension of k.

Proof. The equivalence of 1 and 2 follows from the existence of a euclidean
algorithm. If .; and L, are not relatively prime then they have a common nonzero
solution in the Picard-Vessiot extension corresponding to the common factor.
Conversely, if there exist R, Se< such that RL; + SL, =1, then any common
solution v of L, and L, satisfies 0 = RL,(v) + SL,(v) =v. [

As we have already noted, that module 2/2- Lisnot aring and one cannot apply
Berlekamp techniques directly to this module. A substitute for this module is the
ring End,(2/%-L). We shall show that this ring arises in several settings.

Let L,, L,e% and denote by R the equivalence class of R in 9/2-L, and define

&Ly, Ly)={ReZ/9-L,|L,R is divisible on the right by L,}

One easily checks that this condition depends only on the equivalence class and not
on the choice of representative. Note that &,(L,, L,) is closed under addition and
multiplication by elements in %. If L, = L, = L, one can define a multiplication on
this vector space and the resulting ring is called the (left) eigenring of L and is denoted
by & 5(L). The multiplication on & 4(L) is defined in the following way: for R, R,eé,,
let R 1 ‘R,=R,R,. To see that this is well defined, let S; =R 1 + QL and
S,=R,+0,L. S S, =R{R,+R,0,L+0Q,LR, +0Q,LQ,L. Slnce R,eé& (L), we
have that LR, is divisible on the right by L. Therefore S, S, = R, R,. This shows that
&,(L) is a ¥-algebra.

Lemma 2.5 Let L, L,€9,let K be a Picard-Vessiot extension containing a full set of
solutions of L, and L,, and let G be its Galois group.

1. The following three €-spaces are isomorphic:

o &4(Ly, Ly)
o Homy(2/9-L,, 2/9-L,)
o Homg(V,, V), where V, is the solution space of L{(y)=0in K fori=1,2.

Furthermore, if L, = L,, then these rings are isomorphic as €-algebras.
2. Assuming L, and L, have the same order, the isomorphisms of these rings may be
chosen in such a way as to induce bijections among the following sets:

o 64(Ly, Loy = {Reé&,(Ly, L,)|R and L, have no common factors}
o Isomy (9/9-L,, 9/9-L,) {qSeHom@(@/@ L,, 2/2-L,)|¢ is an isomor-
phism}

o Isomg(V,, V) ={yeHomy(V,, V)| is an isomorphism}
Proof. We will first show that there is an isomorphism between &,(Ly, L,)
and Homy(2/2-L,, 2/%-L,). Let Reé&,L,,L,). We define an element
dreHom(D/D-L,, D/9-L,) by ¢p(1 + 2/%-L,) = R. One easily checks that this
map is well defined and is a 2-homomorphism. The map @: Ri— ¢y is clearly
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a ¥-homomorphism. If ¢ =0, then ReZ-L, so R = 0. Therefore @ is injective. If
deHom (D/D-L,, D/F-L,),let R=¢p(1+2/9-L,). Since 0= ¢(L,(1 +D/2"L,))=
LR, we have that L, R is divisible on the right by L,. Therefore, Re&,(L,, L,) and
¢ = ¢y, so @ is surjective.

Wenow show that @ is a bijection on the corresponding sets mentioned in 2. The
Euclidean algorithm shows that R and L, are relatively prime if and only if there
exist P, Q€2 such that PR + QL, = 1. Let Re&,, (L,, L,) with R relatively prime to
L,. Then for any Se%, SPR + SQL, = S. Therefore ¢o(SP+ D-L;)= S, so ¢y is
surjective. Since 9/%-L, and 2/%-L, have the same dimension as vector spaces,
this map must be an isomorphism. Conversely, assume that ¢, is an isomorphism.
Then for some Pe 2 we have ¢ (P + Z-L,) = 1. Therefore, there is a Q€2 such that
PR=1+QL,, so R and L, are relatively prime.

Now we show that there is an isomorphism between &,(L,,L,) and
Homg(V,, V,). Let Re&,(L,, L,) and let veV,. We may apply R to v. Since LR is
divisible on the right by L, we have that R(v)eV,. Therefore the map i z: v R(v) is
a linear map of V, to V; and this map depends only on the equivalence class of R.
One easily checks that, since the coefficients of R lie in k, one has g Homg(V,, V1).
Therefore the map ¥': R~/ is well defined and can be seen to be a #-homomor-
phism. If i/ = 0 then R(v)= 0 for all ve V,, so (by Lemma 2.1) L, divides R on the
right. Therefore R = 0 and so ¥ is injective. Let e Homg(V,, V,) and let vy, ..., v,
be a Dbasis of V, One sees that the entries of the matrix
A=Wr((v)),...,¥(v,)) Wr(vy,...,v,)"* are left invariant by G and so lie in k. If
(ags...,a,_,)is the firstrow of 4,let R=a, D"~ ' + --- + a,. One then checks that
W =g Therefore ¥ is surjective.

Wenow show that ¥ is a bijection between the corresponding sets mentioned in
2. Let Reé&,(L,, L,) with R relatively prime to L, (c.f., Lemma 2.1). If ve V, satisfies
Yz(v) =0, then R(y) =0 and L,(y) = 0 have a common solution v contradicting the
fact that these two operators are relatively prime. Therefore i is injective and so
must be an isomorphism. Conversely, assume that R and L, have a common factor
L,. We may write R=PL; and L, =QL,. By Lemma 2.13, L, has a full set of
solutions in K so the map v+ L,(v) has a nontrivial kernel. Therefore the map
Wg: v—R(v) has a nontrivial kernel, so  is not an isomorphism.

We leave the statement concerning the case when L, = L, = L to the reader.

U

From part 2 of the above (and its proof), we conclude:

Corollary 2.6 Let L,, L, be monic operators in 9, both of order n. The following are
equivalent:

1. IfK is a Picard-Vessiot extension of k containing the Picard-Vessiot extensions
of k corresponding to L, and L,, then the solution spaces of Li(y)=0 and
L,(y) = 0 are isomorphic G-modules, where G is the Galois group of K.

2. There exist U, ...,u,_, €k such that for any Picard-Vessiot extension K of
k containing the Picard-Vessiot extension of k corresponding to L,, the map
yZuyY is a vector space isomorphism of the solution space of L, onto the
solution space of L,.

3. There exists an operator L, with coefficients in k, relatively prime to L, such
that LyoL, =L, oL, for some operator L, with coefficients in k.

4. GNP L))~ DD L,) as D-modules.
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Classically, two operators of the same order are said to be of the same type if
conditions 2 or 3 hold.

Corollary 2.7 Let L,, L,e9. If L, and L, are irreducible then &,(L,,L,) has
dimension 1 or 0, depending on whether L, and L, are of the same type or not. In
particular, if L is irreducible then & ,(L) is isomorphic to €.

Proof. Let K be a Picard-Vessiot extension of k containing the Picard-Vessiot
extensions of L, and L,, let G be the Galois group of L and let V; be the solution
space of L{y) =01n K, for i = 1, 2. Since each L, is irreducible, Corollary 2.3 implies
that V; is an irreducible G-module. Schur’s Lemma implies that Homg(V,, V) has
dimension 1 or O depending on whether V, and V, are isomorphic or not. Note that
for any LeD, € < £,(L) so dim&,(L) = 1. Therefore when L is irreducible, we
conclude from the first part that £,(L)~%. [

Example 2.8 The converse of the last statement of the above corollary is not true. To see
this, letk=C(x)and L = D> +:D— (1 +1) = (D + (1 +H))(D - 1). This has a fundamental
set of solutions y, = €%, y, = ¢* [ %. The corresponding Picard-Vessiot extension is K =
k(e*, [ (€#/x)) and the Galois group is G = {(a b ) | a € C*, b e C). The only matrices

0 a!
that commute with each of the matrices in this group are the constant matrices. Since we
can identify Hom (V, V), V = Soln,(L), with é”@(L), we see that g@(L) is isomorphic to
%, while L is reducible.

Let L, have order m and L, have order n. Note that each element of &,(L,, L,)
has a unique representative in & of order at most n — 1. Therefore, one may identify
&,(L,, L,) with a @-subspace W of k" via the map R=aqa,_ D" '+ .- +a,—
(@,_15-..,a,). Since dim (Homg(V,, V,)) < nm, we have that dim,W < nm. Let R be
a linear operator with differential indeterminates a,_,,...,d, for coefficients. If we
divide L, R on the right by L, we will get a remainder R where the coefficient 4,
of each D), 0<i<n—1, is a linear expression (with coefficients in k) in the a;
and their derivatives. Therefore, there is an n xn matrix o/, , with entries in
2 such that o ; (@,-1...,8)" =G, 1.-.,dp)". This implies that
R=aqa, D" '+..-+a,e9, of order at most n— 1, represents an element of
Ly, Ly)ifand onlyif o/, ; (4, ,...,a,)" =0.If F is a differential field contain-
ing k with the same constants as K, we denote by Solny (<7, , ) the @-space of
solutions of &7 ; -a =0 with aeF". We then have:

Corollary 2.9 Let F be a differential extension field of k with the same constants. Then
the vector spaces & pp; (Ly, L,) and Solng(o/ | ) are isomorphic. In particular, if
L=1L, =L, isirreducible in F[ D], then Solny(</,) has dimension one.

