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Abstract

We give another proof of a result of Adamczewski and Bell [1] concerning Mahler equations:
A formal power series satisfying a p- and a q-Mahler equation over C(x) with multiplicatively
independent positive integers p and q is a rational function. The proof presented here is self-
contained and essentially a compilation of proofs contained in a recent preprint [9] of the authors.
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tion

We consider two Mahler operators, i.e. two endomorphisms σj , j = 1, 2, on the field K = C[[x]][x−1]
of formal Laurent series with complex coefficients defined by σ1(f(x)) = f(xp), σ2(f(x)) = f(xq)
for any f(x) ∈ K where p and q are positive integers. Observe that σ1 and σ2 commute, i.e. σ1σ2 =
σ2σ1. We consider the field C(x) of rational functions with complex coefficients as a subfield of K,
the inclusion given by the expansion in a Laurent series at the origin. We want to prove the following
theorem

Theorem 1. Assume that p and q are multiplicatively independent, i.e. there are no nonzero integers
nj such that qn2 = pn1 . Suppose that the formal series f(x) ∈ K satisfies a system of two Mahler
equations

Sj(f(x)) = σ
mj
j (f(x)) + bj,mj−1(x)σ

mj−1
j (f(x)) + . . .+ bj,0(x)f(x) = 0, j = 1, 2 (1)

with bj,i(x) ∈ C(x).
Then f(x) is rational.

Remark: 1. This Theorem was recently proved by Adamczewski and Bell in [1]. Their tools include
a local-global principle to reduce the problem to a similar problem over finite fields, Chebotarev’s
Density Theorem, Cobham’s Theorem and some asymptotics - all very different from the techniques
used in the present work.
2. [1] also provides background information about Mahler equations, in particular historical, many
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references to the literature and explains the relation to Cobham’s theorem in the theory of finite state
machines. The fact that the generating functions of p-regular (and thus of p-automatic sequences)
satisfy p-Mahler equations is shown in [3].
3. The subsequent proof is essentially a compilation of work contained in our recent preprint [9], see
Corollary 15, part 3, and Proposition 19. The preprint presents a unified reduction theory of consistent
pairs of first order systems of linear differential, difference, q-difference or Mahler equations like the
one of Proposition 3 below and uses it to deduce numerous statements on common solutions of two
scalar linear differential, difference, q-difference or Mahler equations.

Proof. We may assume without loss of generality that bj,0(x) 6= 0, j = 1, 2. This follows from

Lemma 2. Consider w1(x), ..., w`(x) ∈ K and a positive integer m. Then these series are C(x)-
linearly dependent if and only if w1(x

m), ..., w`(x
m) are.

Proof. We only prove the nontrivial implication. Suppose that w1(x
m), ..., w`(x

m) are C(x)-linearly
dependent, which means that there exist ak ∈ C(x), k = 1, ..., `, not all zero, such that

a1(x)w1(x
m) + ...+ a`(x)w`(x

m) = 0.

Now we can uniquely write ak(x) =
∑m−1

j=0 x
jcjk(x

m), k = 1, ..., `, with rational functions cjk(x).
Expanding the terms in the above equation in Laurent series we obtain the equations

cj1(x
m)w1(x

m) + ...+ cj`(x
m)w`(x

m) = 0, j = 0, ...,m− 1,

and hence
cj1(x)w1(x) + ...+ cj`(x)w`(x) = 0, j = 0, ...,m− 1.

Since at least one of them must be nontrivial we obtain the linear dependence of thewj , j = 1, ..., `.

Consider now the C(x)-subspace W of K generated by σm1 σ
r
2(f), m = 0, ...,m1 − 1, r =

0, ...m2 − 1. By (1), W is invariant under σ1 and σ2; here the fact that the σj commute is used.
Let g1, ..., gn be a C(x)-basis of W with g1 = f and let g = (g1, ..., gn)T . Then we have that

σ1(g) = A(x)g, σ2(g) = B(x)g, (2)

with A,B ∈ gln(C(x)). By Lemma 2, we actually have A,B ∈ GLn(C(x)) because the components
of σj(g) form again a basis of W .

Additionally, the coefficient matrices of (2) satisfy a certain consistency condition. Indeed, we
have

0 = σ1(σ2(g))− σ2(σ1(g)) = (σ1(B)A− σ2(A)B)g

and as the components of g form a basis we obtain

A(xq)B(x) = B(xp)A(x). (3)

Our statement then follows from
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Proposition 3. Consider a system

y(xp) = A(x)y(x), y(xq) = B(x)y(x) (4)

with multiplicatively independent positive integers p and q and A(x), B(x) ∈ GLn(C(x)) satisfying
the consistency condition (3). Suppose that g(x) ∈ (C[[x]][x−1])n is a formal vectorial solution. Then
g(x) ∈ C(x)n.

