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0. Introduction

The generating series of lattice walks in the quarter plane have garnered much interest 
in recent years. In [10], we introduced a new method that allowed us to study the nature 
of the generating series of many lattice walks with small steps (i.e., whose step set 
is a subset of {−1, 0, 1}2\{(0, 0)}) in the quarter plane. In particular, the paper [10] is 
concerned with the differential nature of these generating series, the basic question being: 
which of them satisfy differential equations? The present paper is a continuation of this 
research. We will study weighted models of walks with small steps in the quarter plane 
Z2

≥0. More precisely, let (di,j)(i,j)∈{0,±1}2 be a family of elements of Q ∩ [0, 1] such that ∑
i,j di,j = 1. We encode the eight cardinal directions of the plane by pairs of integers 

(i, j) with i, j ∈ {0, ±1}. We consider a weighted walk in the quarter plane Z2
≥0 satisfying 

the following properties:

• it starts at (0, 0);
• it takes steps in a certain subset of the set of cardinal directions, which is called the 

model of the walk.

For (i, j) ∈ {0, ±1}2\{(0, 0)} (resp. (0, 0)), the element di,j is a weight on the step (i, j)
and can be viewed as the probability for the walk to go in the direction (i, j) (resp. to 
stay at the same position). The step set or the model of the walk corresponds the set of 
directions with nonzero weights, that is,

{(i, j) ∈ {0,±1}2\{(0, 0)}|di,j �= 0}.

If d0,0 = 0 and if the nonzero di,j all have the same value, we say that the model is 
unweighted.

The weight of the walk is defined to be the product of the weights of its component 
steps. For any (i, j) ∈ Z2

≥0 and any k ∈ Z≥0, we let qi,j,k be the sum of the weights 
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of all walks reaching the position (i, j) from the initial position (0, 0) after k steps. We 
introduce the corresponding trivariate generating series1

Q(x, y, t) :=
∑

i,j,k≥0

qi,j,kx
iyjtk.

The typical questions considered in the literature are:

• is Q(x, y, t) algebraic over Q(x, y, t)?
• is Q(x, y, t) x-holonomic (resp. y-holonomic), i.e., is Q(x, y, t), seen as a function of x, 

a solution of some nonzero linear differential equation with coefficients in Q(x, y, t)?
• is Q(x, y, t) x-differentially algebraic (resp. y-differentially algebraic), i.e. is Q(x, y, t), 

seen as a function of x, a solution of some nonzero (possibly nonlinear) polynomial 
differential equation with coefficients in Q(x, y, t)? In case of a negative answer, we 
say that Q(x, y, t) is x-differentially transcendental (resp. y-differentially transcen-
dental).2

Before describing our main result, we will briefly describe the state of the art. In the 
seminal paper [5], Bousquet-Mélou and Mishna studied such questions in the unweighted 
case (see also [21]). Taking symmetries into consideration and eliminating unweighted 
models equivalent to models on the half plane (whose generating series is algebraic), 
Bousquet-Mélou and Mishna first showed that, amongst the 256 possible unweighted 
models, it is sufficient to study the above questions for an explicit list of 79 unweighted 
models. Following ideas of Fayolle, Iasnogorodski and Malyshev (see for instance [13,14]), 
they associated to each unweighted model a group of birational automorphisms of C2

and classified the unweighted models accordingly. They found that 23 of the 79 above-
mentioned unweighted models were associated with a finite group and showed that for 
all but one of these 23 models, the generating series was x-, y- and t-holonomic; the 
remaining one was shown to have the same property by Bostan, van Hoeij and Kauers 
in [7]. In [5], Bousquet-Mélou and Mishna conjectured that the 56 unweighted models 
whose associated group is infinite are not holonomic. Furthermore, following Fayolle, 
Iasnogorodski and Malyshev, the 56 unweighted models may be gathered into two families 
according to the genus of an algebraic curve, called the kernel curve, attached to each 
model:

• 5 of these unweighted models lead to a curve of genus zero; they will be called the 
genus zero unweighted models,

1 In several papers it is not assumed that ∑i,j di,j = 1. But after a rescaling of the t variable, we may 
always reduce to the case ∑i,j di,j = 1.
2 We changed the terminology we used in [10], namely hyperalgebraic and hypertranscendent, because we 

believe that differentially algebraic and differentially transcendental are more transparent terms.
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• 51 of them lead to a curve of genus one; they will be called the genus one unweighted 
models.

In [20], Kurkova and Raschel showed that the 51 genus one unweighted models with 
infinite group have nonholonomic generating series (see also [6,24]). Recently, Bernardi, 
Bousquet-Mélou and Raschel [3,4] have shown that 9 of these 51 unweighted models have 
x- and y-differentially algebraic generating series, despite the fact that they are not x-
or y-holonomic.

In [10], we introduced a new approach to these problems that allowed us to show that, 
except for the 9 exceptional unweighted models of [3,4], the generating series of genus one 
unweighted models with infinite groups are x- and y-differentially transcendental. This 
reproves and generalizes the results of [20]. Furthermore our results allowed us to show 
that the 9 exceptional series are not holonomic but are x- and y-differentially algebraic, 
recovering some of the results of [3,4]. It is worth mentioning that there are several 
results in the literature about the behavior of Q(x, y, t) with respect to the variable t. 
For instance, in [23], Mishna and Rechnitzer showed that Q(1, 1, t) is not t-holonomic for 
two of the 5 genus zero unweighted models and in [22], Melczer and Mishna showed that 
this remained true for all 5 of the genus zero unweighted models. On the other hand, 
Bostan, Raschel and Salvy proved in [6] that Q(0, 0, t) is not t-holonomic for every genus 
one unweighted model with an infinite group. We also note that, in [3,4], it is shown 
that the generating series of the 9 exceptional genus zero unweighted models mentioned 
above are differentially algebraic in the variable t as well. Finally, the first two authors 
proved in [9] that, if the generating series is x- or y-differentially transcendental, then it 
is t-differentially transcendental. Thus, although the present paper focuses on the x- and 
y-differential properties of Q(x, y, t), it also gives information concerning its t-differential 
properties.

In the present paper, we start from the 5 unweighted models corresponding to a genus 
zero kernel curve. These models arise from the following 5 sets of steps.

(S)

We say that a weighted model arises from (S) when this model is obtained by choosing 
a set of steps in (S) and by assigning nonzero weights to this set of steps. One can show 
that the kernel curve of a weighted model arising from (S) is still a genus zero curve. 
Our main result may be stated as follows:

Main Theorem. If 0 < t < 1 is transcendental3 and if the weighted model arises from 
(S), then Q(x, y, t) is x- and y-differentially transcendental.