Example 2.10 Let k=%(x) and L=D* &,(L)={ReP)ord(R)<4 and D*R is
divisible on the right by D*}. If we let R = a,D*+ a@,D* + a,D + a,, the condition
that Re&,(L) is that the coefficients of D?, D?, D*, and D° in D*R are all zero. This
yields the following system .o/ ):

as” =0

4a§" +a” =0

6ai? +4ai™® +ag” =0

4dy + 6a{? + 43P + ¥ =0



84 M. F. Singer

By inspection, one sees that all solutions (as, 4,, d;, d,) have polynomial entries
and that the space of such solutions has dimension 16. Therefore, dim & ,(L) = 16.
One can verify this by noting that the Galois group of Lis trivial, so End (V) is the
ring of all 4 x 4 matrices.

In Sect. 3.1, we will discuss how one determines, in general, the dimension of
Soln;(</;) and show how this result gives an effective sufficient condition for
reducibility.

We close this subsection by stating the theorem of unique factorization for linear
operators. One cannot hope to claim that the operators appearing in a factorization
into irreducible operators are unique. For example, D> =D-D = (D +)(D —2).

Proposition 2.11 For only LeZ of positive order, we may write L=rL, ---L,, where
rek and each L@ is monic and irreducible. If L=FL,---L, is another such
factorization, then v =, m =1, and there exists a permutation = such that L; and Ln(l)
are of the same type.

Proof. Let G be the Galois group of L. A factorization of L =L, --- L,, corresponds
to a normal series in the solution space V=V, =2---V,, 2 {0} where each V, is the
solution space of L,L,_, --- L, (y) = 0. Note that each V,/V,_, is G-isomorphic to the
solution space of L(y) = O and so is an irreducible G-module. The Jordan-Holder
Theorem ([17], Ch.VIL1; [44], Sect. 46) implies that any two such normal series are
equivalent, that is, there is a permutation such that V,/V;_, and V;/V,_, are G-
isomorphic. Lemma 2.6 implies that the corresponding operators would be of the
same type. [

We note that a proof could also proceed by applying the Jordan-Holder
Theorem directly to the 2-module 2/% - L.

2.2 Reducibility of Completely Reducible Operators

We have seen above that the structure of &,(L) does not determine, in general,
whether or not Lis reducible. In this section we describe a class of operators where
the structure of this ring does determine the factorization properties of L.

Given two operators L, L, one can define the least common left multiple of L,
and L,.[L,, L,], to be the monic nonzero operator of smallest order such that both
L, and L, divide this operator on the right. To see that this definition uniquely
defines [L,, L, ];, note that is S and T are two such operators, then they must be of
the same order. Writing S = QT + R with ord(R) < ord(T), one sees that L, and L,
divide R on the right. Therefore, R=0 and so comparing orders and leading
coefficients, one has S = T. One can clearly define the least common left multiple
[L,,...,L,], of any finite set of operators {L,,..., L, }. We say that a linear operator
is completely reducibleifit is a k-left multiple of the least common left multiple of a set
of irreducible operators. In Lemma 2.13, we shall give a group theoretic characteriz-
ation of this notion.

Lemma 212 Let L, L,,...,L,,c% and let K be a Picard-Vessiot extension of k
containing a full set of solutions of each of L(y)=0, L,(y)=0,...,L,(y)=0
L=gq[L,,...,L,];, for some ack if and only if the solution spaces V; of L{y)=
generate the solution space V of I{y) =
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Proof. Let W be the vector space spanned by the V; and let G be the Galois group of
K. Clearly W is G-invariant, so it is the solution space of some monic Le@ Since
V,= W, L,divides L on theright. If Le2 and for each i, L, divides L, then L vanishes
on W, so L divides L on the right. Therefore L=[L,,...,L], and so L = aL if and
onlyif V=Ww. [

Let G be a linear algebraic group. Given a G-module W and a submodule W, we
say W, has a complementary submodule if there is a submodule W, of W such that
W= W, ®W,. A finite dimensional G-module V is said to be completely reducible if
every submodule has a complementary invariant submodule. This is equivalent to
V being the direct sum of irreducible submodules. Recall that the unipotent radical
G, of a group is the largest normal unipotent subgroup (see [16] for a definition of
these and related notions). Note that G, coincides with the unipotent radical of the
connected component of the identity. The group G is said to be reductive if its
unipotent radical is trivial. When the field is algebraically closed and of characteris-
tic zero, it is well known that G is reductive if and only if it has a faithful completely
reducible G-module. In this case, all G-modules will be completely reducibie [7].

Lemma 2.13 Let Le%. Let K be a Picard-Vessiot extension of k corresponding to
L(y)=0, and let G be the Galois group of K. The following are equivalent:

1. L is completely reducible.
2. The solution space of L(y) =0 in K is a completely reducible G-submodule.
3. The Galois group of L is a reductive group.

Proof. Assume listrueandlet L =[L,,...,L, ], beaminimal representation of L as
a least common left multiple of 1rredu01b1e operators. By minimality, we have that L;
does not divide [L,,...,L;,..., L, For each i, we may write L= L, L. By Lemma
2.1, L, has a full set of solutlons in K. Furthermore, since each L, is 11redu01b1e each
V, is an irreducible G-module. From the condition that L does not divide
[L,,...,L,...,L,], on the right, we have that V,nV, +--- + V + -+ V,,={0}.
Lemma 2. 12 1mphes that V is the direct sum of the V. Therefore Visa completely
reducible G-module.

Assume 2 is true and write V=V, @ --- @ V,, where the V; are irreducible G-
modules. By Lemma 2.2, each V, is the solution space of an irreducible operator L,
and by Lemma 2.12, we have that 1 is true.

The equivalence of 2 and 3 follows from the discussion preceding the lemma.

O

One can easily describe & ,(L) when Lis completely reducible. Given any ring 2,
any completely reducible %-module .# may be written in the form
M= MDD - @ A" where the 4, are non-isomorphic irreducible .#-modules,
each repeated n,-times in the direct sum. It is a well known extension of Schur’s
Lemma (c.f, [23], Chap. XVIL, Sect. 1, Proposition 1.2) that End(.#) is isomorphic
to Mat, (End, (4 ,))® --- ® Mat, (End,(#,)), where Mat, (End (A4 }) is the ring
n; X n, matrices with entries in End,(.# ). If Lis a completely reducible operator, we
can apply this result to the €[ G]-module V, where Vis the solution space of Lin the
associated Picard-Vessiot extension of k and @[ G] is the group algebra of G. Note
that since % is algebraically closed we have (by Schur’s Lemma) that any End 6,(V)
is isomorphic to €. Therefore, using the isomorphisms of Lemma 2.5, we have the
following:
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Lemma 2.14 If L be a completely reducible linear operator, then & 4(L) is isomorphic
to Mat, (6)D --- @ Mat, (¥) for some integers n;. In this case, L is irreducible if and
only if & ;(L) is isomorphic to €.

Recalling the notation of the previous section, we have:

Corollary 2.15 A completely reducible operator L is reducible if and only if
dim,Soln, (/) > 1. This happens if and only if s/,-a* =0 for some

a=(a,_y,...,a,)ek” with either a; # 0 for some i > 0 or ay,¢%.

Proof. The first part of the corollary follows from the fact that & ,(L) is isomorphic
to Solm(o/;) as €-vector spaces. Recall that End (V) always contains the endo-
morphisms induced by constant multiplication. Such an endomorphism corre-
sponds to an element R=0D""1+ ---0D +aeé,(L), ac¥ and so is given by
©,...,0,a)eSoln,(,). Therefore dim,Soln,(«/;) > 1if and only if this space contains
elements not of this form. J

2.3 Reducibility of General Operators

In this section we give a criterion for a linear operator to be completely reducible. If
L is an operator that is not completely reducible, then it cannot be irreducible.
Therefore, this criterion together with the results of the previous section will yield
a criterion for an operator to be reducible.

An operator is not completely reducible if and only if its Galois group G is a non-
reductive group. This happens if and only if the solution space (in the associated
Picard-Vessiot extension) is not a completely reducible G-module. We begin by
considering a modification of the notion of completely reducible. We say that W is
I-reductive if every 1-dimensional G-submodule has a complementary submodule.

