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Abstract

We give another proof of a result of Adamczewski and Bell [1] concerning Mahler equations:
A formal power series satisfying a p- and a g-Mahler equation over C(x) with multiplicatively
independent positive integers p and ¢ is a rational function. The proof presented here is self-
contained and essentially a compilation of proofs contained in a recent preprint [9] of the authors.
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We consider two Mahler operators, i.e. two endomorphisms ¢, j = 1,2, on the field K = C|[[z]][z 7]
of formal Laurent series with complex coefficients defined by o1 (f(z)) = f(2?), oo(f(z)) = f(x9)
for any f(x) € K where p and ¢ are positive integers. Observe that o; and o5 commute, i.e. 0105 =
o901. We consider the field C(z) of rational functions with complex coefficients as a subfield of K,
the inclusion given by the expansion in a Laurent series at the origin. We want to prove the following
theorem

Theorem 1. Assume that p and q are multiplicatively independent, i.e. there are no nonzero integers
n; such that "> = p™. Suppose that the formal series f(x) € K satisfies a system of two Mahler
equations

Si(f(x) = 07" (f(@)) + bjm, 1 ()07 (f(@) + A Do) fl@) =0, j=1,2 (D)

with b ;(x) € C(x).
Then f(x) is rational.

Remark: 1. This Theorem was recently proved by Adamczewski and Bell in [1]. Their tools include
a local-global principle to reduce the problem to a similar problem over finite fields, Chebotarev’s
Density Theorem, Cobham’s Theorem and some asymptotics - all very different from the techniques
used in the present work.

2. [1] also provides background information about Mahler equations, in particular historical, many
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references to the literature and explains the relation to Cobham’s theorem in the theory of finite state
machines. The fact that the generating functions of p-regular (and thus of p-automatic sequences)
satisfy p-Mabhler equations is shown in [3].

3. The subsequent proof is essentially a compilation of work contained in our recent preprint [9], see
Corollary 15, part 3, and Proposition 19. The preprint presents a unified reduction theory of consistent
pairs of first order systems of linear differential, difference, ¢g-difference or Mahler equations like the
one of Proposition 3 below and uses it to deduce numerous statements on common solutions of two
scalar linear differential, difference, g-difference or Mahler equations.

Proof. We may assume without loss of generality that b, o(x) # 0, j = 1, 2. This follows from

Lemma 2. Consider wy(z),...,we(x) € K and a positive integer m. Then these series are C(x)-
linearly dependent if and only if wq(z™), ..., we(x™) are.

Proof. We only prove the nontrivial implication. Suppose that w; (™), ..., w,(z"™) are C(z)-linearly
dependent, which means that there exist a;, € C(z), k = 1, ..., £, not all zero, such that

ar(x)wi (™) + ... + ap(z)w,(z™) = 0.

Now we can uniquely write ay(z) = Z;”:_Ol zicl (™), k = 1,..., £, with rational functions ¢}, ().
Expanding the terms in the above equation in Laurent series we obtain the equations

(@™ wy (2™) + ...+ eh(@™)we(2™) = 0,5 =0, ...;m — 1,

and hence
ci(x)wy(x) + ... + c)(x)we(x) = 0,5 =0,...,m — 1.
Since at least one of them must be nontrivial we obtain the linear dependence of the w;, j =1, ..., (. &
Consider now the C(x)-subspace W of K generated by o*c}(f), m = 0,...m; — 1, r =

0,...mg — 1. By (1), W is invariant under o; and o9; here the fact that the o; commute is used.
Let g1, ..., g, be a C(x)-basis of W with g; = f and let g = (g1, ..., g»)T. Then we have that

o1(g) = A(x)g, 02(g9) = B(x)g, (2)

with A, B € gl (C(x)). By Lemma 2, we actually have A, B € GL,,(C(z)) because the components
of 0;(g) form again a basis of W.