3 This assumption is used repeatedly in our proofs and is crucial in our proof of Proposition 3.4.
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Our study generalizes the result of Mishna and Rechnitzer on the non holonomy of 
the complete generating series of the unweighted models of walks {NW, N, SE} and 
{NW, NE, SE} (see [23, Theorem 1.1]) and also the one by Melczer and Mishna (for 
the five cases). Our strategy of proof is inspired by [14, Chapter 6]. We associate to each 
of the generating series of these weighted models a function meromorphic on C. These 
associated functions satisfy first order difference equations of the form y(qs) − y(s) =
b(s) for a suitable q ∈ C and b(s) ∈ C(s). The associated functions are differentially 
transcendental if and only if the generating series are differentially transcendental. We 
then use criteria stating that if these associated functions were differentially algebraic 
then the b(s) must themselves satisfy b(s) = h(qs) − h(s) for some rational functions 
h(s) on C. This latter condition puts severe limitations on the poles of the b(s) and, 
by analyzing the b(s) that arise, we show that these restrictions are not met. Therefore 
the generating series are not differentially algebraic, see Theorem 3.1. Note that some 
unweighted models of walks in dimension three happen to be, after projection, equivalent 
to two dimensional weighted models of walks [2,11]. We apply our theorem in this setting 
as well. We note that finding the difference equation y(qs) −y(s) = b(s) and the remaining 
calculations involve only algebraic computations as is true in [10]. The general approach 
followed in the present work is inspired by [10] but the details are quite different and 
justify an independent exposition.

The rest of the paper is organized as follows. In Section 1, we first present the gen-
erating series attached to a weighted model of walks and we give some of their basic 
properties. We then introduce the kernel curves (they are algebraic curves associated to 
any model of walk in the quarter plane) and we state some of their properties. One of 
their main properties is that, for the weighted models arising from (S), the kernel curves 
have genus zero and, hence, can be parameterized by birational maps from P 1(C). Such 
parameterizations, suitable for our needs, are given at the end of Section 1. In Section 2, 
using these parameterizations, we attach to any model some meromorphic functions on 
C that satisfy simple q-difference equations of the form y(qs) − y(s) = b(s) for some 
b(s) ∈ C(s). Moreover, we prove that these meromorphic functions are differentially 
algebraic if and only if the generating series of the associated models are differentially 
algebraic. In addition, we present necessary conditions on the poles of b when these equa-
tions have differentially algebraic solutions. In Section 3, we show that these necessary 
conditions do not hold for the weighted models arising from (S).

Acknowledgments The authors would like to thank Kilian Raschel for pointing out many 
references related to this work. In addition, we would like to thank the anonymous 
referees for many useful comments and suggestions concerning this article.

1. Weighted walks in the quarter plane: generating series, functional equation and 
kernel curve

In this section, we consider a weighted walk with small steps in the quarter plane Z2
≥0

and the corresponding trivariate generating series Q(x, y, t) as in the introduction. We 
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first recall a functional equation satisfied by Q(x, y, t). We then recall the definition of 
the so-called kernel curve associated to the walk under consideration and give its main 
properties when the step set is one of the five step sets listed in (S).

1.1. Kernel and functional equation

The kernel of a weighted model is defined by

K(x, y, t) := xy(1 − tS(x, y))

where

S(x, y) =
∑

(i,j)∈{0,±1}2 di,jx
iyj

= A−1(x) 1
y + A0(x) + A1(x)y

= B−1(y) 1
x + B0(y) + B1(y)x,

and Ai(x) ∈ x−1Q[x], Bi(y) ∈ y−1Q[y].
The following result generalizes [5, Lemma 4].

Lemma 1.1. The generating series Q(x, y, t) satisfies the following functional equation:

K(x, y, t)Q(x, y, t) = xy − F 1(x, t) − F 2(y, t) + td−1,−1Q(0, 0, t) (1.1)

where

F 1(x, t) := −K(x, 0, t)Q(x, 0, t), F 2(y, t) := −K(0, y, t)Q(0, y, t).

Proof. As in [5, Lemma 4], we proceed as follows. First, let us prove that if we do not con-
sider the quadrant constraint, the functional equation would be (1 − tS(x, y))Q(x, y, t) =

1. Indeed, in this situation, if we write Q(x, y, t) =
∞∑
�=0

Q�(x, y)t�, then Q0(x, y) = 1

and Q�+1(x, y) = S(x, y)Q�(x, y). This is exactly (1 − tS(x, y))Q(x, y, t) = 1. How-
ever, this formula does not take into account the quadrant constraint. We need to 
withdraw the walks that leave the x-axis (resp. y-axis), i.e. ty−1A−1(x)Q(x, 0, t) (resp. 
tx−1B−1(y)Q(0, y, t)). Since we withdraw two times the walks going from (0, 0) in south 
west, we have to add the term tx−1y−1d−1,−1Q(0, 0, t). So

(1 − tS(x, y))Q(x, y, t) = 1 − ty−1A−1(x)Q(x, 0, t) − tx−1B−1(y)Q(0, y, t)

+ tx−1y−1d−1,−1Q(0, 0, t).

It now suffices to multiply by xy the above equality. �
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1.2. The algebraic curve defined by the kernel

We recall that the affine curve Et defined by the kernel K(x, y, t) is given by

Et = {(x, y) ∈ C ×C | K(x, y, t) = 0}.

In Section 2 we show that the problem of showing that Q(x, y, t) is x- and y-differentially 
transcendental can be reduced to understanding the relations among the poles of a 
rational function on Et. When dealing with a rational function b(s) on C, one often 
needs to consider its behavior “as s goes to infinity”. Although this can frequently be 
finessed, it is convenient to add a point at infinity, constructing the complex projective 
line as defined below, and consider the behavior at this point. When dealing with rational 
functions on curves in the affine plane, their behavior, such as the appearance of poles, 
often depends on missing points “at infinity” and we will see that this is the case in 
Section 2. To do this we must include the missing points at infinity and so it is useful to 
compactify such a curve by adding these points. This can be done in several ways (see 
Remark 1.2 below) but, as in [10], it will be useful to consider a compactification Et of 
Et in P 1(C) × P 1(C), which is called the kernel curve.

We first recall that P 1(C) denotes the complex projective line, which is the quotient 
of C ×C \ {(0, 0)} by the equivalence relation ∼ defined by

(x0, x1) ∼ (x′
0, x

′
1) ⇔ ∃λ ∈ C∗, (x′

0, x
′
1) = λ(x0, x1).

The equivalence class of (x0, x1) ∈ C×C\{(0, 0)} is usually denoted by [x0 : x1] ∈ P 1(C). 
The map x �→ [x : 1] embeds C inside P 1(C). The latter map is not surjective: its image 
is P 1(C) \ {[1 : 0]}; the missing point [1 : 0] is usually denoted by ∞. Now, we embed Et

inside P 1(C) × P 1(C) via (x, y) �→ ([x : 1], [y : 1]). The kernel curve Et is the closure of 
this embedding of Et. In other words, the kernel curve Et is the algebraic curve defined 
by

Et = {([x0 : x1], [y0 : y1]) ∈ P 1(C) × P 1(C) | K(x0, x1, y0, y1, t) = 0}

where K(x0, x1, y0, y1, t) is the following bihomogeneous polynomial

K(x0, x1, y0, y1, t) = x2
1y

2
1K(x0

x1
,
y0

y1
, t) = x0x1y0y1 − t

2∑
i,j=0

di−1,j−1x
i
0x

2−i
1 yj0y

2−j
1 . (1.2)

Since K(x0, x1, y0, y1, t) is quadratic in each of the variables, the curve Et is naturally 
endowed with two involutions ι1, ι2, namely the vertical and horizontal switches of Et

defined, for any P = (x, y) ∈ Et, by

{P, ι1(P )} = Et ∩ ({x} × P 1(C)) and {P, ι2(P )} = Et ∩ (P 1(C) × {y})
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Fig. 1. The maps ι1, ι2 restricted to the kernel curve Et.