Lemma 2.16 Let G be a linear algebraic group over an algebraically closed field,
V a G-module and W, be the sum of all one dimensional submodules of V. The following
are equivalent: ’

1. Vis I-reductive.
2. W, has a complementary submodule in V.
3. If Wis a submodule of W, then W has a complementary submodule in V.

Proof. Assume 2 holds. Since W, is the sum of irreducible modules it is completely
reducible. Therefore, for any submodule W < W,, W has a complementary sub-
module in W,. Since W, has a complementary submodule in ¥V, W will have
a complementary submodule in V. Therefore 3 holds.

Assume 3 holds. Any 1-dimensional submodule V, of Vis a submodule of W, so
V, has a complementary submodule in V. Therefore 1 holds.

Assume 1 holds. Let W, be a submodule of W, maximal with respect to the
property of having a complementary submodule in ¥ and write V =W,® WO. If
W, # Wi, then there is a one dimensional submodule V; « W,, V, ¢ W,. Using 1,
we may write V=V, @ V,. Let © be the projection of ¥ onto W, with kernel W,.
Since V, is one d1mens10nal and V,; n W, = (0), we have that n(V,) # (0). Writing
W, = n(Vl) ®n(V,), we have that (W, @ n(V,)) D n(V V) = V. Therefore W, @ n(V,)is
stnctly larger than W, and has a complementary submodule in V, contradicting the
maximality of W, Therefore, Wy= W, and 2 holds. J
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For a non-reductive group G, we have that the unipotent radical G, # (0) so we
begin by studying unipotent groups. The following contains the facts we will need
concerning unipotent groups.

Lemma 2.17 Let U be a nontrivial unipotent group defined over an algebraically
closed field € and let V be a faithful U-module of dimension n.

1. Vy={veV|a(v)=v for all €U} is a nonzero invariant U-submodule of V of
dimension at most n—1.

2. If dimVy=i then AV, is a one-dimensional submodule of N'V that has no
complementary submodule and so AV is not 1-reductive.

Proof. V,isnonzero by ([16], Thm 17.5). If its dimension is n, then the group would
be trivial, since the module is a faithful module.

To prove 2, note that A 'V, is clearly one-dimensional and U-invariant. Applying
1 to the module V/V,, we see that there is an element we V, w¢ V,, such that for any
ogeU, there exists a w, €V, such that o(w) = w + w,. Furthermore, for some €U, we
must have w, % 0, otherwise w would lie in V,,. Fix such a 6. Now assume that A’V
has a complementary submodule W and write A’V = A'V,@® W. Let v, =w,,...,,
be a basis of ¥V, s0 v, A v, A -+ A v; s a basis of A'V,. Therefore a(w) =w + v,. We
may write w A v, A ==+ AU; =wgy + by A vy A -+ A v, for some wye W. Therefore we
have

WAV, A AD)=WAVULA - AU +V ADy A o AD;
=wo+(1+bp, Av, A A,
and

FW AV, A ADY=0(Wo+bvy AUy A - AD)=0(Wg) + DUy A, A A Y,

Comparing the final expressions in these two formulas we see

Wo—0(Wo) =0, AU, A AT,

Since w, — 6(w,) is in W and W and AV, are complementary, we must have
v, AUy A - A ;=0 a contradiction. [

Proposition 2.18 Let G be a linear algebraic group defined over an algebraically
closed field € and let V be afaithful G-module of dimension n. Then G is reductive if and
only if for every i, 1 <i<n—1, AV is 1-reductive.

Proof. If G is reductive then any submodule of a module has a complementary
submodule. Now assume that G is not reductive and so G, # (0). In the notations of
Lemma 2.17.1, ¥,, # (0). Since G, is normal in G and the elements of V, are the only
elements of V left fixed by G,, V,, is a G-invariant subspace of V. A’V is therefore
a one dimensional G-submodule of A’V and by Lemma 2.17.2, it does not have a G,
complement, so it cannot have a G-complement. []

Let L,e 2 and let K, be the Picard-Vessiot extension of k associated to L, with
Galois group G, We say that L, is I-reductive if the solution space of L, is
1-reductive as a G, module. If K is any Picard-Vessiot extension of k, with Galois
group G having a full set of solutions of Ly(y) =0, then we can embedd K into K.
The action of G on K, factors through the action of G, on K. Therefore L, is
1-reductive if and only if for any Picard-Vessiot extension of k with Galois group G,
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having a full set of solutions of L(y)=0, the solution space of L,(y)=0in K is
l-reductive as a G module. Also note that L is 1-reductiveif and only if for each first
order right factor L; €% of L, there exists an L, €%, relative prime to L; such that
Lo =Ly, L{],- We shall show in the next section how the following gives an effective
method to test if a linear operator is completely reducible.

Corollary 2.19 Let LeZ and let K be the associated Picard-Vessiot extension with
Galois group G. Let L"" be an operator whose solution space is G-isomorphic to A'V,
where V is the solution space of L in K. Lis a completely reducible operator if and only if
L*'is 1-reductive for eachi=1,...,n—1.

Proof. This follows from the previous lemma by noting that L is completely
reducible if and only if its Galois group is reductive. [

Proposition 2.20 Let G be a linear algebraic group defined over an algebraically
closed field € and let V be a faithful G-module of dimension n. Then V is an irreducible
G-module if and only if:

1. Foreachi, 1 £i<n—1, A"V, is 1-reductive, and
2. Endy(V)=¢.

Proof. If V is irreducible then the second condition holds by Schur’s Lemma.
Furthermore, in this case G is reductive, so any submodule of a module will have
a complement.

If V is not irreducible and G is reductive then Endg(V) # ¥ by the discussion
preceeding Lemma 2.14. Assume V is not irreducible and G is not reductive. Then
Proposition 2.18 implies that the first condition cannot hold. [

Corollary 2.21 Let LeZ and let K be the associated Picard-Vessiot extension with
Galois group G. Let L"* be an operator whose solution space is G-isomorphic to AV,
where V is the solution space of Lin K. Lis irreducible if and only if all of the following
hold:

1. Foreachi,1 £i<n—1, L"'is 1-reductive.
2. dimg,Soln (o ) =1

Proof. This is just a restatement of Proposition 2.20. []

Corollary 2.21 is the basis of our reducibility tests. Condition 2 can be restated in
several ways using Lemma 2.5 and we will show in Sect. 3.1 how each of these
equivalent statements can be used to develop algorithms to test reducibility.
Condition 1 appears to require that one check a possibly infinite number of
possibilities. We shall show in Sect. 3.2 that thisis not the case and give an algorithm
that decides if condition 1 holds.

2.4 Remarks
A good guide to the nineteenth century literature concerning linear differential

equations is [15]. We will give a brief indication of the sources of the results in
Sects. 2.1 and 2.2. Lemma 2.1.2 already occurs in [ 11]. In this paper, Frobenius also
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determines necessary and sufficient conditions for a Fuchsian equation with three
singular points to be reducible. The connection between reducibility of the equation
and reducibility of the group was made by Jordan in [20] for Fuchsian equations
and by Beke in [4] for general equations. In Beke’s paper, one can also find
a decision procedure for determining if a linear differential equation with rational
coefficients is reducible or not (a related procedure is described in [38]). Unique
factorization of linear differential operators is discussed in [22]. In this paper,
Landau proves the uniqueness of the number of irreducible factors and their sets of
orders. At the end of the paper, Landau notes the similarity of his techniques with
those used by Jordan to prove his theorem concerning composition series for finite
groups. In [24], Loewy gives the complete factorization theorem (although the
notion of linear equations of the same type goes back to (at least) Poincaré [36]). In
a subsequent series of papers [25, 26, 27, 28], Loewy examined the notion of
completely reducible operators, factorization into completely reducible operators,
and what properties carry over to operators of the same type. In [29, 30] Loewy
considers systems of linear differential equations and proves results analogous to the
results in the above papers. These results follow easilly from either the group
theoretic or Z-module approach. In [33], Ore considers the ring of linear differential
operators from a ring theoretic perspective. In the second part of this sequence, he
defines the eigenring of an operator and shows that it is a finite dimensional algebra
corresponding to solutions of a certain system of differential equations (our .27, ). He
also discusses various kinds of factorizations. In [34], Ore generalizes many of these
results to skew polynomial rings F[T] where for some derivation D of F and
automorphism o of F we have T-v = o(v)T + Dv, for all ve F. Jacobson [18] (see also
[197) develops a theory of finite dimensional modules over such a ring. This theory
applies to the situation when V is a finite dimension 2-module (let ¢ = identity, so
F[T] is isomorphic to F[D]). In the general situation, Jacobson shows that such
a vector space can be decomposed into cyclic subspaces. Furthermore he shows that
when V is completely reducible, the eigenring is a sum of matrix rings (with entries in
a division algebra). For the special case of Z-modules, Jacobson shows that all finite
dimensional Z-modules are cyclic (see [3] for references to other proofs and effective
methods). Jacobson ends his paper by noting that when T is irreducible, the
eigenring is a division algebra over € (here we do not assume that € is algebraically
closed) and that this observation may be used to construct interesting division
algebras. Amitsur further develops this idea in [1]. He recapitulates the results of
Ore and Jacobson in more modern language and then uses these ideas to classify all
central division algebras over a field % that are split by k where k is a transcendental
extension of €. Some of the results of Ore, Jacobson and Amitsur are contained in
Chapter 0 of [9].