Additionally, the coefficient matrices of (2) satisfy a certain consistency condition. Indeed, we
have

0= 01(02(9)) — 02(01(9)) = (01(B)A — 02(A)B)g

and as the components of g form a basis we obtain
A(z?)B(x) = B(z?)A(z). (3)

Our statement then follows from



Proposition 3. Consider a system

y(a?) = Alz)y(z), y(@?) = Blx)y(z) )

with multiplicatively independent positive integers p and q and A(x), B(z) € GL,(C(x)) satisfying
the consistency condition (3). Suppose that g(z) € (C[[z]][z™!])" is a formal vectorial solution. Then
g(z) € C(x)™

Observe that we must actually have n = 1 in the proof of the Theorem because the components of
g(x) are C(x)-linearly independent. ]

The proof of Proposition 3 proceeds in three steps. We first prove that g(x) converges in a neigh-
borhood of 0. In the second step (the heart of the proof) we show that g(x) can be extended analyti-
cally to a meromorphic function on C with only finitely many poles. Finally we prove that g(x) has
polynomial growth as |z| — oo and therefore must be in C(x)™. We begin with the first step.

Lemma 4. The series g(x) is convergent in a neighborhood of 0.

Proof. This is a special case of [S], Theorem 1-2, and could also be deduced from [8], section 4. For
the convenience of the reader, we provide a short proof. To do that, we truncate g(z) at a sufficiently
high power of z to obtain i(z) € (C[z][z™'])" and introduce 7(x) = h(z) — A(z) 'h(2?) and
g(x) = g(z) — h(z). Then we have

g(x) = A(x) 'g(a?) — r(x). (5)

We denote the valuation of A(z)~" at the origin by s € Z and introduce A(z) = 2~ *A(z)~! which is
holomorphic at the origin.

First choose M € Nsuch that pM+s > M and h(x) such that g(x)—h(z) has at least valuation M.
Then by (5), r(x) also has at least valuation M. Now consider R > 0 such that A(xz) is holomorphic
and bounded on D(0, R). Then consider for positive p < min(R, 1) the vector space £, of all series
F(z)=3%>"_,, Fnz™suchthat >~ , |F,|p™ converges and define the norm |F'(x)|, as this sum.
Then E, equipped with | |, is a Banach space and the existence of a unique solution of (5) in E,
for sufficiently small p > 0 follows from the Banach fixed-point theorem using that |z°F (z?)|, <
pMPHs=M| ()|, for F(x) € E,. Since any solution y(z) € 2 C[[z]] of y(z) = A(x) 'y(«?) must
be zero, we have that §(z) coincides with the solution in £,. This proves the convergence of §(z) and
hence of g(z). ]

We now turn to the task of showing that g(z) can be extended to a meromorphic function on C. By
(4), rewritten g(z) = A(z)~'g(zP), the function g can only be extended analytically to a meromorphic
function on the unit disk. As we want to extend it beyond the unit disk, we use the change of variables
x = €', u(t) = y(e') and obtain a system of ¢-difference equations

u(pt) = A(tu(t), ulgt) = B(t)u(t) (©)
with A(t) = A(e'), B(t) = B(e'). It satisfies the consistency condition

A(qt)B(t) = B(pt)A(t). (7)



Observe that A(t), B(t) are not rational in ¢, but rational in €'.

The heart of the proof of Proposition 3 lies in understanding the behavior of solutions of (6).
We do this by first showing in Lemma 5 that there is a formal gauge transformation u = G'v, G €
GL, (C{t}[t™']), such that v satisfies a system with constant coefficients. We then show in Lemma 6
that the transformation matrix G(¢) and its inverse can be continued analytically to meromorphic
functions on the ¢-plane. The “quotient” function d(t) = G(t)"'g(e') then satisfies a system with
constant coefficients which can be solved explicitly. In this way, we show in Lemma 7 that d(t) can
be extended analytically to an entire function on the Riemann surface of log(t). Using these three
lemmas, we show in Lemma 8 that g(x) can be continued analytically to a meromorphic function on
the x-plane.

Lemma 5. There exists a convergent gauge transformation v = G(t)v, G(t) € GL,(C{t}[t™']),
such that v satisfies

v(pt) = Au(t), wv(gt) = Bio(t) (8)
where Ay, B1 € GL,(C) commute.