(see Fig. 1). Let us also define

σ := ι2 ◦ ι1.

Remark 1.2. There are several choices for the compactification of Et. For instance, we 
could have compactified the curve Et in the complex projective plane P 2(C) instead of 
P 1(C) × P 1(C) but, in this case, the compactification is not defined by a biquadratic 
polynomial so that the construction of the above-mentioned involutions in that situation 
is not so natural.

Assumption 1.3. From now on, we consider a weighted model arising from (S) and we 
fix a transcendental real number 0 < t < 1.4

Proposition 1.4. The curve Et is an irreducible genus zero curve.

Proof. This is the analog of [14, Lemmas 2.3.2, 2.3.10], where the case t = 1 is consid-
ered. �

1.3. Parametrization of Et

Since Et has genus zero, there is a rational parameterization of Et, see [16, Page 198, 
Ex. 1], i.e., there exists a birational map

φ : P 1(C) → Et

s �→ (x(s), y(s)).

Proposition 1.5 below gives such an explicit parametrization, which induces a bijection 
between P 1(C) \φ−1(Ω) and Et \{Ω}, where Ω = ([0 : 1], [0 : 1]) ∈ Et. It is the analogue 
of [14, Section 6.4.3], where the case t = 1 is considered. The proof is similar for t
transcendental and the details are left to the reader.

4 In this paper, we have assumed that the di,j belong to Q, but everything stays true if we assume that 
di,j are positive real numbers and that t is transcendental over the field Q(di,j).
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We first introduce some notations. For any [x0 : x1] and [y0 : y1] in P 1(C), we denote 
by Δx

[x0:x1] and Δy
[y0:y1] the discriminants of the degree two homogeneous polynomials 

given by y �→ K(x0, x1, y, t) and x �→ K(x, y0, y1, t) respectively. We have

Δx
[x0:x1] = t2

(
(−1

t
x0x1 + d0,0x0x1 + d1,0x

2
0)2 − 4d1,−1x

2
0(d−1,1x

2
1 + d0,1x0x1 + d1,1x

2
0)
)

and

Δy
[y0:y1] = t2

(
− 1

t
y0y1 + d0,0y0y1 + d0,1y

2
0)2 − 4d−1,1y

2
0(d1,−1y

2
1 + d1,0y0y1 + d1,1y

2
0)
)
.

Let us write

Δx
[x:1] =

4∑
�=2

α�x
�

and let a1 = a2 = 0, a3, a4 be the four roots of this polynomial. Similarly, let us write

Δy
[y:1] =

4∑
�=2

β�x
�

and let b1 = b2 = 0, b3, b4 be the four roots of this polynomial. We have

α2(t) = 1 − 2td0,0 + t2d2
0,0 − 4t2d−1,1d1,−1 β2(t) = 1 − 2td0,0 + t2d2

0,0 − 4t2d1,−1d−1,1
α3(t) = 2t2d1,0d0,0 − 2td1,0 − 4t2d0,1d1,−1 β3(t) = 2t2d0,1d0,0 − 2td0,1 − 4t2d1,0d−1,1
α4(t) = t2(d2

1,0 − 4d1,1d1,−1) β4(t) = t2(d2
0,1 − 4d1,1d−1,1).

Moreover, a3, a4, b3 and b4 are given by the following formulas

a3 a4

α4(t) �= 0
[
−α3(t)−

√
α3(t)2−4α2(t)α4(t)
2α4(t) : 1

] [
−α3(t)+

√
α3(t)2−4α2(t)α4(t)
2α4(t) : 1

]
α4(t) = 0 [1 : 0] [−α2(t) : α3(t)]

b3 b4

β4(t) �= 0
[
−β3(t)−

√
β3(t)2−4β2(t)β4(t)
2β4(t) : 1

] [
−β3(t)+

√
β3(t)2−4β2(t)β4(t)
2β4(t) : 1

]
β4(t) = 0 [1 : 0] [−β2(t) : β3(t)]

Proposition 1.5. An explicit parameterization φ = (x, y) : P 1(C) → Et is given by

φ(s) =
(

4α2(t)√
α3(t)2 − 4α2(t)α4(t)(s + 1

s ) − 2α3(t)
,

4β2(t)√
β3(t)2 − 4β2(t)β4(t)( s

λ + λ
s ) − 2β3(t)

)

for a certain λ ∈ C∗. Moreover we have (see Fig. 2)
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Fig. 2. The uniformization map.

x(0) = x(∞) = a1, x(1) = a3, x(−1) = a4,

y(0) = y(∞) = b1, y(λ) = b3, y(−λ) = b4,

where a1 = a2 = [0 : 1] (resp. b1 = b2 = [0 : 1]).

Remark 1.6. When t = 1, we recover the uniformization of [14, Section 6.4.3]. Note that 
if we consider x3, x4 (resp. y3, y4) defined in [14, Chapter 6], we have the equality of sets 
{a3, a4} = {x3, x4} and {b3, b4} = {y3, y4}, but do not have necessarily ai = xi, bj = yj , 
with 3 ≤ i, j ≤ 4.

The number

q := λ2

will be crucial in the rest of the paper. The following lemma determines q up to its 
inverse.

Proposition 1.7. One of the two complex numbers {q, q−1} is equal to

−1 + d0,0t−
√

(1 − d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t +
√

(1 − d0,0t)2 − 4d1,−1d−1,1t2
. (1.3)

Proof. Using the explicit formulas for x(s) and y(s), we get

lim
s→0

x(s)
y(s) =

λα2(t)
√
β3(t)2 − 4β2(t)β4(t)

β2(t)
√
α3(t)2 − 4α2(t)α4(t)

and

lim
s→0

x(1/s)
y(1/s) =

α2(t)
√
β3(t)2 − 4β2(t)β4(t)

λβ2(t)
√

α3(t)2 − 4α2(t)α4(t)
.

But, x(1/s) = x(s) . So, the above two limits imply the following:
y(1/s) y(ι̃1(s))
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lim
s→0

y(ι̃1(s))
y(s) = q.

Now, let us note that y(s), y(ι̃1(s)) equals to

−x + d0,0xt + d1,0x
2t±

√
(x− d0,0xt− d1,0x2t)2 − 4d1,−1x2t2(d−1,1 + d0,1x + d1,1x2)
−2d−1,1t− 2d0,1xt− 2d1,1x2t

,

with the shorthand notation x = x(s). Since x(s) tends to 0 when s goes to 0, we obtain 
the result. �
Remark 1.8. One of the referees remarked that for the special case d0,0 = 0, and d1,−1 =
d−1,1 = d, the inverse of (1.3) becomes

−1 +
√

1 − 4d2t2

−1 −
√

1 − 4d2t2
= 1 −

√
1 − 4d2t2

1 +
√

1 − 4d2t2
= (1 −

√
1 − 4d2t2)2

4d2t2
= 1 −

√
1 − 4d2t2

2d2t2
− 1.

This expression is very similar to the generating series 1−
√

1−4x
2x of the Catalan numbers. 