Observe that we must actually have n = 1 in the proof of the Theorem because the components of
g(x) are C(x)-linearly independent.

The proof of Proposition 3 proceeds in three steps. We first prove that g(x) converges in a neigh-
borhood of 0. In the second step (the heart of the proof) we show that g(x) can be extended analyti-
cally to a meromorphic function on C with only finitely many poles. Finally we prove that g(x) has
polynomial growth as |x| → ∞ and therefore must be in C(x)n. We begin with the first step.

Lemma 4. The series g(x) is convergent in a neighborhood of 0.

Proof. This is a special case of [5], Theorem 1-2, and could also be deduced from [8], section 4. For
the convenience of the reader, we provide a short proof. To do that, we truncate g(x) at a sufficiently
high power of x to obtain h(x) ∈ (C[x][x−1])n and introduce r(x) = h(x) − A(x)−1h(xp) and
g̃(x) = g(x)− h(x). Then we have

g̃(x) = A(x)−1g̃(xp)− r(x). (5)

We denote the valuation of A(x)−1 at the origin by s ∈ Z and introduce Ã(x) = x−sA(x)−1 which is
holomorphic at the origin.

First chooseM ∈ N such that pM+s > M and h(x) such that g(x)−h(x) has at least valuationM .
Then by (5), r(x) also has at least valuation M . Now consider R > 0 such that Ã(x) is holomorphic
and bounded on D(0, R). Then consider for positive ρ < min(R, 1) the vector space Eρ of all series
F (x) =

∑∞
m=M Fmx

m such that
∑∞

m=M |Fm|ρm converges and define the norm |F (x)|ρ as this sum.
Then Eρ equipped with | |ρ is a Banach space and the existence of a unique solution of (5) in Eρ
for sufficiently small ρ > 0 follows from the Banach fixed-point theorem using that |xsF (xp)|ρ ≤
ρMp+s−M |F (x)|ρ for F (x) ∈ Eρ. Since any solution y(x) ∈ xMC[[x]] of y(x) = A(x)−1y(xp) must
be zero, we have that g̃(x) coincides with the solution in Eρ. This proves the convergence of g̃(x) and
hence of g(x).

We now turn to the task of showing that g(x) can be extended to a meromorphic function on C. By
(4), rewritten g(x) = A(x)−1g(xp), the function g can only be extended analytically to a meromorphic
function on the unit disk. As we want to extend it beyond the unit disk, we use the change of variables
x = et, u(t) = y(et) and obtain a system of q-difference equations

u(pt) = Ā(t)u(t), u(qt) = B̄(t)u(t) (6)

with Ā(t) = A(et), B̄(t) = B(et). It satisfies the consistency condition

Ā(qt)B̄(t) = B̄(pt)Ā(t). (7)
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Observe that Ā(t), B̄(t) are not rational in t, but rational in et.
The heart of the proof of Proposition 3 lies in understanding the behavior of solutions of (6).

We do this by first showing in Lemma 5 that there is a formal gauge transformation u = Gv, G ∈
GLn(C{t}[t−1]), such that v satisfies a system with constant coefficients. We then show in Lemma 6
that the transformation matrix G(t) and its inverse can be continued analytically to meromorphic
functions on the t-plane. The “quotient” function d(t) = G(t)−1g(et) then satisfies a system with
constant coefficients which can be solved explicitly. In this way, we show in Lemma 7 that d(t) can
be extended analytically to an entire function on the Riemann surface of log(t). Using these three
lemmas, we show in Lemma 8 that g(x) can be continued analytically to a meromorphic function on
the x-plane.

Lemma 5. There exists a convergent gauge transformation u = G(t) v, G(t) ∈ GLn(C{t}[t−1]),
such that v satisfies

v(pt) = A1v(t), v(qt) = B1v(t) (8)

where A1, B1 ∈ GLn(C) commute.

Proof. Concerning the behavior at t = 0, it is known that there exists a formal gauge transforma-
tion u = Gz, G ∈ GLn(C[[t1/s]][t−1/s]), s ∈ N∗, that reduces u(pt) = Ā(t)u(t) to a system z(pt) =
tDA1z(t), whereD is a diagonal matrix with entries in 1

s
Z andA1 ∈ GLn(C) such that any eigenvalue

λ of A1 satisfies 1 ≤ |λ| < |p|1/s, moreover D and A1 commute. If we write D = diag(d1I1, ..., drIr)
with distinct dj and Ij identity matrices of an appropriate size, then A1 = diag(A1

1, ..., A
r
1) with diag-

onal blocks Aj1 of corresponding size. D and A1 are essentially unique, i.e. except for a permutation
of the diagonal blocks and passage from some Aj1 to a conjugate matrix. If D happens to be 0, then s
can be chosen to be 1 and G is convergent (see [7], ch. 12, [2], [6]).