Proof. Concerning the behavior at ¢ = 0, it is known that there exists a formal gauge transforma-
tionu = G z, G € GL,(C[[t"/*]][t7/%]), s € N¥, that reduces u(pt) = A(t)u(t) to a system z(pt) =
tP A, z(t), where D is a diagonal matrix with entries in Z and A; € GL,,(C) such that any eigenvalue
A of A satisfies 1 < |A| < |p|*/*, moreover D and A; commute. If we write D = diag(d,I1, ..., d, I,)
with distinct d; and I; identity matrices of an appropriate size, then A; = diag(Aj, ..., A7) with diag-
onal blocks A{ of corresponding size. D and A; are essentially unique, i.e. except for a permutation
of the diagonal blocks and passage from some A{ to a conjugate matrix. If D happens to be 0, then s
can be chosen to be 1 and G is convergent (see [7], ch. 12, [2], [6]).

Now by the consistency condition (7), the gauge transformation v = B(t)u transforms u(pt) =
A(t)u(t) to v(pt) = A(qt)v(t). The gauge transformation v = G(qt)w then transforms this system
to w(pt) = (qt)P Ajw(t). Now (qt)P A; = tP ¢P A, and there is a diagonal matrix I’ with entries in
%Z commuting with D and A; such that the gauge transformation w = ¢ reduces the latter system
to w(pt) = tPAi(t), where A, = p~FqP A, has again eigenvalues with modulus in [1, |p|'/*.
Now we write A; = diag(Al, ..., A7) and fix some j € {1,...,r}.Ifa, ..., a]  are the eigenvalues
of A{ then p~fig% a%, ¢ = 1,...,r;, are those of /H. By the uniqueness of the reduced form, the
mapping t — p~/ig%t induces a permutation of the eigenvalues of A{. If we apply it several times,
if necessary, we obtain the existence of some ¢ € {1,...,r;} and of some positive integer & such that
pkfigkds aZ = ai. Due to our condition on p and q this is only possible if d; = 0. Thus we have proved
that D = 0 and t = 0 is a so-called regular singular point of u(pt) = A(t)u(t).

We therefore obtain a matrix A; with eigenvalues A in the annulus 1 < |A| < p and G(t) €
GL, (C{t}[t™"]) such that u = G(t)v reduces the first equation of (6) to v(pt) = Ajv(t). This means

G(pt) = A(t)G(t)A;* for small t. )
Applying the same gauge transformation to the second equation of (6) yields an equation v(qt) =
B(t)v(t) with some B(t) € GL, (C{t}[t™!]). It satisfies the consistency condition A; B(t) = B(pt)A;.
Now we expand B(t) = ano:mo C,,t™. The coefficients satisfy A,C,, = C,,,(p™ A1), m > myg. As
A; and p™ A; have no common eigenvalue unless m = 0, we obtain that B (t) =: By is constant and
commutes with A;. We note the second equation satisfied by G

G(qt) = B(t)G(t)B; " for small t. (10



Lemma 6. The functions G(t)*! can be continued analytically to meromorphic functions on C and
there exists § > 0 such that both can be continued analytically to the sectors {t € C* | 6 < arg(+t) <
25}

Proof. Let M be the set of poles of A(t)*!, i.e. the set of ¢ such that ¢’ is a pole of A(x) or A(x)~?
Note that M is 2mi-periodic, has no finite accumulation point and is contained in some vertical strip
{te C| —D < Ret < D}. By (9), G(t)*! can be continued analytically to C* \ (M - p") and thus
to meromorphic functions on C which we denote by the same name. By construction, G/()** are also
analytic in some punctured neighborhood of the origin. By the properties of M, the infimum of the
| Rety| on the set of all ¢; € M having nonzero real part is a positive number. As M is contained
in some vertical strip there exist sectors {t € C* | 0 < arg(£t) < 20} disjoint to M and hence to
M - p". Therefore G(t)*! can be analytically continued to these sectors and the lemma is proved. &

Lemma 7. The function d(t) = G(t)"*g(e') can be continued analytically to the Riemann surface of
log(t).