Regrettably, we do not have, in general, a combinatorial interpretation of q.

Remark 1.9. The uniformization is not unique. More precisely, the possible uniformiza-
tions are of the form φ ◦ h, where h is an homography. However, if one requires that h
fixes setwise 0, ∞ then q is uniquely defined up to its inverse.

The real q or q−1 specializes for t = 1 to the real ρ2 in [14, Page 178]. In [14, (7.2.18) 
and Proposition 7.2.3] it is proved that the ratio of the argument of ρ by π is related to 
the angle between the tangent lines to the curve E1, the kernel curve at t = 1, and the 
horizontal axis. This relation is obtained by a degeneracy argument from the genus 1 case 
to the genus 0 case. More precisely, let ω3 be the period attached to the automorphism 
of the model of the walk in an elliptic lattice Zω1 +Zω2 corresponding the elliptic kernel 
curve and where ω2 is a real period. Then, arg(ρ)π is obtained by degeneracy of the fraction 
ω3
ω2

from the genus 1 to the genus 0 case. It is not completely obvious if these arguments 
pass to the situation where t varies. In the zero drift situation, this has been done in [15]. 
In the general situation, it might be interesting to compute the rotation number ω3(t)

ω2(t)
of the real elliptic fibration ([12, Page 82]) and to study its degeneracy. One could then 
expect that the ratio of the argument of q by 2π is counting the number of rotations of 
the curve around the origin induced by the action of the automorphism of the model of 
the walk.

Corollary 1.10. We have q ∈ R \ {±1}.

Proof. We first claim that (1 − d0,0t)2 − 4d1,−1d−1,1t
2 > 0. We know that the di,j

are ≥ 0, that the sum of the di,j is equal to 1 and that the model is not included 
in {(0, 0), (1, −1), (−1, 1)}. Therefore, we have 1 > d0,0 + d1,−1 + d−1,1, i.e., 1 − d0,0 >
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d1,−1+d−1,1. Since t ∈]0, 1[, we have 1 −d0,0t > 1 −d0,0. Thus, (1 −d0,0t)2 > (1 −d0,0)2 >

(d1,−1 + d−1,1)2 and, hence,

(1 − d0,0t)2 − 4d1,−1d−1,1t
2 > (d1,−1 + d−1,1)2 − 4d1,−1d−1,1t

2

≥ (d1,−1 + d−1,1)2 − 4d1,−1d−1,1 = (d1,−1 − d−1,1)2 ≥ 0.

This proves our claim.
Now Proposition 1.7 implies that q is a real number �= 1. Moreover, it also shows that 

q = −1 if and only if −1 + d0,0t = 0. But this is excluded because 1 > d0,0t. �
In particular, this implies that the birational maps σ and σ̃ have infinite order (see 

also [5,15]). It follows that the group associated with these models of walks, namely the 
group 〈i1, i2〉 generated by i1 and i2, has infinite order (because σ is induced on Et by 
i1 ◦ i2, so if σ has infinite order then 〈i1, i2〉 has infinite order as well). Note that in 
[5], this was proved using a valuation argument. Using the valuation of the successive 
elements (i1 ◦ i2)�(f) for � ∈ Z and f ∈ Q(x, y), it was proved that i1 ◦ i2 could not 
be of finite order. Initially, the group of the weighted model was defined as a group of 
birational transformations of C2, generated by two involutions. This is the group studied 
in [5]. It is a finite group if and only if the automorphism of the weighted model σ is of 
finite order.

2. Analytic continuation and differential transcendence criteria

The aim of this section is to give differential transcendence criteria adapted to the 
study of the generating series of the weighted models arising from (S). Let us describe our 
strategy. In Lemma 1.1, we defined the auxiliary series F 1(x, t) := −K(x, 0, t)Q(x, 0, t), 
F 2(y, t) := −K(0, y, t)Q(0, y, t). Since it is obvious that Q(x, y, t) converges for |x| <
1, |y| < 1, |t| < 1, we have the same conclusion for these former series as well. Using the 
parameterization φ = (x, y) : P 1(C) → Et given in the previous section, we can pull 
back these functions to functions

F̃ 1(s) = F 1(x(s), t) and F̃ 2(s) = F 2(y(s), t)

analytic in a neighborhood of 0 in P 1(C). Using the functional equation (1.1), we will 
prove that F̃ 1(s) and F̃ 2(s) each satisfy very simple q-difference equations

F̃ 1(qs) − F̃ 1(s) = b̃1(s), F̃ 2(qs) − F̃ 2(s) = b̃2(s),

for suitable b̃1, b̃2 ∈ C(s). This implies in particular that F̃ 1(s) and F̃ 2(s) can be contin-
ued into meromorphic functions on all of C. A result of Ishizaki, see [19], implies that if 
either F̃ 1(s) or F̃ 2(s) are s-differentially algebraic then they must be in C(s) and results 
from the theory of linear q-difference equations allow us to detect this via the partial 
fraction decomposition of b̃1 and b̃2. In addition, we will show that F̃ 1(s) (resp. F̃ 2(s)) 
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is s-differentially algebraic if and only if Q(x, 0, t) (resp. Q(0, y, t)) is x-differentially al-
gebraic (resp. y-differentially algebraic). We will therefore be able to reduce the question 
of whether Q(x, 0, t) (resp. Q(0, y, t)) is x-differentially algebraic (resp. y-differentially 
algebraic) to seeing if the above mentioned conditions on the partial fraction decompo-
sition of b̃1 and b̃2 hold. This will be done in Section 3 where we will see that the latter 
conditions never hold. We now turn to supplying the details of this brief sketch.

In this section, we continue to assume that Assumption 1.3 holds true.

2.1. Functional equation

We let φ = (x, y) : P 1(C) → Et be the parameterization of Et given in Proposition 1.5. 
Straightforward calculations show that

• φ(0) = φ(∞) = ([0 : 1], [0 : 1]);
• x(ι̃1(s)) = x(s) where ι̃1(s) = 1

s ;
• y(ι̃2(s)) = y(s) where ι̃2(s) = q

s = λ2

s ;
• σ̃(s) = qs where σ̃ = ι̃2 ◦ ι̃1.

In particular, we have that ι̃k ◦ φ = φ ◦ ιk and σ̃ ◦ φ = φ ◦ σ which will allow the 
following computations.

Recall the functional equation (1.1):

K(x, y, t)Q(x, y, t) = xy − F 1(x, t) − F 2(y, t) + td−1,−1Q(0, 0, t).

This equation is a formal identity but for |x| < 1 and |y| < 1, the series Q(x, y, t), 
F 1(x, t) and F 2(y, t) are convergent. Using our parameterization of Et, we will show how 
we can pull back these convergent series and analytically continue them to meromorphic 
functions on C satisfying simple q-difference equations.

The set V = {([x : 1], [y : 1]) ∈ Et | |x|, |y| < 1} is an open neighborhood of 
([0 : 1], [0 : 1]) in Et for the analytic topology, and, for all (x, y) ∈ V , we have

0 = xy − F 1(x, t) − F 2(y, t) + td−1,−1Q(0, 0, t). (2.1)

Since φ(0) = φ(∞) = ([0 : 1], [0 : 1]), there exists U ⊂ P 1(C) which is the union of 
two small open discs centered at 0 and ∞ such that φ(U) ⊂ V .