Now by the consistency condition (7), the gauge transformation v = B(t)u transforms u(pt) =
Ā(t)u(t) to v(pt) = Ā(qt)v(t). The gauge transformation v = G(qt)w then transforms this system
to w(pt) = (qt)DA1w(t). Now (qt)DA1 = tD qDA1 and there is a diagonal matrix F with entries in
1
s
Z commuting with D and A1 such that the gauge transformation w = tF w̃ reduces the latter system

to w̃(pt) = tDÃ1w̃(t), where Ã1 = p−F qDA1 has again eigenvalues with modulus in [1, |p|1/s[.
Now we write Ã1 = diag(Ã1

1, ..., Ã
r
1) and fix some j ∈ {1, ..., r}. If aj1, ..., a

j
rj

are the eigenvalues
of Aj1 then p−fjqdjaj` , ` = 1, ..., rj , are those of Ãj1. By the uniqueness of the reduced form, the
mapping t 7→ p−fjqdj t induces a permutation of the eigenvalues of Aj1. If we apply it several times,
if necessary, we obtain the existence of some ` ∈ {1, ..., rj} and of some positive integer k such that
p−kfjqkdjaj` = aj` . Due to our condition on p and q this is only possible if dj = 0. Thus we have proved
that D = 0 and t = 0 is a so-called regular singular point of u(pt) = Ā(t)u(t).

We therefore obtain a matrix A1 with eigenvalues λ in the annulus 1 ≤ |λ| < p and G(t) ∈
GLn(C{t}[t−1]) such that u = G(t)v reduces the first equation of (6) to v(pt) = A1v(t). This means

G(pt) = Ā(t)G(t)A−11 for small t. (9)

Applying the same gauge transformation to the second equation of (6) yields an equation v(qt) =
˜̄B(t)v(t) with some ˜̄B(t) ∈ GLn(C{t}[t−1]). It satisfies the consistency conditionA1

˜̄B(t) = ˜̄B(pt)A1.
Now we expand ˜̄B(t) =

∑∞
m=m0

Cmt
m. The coefficients satisfy A1Cm = Cm(pmA1), m ≥ m0. As

A1 and pmA1 have no common eigenvalue unless m = 0, we obtain that ˜̄B(t) =: B1 is constant and
commutes with A1. We note the second equation satisfied by G

G(qt) = B̄(t)G(t)B−11 for small t. (10)
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Lemma 6. The functions G(t)±1 can be continued analytically to meromorphic functions on C and
there exists δ > 0 such that both can be continued analytically to the sectors {t ∈ C∗ | δ < arg(±t) <
2δ}.

Proof. LetM be the set of poles of Ā(t)±1, i.e. the set of t such that et is a pole of Ā(x) or Ā(x)−1.
Note thatM is 2πi-periodic, has no finite accumulation point and is contained in some vertical strip
{t ∈ C | −D < Re t < D}. By (9), G(t)±1 can be continued analytically to C∗ \ (M · pN) and thus
to meromorphic functions on C which we denote by the same name. By construction, G(t)±1 are also
analytic in some punctured neighborhood of the origin. By the properties ofM, the infimum of the
|Re t1| on the set of all t1 ∈ M having nonzero real part is a positive number. AsM is contained
in some vertical strip there exist sectors {t ∈ C∗ | δ < arg(±t) < 2δ} disjoint toM and hence to
M· pN. Therefore G(t)±1 can be analytically continued to these sectors and the lemma is proved.

Lemma 7. The function d(t) = G(t)−1g(et) can be continued analytically to the Riemann surface of
log(t).

Proof. By Lemma 6 and because g(x) is holomorphic in some punctured neighborhood of x = 0 by
Lemma 4, d(t) is defined and holomorphic for some sector S = {t ∈ C | |t| > K, π + δ < arg t <
π + 2δ}. By (4), (9), and (10) it satisfies

d(pt) = A1d(t), d(qt) = B1d(t) for t ∈ S. (11)

To solve (11), consider a matrix L1 commuting with B1 such that pL1 = A1. Put F (t) = t−L1d(t).
Then

F (pt) = F (t), F (qt) = B̃1F (t) for t ∈ S (12)

where B̃1 = B1q
−L1 . Thus H(s) = F (es) is log(p)-periodic on the half-strip B = {s ∈ C | Re s >

log(K), π + δ < Im s < π + 2δ} and can be expanded in a Fourier series. This implies that

F (t) =
∞∑

`=−∞

F` t
2πi

log(p)
` for t ∈ S. (13)

The second equation of (12) yields conditions on the Fourier coefficients

F` exp
(

2πi log(q)
log(p)

`
)

= B̃1F` for ` ∈ Z.