The results of Sect. 2.3 seem new.

Finally we note that the classical factorization algorithms can be considered
in this light. Given LeZ let V = Sonl (L) and let W be a G-invariant subspace of
V, where G is the Galois group of L. If W is nontrivial, it will be the solu-
tion space of some factor L, of L. We can think of L, as a surjective element of
Homg(V, V/W). Therefore, to decide if L is reducible, we only need to decide if there
exists a surjective G-morphism of ¥ onto a nontrivial G-module of smaller dimen-
sion. This is the philosophy behind the algorithm in [14], where the question of
reducibility of systems is examined. This approach seems to be equivalent to
factoring,.
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3 Algorithmic Considerations

Let LeZ, K the associated Picard-Vessiot extension of k with Galois group G and
V the space of solutions of L(y) = 0 in K. Proposition 2.20 states that to test if L is
irreducible in & it is necessary and sufficient to:

1. Show that Endy(V) =%, and
2. Show that for each i, 1 €i<n—1, A"V is l-reductive, i.e., each one-dimen-
sional submodule V; of AV, has a complementary submodule.

In the next two subsections we will describe techniques for performing these
tasks. In the third subsection we will describe an applications to computing Galois
groups and some directions for further investigations.

Since the goal of this paper is to describe reducibility tests for linear differential
equations (scalar equations) and not systems, we tailor our strategies to handle
single n* order equations (although some of these strategies can be clearly modified
to handle systems). Regretably, some of the strategies require one to convert to
systems. We review this process now. Recall that the companion matrix of a scalar

equation I{y) = y™ —a,_y" VU — ... —q,is
0 1 0 0
0 0 1 0
a=l
0 0 0 TR |
A1 Qu—2 Gyp-3 = G

The system Y' = AY is equivalent to the equation L(y) = 0. This means one of the
following equivalent statements:

e The 9 modules P/2-L and k" (where the action is defined by
D (yg,...,0)" =(),....0))T + A(vy,...,v,)T for vek™ are P-isomorphic,

o The solution spaces of L(y) =0 and Y’ = AY (in the Picard-Vessiot extension
of L} are G-isomorphic.

Using the second characterization, one sees that the space of solutions of L(y) = 0 in
k and the space of solutions of Y’ = AY in k" are isomorphic since these are just the
G-fixed points of the solution spaces of these respective equations.

Weshall also need the notion of the adjoint of a differential equation (see [35]). If
L is as above, the adjoint L[* of L is defined to be the equation
L¥(y)=(—1y"y" — (=1 Ya,_,)"* Y — .- — a,y. One can show that

e The 2 modules 2/% - L*, Hom(2/% - L, k) and k" (where the action is defined
by D (vy,...,0,) = (..., 0))T — A% (vy,...,v,)T for vek”) are D-isomorphic,

e The solution spaces of L*(y)=0 and Y' = — ATY (in the Picard-Vessiot
extension of L) are G-isomorphic.

3.1 Calculating dim,End (V)

Let L be a linear differential operator with coefficients in #(x), K the associated
Picar-Vessiot extension, G the Galois group and V the space of solutions of L{y) = 0
in K. In this subsection, we shall present three algorithms for calculating
dim:End (V) and discuss their relative merits.
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Algorithm 1: We shall use the fact that Endg (V) is isomorphic to &,(L). In the
discussion preceding Corollary 2.9, we noted that this space is precisely the set of
solutionsin k of a system of linear differential equations .« ;(Y) = 0 and we described
how, using the division algorithm, one could effectively calculate this system (an
alternate method is described in [33] II, p.237). One then is confronted with
calculating the dimension of the space of solutions in k". Occasionally, one is lucky
and one can easily read off this dimension (see the example below). At present, the
only general technique we know is to convert this system to a single scalar equation
(of order n?) using a cyclic vector computation (see the bibliography of [3]) or to an
equivalent system in companion block diagonal form as in [3]. This reduces the
problem to finding solutions (in k) of one or several scalar equations. When k = €/(x),
this latter problem was solved in the nineteenth century. For recent algorithms, that
also consider other fields &, see [8, 417]. An open problem is the problem of finding
the dimension of the space of solutions in k* of this system without having to convert
to scalar equations.

We also note that if one has found an element Re&,(L), R of order greater than
or equal to 1, then one can produce a non-trivial factor of L. To do this, let Re& ,(L),
ord(R) = 1. We then have that LR is divisible on the right by L. Therefore, if z is
a solution of L(y) =0, we have that R(z) is again a solution of L(y) = 0. This implies
that ze—>R(z) is a linear map of the solution space of L(y) =0 into itself. If ¢ is an
eigenvalue of this map, then (R — ¢) (y) =0 and L(y) = 0 have a common solution.
Since 0 < ord(R — ¢) < n, GCRD(R — ¢, L) will be a non-trivial factor of L. Therefore
given Reé& (L), the condition GCRD(R —¢, L) # 1, defines a nonempty set of at
most z constants and for each of these GCRD(R — ¢, L) will be a non-trivial factor
of L.

Example 3.1 In Example 2.10 we determined .<7, using the above method. One can
also find factors as described above. For example, d, = — 4,3, =x,d,=0,a;=01is
a solution of the system, so R = xD — 4e&(D*. We then have that GCRD(D*,
xD—4—c)#1ifand onlyifc = — 1, —2, —3, —4. One can see this by performing
the euclidean algorithm or more simply (in this case) by noting that GCRD(D*,
xD —4—c)#1 il and only if xD —4 — ¢ divides D* which happens if and only if
y=x*"¢is a solution of D*(y) =0. []

Algorithm 2: This strategy is based on the fact that Endy (V) is G-isomorphic
to (V*® V)%, the G-invariant elements of the tensor product of V and its dual
V*. We shall construct an operator whose solution space is G-isomorphic to
this latter G-module. Let A be the companion matrix of L and let
B=—A"®I+1®A, where I is the nxn identity matrix, It is known ([10],
Sec. 1.2.7) that the solution space of Y'=BY is (V*® V)°. We are now again
confronted with finding the dimension of the space of rational solutions of a system
of differential equations. The advantage of this approach over the previous one is
that the system Y’ = BY is easy to compute and that it is a first order system. On the
other hand, one has lost whatever special properties the system Y'=./,Y pos-
sesses. Again, one can occassionally be lucky and avoid a cyclic vector computa-
tion. (Note that the system Y’ = BY can be rewritten in a more classical way using
matrix notation. If we represent an element of End,(2/%L)asamap X+—ZX,Z an
nxn matrix, for which X'=A4X and (ZX) = A(ZX), then Z will satisfy
Z'=AZ —ZA)



92 M. F. Singer

Example 3.2 Letk = %(x)and L = D* The associated companion matrix is the 4 x 4
zero matrix, so the matrix B= — AT ® I + I ® A4 is the 16 x 16 zero matrix. Clearly
the space of solutions of Y’ = BY in k'® has dimension 16. []

Algorithm 3: The disadvantage of the previous two strategies is that they convert
a question about a scalar equation to a question about a system of equations and
that to answer the latter question one must (at present) convert back to scalar
equations. We will give two algorithms that avoid this and discuss nondeterministic
versions of these as well. Given a linear operator L we wish to construct, as directly
as possible an operator L whose solution space is G-isomorphic to ¥ ® V*. It is not
hard to find an equation whose solution space is V* — this is just the adjoint. The
question is therefore: given to operators L, and L, with solution spaces V, and V,,
construct an equation whose solution space is V, ® V,. We shall do this below. The
basic philosophy motivating this algorithm is that tensor products of generic cyclic
vectors are again cyclic.

Given two operators L, L,e% there exists an operator L& L,e% having the
following property: If K is a differential extension of k containing a full set of
solutions {uy,...,u, }of L;(y)=0and {v,,...,v,.} of L,(y) = 0, then K contains a full
set of solutions of L,®L,(y)=0 and the solution space of this latter equation is
spanned by {uvy,...,u, 0y ..., 4,0, (see [40, 43] where a method is given to
compute this operator). When L, =L, we write L9 for L@L. Note that the
solution space of L,® L,(y) = 0 is a homomorphicimage of V; ® V, where V, is the
solution space of L(y)=0.