For any s ∈ U , we set F̆ 1(s) = F 1(x(s), t) and F̆ 2(s) = F 2(y(s), t). Then, F̆ 1 and F̆ 2

are meromorphic functions over U and (2.1) yields, for all s ∈ U ,

0 = x(s)y(s) − F̆ 1(s) − F̆ 2(s) + td−1,−1Q(0, 0, t). (2.2)

Replacing s by ι̃2(s) in (2.2), we obtain, for all s close to 0 or ∞, (in what follows, we 
use x(ι̃1(s)) = x(s), y(ι̃2(s)) = y(s), F̆ 1(ι̃1(s)) = F̆ 1(s) and F̆ 2(ι̃2(s)) = F̆ 2(s))
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0 = x(ι̃2(s))y(ι̃2(s)) − F̆ 1(ι̃2(s)) − F̆ 2(ι̃2(s)) + td−1,−1Q(0, 0, t)

= x(ι̃1(ι̃2(s)))y(s) − F̆ 1(ι̃1(ι̃2(s))) − F̆ 2(s) + td−1,−1Q(0, 0, t)

= x(q−1s)y(s) − F̆ 1(q−1s) − F̆ 2(s) + td−1,−1Q(0, 0, t). (2.3)

Subtracting (2.2) from (2.3), and then replacing s by qs, we obtain, for all s close to 0
or ∞,

F̆ 1(qs) − F̆ 1(s) = (x(qs) − x(s))y(qs). (2.4)

Remark 2.1. If we set t = 1 and replace F̆ 1 by −F̆ 1

K(0,y,t) , then a similar argument leads to 
another functional equation which is the one given in [14, Theorem 6.4.1].

Similarly, replacing s by ι̃1(s) in (2.2), we obtain, for all s close to 0 or ∞,

0 = x(ι̃1(s))y(ι̃1(s)) − F̆ 1(ι̃1(s)) − F̆ 2(ι̃1(s)) + td−1,−1Q(0, 0, t)

= x(s)y(ι̃2(ι̃1(s))) − F̆ 1(s) − F̆ 2(ι̃2(ι̃1(s))) + td−1,−1Q(0, 0, t)

= x(s)y(qs) − F̆ 1(s) − F̆ 2(qs) + td−1,−1Q(0, 0, t). (2.5)

Subtracting (2.5) from (2.2), we obtain, for all s close to 0 or ∞,

F̆ 2(qs) − F̆ 2(s) = x(s)(y(qs) − y(s)). (2.6)

We let F̃ 1 and F̃ 2 be the restrictions of F̆ 1 and F̆ 2 to a small disc around 0. They 
satisfy the functional equations (2.4) and (2.6) for s close to 0. Since |q| /∈ {0, 1}, this 
implies that each of the functions F̃ 1 and F̃ 2 can be continued to a meromorphic function 
on C with (2.4) satisfied for all s ∈ C. Note that there is a priori no reason why, in the 
neighborhood of ∞, these functions should coincide with the original functions F̆ 1 and 
F̆ 2.

2.2. Application to differential transcendence

In this subsection, we derive differential transcendency criteria for x �→ Q(x, 0, t) and 
y �→ Q(0, y, t). They are based on the fact that the related functions F̃ 1 and F̃ 2 satisfy 
difference equations.

Definition 2.2. Let (E, δ) ⊂ (F, δ) be differential fields, that is, fields equipped with a 
map δ that satisfies δ(a + b) = δ(a) + δ(b) and δ(ab) = aδ(b) + δ(a)b. We say that 
f ∈ F is differentially algebraic over E if it satisfies a non trivial algebraic differential 
equation with coefficients in E, i.e., if for some m there exists a nonzero polynomial 
P (y0, . . . , ym) ∈ E[y0, . . . , ym] such that

P (f, δ(f), . . . , δm(f)) = 0.
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We say that f is holonomic over E if in addition, the polynomial is linear. We say that 
f is differentially transcendental over E if it is not differentially algebraic.

Proposition 2.3. The series x �→ Q(x, 0, t) is differentially algebraic over (C(x), d
dx ) if 

and only if F̃ 1 is differentially algebraic over (C(s), dds ). The series y �→ Q(0, y, t) is 
differentially algebraic over (C(y), ddy ) if and only if F̃ 2 is differentially algebraic over 
(C(s), dds ).

Proof. This follows from Lemmas 6.3 and 6.4 of [10], since we go from x �→ Q(x, 0, t) to 
F̃ 1 by a variable change which is algebraic (and therefore differentially algebraic). The 
proof for F̃ 2 is similar. �

Consequently, we only need to study F̃ 1 and F̃ 2. Recall that they belong to the field 
Mer(C) of meromorphic functions on C. Using a result due to Ishizaki [19, Theorem 
1.2] (see also [18, Proposition 3.5], where a Galoisian proof of Ishizaki’s result is given), 
we get, for any i ∈ {1, 2}, the following dichotomy5:

• either F̃ i ∈ C(s), or
• F̃ i is differentially transcendental over C(s).

Remark 2.4. 1. Note that the fact that F̃ i is meromorphic on C is essential. For instance, 
if q > 1, the Theta function θq(s) =

∑
n∈Z q−n(n−1)/2sn is meromorphic on C∗, is not 

rational and is differentially algebraic as it is shown for instance in [18, Corollary 3.4].
2. Combining Ishizaki’s dichotomy with the result of Mishna and Rechnitzer [23], and 

the result of Melczer and Mishna [22], on the non holonomy of the complete generating 
series of the unweighted genus zero walks, one finds that these complete generating series 
are differentially transcendental, thus proving directly Theorem 3.1 in the five unweighted 
cases.

So, we need to understand when F̃ i ∈ C(s). We set

b̃1(s) = y(qs)(x(qs) − x(s)) and b̃2(s) = x(s)(y(qs) − y(s)),

so that the functional equations (2.4) and (2.6) can be restated as

F̃ 1(qs) − F̃ 1(s) = b̃1(s) and F̃ 2(qs) − F̃ 2(s) = b̃2(s) (2.7)

for s ∈ C.

5 Ishizaki’s proof of his result proceeds by comparing behavior at various poles and uses growth results 
from Wiman-Valiron Theory. The approach of [18] avoids the growth considerations and is more algebraic. 
A slightly weaker result, in the spirit of the considerations of [10], would suffice to establish this dichotomy, 
see [18, Corollary 3.2, Proposition 6.4] or [17].
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Lemma 2.5. For any i ∈ {1, 2}, the following facts are equivalent:

• F̃ i ∈ C(s);
• there exists fi ∈ C(s) such that b̃i(s) = fi(qs) − fi(s).