Therefore F` = 0 unless exp
(

2πi log(q)
log(p)

`
)

is an eigenvalue of B̃1. Since p and q are multiplicatively

independent, the quotient log(q)
log(p)

is irrational and hence exp
(

2πi log(q)
log(p)

)
is not a root of unity. Therefore

all the numbers exp
(

2πi log(q)
log(p)

`
)

, ` ∈ Z are different and only finitely many of them can be eigen-

values of B̃1. This shows that the Fourier series (13) has finitely many terms and thus F (t) can be
analytically continued to the whole Riemann surface Ĉ of log(t). The same holds for d(t) = tL1F (t).
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Lemma 8. The function g(x) can be continued analytically to a meromorphic function on C with
finitely many poles.

Remark: According to Theorem 4.2 of [8] (see also [4]), it is sufficient to show that g(x) does not
have the unit circle as a natural boundary and the rationality of g(x) follows. We show how it follows
naturally, in our context, that g(x) can be continued analytically as a meromorphic function to all of
C and, as well, that it has only finitely many poles. The rationality of g(x) then follows as in [8] and
[4] from a growth estimate (Lemma 9).

Proof. The function h(t) = g(et) is holomorphic for t with large negative real part by Lemma 4 and
2πi-periodic. Using Lemma 6 we conclude that h(t) = G(t)d(t) can be analytically continued to a
meromorphic function on Ĉ, in particular the point t = 2πi is at most a pole of h. By its periodicity,
this implies that t = 0 also is at most a pole of h and that it can be continued analytically to a
meromorphic function on C which we denote by the same name.

Since h(t) = g(et) for t with large negative real part, h(t) is 2πi-periodic for those values of t,
hence also its analytic continuation to a meromorphic function on all of C. This periodicity allows one
to define a meromorphic function g̃(x) on C\{0} by g̃(et) = h(t). As g̃(x) = g(x) for small |x| 6= 0
by the construction of h, we have shown that g(x) can be continued analytically to a meromorphic
function on C which will again be denoted by the same name.

The formula h(t) = G(t)d(t) and Lemma 6 also imply that h is analytic in the sector S̃ = {t ∈
C∗ | δ < arg t < 2δ}. As this sector contains some half strip {t ∈ C | Re t > L, µRe t < Im t <
µRe t+ 3π} for some positive L, µ which has vertical width larger than 2π and h is 2πi-periodic, its
poles are contained in some vertical strip {t ∈ C | −L < Re t < L}. This implies that g(x) has only
a finite number of poles.

The proof of Proposition 3 is completed once we have shown

Lemma 9. The function g(x) has polynomial growth as |x| → ∞.

Proof. This is shown in the proof of Theorem 4.2 in [8] (see also [4]). For the convenience of the
reader, we reproduce it below.

Consider r0> 1 such that g(x) and A(x) are holomorphic on the annulus |x| > r0/2. There are
positive numbers K,M such that |A(x)| ≤ K|x|M for |x| ≥ r0. Consider now the annuli

Aj = {x ∈ C | rp
j

0 ≤ |x| < rp
j+1

0 }, j = 0, 1, ...

covering the annulus |x| ≥ r0. Any x ∈ Aj can be written x = ξp
j with some ξ ∈ A0. Then we

estimate using (4) and the inequality for |A(x)|

|g(x)| = |g(ξp
j

)| ≤ Kj
(
|ξ|pj−1 · · · |ξ|p|ξ|

)M
max

r0≤|ξ|≤rp0
|g(ξ)|.

Hence there is a positive constantL such that |g(x)| ≤ LKj |x|
M
p−1 for x ∈ Aj.Assuming log(r0) ≥ 1

without loss in generality, we find that j ≤ log(log(|x|))/ log(p) for x ∈ Aj . Hence there exists d > 0
such that

|g(x)| ≤ L (log(|x|))d |x|
M
p−1 for |x| > r0.

Acknowledgement. The authors would like to thank Boris Adamczewski for suggesting an improve-
ment of the proof of Lemma 8 and for pointing out the article [4] to us.
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