Proof. By Lemma 6 and because g(x) is holomorphic in some punctured neighborhood of = = 0 by
Lemma 4, d(t) is defined and holomorphic for some sector S = {t € C | |[t| > K, 7+ § < argt <
T+ 25}. By (4), (9), and (10) it satisfies

d(pt) = Ad(t), d(qt) = Byd(t) fort € S. (11)

To solve (11), consider a matrix L; commuting with B; such that p* = A;. Put F(t) = t~L1d(¢).
Then 3
F(pt) = F(t), F(qt) = B\F(t)fort € S (12)

where By = Byq ™. Thus H(s) = F(e*) is log(p)-periodic on the half-strip B = {s € C | Res >
log(K), m+d <Ims < 7+ 20} and can be expanded in a Fourier series. This implies that

F(t) = Z Fytesn’ fort € S. (13)
{=—0c0

The second equation of (12) yields conditions on the Fourier coefficients

Fyexp <2mi°gg %E) = B,F, for ¢ € Z.

0g(q)
log(p)

Therefore [y = 0 unless exp (2m E) is an eigenvalue of B. Since p and ¢ are multiplicatively

independent, the quotient logg % is irrational and hence exp (27?2 E g) is not a root of unity. Therefore

all the numbers exp <2m logg )€> ¢ € 7 are different and only finitely many of them can be eigen-

values of B;. This shows that the Fourier series (13) has finitely many terms and thus F'() can be
analytically continued to the whole Riemann surface C of log(¢). The same holds for d(t) = t* F(t).
1



Lemma 8. The function g(x) can be continued analytically to a meromorphic function on C with
finitely many poles.

Remark: According to Theorem 4.2 of [8] (see also [4]), it is sufficient to show that g(x) does not
have the unit circle as a natural boundary and the rationality of ¢g(z) follows. We show how it follows
naturally, in our context, that g(z) can be continued analytically as a meromorphic function to all of
C and, as well, that it has only finitely many poles. The rationality of g(x) then follows as in [8] and
[4] from a growth estimate (Lemma 9).

Proof. The function h(t) = g(e') is holomorphic for ¢ with large negative real part by Lemma 4 and
2mi-periodic. Using Lemma 6 we conclude that h(t) = G(¢)d(t) can be analytically continued to a
meromorphic function on C, in particular the point ¢ = 27z is at most a pole of h. By its periodicity,
this implies that ¢ = 0 also is at most a pole of i and that it can be continued analytically to a
meromorphic function on C which we denote by the same name.

Since h(t) = g(e') for ¢ with large negative real part, h(t) is 2mi-periodic for those values of ¢,
hence also its analytic continuation to a meromorphic function on all of C. This periodicity allows one
to define a meromorphic function g(x) on C\{0} by g(e') = h(t). As g(x) = g(z) for small |z| # 0
by the construction of h, we have shown that g(z) can be continued analytically to a meromorphic
function on C which will again be denoted by the same name.

The formula h(t) = G(t)d(t) and Lemma 6 also imply that & is analytic in the sector S = {t €
C* | § < argt < 20}. As this sector contains some half strip {¢ € C | Ret > L,uRet < Imt <
puRet + 3} for some positive L, u which has vertical width larger than 27 and h is 27i-periodic, its
poles are contained in some vertical strip {¢t € C | —L < Ret < L}. This implies that g(x) has only
a finite number of poles. I

The proof of Proposition 3 is completed once we have shown
Lemma 9. The function g(x) has polynomial growth as |x| — oc.

Proof. This is shown in the proof of Theorem 4.2 in [8] (see also [4]). For the convenience of the
reader, we reproduce it below.

Consider r,> 1 such that g(z) and A(x) are holomorphic on the annulus |z| > ry/2. There are
positive numbers K, M such that |A(x)| < K|z|™ for |z| > 7. Consider now the annuli

Aj={zeC| <|z| <"} j=01,..

covering the annulus |z| > 7. Any € A; can be written © = §pj with some £ € A,. Then we
estimate using (4) and the inequality for |A(z)|

. . M
9@ = o)) < &9 (e - lePiel)” max lg()l.
ro<[¢|<ry
Hence there is a positive constant L such that |g(z)| < L K’ |x|% for x € A;. Assuming log(ro) > 1
without loss in generality, we find that j < log(log(|z|))/log(p) for € A;. Hence there exists d > 0
such that o
l9(@)] < L (log(Je)? |27 for 2| > .
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