Proof. If F̃ i ∈ C(s) then (2.7) shows that b̃i(s) = fi(qs) − fi(s) with fi = F̃ i ∈ C(s). 
Conversely, assume that there exists fi ∈ C(s) such that ̃bi(s) = fi(qs) −fi(s). Using (2.7)
again, we find that (F̃ i−fi)(s) = (F̃ i−fi)(qs). Since the function F̃ i−fi is meromorphic 
over C, we may expand it as a Laurent series at s = 0: F̃ i − fi =

∑
�≥�0

a�s
�. We then 

have 
∑

�≥�0
a�s

� =
∑

�≥�0
a�q

�s� and since q is not a root of unity, F̃ i − fi ∈ C. This 
ensures that F̃ i ∈ C(s). �
Remark 2.6. In [4], the authors introduce the notion of decoupling functions, that is 
of functions F (x) ∈ Q(x, t) and G(y) ∈ Q(y, t) such that xy = F (x) + G(y) for x, y
satisfying K(x, y, t) = 0. It is easily seen that if F and G are decoupling functions, one 
has

ι2(xy) − xy = ι2(F (x)) − F (x) and ι1(xy) − xy = ι1(G(y)) −G(y),

when K(x, y, t) = 0. In our genus zero situation, composing the former identities with 
the uniformization yields b̃i(s) = fi(qs) − fi(s) where f1(s) = F (x(s)) ∈ C(s) and 
f2(s) = G(y(s)) ∈ C(s). Then, Lemma 2.5 is essentially the same kind of results as [4, 
Lemma 2] but in the easier framework of a genus zero kernel curve.

The following lemma is a consequence of the functional equation satisfied by F̃ 1, F̃ 2. 
See [14, Corollary 3.2.5], or [10, Proposition 3.10], for similar results in the genus one 
case.

Lemma 2.7. The following properties are equivalent:

• F̃ 1 ∈ C(s);
• F̃ 2 ∈ C(s).

Proof. Assume that F̃ 1 ∈ C(s). Lemma 2.5 states that there exists f1 ∈ C(s) such 
that b̃1(s) = f1(qs) − f1(s). Note that b̃1(s) + b̃2(s) = (xy)(qs) − (xy)(s), so that we 
have b̃2(s) = f2(qs) − f2(s), with xy(s) − f1(s) = f2(s) ∈ C(s). Lemma 2.5 implies that 
F̃ 2 ∈ C(s). The converse is proved in a similar way. �
Theorem 2.8. The following properties are equivalent:

(1) The series Q(x, 0, t) is differentially algebraic over C(x);
(2) The series Q(x, 0, t) is algebraic over C(x);
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(3) The series Q(0, y, t) is differentially algebraic over C(y);
(4) The series Q(0, y, t) is algebraic over C(y);
(5) There exists f1 ∈ C(s) such that b̃1(s) = f1(qs) − f1(s);
(6) There exists f2 ∈ C(s) such that b̃2(s) = f2(qs) − f2(s).

Proof. Assume that (1) holds true. Proposition 2.3 implies that F̃ 1 is differentially al-
gebraic over C(s). Ishizaki’s Theorem ensures that F̃ 1 ∈ C(s). But x : P 1(C) → P 1(C)
is locally (for the analytic topology) invertible at all but finitely many points of P 1(C)
and the corresponding local inverses are algebraic over C(x). It follows that F 1(·, t) can 
be expressed as a rational expression, with coefficients in C, of an algebraic function, 
and, hence, is algebraic over C(x). Hence (2) is satisfied. The fact that (2) implies (1) 
is obvious. The fact that (3) is equivalent to (4) can be shown in a similar manner to 
the equivalence of (1) and (2). The fact that (1) to (4) are equivalent now follows from 
Lemma 2.7 combined with [19, Theorem 1.2]. The remaining equivalences follow from 
Lemma 2.5. �

So, to decide whether Q(x, 0, t), Q(0, y, t) are differentially transcendental, we are led 
to the following problem:

Given b ∈ C(s), decide whether there exists f ∈ C(s) such that b(s) = f(qs) − f(s).
When such an f exists, we say that b is q-summable in C(s). This problem is known 

as a q-summation problem and has been solved by Abramov [1]. This procedure was 
recast in [8] in terms of the so-called q-residues of b, which we now define.

We begin by defining the q-orbit of β ∈ C∗ to be βqZ = {β · qi | i ∈ Z}. Given a 
rational function b(s) ∈ C(s) we may rewrite its partial fraction decomposition uniquely 
as

b(s) = c + sp1 + p2

sr
+

m∑
i=1

ni∑
j=1

ri,j∑
�=0

αi,j,�

(s− q� · βi)j
, (2.8)

where c ∈ C, p1, p2 ∈ C[s], m, ni ∈ Z≥0 are nonzero, r, ri,j ∈ Z≥0, αi,j,�, βi ∈ C and the 
βi’s are nonzero and in distinct q-orbits.

Definition 2.9 (Cf. [8, Definition 2.7]). Let b ∈ C(s) be of the form (2.8). The sum

ri,j∑
�=0

q−�·jαi,j,�

is called the q-residue of b at the q-orbit of βi of multiplicity j (this is called the q-discrete 
residue in [8]) and is denoted by qres(b, βi, j). In addition, we call the constant c the
q-residue of b at infinity and denote it by qres(b, ∞).
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Example 2.10. Let q = 2 and

b(s) = 1 + s + s + 2
s2 + 3

(s− 1)2 − 12
(s− 2)2 + 1

s− 5 .

We have qres(b, ∞) = 1, qres(b, 1, 2) = 20 · 3 + 2−1·2(−12) = 0, and qres(b, 5, 1) = 1. All 
other q-residues are 0.

One has the following criterion for q-summability.

Proposition 2.11 (Cf. [8, Proposition 2.10]). Let b = f/g ∈ C(x) be such that f, g ∈
C[x] with gcd(f, g) = 1. Then b is q-summable in C(s) if and only if the q-residues 
qres(b, ∞) = 0 and qres(b, β, j) = 0 for any multiplicity j and any β �= 0 with g(β) =
0, g(q�β) �= 0 for every � < 0.

Applying this criteria to the above example we see that b is not q-summable because 
qres(b, ∞) �= 0 as well as qres(b, 5, 1) �= 0. In fact, whenever an element b ∈ C(x) has a 
pole of order m ≥ 1 at a point β and no other pole of order ≥ m in the q-orbit of β, then 
a q-residue of multiplicity m will be nonzero. We therefore have the following corollary 
(also a consequence of results in [1]) which plays a crucial role in the next section.

Corollary 2.12. If β ∈ C∗ is a pole of b ∈ C(x) of order m ≥ 1 and if b has no other pole 
of order ≥ m in the q-orbit of β, then b is not q-summable, i.e., there is no f(s) ∈ C(s)
such that b(s) = f(qs) − f(s).

Using the parameterization φ : P 1(C) → Et, we can translate this to give a criterion 
for the differential transcendence of x �→ Q(x, 0, t) and y �→ Q(0, y, t) over C(x) and 
C(y) respectively. We set (see Section 1 for notations)

b1 = ι1(y)(ι2(x) − x) and b2 = x(ι1(y) − y),

so that we have

b̃1 = b1 ◦ φ and b̃2 = b2 ◦ φ.