Example 3.3 Let L = D* and k = %(x). The solution space V of L(y) = 0 is the set of
polynomials of degree at most 3. Therefore the solution space of L%(y) = 0 is the set
of polynomials of degree at most 6, so L®* = D”. This latter space has dimension
7 while V ® V has dimension 16. [

Despite this example, we will want to use the construction of L,® L,(y) =0 to
find an operator whose solution space is isomorphic to ¥V, ® V,. To do this we will
have to replace L, by an operator of the same type. The following lemma gives two
ways that this can be done. Before we state this lemma, we describe an ancillary
construction. Given Le %, ord(L) = n and (b, ...,b,_,)ek", we denote by [t
the monic operator whose solution space is {z|z=byy + b,y + --- + b,_y™ P for
y satisfying L(y) = 0}. One can effectively construct L*+*- from L by letting z and
y be indeterminates and differentiating z="byy + b,y + ---+ b,_,;y* "1 n times.
Using L(y) = 0 to replace all y?, i = n by k-linear combinations of y, i < n, we are
left with n+ 1 k-linear equations in the n quantities y,..., y . Therefore, there will
be a relation ¢,z™ + .- +c,z=0. Such a relation of smallest order will give
LBo-b=0 Note that L®"-) will have order n if and only if L(y)=0 and
R(y)=byy+ - +b,_,y" V=0 have no common solutions. In this case, L and
Lb-b-) will be of the same type.

Lemma 3.4 Let k=%(x)and let L,, L,eD, ord(L,) =n, ord(L,) =m.

2. There exist polynomials b, ..., b,,_ | with constant coefficients and of degree at
most mn — 1 such that ord(L,® LE>") = mn.

Proof. To prove 1, first consider the operators L,®L,, L;®L 100
L,® LL-%-%-1) Bach has order at most mn and only a finite number of singular
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points. Let ¢ be a regular point of all of these operators. The standard existence and
uniqueness theorem implies that if y is any solution of one of these such that y and all
ofits derivatives up to order mn vanish at c, they y is identically zero. Let {u,...,u,}
and (vy,...,0,} be fundamental set of solutions of L, (y) = 0 and L,(y) =0 respective-
ly and Tt zl =0, + (X =)™} + (x —¢)*™) + - + (x —cy™ = Dy Dfor 1 < i < m.
We claim that the elements {up;|1 <i<n,1 g j < m} are linearly independent. This
suffices to prove 1. To prove the claim, assume that for some ¢;;€%, 0= %, jCiMiZ;e
We then have that

0= eguiy= 3 (Teuef Jix—of
t=0 ij

Each 3, ;¢; uv is either zero or vanishes to order at most mn — 1 at c. Comparing

powers of x — c in the above expression we can therefore conclude that for each ¢,

P Ju,vﬁ’) =0. Since the matrix (v{) is invertible, we have that for each j,

2. ¢4 = 0. Since the u; are linearly 1ndependent we have ¢; ;=0 for all i, j.

To prove 2, let B, ..., B,,_ be differential 1ndeterm1nates let {uy,...,u,} and
(vy,...,0,} be as above and let z; =By, + B,vj+ .- + B,,_ v™ Y. Consider the
differential polynomial R(B,,...,B,, ) =det(Wr(u,z,,...,u;z,,...,u,z,)). This
polynomial is not identically zero (the follows from 1) and has order at most mn— 1
in each variable B,. Therefore, a result of Ritt ([37], p. 35) implies that there exist
polynomials by,...,b, _, of degree at most mn—1 such that R(b,,...,b, ;) #0.
These polynomials satisfy the conclusion of 2. [

Example 3.5 This illustrates statement 1 of the above lemma. Let L = D*. We then
have that (=% —

480x14(364x"% + 577536x*° + 8336640x%° 4+ 3 + 37748736x7° + 21387x3)
228128x*% 4+ 5824x3° + 96x*° +4620288x°° + 53354496x 75 +201326592x°° + 1

480x"3(—1339x" %+ 6983424x*5 + 164465664x°° — 28 + 1063256064 x7° + 79696x3°) .
228128x*% 4+ 5824x3° +96x 15 +4620288x%° + 53354496x7° + 201326592x°° + 1

(4399992668160x7° -+ 214477701120x°° — 8726446080x*> —413806080x3° —4569600x™5 +43680)x" >
228128x*% + 5824x3° 4 96x" +4620288x° + 53354496x7° 4-201326592x% + 1

If one calculates L,®LS*"*>*" one gets an operator of order 16 with
enormous coefficients. For example the coefficient of D® is a quotient of polynomials
of degree 150 with 48 digit coefficients. [

Example 3.6 This illustrates statement 2 of the above lemma. We again let L = D*,
We then have that L&"**"*%1 =

884736+ 48x3% —1032x% + 14592x2° — 131736x'5 + 559104x'° — 1333632x°
B x(—24x27 +384x20 —3992x15 + 19968x"° — 57984x° + 49152 + x39)
+ 936x3° — 17664x2° +213624x2° — 1617792x15 + 5643648x1° — 10520064x° + 54558721)2
x2(—24x25 +384x%° —3992x'5 + 19968x"° — 57984x5 + 49152 + x*°)
8736x3° —141144x>° + 1383264x2° —7997952x 1% 4-21523968x"° — 268554245 -+ 113541 IZD
(—24x25 +384x2° —3992x"5 + 19968x*° — 57984x° + 49152 + x3%)x>
360x(39232x° — 14336 —24704x1° + 8612x" 5 + 91x25 — 1220x2°)
- —24x23 +384x2° —3992x13 + 19968x*° — 57984 x° +49152 + x3°
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Note that the degrees of the numerators and denominators of the coefficients are
considerably smaller than in the previous example. If one calculates L& L>*" 55D
one again gets an operator of order 16 but with better coefficients. For example the
cocfficient of D® is a quotient of polynomials of degree 35 with 13 digit coeffi-
cients. [

We now give two procedures to calculate the dimension of End (V).

Algorithm 3A: This uses Lemma 34.1. Select ¢e€4 and form
L:xc(@L(l,(x*C)"z,(x%)z"2 ----- =@~ V) Tf opd L*@UL(JC*C)"’,(JC‘C)Z"Z ----- (x—C)"‘*“"z)) =n?,
then we have found an operator whose solution space is G-isomorphic to V¥*® V.
One then proceeds as in the other algorithms to find the dimension of the space of
rational solutions of this operator.

If ord L*@L&E-9" =0 x=a" D%y 52 select another value for ¢ and
recalculate. Since there are only a finite number of bad values for ¢, we will
eventually find one that works. In Example 3.5, this strategy was used. The proof of
Lemma 3.4 gives a way of finding a value of ¢ that works. An alternative approach is
to form L¥@) [LG=a™G=a" =" 1) o1 ap indeterminate ¢ with ¢/ =0. The
condition that this operator have order n* will be equivalent to p(c) # 0 for some
polynomial p that will be found in the process of forming the operator. We also note
that the size of the set of “bad points” can be bounded in terms of the coefficients of
L using the generalization of Fuchs’ relation ([5, 42]).

Algorithm 3B: This is based on Lemma 3.4.2 and was used in Example 3.6. Let
By, ..., B,_; by polynomials of degree n*—1 with indeterminate coefficients. The
condition that L*@) LBB»- is of order n* — 1 gives a non-empty (by Lemma 3.4.2)
Zariski open set of coefficients in . The defining equations can be constructed and
a element of this set can be found. One then proceeds as above to find the dimension
of the space of rational solutions.

In practice (and in Example 3.6) one should select arbitrary polynomials
bg,...,b,_, with constant coefficients and of degree at most n*—1 and form
L*@) L**=2) Tf this operator has order n?, proceed as above to find the dimension
of the space of rational solutions. If the order is less than n?, select another choice of
bg,...,b,_,. We know from Lemma 3.4 that some choice will work. It would be of
interest to understand the probabilistic aspects of this approach.

3.2 Deciding if A'V is 1-Reductive

Todecideif, for 1 <i<n— 1, A'Vis 1-reductive, we proceed in two steps. Firstly, we
shall show how to find an operator L" whose solution space is G-isomorphic to
A'V. Secondly, we shall produce an algorithm that, given a linear operator, decides if
this operator is 1-reductive.

3.2.1 An operator whose solution space is A'V
We shall present two algorithms.
Algorithm 4: Let A be the n x n companion matrix of L. One can construct an

< ; > X < ; ) first order system whose solution space is G-isomorphic to A'V. This is
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done in [14] in the following way. Let y,,...,y, be indeterminates and let

Y=(y,...,y,)". Let ¥, be theset of all i-tuples J = (j,,...,j), 1 <j, <--- <j,<n.For

each Je&, let z;,=y; A+ Ay, Formally differentiating, we have

Zy=y, A Aty A Ay Using Y= AY, we may rewritte each y) as

a linear combination of the y,,...,y, and so have z; =X _, ¢, yzy for some

elements ¢; yek. Ordering the i-tuples in &, in some manner, we have Z' = A"'Z
n A

where Z =(zy,...,z;), t=| . }, and A""=(c; ). We refer the reader to [14] for
; \

a proof that the solution space of this system is G-isomorphic to A‘V. Construction

of a cyclic vector (for the dual system) will yield an operator L* " of order <n> whose
i
solution space is G-isomorphic to A‘V.