Proposition 2.13. We suppose that Assumption 1.3 holds and recall that |q| �= 1. Let 
b ∈ C(x, y) be a rational function on Et. Assume that P ∈ Et \ {Ω} is a pole of b of 
order m ≥ 1 such that none of the σi(P ) with i ∈ Z\{0} is a pole of b of order ≥ m, 
then

b = σ(g) − g

has no solution g ∈ C(x, y) which restricts to a rational function on Et.
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In particular, if b2 = x(ι1(y) − y) satisfies this condition, then x �→ Q(x, 0, t), (resp. 
y �→ Q(0, y, t)) is differentially transcendental over C(x) (resp. differentially transcen-
dental over C(y)).

Proof. We know that the parameterization φ = (x, y) : P 1(C) → Et that we have 
constructed, induces an isomorphism between P 1(C) \ {0, ∞} and Et \ {Ω}. If s0 ∈
P 1(C) \{0, ∞} is such that φ(s0) = P , then s0 is a pole of order m ≥ 1 of b ◦φ such that 
none of the σ̃i(s0) = qis with i ∈ Z\{0} is a pole of b ◦ φ of order ≥ m. If g ∈ C(x, y)
restricts to a rational function on Et and satisfies b = σ(g) − g, then f = g ◦ φ would 
satisfy b(s) = f(qs) − f(s) contradicting Lemma 2.12.

If b2 = x(ι1(y) − y) satisfies the condition of the Proposition, then b2 = σ(g) − g has 
no solution g that is a rational function on Et. Pulling this back to P 1(C), we see that 
for b̃2(s) = b2 ◦ φ(s) = x(s)(y(1/s) − y(s)), the equation b̃2(s) = f(qs) − f(s) has no 
solution in C(s). Theorem 2.8 yields our conclusion. �

Finally we note that given a fixed family of probabilities (di,j), the algorithms [1,8]
permit us to decide if the generating series is differentially algebraic or not. In Section 3, 
we will prove an unconditional statement, that is, for every set of probabilities di,j, the 
generating series is differentially transcendental. Note that this kind of result may a priori 
not be obtained via the above mentioned algorithms, since the generating series depends 
on parameters (the probabilities di,j) and it is not clear how to make the algorithms give 
information about arbitrary specializations of the parameters.

3. Differential transcendence: main result

In this section, we will prove the main result of this paper:

Theorem 3.1. We suppose that Assumption 1.3 is satisfied. Then, the functions x �→
Q(x, 0, t) and y �→ Q(0, y, t) are differentially transcendental over C(x) and C(y) respec-
tively.

Remark 3.2. (i) Models of walks in three dimensions in the octant have been recently 
studied. In [2,11], the authors study such unweighted models having at most six steps. 
Among the non trivial 35548 models, 527 are equivalent to weighted models of walks 
in the quarter plane, in the sense of [2, Definition 2] and Assumption 1.3 is satisfied 
for 69 such models, see [11, Section 3]. For these models of two dimensional walks our 
results apply. For example, in [11], the authors prove that one of the three dimensional 
unweighted models of a walk in the octant is equivalent to the following weighted model 
of a two dimensional walk of genus zero:



20 T. Dreyfus et al. / Journal of Combinatorial Theory, Series A 174 (2020) 105251
(ii) Combining Theorem 3.1 with Remark 2.6, we have proved that in the genus zero 
situation there are no decoupling functions.

The proof of Theorem 3.1 will be given at the very end of this section. Our strategy 
will be to use Proposition 2.13. So, we begin by collecting information concerning the 
poles of b2 = x(ι1(y) − y).

3.1. Preliminary results concerning the poles of b2

We write

b2 = x(ι1(y) − y)

in the projective coordinates ([x0, x1], [y0, y1]) with x = x0
x1

and y = y0
y1

. We note that 
Ω = ([0 : 1], [0 : 1]) is not a pole of b2. Since we want to compute the poles of b2, it is 
natural to start with the poles of xy. Therefore let us focus our attention on the points 
([x0 : x1], [y0 : y1]) of Et corresponding to the equation x1y1 = 0, namely:

P1 = ([1 : 0], [β0 : β1]),P2 = ι1(P1) = ([1 : 0], [β′
0 : β′

1]),

Q1 = ([α0 : α1], [1 : 0]),Q2 = ι2(Q1) = ([α′
0 : α′

1], [1 : 0]).

Since P1, P2 ∈ Et, to compute [β0 : β1] and [β′
0 : β′

1], we have to solve K(1, 0, y0, y1, t) = 0. 
We then find that [β0 : β1] and [β′

0 : β′
1] are the roots in P 1(C) of the homogeneous 

polynomial in y0 and y1 given by

d1,−1y
2
1 + d1,0y0y1 + d1,1y

2
0 = 0.

Similarly, the x-coordinates [α0 : α1] and [α′
0 : α′

1] of Q1 and Q2 are the roots in P 1(C)
of the homogeneous polynomial in x0 and x1 given by

d−1,1x
2
1 + d0,1x0x1 + d1,1x

2
0 = 0.

Although the following Lemma already appears in [10, Lemma 4.11], we give its proof 
to be self-contained.

Lemma 3.3. The set of poles of b1 = ι1(y) (σ(x) − x) in Et is contained in

S1 = {ι1(Q1), ι1(Q2), P1, P2, σ
−1(P1), σ−1(P2)}.

Similarly, the set of poles of b2 = x(ι1(y) − y) in Et is contained in

S2 = {P1, P2, Q1, Q2, ι1(Q1), ι1(Q2)} = {P1, P2, Q1, Q2, σ
−1(Q1), σ−1(Q2)}.
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Moreover, we have

(b2)2 =
x2

0Δx
[x0:x1]

x2
1(
∑2

i=0 x
i
0x

2−i
1 tdi−1,1)2

. (3.1)

Proof. The proofs of the assertions about the location of the poles of b1 and b2 are 
straightforward. Let us prove (3.1). By definition, the y coordinates of ι1(y0

y1
) and y0

y1
are 

the two roots of the polynomial y �→ K(x0, x1, y, t). The square of their difference equals 
to the discriminant divided by the square of the leading term, that is,(

ι1(
y0

y1
) − y0

y1

)2

=
Δx

[x0:x1]

(
∑

i x
i
0x

2−i
1 tdi−1,1)2

.

Therefore, we find

b2

(
x0

x1
,
y0

y1

)2

=
x2

0Δx
[x0:x1]

x2
1(
∑

i x
i
0x

2−i
1 tdi−1,1)2

. �
To apply Proposition 2.13 we now need to separate the orbits. Let us begin with P1

and P2 (resp. Q1 and Q2). In what follows, we will use the equivalent relation ∼ on Et

defined, for P, Q ∈ Et, by

P ∼ Q ⇔ ∃� ∈ Z, σ�(P ) = Q.

Proposition 3.4. If P1 �= P2, then one of the following properties holds:

• P1 � P2;
• d0,1 = d1,1 = 0.

If Q1 �= Q2, then one of the following properties holds:

• Q1 � Q2;
• d1,0 = d1,1 = 0.

Proof. We only prove the statement for the Pi, the proof for the Qj being similar. Let 
p1, p2 ∈ C∗ be such that φ(p1) = P1 and φ(p2) = P2. Recall that Proposition 1.5 ensures 
that

α2 = 1 − 2td0,0 + t2d2
0,0 − 4t2d−1,1d1,−1

α3 = 2t2d1,0d0,0 − 2td1,0 − 4t2d0,1d1,−1
α4 = t2(d2

1,0 − 4d1,1d1,−1)

and that, according to Proposition 1.7, one of the two complex numbers q or q−1 is equal 
to
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−1 + d0,0t−
√

(1 − d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t +
√

(1 − d0,0t)2 − 4d1,−1d−1,1t2
.

The explicit formula for φ given in Proposition 1.5 shows that p1 and p2 are the roots of

−
√

α2
3 − 4α2α4X

2 + 2α3X −
√

α2
3 − 4α2α4 = 0.

So, we have (for suitable choices of the complex square roots6)

p1 =
−α3 − 2√α2α4

−
√

α2
3 − 4α2α4

and p2 =
−α3 + 2√α2α4

−
√
α2

3 − 4α2α4
.

Assume that P1 ∼ P2. Then, there exists � ∈ Z∗ such that p1
p2

= q� (� �= 0 because 
P1 �= P2). Using the above formulas for p1, p2 and q and replacing � by −� if necessary, 
this can be rewritten as:

−α3 − 2√α2α4

−α3 + 2√α2α4
=

(
−1 + d0,0t−

√
(1 − d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t +
√

(1 − d0,0t)2 − 4d1,−1d−1,1t2

)�

. (3.2)

Recall that t is transcendental. We shall treat t as a variable and both sides of (3.2) as 
functions of the variable t, algebraic over Q(t). Formula (3.2) shows that these algebraic 
functions coincide at some transcendental number, therefore they are equal.

We now consider these algebraic functions near 0 (we choose an arbitrary branch) and 
will derive a contradiction by proving that they have different behaviors at 0.

If d1,1 �= 0, then, considering the Taylor expansions at 0 in (3.2), we obtain, up to 
replacing � by −� if necessary:

d1,0 − Δ1

d1,0 + Δ1
+ O(t) =

(
1
t2

(
1

d1,−1d−1,1
+ O(1/t)

))�

where Δ1 is some square root of d2
1,0 − 4d1,1d1,−1, and d1,0 −Δ1 and d1,0 + Δ1 are not 0

because d1,1 �= 0 (note that, by Assumption 1.3, we have d1,−1d−1,1 �= 0). This equality 
is impossible.

If d1,1 = 0, then (3.2) gives

t
d0,1d1,−1

d1,0
+ O(t2) =

(
1
t2

(
1

d1,−1d−1,1
+ O(1/t)

))�

(note that we have d1,0 �= 0 because P1 �= P2). This implies d0,1 = 0 and concludes the 
proof. �
6 Since pi is chosen so that φ(pi) = Pi, we need to take the square roots consistent with this selection.
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Proposition 3.5. Assume that d1,1 �= 0. Then, for any i, j ∈ {1, 2}, we have Pi � Qj.

Proof. Let pi, qj ∈ C∗ be such that φ(pi) = Pi and φ(qj) = Qj . As seen at the beginning 
of the proof of Proposition 3.4, we have (for suitable choices of the square roots)

pi =
−α3 − 2√α2α4

−
√

α2
3 − 4α2α4

.

Similarly, we have (for suitable choices of the square roots)

qj = λ
−β3 − 2

√
β2β4

−
√

β2
3 − 4β2β4

.

Suppose to the contrary that Pi ∼ Qj . The condition d1,1 �= 0 yields that Pi �= Qj . 
Then, there exists � ∈ Z∗ such that pi

qj
= q�. Using the above formulas for pi and qj , 

using Proposition 1.7 and replacing � by −� if necessary, this can be rewritten as:

α3 + 2√α2α4√
α2

3 − 4α2α4

√
β2

3 − 4β2β4

β3 + 2
√
β2β4

=
(
−1 + d0,0t−

√
(1 − d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t +
√

(1 − d0,0t)2 − 4d1,−1d−1,1t2

)�+ 1
2

.

(3.3)
As in the proof of Proposition 3.4, we can treat t as a variable and both sides of (3.3)
as functions of the variable t algebraic over Q(t), the above equality shows that they 
coincide, and we shall now consider these algebraic functions near 0 (we choose an 
arbitrary branch). Considering the Taylor expansions at 0 in (3.3), we obtain:

−d1,0 − Δ1√
d2
1,0 − Δ1

2

√
d2
0,1 − Δ2

2

−d0,1 − Δ2
+ O(t) =

(
1
t2

(
1

d1,−1d−1,1
+ O(t)

))�+ 1
2

where Δ1 and Δ2 are suitable square roots of d2
1,0 − 4d1,1d1,−1 and d2

0,1 − 4d1,1d−1,1

respectively, and none of the numbers −d1,0−Δ1, 
√

d2
1,0 − Δ1

2, 
√
d2
0,1 − Δ2

2, −d0,1−Δ2
2

is zero because d1,1 �= 0. This equality is impossible. �
3.2. Proof of Theorem 3.1

We shall use the criteria of Proposition 2.13 applied to b2. From the expression of a3

and a4 given in Section 1, we may deduce that a3 �= a4 and therefore Δx
[x0:x1] seen as a 

function on P 1(C) has at most a simple zero at P1 and P2. With (3.1) we find that P1

and P2 are poles of b2.
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If d1,1 = d1,0 = 0 (and d0,1 �= 0 by Assumption 1.3), then a direct calculation shows 
that the polar divisor of b2

7 on Et is 3P1 + Q2 + ι1(Q2) where

• P1 = P2 = Q1 = ([1 : 0], [1 : 0]),
• Q2 = ([−d−1,1 : d0,1], [1 : 0]),
• ι1(Q2) = ([−d−1,1 : d0,1], [−td1,−1d−1,1 : d0,1(1 − td0,0)]) �= Q2.

The result is now a direct consequence of Proposition 2.13 because P1 is a pole of order 
three of b2, and all the other poles of b2 have order 1.

The case d1,1 = d0,1 = 0 is similar.
Assume that d1,1 = 0 and d1,0d0,1 �= 0. In this case, we have

• P1 = Q1 = ([1 : 0], [1 : 0]),
• P2 = ι1(Q1) = ([1 : 0], [−d1,−1 : d1,0]),
• Q2 = ([−d−1,1 : d0,1], [1 : 0]),
• ι1(Q2) = ([−d−1,1 : d0,1], [−td1,−1d−1,1 : d0,1(1 − td0,0) + td1,0d−1,1]).

Note that these four points are two by two distinct (since d0,1 �= 0 and t is transcendental, 
the quantity d0,1(1 − td0,0) + td1,0d−1,1 does not vanish). A direct computation shows 
that the polar divisor of b2 on Et is 2P1 + 2P2 + Q2 + ι1(Q2). Proposition 3.4 ensures 
that P1 � P2. So, P = P1 or P2 is such that none of the σi(P ) with i ∈ Z\{0} is a pole 
of order ≥ 2 of b2. The result is now a consequence of Proposition 2.13.

Last, assume that d1,1 �= 0. Then, combining Proposition 3.4 and Proposition 3.5, and 
using the fact that the set of poles of b2 is included in {P1, P2, Q1, Q2, σ−1(Q1), σ−1(Q2)}, 
we get that P1 is such that none of the σi(P1) with i ∈ Z\{0} is a pole of b2. The result 
is now a consequence of Proposition 2.13.
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