Algorithm 5: We now give an algorithm that avoids the conversion from scalar equa-
tion to matrix system and back. This relies on the following definitions and lemmas.

We first define the i Associated Operator L. Let K be the Picard-Vessiot
extension of k associated to L(y)=0 and let y,,...,y, be a fundamental set of
solutions of L(y) = 0in K. We define 14 to be the monic operator of smallest order
whose solution set is spanned by {detWr(y,,,...,y;)|(j;;-...j)€;}. One sees that
the vector space V9@ spanned by these elements is left invariant under the action of
the Galois group G and so this operator has coefficients in k. If V is the solution
space of L(y) = 0, one sees that the map sending y; A --- Ay, todetWr(y;,,...,y;)is
a G-homomorphism of AV onto V®, Therefore, the solution space of L*® is
a homomorphicimage of AV and is an isomorphic image if and only if the order of

1
. (n
Ae® 1s<_ .
i

One can calculate I#'® directly from L by setting w = detWr(y,, ..., y;) differenti-
ating thisv= <’:> times, using the relation L(y,) = 0 to eliminate derivatives of y; of

order larger than n— 1, and then finding a linear dependence among the resulting
v+ lexpressionsforz,z, ..., z" If there is more than one such dependence, one takes
one where the maximum z% is as small as possible.

Example 3.7 Let L=D* and i=2. If we use y;=x, i=0,1,2,3 as a basis for the
solution space, the set {detWr(y;,,...,y;)|(1s....JdeF:} is {1, 2x, 3x%, x?, 2x°, x*}.
Therefore, 1%¢? = D% so the solution space of L*'® is not A2V, which has
dimension 6. [

Example 3.8 Let L= D* —4xD - (x* + 2). Calculating? one finds that
1
[ = pb _ _ D5 4+ 4x*D? + 20x*D
x

Therefore in this case the solution space of L*® is A2V, [

! In [38], Sect. 167, Schlesinger also defines an associated operator. Schlesinger only defines this

operator when the space V*® has dimension| > In this case, our i™ associated operator would be
i

called the (n — i) associirte Differentialgleichung in his terminology.
2 In [2], Appell works out most of the relations for L**®), when L is a fourth order operator
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Since we want an operator whose solution space is G-isomorphic to A 'V, we
wish to guarantee that L**® has the correct order. This will be done with the aid of
the following two lemmas. Again, we shall follow the philosophy that the tensor
product of generic cyclic vectors is cyclic.

Let K be a differential field with constants ¥ and y,,...,y,€K, linearly
independent over ¥. Let B,...,B,_, be differential indeterminates and, for
i=1,...,n let z;=Byy; + By, + - + B,_,y" Y. Note that the differential field
K<{B,,...,B,_,» has the same constants as K. Foreach J = (j,...,j)e &, let W, =
detWr(z 12, )€K Bg,...,B,_1 ).

Lemma 3.9 Foreachi,1 Si<n,{W;|JeS,;} forms alinear independent set over 4.

IR

Proof. The proof proceeds by induction on i. For i =1 this is just a restatement of
the fact that y;,...,y, are linearly independent over ¥. Now assume that the
statement is true for i—1. For each J=(j,,...,j)e%, we have that W,=3"_,
(—1y 18~ Pw,, - . (expand by minors using the last row). Note that the
order of each B,0stsn—1mnW; 5 . isatmosti—2.Furthermore, note that
7V =B{ Vy, + -+ BT Py by + R(By,...,B,_1,y;) where R is a differential
polynomial Wlth rational coefﬁc1ents and of order atmost i—2 in each B;. Therefore

W,= Z (=it z B~ Vy0wW,,

t=0

Jji) + RJ

Jiseins Jrseees

where R; has order at most i—2 in each B,. Now assume that 3, ., ¢,W,; =0 for
some C, e% If we write 3., c,W, as a polynomlal inthe BS" Y t=0,...,n—1 we
see that for each ¢ the coefficient of B~ 1 is

) CJZ( DWW, Geia

J=(1seres ji)ei r=

and that this must equal 0. Rewriting this last expression, we get, fort=0,...,n—1

Z y(t) Z iCJW”j:O

Je&’j

where &]={Je%;|i appears in J} and J|j is the (i—1)-tuple obtained from

J by deletmg J. Since the matrix (y¥){2% -7~ * is invertible, we have for each j,
that

2 e Wy =0

Jes]

By induction, {W;;|J€%7} is a linearly independent set, so all ¢, =0. [J
Lemma 3.10 Let k =%(x)and Le%. For eachi, 1 £i<n—1, there exist polynomials

Dos---sPu—1 Of degree at most i+ |—2 such that the i associated operator of
i
n
L(Po-Pn=) hgs order ( ; ) Furthermore, one can select pg,...,p,_, of degree at most
maxoéign_l{z-l-(i)——Z} such that for all i=1,...,n—1, the order of the i"

associated operator of LPe--Pr=1} ig



A Group Theoretic Perspective 97
Proof. Fix i and let #7, be the determinant of the wronskian matrix of the
{W,|Je&}. By the previous lemma, we know that %, is non-zero. This differential
polynomial has order at most i—1+ r; —1=i+ rll —2 in the variables
P,...,P,_,. Therefore, the result of Ritt ([37, p.35) implies that there exist
polynomials py, ..., p,_; of degree at most i + r;) — 2 such that #i(p,,...,p,_ 1) #0.

This guarantees that the order of L is <n> Setting #" =T['_1 W, the result of
) i
Ritt implies that there are polynomials pg,...,p,_; of degree at most
MaXy cicp—1 {i + <n> — 2} such that #"(p,, ..., p,_ ;) # 0. This gives the final result.
SiE i
]

We can now state the algorithm. Let 130,...,15,,_1 be polynomials of degree

n c . . . .. 3 B ;
i+ < > — 2 with indeterminates for coefficients. The condition that (LFe--Fa-2))
i

n . .
have order < ) defines a non-empty Zariski open set of constants whose defining
i

equations can be found. Furthermore one can find a point in this set. Using this as
coefficients in the Py,...,P,_;, we can get polynomials p,,...,p,_; such that

) n
(Lpor--Pn=)Yiet® hag order ( )
i

In practice, we keep selecting arbitrary p,...,p,_, and form (L®erPn-1)dedd
until we find one of the prescribed order.

Example 3.11 Let L= D* We have seen that [9“® has order 5. When we consider
L(l,x",0,0) we get L(l,x",0,0) —_

(22 +12+72%) (72+ 144%) , 144 5
36x%+24x3+ 1+ 12x 36x%424x3+1+12x 36x%+24x3+1+12x

and that (L(1-**0-0))det@) —

4

(1451525 + 5306087 +852768x° + 544752x° + 125064x* — 13392x> —10332x* — 1440x — 54)
6 5
D*+ D
12096x° -+ 54432x% +94176x” +77544x + 30024x° + 3852x* — 756x> — 288x% —30x —1

(6967296 + 34836480x” + 68117760x" + 64696320x” + 286156805 + 1990656x° — 3363120x* ~ 1438560x° — 2527202 — 19800x — 504}
+ D*
290304x" 2+ 1741824x1? + 4364928 + 6916672x° +4696704x° + 219801 6x7 + 5583605 + 421205 — 16308x* — 5316x° — 684x? —42x—1

(15178752x° +6967296x° — 1052352x> + 5374771 2x7 + 684288x* +43047236x° — 28512x + 31352832x® — 792 —292896x%)
- D3
290304x" 2 + 1741824x™" + 4364928x1° + 6916672x° + 4696704x® + 219801 6x7 + 558360x° +42120x" — 16308x* — 5316x° — 684x* —42x—1

(155522 + 2592+ 15552x)(336x* +672x° +288x% + 32x+ 1)
+ D?
2903042 +1741824x" 1 + 43649287 + 6916672x° + 4696704x° + 219801 6x7 + 558360x6 +42120x% — 16308x* — 5316 — 684x% —42x—1

(155524 31104x)(336x* + 672x° + 228x% +32x +1)
— D
290304x12 + 1741824x" " +4364928x"° +6916672x° +4696704x® + 21980167 + 558360x° +42120x° — 16308x* — 5316 —684x2 —42x— 1

10450944x* +20901888x> + 8957952x% + 995328x + 31104

+ O

290304x"? + 1741824x" ! -+ 4364928x "+ 6916672x® +4696704x° + 2198016x” + 558360x° +42120x° — 16308x* — 5316x% — 684x2 —42x—
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3.3.2 Deciding if an Operator is 1-Reductive

We will show that the algorithm 1-reductive, below, decides if an operator L is
1-reductive. We shall assume that our differential field k (with algebraically closed
constants) comes equiped with two ancillary algorithms. The first is an algorithm to
decideif, given a differential operator Le 2, L(y) = 0 has a nonzero solutionin k and,
if so, produces such a solution. The second is an algorithm to decide if, given
a differential operator Le %, L(y) = 0 has a solution y such that y'/y = uek, and, if
such a solution exists, produces such an element uek. Thisis equivalent to deciding if
the associated Riccati equation has a solution u in k and is also equivalent to
deciding if L has a first order right factor of the form D—u for some uek. As we have
already noted, such algorithms exist for @(x), as well as for any finite purely
transcendental liouvillian extension of Q(x) or for any elementary extension of Q(x).
In the following, if L,, L,e 9, Quotient(L,, L,) will denote the unique operator Ae %
such that L, = AL, + B for some Be % with ord(R) < ord(L,) and L¥ will denote the
adjoint of L,.

Recall that an operator R is 1-reductive if, for any first order right factor S of
R there exists an S, relatively prime to S, such that R = [, §],. We first will presentan
effective criterion {Lemma 3.12) to decide if, given such an S, whether or not an S as
above exists. We will then show that one does not need to check this for all right
factors S (a possibly infinite set) and that it is enough to check this for a suitably
defined sequence of pairs of operators (R,, S;), where S; has order 1 and is a right
divisor of R,. In the following lemma, we have occasion to take an operator L and an
element hek and form the new operator e o Loe ™I Note that is nothing more that
the operator gotten from L by replacing D by D — h.

Lemma 3.12 Let S, Re 9,8 =D —h, R # 0 and assume that S is a right divisor of R.
The following are equivalent:

1. There exists and Se 9, relatively prime to S, such that R =[S, §]z-

2. There exists an Rye&,, (S, R) # 0 such that S does not divide R, on the right.

3. For Ti=el"oR*oe " T(y)=0 has a nonzero solution gek, such that for
R, = (Quotient(R*, —g~'D+g~?g'— g~ 'h))*, S does not divide R, on the
right.

Proof. Let K be thePicard-Vessiot extension of k corresponding to R and let G be its
Galois_group. Assume that 1 is true. We then have that Solng(R) = Solng(S)®
Solng(S S) as G-modules. Let ¢ be the projection of Solng(R) onto Soln,(S ). Using the
correspondence given in Lemma 2.5, this implies that there exists an Roe&,(S, R)
such that Ry(y) = y for all yeSolng(S) < Solng(R). In particular S does not divide R,
on the right, so 2 holds.

Now assume, that 2 holds. Using the correspondence given in Lemma 2.5,
R, corresponds to a homomorphism ¢eHomg(Solng(R), Solng(S)). Since §
does not divide R, on the right, ¢ induces an isomorphism on Solng(S). Therefore,
we may write Solng(R) = Solng(S)® Ker(¢). Since Ker(¢) is a G-submodule of
Solng(R), there exists an operator S such that Solng(S)= Ker(¢). Therefore, 1
holds.

Assume that 2 is true and let R,e& (S, R) with R, # 0 and ord(R,) < ord(R). We
then have that SR, = AR for some Ac%. Comparing orders, we see that ord(4) =
so A=gek, g+#0. Taking adjoints of both sides of the equation R=g SR,
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we have
R* = R&S%g ™!

=R§(—=D—hyg"!

=R§(—g™'D+g~%g ~g'h)

=R§(—g™ YD —g"'g +h

Therefore y =ge " is a solution of R*(y)=0 and so g is a solution of 7.

Furthermore, Rg‘ = Quotient(R*, — g~ *D + g~ %g'~ g~ 'h) so R, =(Quotient(R*,
—g D+g %¢ — g~ 'h))* and 3 holds.

Now assume that T has a non-zero solution gek. This implies that y = ge BT
a solution of R*(y) = 0. Therefore, for some Re9, we have

R*=R(D—g~ ¢ +h)
=R(—g)(—=g™'D+g*¢'~g"'h)
=R¥(—g 'D+g *gg™'h)
where R, = (R(—g))*. Therefore, R=(—g D + g~ %¢' — g~ 'h)*R, =g~ (D —h)R,,.
Rewriting this as gR = (D — h)R,,, we see Roe&4(S, R). Therefore, 3 holds. [J

We now show that the problem of deciding if an operator is 1-reductive can be
reduced to applying the above criterion to a suitably defined sequence of pairs of
operators. We will need the following definition. Let Le P and m > 1. A test set 7, of
length m for L is a set of two sequences {(Ry,...,R,,), (Sy,...,S,_1)} of nonzero
operators R;, ;€2 such that

1. Ry =1L,

2. ord(S;)=1 and §; divides R; on the right for i = 1,. -1,

3. ord(R; . 1) < ord( D lHE@@@(Sl, R)) and §; does not d1v1de R, on the right
fori=1,. —1L

The only test set of length 1 for L is the set {R; = L}. Note that the conditions
R, =L and ord(R, . ,) <ord(R) imply that any test set for L has length at most

ord(L). We say that a test set 75, = {(R,,.. R (S, 1)} extends a test set
Tn=1{R4,...,R,), (S,....S,, )} f m=m, R, =R, forl—l ,mand §;=S§, for
i=1,...,m— 1L

Lemma 3.13 Let Le% and let K be the Picard-Vessiot extension of k corresponding
to L(y) =0. Let 7, be a test set of length m for L. Then fori=2,...,m, R(y)=0 and
S{y) = 0 have complete sets of solutions in K and

Solng(L) = Solng(R,)® Solng(S; 1) ® --- ® Solng(S;)

Proof. Note that Soln, (L) = Soln (R} so to prove the lemma it is enough to show
that Solng(R)) = Solng(R; . ) @ Solni(S;) (Lemma 2.1 will yield the statement con-
cerning complete sets of solutions). Since R, , ;€& ,(S;, R;) we have S;R;, ; = TR, for
some Te%. Comparing orders, we see that ord(T)=0. Therefore R, maps
solutions of R; onto the solution space of S,. The solution space of R;, is the
kernel of this map. Furthermore, the condition that S; does not divide R, ,, on the
right insures that Solng(R;_. ;) " Solng(S;) = (0) so Solng(R;) = Solng(R;, 1)@ Solng(S)).

O
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Lemma 3.14 Let Le 9. The following are equivalent:

1. Lis 1-reductive.
2. Foranym,if 7,,={(Ry,...,R,),(S1s...,S,_1)} is a test for L of length m then
either

(a) for any first order vight factor S,, of R, there exists an R,,, ;€9 such
that 7,1 ={(Ry,..., Ry Ryys1), (Sts- -, Spu_1, S,) } is a test set, or
(b) R,, has no first order right factor in @

3. Forsome m < n, thereis a test set 7, for L of length m such that R,, has no first
order right factor in 9.

Proof. Let G be the Galois group of L. Assume 1 holds we wish to show that 2 holds.
Let 7, be a test set for L of length m. If R, has no first order right factor, we are done.
Let S, be a first order right factor. By Lemma 3.13, R, has a full set of solutions in
K and Solng(R,,) = Solng(L). By Lemma 2.1.3, S, will also have a full set of solutions
in K and Solng(S,,) < Solng(R,,) < Solng(L). Since L is 1-reductive, we may write
Solng(L) = Solng(S,)®W for some G-module W. We then have
Soln/R,,) = Solng(S,,) ® (W n Solng(R,,)). Let n be the projection of Solng(R,,) onto
Solni(S,,) with kernel (W nSolng(R,)). We have that = is a nonzero element of
Homg(Solng(R,,), Solng(S,)) and so, by Lemma 2.5, corresponds to a nonzero
element R, of €,(S,, R,)- We can select R, ; so that ord(R,,, ) < ord(R,) and
any such R, ,  has no solutions in common with S, (otherwise it would not induce
a projection onto this solution space). Therefore we have that S,, does not divide
R, ., on the right and this gives an extension . to a larger test set. Therefore
2 holds.

Assume that 2 holds. By convention {L} is a test set. Let 7, be a maximal test set
(with respect to extension). By 2 we have that R, has no first order right factor.
Therefore 3 holds.

Assume that 3 holds. Lemma 3.13 allows us to write Solng(L) = Solng(R,)®
Solng(S,,-1)® --- @ Solng(S,). Since R, has no first order right factor, Solng(R,,)
has no one dimensional G-submodules. Therefore any one dimensional G-sub-
module of Solng(L) lies in Solng(S,,_ 1)@ --- @ Solng(S,). This implies that this latter
spaceis the sum of all one dimensional G-submodules of Solng(L). Since it clearly has
a complementary submodule, Lemma 2.16 implies that L is 1-reductive so
1holds. [0

Algorithm 1-reductive uses Lemma 3.12 to generate a test set and decide if
condition 3 of the above lemma holds. We shall state this algorithm, give three
examples and then prove its correctness.

Algorithm 1-reductive

Input: A non-zero LeZ

Output: ‘true’ if L is 1-reductive; ‘false’ if L is not 1-reductive

Status:= true;

R=1L; '

While R has a first order right factor and Status = 1-reductive do
h:=a solution in k of the Riccati equation associated to R;
T:=elfoR¥oelH,
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If T(y) =0 has a non-zero solution in k then
gl, .,g,.= a basis of the space of solutions in k of T(y) =
=c1g, + -+ + c,g, for new variables C1soeoa i
R(cl, e ) = (Quotient{(R*, —g D+ g~ hg_l))*;
If there exist constants d L .,d, such that
D — h does not divide R(d 1s++->d,) on the right then
Ri=R(dy,...,d);
else Status = false
else Status:= false;
od;
return(Status);
end;

In the above algorithm, the phrase Quotient(R*, —g D + g~ *¢' — hg ') de-
notes the right quotient in the ring k(c,, ..., ¢, [D] where each ¢} = 0. Also note that if
Le2 where L = p(D) for some polynomial p(D)ek[D], then el*o Lo ol ~* = p(D — h).
This implies that the operator T defined in the algorithm has coefficients in k and
also gives an efficient way of calculating T. We finally note that the algorithm could
be modified so that the While loop is exited when the order of R is at most 1. To see
this note that if R = D — h (the case where R is not monic is similar, but notationally
more complex and is left to the reader), then T:= D, g:= ¢, and R:=c,. Therefore c,
can always be chosen so that D — h does not divide R(d,...,d,) on the right and one
updates R:= 1. Therefore the algorithm will end with Status = true.

Example 3.15 Let k = C and L= D2 We begin by setting R = D?. Clearly R has
a right factor D, so we set h:=0 and T=R*= D2 The equation T(y)=0 has
a nonzero solution y =1 in k and this forms a basis for all solutions in k. We set
g:= ¢, and R(c,) = Quotient(D*, —c 'D) = ¢,D. For all values d, of ¢; we have that
D divides R(d,) = d, D so the above equation is not 1-reductive. Note that the Galois

1
group of L is G={<O 1)|te<[?} O

Example 3.16 Let k = C(x) and again let L = D*. We again have that R:= D? has
aright factor D. Let h:= 0 and T:= R* = D?. The equation T(y) = 0 is now satisfied
by 1 and x and these two elements form a basis for the solution space of T(y) = Oin k.
Let g=c;14+¢c,x and let ¢, =0, c¢,=1. We then have that
(Quotient(D?, —iD +1))* = xD —1 and D does not divide xD —1 on the right.
Therefore we update R:= xD — 1. This has a first order factor and we set h:=1. We
then have T'= xD + 1 and = forms a basis for the solution space of T(y) = O in k.
Setting g:= ¢, =1 we get R:= c1 so setting ¢c; = 1 allows us to update R:= 1. Since this
has no first order right factor, we exit the algorithm and conclude that the original
operator is 1-reductive. As we have already noted, we could have concluded this
when we reached the stage that R had order 1. Also note that the Galois group is
trivial. ]

Example 3.17 Let k = C(x). The equation L*® = DS —1D5 + 4x*D? 4 20x>D was
constructed in Example 3.8. We shall consider the equation gotten by clearing
denominators. We begin by setting R = xI[9*® = xD% — D3 4+ 4x°D? + 20x*D =
(xD> —D* +4x°D +20x*)D so R clearly has a right first order factor D.
We set h:=0 and T:=R* =xD+ 7D’ 4+ 4x°D* + 20x*D. The equation T(y) =
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has a nonzero solution y = 1in k, and this is a basis of the space of all solutions in k.
Set g:= ¢, and redefine R(c,):= Quotient(xD® + 7D’ + 4x°D? 4 20x*D, — c; ' D)* =

¢y(—xD?—TD*—4x>D —20x** = ¢,(xD* — 2D* +4x°D). For all values d, of ¢, we
have that D divides R(d,) on the right. Therefore Status changes to ‘false’.

This furthermore, implies that 14¢® is not 1-reductive. As we have noted, [/*®
is an operator whose solution space is A?V where V is the solution space of
L=D*—4xD —(x* + 2). Therefore, Corollary 2.21 implies that this latter operator
is not completely reducible and, in particular, factors. One can easily show that it has
no first or third order right factors (for the latter look at the adjoint), so this operator
factors as the product of two second order operators. [

Proof of correctness of Algorithm 1-Reductive: We shall show that the algorithm
generates a maximal test set 7, and terminates with ‘true’ if R, has no first order
right factor on ‘false’if R, has a ﬁrst order right factor. Lemma 3 14 implies that the
algorithm is correct.

Initially the algorithm sets R:= L. Assume, inductively, that at the beginning of
the i™ pass through the While statement, we have generated a test set

={(Ry,...,R), (S4,...,8;_;)} with R:=R,. We shall show that the algorithm
either extends this test set or concludes that it is maximal, in which case it halts with
the correct output. Since there is an upper bound on the length of test sets, this will
also show that the algorithm terminates.

If R has no first order right factor then the test set is maximal and the algorithm
will terminate with Status = true, which is the correct output by Lemma 3.14.3.
Assume that R has a first order right factor. The algorithm will find a hek such that
S;=D — h is a right factor of R. The algorithm then determines if T(y) =0 has a
nonzero solution in k. If it does, Lemma 3.12.3 implies that the algorithm finds a
nonzero R, , , with R, ;€6,(S, R)and updates the value of R:=R;, ;. The algorithm
therefore has generated a test set J;,, ={(Ry,...,R, Ri11)s (Spr-erSi_1s S)}
extending 7, and does not change Status. If the only solution of T(y)=0 in k is
y =0, then Lemma 3.12.3 implies that &,(S,, R;) = (0). Therefore, R, has a first order
right factor but 4, cannot be extended. Lemma 3.14 implies that LIS not 1-reductive.
In this case the algorlthm changes Status:=‘false’ and halts with the correct out-
put. [

3.3 Remarks

1. In [43], the authors show how various properties of the Galois group of a linear
differential equation L(y)=0 can be determined by determining factorization
properties of auxillary operators. The above methods can be used to do this. In
many instances, one does not need to apply the full irreducibility test, but in fact can
just use the criterion for completely reducible operators (Corollary 2.15).

Let us consider the result mentioned in the introduction: Let k be a differential
field with algebraic closed field of constants and let Le % be a second order operator.
The equation L{y) =0 has non-zero liouvillian solutions over k if and only if % is
reducible in 9. If one knows that L is irreducible, then the Galois group G must be
a reductive group. The solution space of L2 is a G-module and so will be completely
reducible. Therefore, I2° will be a completely reducible operator (Lemma 2.13).
Furthermore, it is reducible if and only if dim,& ,(L®) > 1. Let L, be an operator (of
order 49) whose solution space is G-isomorphic to Hom(Soln (L), Soln(I2%)),
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where K is the Picard-Vessiot extension corresponding to L. We can therefore restate
the above theorem as:

Theorem 3.18 Let k, L, and L, be as above. The equation L(y) =0 has non-zero
liouvillian solutions over k if cmd only if

e The equation L(y) =0 has a solution y # 0 such that y'/yek, or
e The equation L,(y)=0 has two solutions in k linearly independent over the
constants.

Proof. The operator Lis reducible if and only if the equation L(y) = 0 has a solution
y #0 such that y'/yek, in which case, L(y)=0 has a liouvillian solution. If the
operator L is irreducible, then the discussion preceeding this Theorem shows that
the equation L(y) = 0 has non-zero liouvillian solutions over k ifand only if L, (y) =
has two solutions in k linearly independent over the constants. [

Similar results can be stated for third order operators using the results of [43]. In
general, once one knows that an operator L is irreducible (or, at worst, completely
reducible), any operator that one constructs from L will be completely reducible and
so special methods for testing reducibility can be used.

2. One of the goals of this paper was to develop reducibility tests that, starting with
alinear differential operator, do not resort to systems and cyclic vector techniques to
make a determination. To do this, we replaced the original operator L with an
operator of the form L®°-+b=- before constructing L*@) L. In reality, this construc-
tion allows one to go directly from a cyclic vector for L to a cyclic vector for the
system o (Y) in Sect. 3.1. Algorithms 1, 2 and 4 require one to construct a cyclic
vector for a system. The reason for having to find a cyclic vector (or companion
block diagonal form)in Algorithms 1, 2, and 4 is that we know of no direct method of
finding the dimension of the space of solutions of a system Y’ = AY in k", even when
k = #(x). In there a direct method for determining the dimension of this space of
solutions? Given a single linear differential equation, is there a method to find the
dimension of the space of solutions in k without having to find the solutions?
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